
Chapter 2
Empirical and Rademacher Processes

The empirical process is defined as

Zn WD n1=2.Pn � P/

and it can be viewed as a random measure. However, more often, it has been viewed
as a stochastic process indexed by a function class F W

Zn.f / D n1=2.Pn � P/.f /; f 2 F

(see Dudley [59] or van der Vaart and Wellner [148]).
The Rademacher process indexed by a class F was defined in Sect. 1.3 as

Rn.f / WD n�1
nX

iD1
"if .Xi /; f 2 F ;

f"ig being i.i.d. Rademacher random variables (that is, "i takes the values C1 and
�1 with probability 1=2 each) independent of fXig:

It should be mentioned that certain measurability assumptions are required in the
study of empirical and Rademacher processes. In particular, under these assump-
tions, such quantities as kPn �P kF are properly measurable random variables. We
refer to the books of Dudley [59], Chap. 5 and van der Vaart and Wellner [148],
Sect. 1.7 for precise formulations of these measurability assumptions. Some of the
bounds derived and used below hold even without the assumptions of this nature, if
the expectation is replaced by the outer expectation, as it is often done, for instance,
in [148]. Another option is to “define”

EkPn � P kF WD sup

�
EkPn � P kG W G � F ;G is finite

�
;
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18 2 Empirical and Rademacher Processes

which provides a simple way to get around the measurability difficulties. Such an
approach has been frequently used by Talagrand (see, e.g., [140]). In what follows,
it will be assumed that the measurability problems have been resolved in one of
these ways.

2.1 Symmetrization Inequalities

The following important inequality reveals close relationships between empirical
and Rademacher processes.

Theorem 2.1. For any class F of P -integrable functions and for any convex
function ˚ W RC 7! RC

E˚

�
1

2
kRnkFc

�
� E˚

�
kPn � P kF

�
� E˚

�
2kRnkF

�
;

where Fc WD ff � Pf W f 2 F g: In particular,

1

2
EkRnkFc � EkPn � P kF � 2EkRnkF :

Proof. Assume that the random variables X1; : : : Xn are defined on a probability
space . N̋ ; Ṅ ; NP/: We will also need two other probability spaces: . Q̋ ; Q̇ ; QP/ and
.˝";˙";P"/: The main probability space on which all the random variables are
defined will be denoted .˝;˙;P/ and it will be the product space

.˝;˙;P/ D . N̋ ; Ṅ ; NP/ � . Q̋ ; Q̇ ; QP/ � .˝";˙";P"/:

The corresponding expectations will be denoted by NE; QE;E" and E: Let
. QX1; : : : ; QXn/ be an independent copy of .X1; : : : ; Xn/: Think of random variables
QX1; : : : ; QXn as being defined on . Q̋ ; Q̇ ; QP/: Denote QPn the empirical measure based

on . QX1; : : : ; QXn/ (it is an independent copy of Pn). Then QE QPnf D Pf and, using
Jensen’s inequality,

E˚
�
kPn � P kF

�
D NE˚

�
kPn � QE QPnkF

�
D NE˚

�
k QE.Pn � QPn/kF

�

� NE QE˚
�
kPn � QPnkF

�
D NE QE˚

�����n
�1

nX

jD1
.ıXj � ı QXj /

����
F

�
:

SinceX1; : : : ; Xn; QX1; : : : ; QXn are i.i.d., the distribution of .X1; : : : ; Xn; QX1; : : : ; QXn/
is invariant with respect to all permutations of the components. In particular, one
can switch any couple Xj ; QXj : Because of this,
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NE QE˚
�����n

�1
nX

jD1
.ıXj � ı QXj /

����
F

�
D NE QE˚

�����n
�1

nX

jD1
�j .ıXj � ı QXj /

����
F

�
;

for an arbitrary choice of �j D C1 or �j D �1: Define now i.i.d. Rademacher
random variables on .˝";˙";P"/ (thus, independent of .X1; : : : ; Xn; QX1; : : : ; QXn/).
Then, we have

NE QE˚
�����n

�1
nX

jD1
.ıXj � ı QXj /

����
F

�
D E"

NE QE˚
�����n

�1
nX

jD1
"j .ıXj � ı QXj /

����
F

�

and the proof can be completed as follows:

E˚
�
kPn � P kF

�
� E"

NE QE˚
�����n

�1
nX

jD1
"j .ıXj � ı QXj /

����
F

�

� 1

2
E"

NE˚
�
2

����n
�1

nX

jD1
"j ıXj

����
F

�
C 1

2
E"

QE˚
�
2

����n
�1

nX

jD1
"j ı QXj

����
F

�

D E˚
�
2kRnkF

�
:

The proof of the lower bound is similar. ut
The upper bound is called the symmetrization inequality and the lower bound is

sometimes called the desymmetrization inequality. The desymmetrization inequality
is often used together with the following elementary lower bound (in the case of
˚.u/ D u)

EkRnkFc � EkRnkF � sup
f 2F

jPf j EjRn.1/j �

� EkRnkF � sup
f 2F

jPf j E
1=2jn�1

nX

jD1
"j j2 D EkRnkF � supf 2F jPf jp

n
:

2.2 Comparison Inequalities for Rademacher Sums

Given a set T � R
n and i.i.d. Rademacher variables "i ; i D 1; 2; : : : ; it is of interest

to know how the expected value of the sup-norm of Rademacher sums indexed by T

Rn.T / WD E sup
t2T

ˇ̌
ˇ̌
nX

iD1
ti "i

ˇ̌
ˇ̌
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depends on the geometry of the set T: The following beautiful comparison inequality
for Rademacher sums is due to Talagrand and it is often used to control Rn.T / for
more complex sets T in terms of similar quantities for simpler sets.

Theorem 2.2. Let T � R
n and let 'i W R 7! R; i D 1; : : : ; n be functions such

that 'i.0/ D 0 and
j'i.u/� 'i.v/j � ju � vj; u; v 2 R

(that is, 'i are contractions). For all convex nondecreasing functions˚ W RC 7! RC,

E˚

�
1

2
sup
t2T

ˇ̌
ˇ̌
nX

iD1
'i .ti /"i

ˇ̌
ˇ̌
�

� E˚

�
sup
t2T

ˇ̌
ˇ̌
nX

iD1
ti "i

ˇ̌
ˇ̌
�
:

Proof. First, we prove that for a nondecreasing convex function ˚ W R 7! RC and
for an arbitrary A W T 7! R

E˚

�
sup
t2T

	
A.t/C

nX

iD1
'i .ti /"i


�
� E˚

�
sup
t2T

	
A.t/C

nX

iD1
ti "i


�
: (2.1)

We start with the case n D 1: Then, the bound is equivalent to the following

E˚
�

sup
t2T
Œt1 C "'.t2/�

�
� E˚

�
sup
t2T
Œt1 C "t2�

�

for an arbitrary set T � R
2 and an arbitrary contraction ': One can rewrite it as

1

2

�
˚

�
sup
t2T
Œt1 C '.t2/�

�
C ˚

�
sup
t2T
Œt1 � '.t2/�

��

� 1

2

�
˚

�
sup
t2T
Œt1 C t2�

�
C ˚

�
sup
t2T
Œt1 � t2�

��
:

If now .t1; t2/ 2 T denotes a point where supt2T Œt1 C '.t2/� is attained and
.s1; s2/ 2 T is a point where supt2T Œt1 �'.t2/� is attained, then it is enough to show
that

˚
�
t1 C '.t2/

�
C ˚

�
s1 � '.s2/

�
� ˚

�
sup
t2T
Œt1 C t2�

�
C˚

�
sup
t2T
Œt1 � t2�

�

(if the suprema are not attained, one can easily modify the argument). Clearly, we
have the following conditions:

t1 C '.t2/ � s1 C '.s2/ and t1 � '.t2/ � s1 � '.s2/:

First consider the case when t2 � 0; s2 � 0 and t2 � s2: In this case, we will prove
that

˚
�
t1 C '.t2/

�
C ˚

�
s1 � '.s2/

�
� ˚

�
t1 C t2

�
C ˚

�
s1 � s2

�
; (2.2)
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which would imply the bound. Indeed, for

a WD t1 C '.t2/; b WD t1 C t2; c WD s1 � s2; d WD s1 � '.s2/;

we have a � b and c � d since '.t2/ � t2; '.s2/ � s2 (by the assumption that '
is a contraction and '.0/ D 0). We also have that

b � a D t2 � '.t2/ � s2 � '.s2/ D d � c;

because again ' is a contraction and t2 � s2: Finally, we have

a D t1 C '.t2/ � s1 C '.s2/ � s1 � s2 D c:

Since the function ˚ is nondecreasing and convex, its increment over the interval
Œa; b� is larger than its increment over the interval Œc; d � (Œa; b� is longer than Œc; d �
and a � c), which is equivalent to (2.2).

If t2 � 0; s2 � 0 and s2 � t2; it is enough to use the change of notations .t; s/ 7!
.s; t/ and to replace ' with �':

The case t2 � 0; s2 � 0 can be now handled by using the transformation
.t1; t2/ 7! .t1;�t2/ and changing the function ' accordingly.

We have to consider the case t2 � 0; s2 � 0 (the only remaining case t2 � 0,
s2 � 0 would again follow by switching the names of t and s and replacing '
with �'). In this case, we have '.t2/ � t2; �'.s2/ � �s2; which, in view of
monotonicity of ˚; immediately implies

˚
�
t1 C '.t2/

�
C ˚

�
s1 � '.s2/

�
� ˚

�
t1 C t2

�
C ˚

�
s1 � s2

�
:

This completes the proof of (2.1) in the case n D 1:

In the general case, we have

E˚

�
sup
t2T

	
A.t/C

nX

iD1
'i .ti /"i


�

D E"1;:::;"n�1E"n˚

�
sup
t2T

	
A.t/C

n�1X

iD1
'i .ti /"i C "n'.tn/


�
:

The expectation E"n (conditional on "1; : : : ; "n�1) can be bounded using the result
in the case n D 1: This yields (after changing the order of integration)

E˚

�
sup
t2T

	
A.t/C

nX

iD1
'i .ti /"i


�
� E"nE"1;:::;"n�1˚

�
sup
t2T

	
A.t/C"ntnC

n�1X

iD1
'i .ti /"i


�
:

The proof of (2.1) can now be completed by an induction argument.
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Finally, to prove the inequality of the theorem, it is enough to write

E˚

�
1

2
sup
t2T

ˇ̌
ˇ̌
nX

iD1
'i .ti /"i

ˇ̌
ˇ̌
�

D E˚

�
1

2

	�
sup
t2T

nX

iD1
'i .ti /"i

�

C
C

�
sup
t2T

nX

iD1
'i .ti /.�"i /

�

C


�

� 1

2

	
E˚

��
sup
t2T

nX

iD1
'i .ti /"i

�

C

�
C E˚

��
sup
t2T

nX

iD1
'i .ti /.�"i /

�

C

�

;

where aC WD a _ 0: Applying the inequality (2.1) to the function u 7! ˚.uC/,
which is convex and nondecreasing, completes the proof. ut

We will frequently use a corollary of the above comparison inequality that
provides upper bounds on the moments of the sup-norm of Rademacher process
Rn on the class

' ı F WD f' ı f W f 2 F g
in terms of the corresponding moments of the sup-norm of Rn on F and Lipschitz
constant of function ':

Theorem 2.3. Let ' W R 7! R be a contraction satisfying the condition '.0/ D 0:

For all convex nondecreasing functions ˚ W RC 7! RC;

E˚

�
1

2
kRnk'ıF

�
� E˚

�
kRnkF

�
:

In particular,
EkRnk'ıF � 2EkRnkF :

The inequality of Theorem 2.3 will be called the contraction inequality for
Rademacher processes.

A simple rescaling of the class F allows one to use the contraction inequality in
the case of an arbitrary function ' satisfying the Lipschitz condition

j'.u/� '.v/j � Lju � vj

on an arbitrary interval .a; b/ that contains the ranges of all the functions in F : In
this case, the last bound of Theorem 2.3 takes the form

EkRnk'ıF � 2LEkRnkF :

This implies, for instance, that
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E sup
f 2F

ˇ̌
ˇ̌n�1

nX

iD1
"if

2.Xi/

ˇ̌
ˇ̌ � 4UE sup

f 2F

ˇ̌
ˇ̌n�1

nX

iD1
"if .Xi /

ˇ̌
ˇ̌ (2.3)

provided that the functions in the class F are uniformly bounded by a constant U:

2.3 Concentration Inequalities

A well known, simple and useful concentration inequality for functions

Z D g.X1; : : : ; Xn/

of independent random variables with values in arbitrary spaces is valid under so
called bounded difference condition on g W there exist constants cj ; j D 1; : : : ; n

such that for all j D 1; : : : ; n and all x1; x2; : : : ; xj ; x0
j ; : : : ; xn

ˇ̌
ˇg.x1; : : : ; xj�1; xj ; xjC1; : : : ; xn/� g.x1; : : : ; xj�1; x0

j ; xjC1; : : : ; xn/
ˇ̌
ˇ � cj :

(2.4)

Theorem 2.4 (Bounded difference inequality). Under the condition (2.4),

PfZ � EZ � tg � exp

�
� 2t2Pn

jD1 c2j

�

and

PfZ � EZ � �tg � exp

�
� 2t2Pn

jD1 c2j

�
:

A standard proof of this inequality is based on bounding the exponential moment
Ee�.Z�EZ/; using the following martingale difference representation

Z � EZ D
nX

jD1

	
E.ZjX1; : : : ; Xj /� E.ZjX1; : : : ; Xj�1/



;

then using Markov inequality and optimizing the resulting bound with respect to
� > 0:

In the case whenZ D X1C� � �CXn; the bounded difference inequality coincides
with Hoeffding inequality for sums of bounded independent random variables (see
Sect. A.2).

For a class F of functions uniformly bounded by a constant U; the bounded
difference inequality immediately implies the following bounds for kPn � P kF ;

providing a uniform version of Hoeffding inequality.
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Theorem 2.5. For all t > 0;

P

n
kPn � P kF � EkPn � P kF C tUp

n

o
� expf�t2=2g

and
P

n
kPn � P kF � EkPn � P kF � tUp

n

o
� expf�t2=2g:

Developing uniform versions of Bernstein’s inequality (see Sect. A.2) happened
to be a much harder problem that was solved in the famous papers by Talagrand
[138, 139] on concentration inequalities for product measures and empirical pro-
cesses.

Theorem 2.6 (Talagrand’s inequality). Let X1; : : : ; Xn be independent random
variables in S: For any class of functions F on S that is uniformly bounded by
a constant U > 0 and for all t > 0

P

( ˇ̌
ˇ̌
���

nX

iD1
f .Xi /

���
F

�E

���
nX

iD1
f .Xi /

���
F

ˇ̌
ˇ̌ � t

)
� K exp

�
� 1

K

t

U
log

�
1C tU

V

��
;

where K is a universal constant and V is any number satisfying

V � E sup
f 2F

nX

iD1
f 2.Xi/:

Using symmetrization inequality and contraction inequality for the square (2.3),
it is easy to show that in the case of i.i.d. random variables X1; : : : ; Xn with
distribution P

E sup
f 2F

nX

iD1
f 2.Xi/ � n sup

f 2F
Pf 2 C 8UE

����
nX

iD1
"if .Xi /

����
F

: (2.5)

The right hand side of this bound is a common choice of the quantity V involved in
Talagrand’s inequality. Moreover, in the case when Ef .X/ D 0; the desymmetriza-
tion inequality yields

E

����
nX

iD1
"if .Xi /

����
F

� 2E

����
nX

iD1
f .Xi /

����
F

:

As a result, one can use Talagrand’s inequality with

V D n sup
f 2F

Pf 2 C 16UE

����
nX

iD1
f .Xi /

����

and the size of
���
Pn

iD1 f .Xi /
���

F
is now controlled it terms of its expectation only.
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This form of Talagrand’s inequality is especially convenient and there have
been considerable efforts to find explicit and sharp values of the constants in such
inequalities. In particular, we will frequently use the bounds proved by Bousquet
[33] and Klein [77] (in fact, Klein and Rio [78] provide an improved version of
this inequality). Namely, for a class F of measurable functions from S into Œ0; 1�
(by a simple rescaling Œ0; 1� can be replaced by any bounded interval) the following
bounds hold for all t > 0 W
Bousquet bound

P

�
kPn�P kF � EkPn �P kF C

r
2
t

n

�
�2P .F /C 2EkPn � P kF

�
C t

3n

�
� e�t

Klein-Rio bound

P

�
kPn �P kF � EkPn �P kF �

r
2
t

n

�
�2P .F /C 2EkPn � P kF

�
� t

n

�
� e�t :

Here

�2P .F / WD sup
f 2F

�
Pf 2 � .Pf /2

�
:

We will also need a version of Talagrand’s inequality for unbounded classes of
functions. Given a class F of measurable functions f W S 7! R; denote by F
an envelope of F ; that is, a measurable function such that jf .x/j � F.x/; x 2 S ,
f 2 F : The next bounds follow from Theorem 4 of Adamczak [1]: for all ˛ 2 .0; 1�
there exists a constantK D K.˛/ such that

Adamczak bound

P

�
kPn�P kF � K

	
EkPn�P kF C�P .F /

r
t

n
C

��� max
1�j�n F.Xj /

���
 ˛

t1=˛

n


�
� e�t

and

P

�
EkPn�P kF � K

	
kPn�P kF C�P .F /

r
t

n
C

��� max
1�j�nF.Xj /

���
 ˛

t1=˛

n


�
� e�t :

Concentration inequalities can be also applied to the Rademacher process which
can be viewed as an empirical process based on the sample .X1; "1/; : : : ; .Xn; "n/ in
the space S � f�1; 1g and indexed by the class of functions QF WD f Qf W f 2 F g;
where Qf .x; u/ WD f .x/u; .x; u/ 2 S � f�1; 1g:
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2.4 Exponential Bounds for Sums of Independent
Random Matrices

In this section, we discuss very simple, but powerful noncommutative Bernstein
type inequalities that go back to Ahlswede and Winter [4]. The goal is to bound
the tail probability PfkX1 C � � � C Xnk � tg; where X1; : : : ; Xn are independent
Hermitian random m � m matrices with EXj D 0 and k � k is the operator norm.1

The proofs of such inequalities are based on a matrix extension of the classical proof
of Bernstein’s inequality for real valued random variables, but they also rely on
important matrix inequalities that have many applications in mathematical physics.
In the case of sums of i.i.d. random matrices, it is enough to use the following well
known Golden-Thompson inequality (see, e.g., Simon [133], p. 94):

Proposition 2.1. For arbitrary Hermitian m �m matrices A;B

tr.eACB/ � tr.eAeB/:

It is needed to control the matrix moment generating function

Etr expf�.X1 C � � � CXn/g:

This approach was used in the original paper by Ahlswede and Winter [4], but
also in [70, 88, 124]. However, it does not seem to provide the correct form of
“variance parameter” in the non i.i.d. case. We will use below another approach
suggested by Tropp [142] that is based on the following classical result by Lieb
[102] (Theorem 6).

Proposition 2.2. For all Hermitian matrices A; the function

GA.S/ WD tr expfAC logSg

is concave on the cone of Hermitian positively definite matrices.

Given independent Hermitian randomm�mmatricesX1; : : : ; Xn with EXj D 0;

denote
�2 WD n�1

���E.X2
1 C � � � CX2

n/
���:

Theorem 2.7. 1. Suppose that, for someU>0 and for all j D 1; : : : ; n; kXjk � U:

Then

P

�
kX1 C � � � CXnk � t

�
� 2m exp

�
� t2

2�2nC 2Ut=3

�
: (2.6)

2. Let ˛ � 1 and suppose that, for some U .˛/ > 0 and for all j D 1; : : : ; n;

1For the notations used in this section, see Sect. A.4.
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���kXjk
���
 ˛

_ 2E1=2kXj k2 � U .˛/:

Then, there exists a constantK > 0 such that

PfkX1 C � � � CXnk � tg � 2m exp

�
� 1

K

t2

n�2 C tU .˛/ log1=˛.U .˛/=�/

�
: (2.7)

Inequality (2.6) is a direct noncommutative extension of classical Bernstein’s
inequality for sums of independent random variables. It is due to Ahlswede and
Winter [4] (see also [70, 124, 142]). In inequality (2.7), the L1-bound U on kXjk
is replaced by a weaker  ˛-norm. This inequality was proved in [88] in the i.i.d.
case and in [89] in the general case. We follow the last paper below. Note that, when
˛ ! 1; (2.7) coincides with (2.6) (up to constants).

Proof. Denote Yn WD X1 C � � � C Xn and observe that kYnk < t if and only if
�tIm < Yn < tIm: It follows that

PfkYnk � tg � PfYn 6< tImg C PfYn 6> �tImg: (2.8)

The next bounds are based on a simple matrix algebra:

PfYn 6< tImg D Pfe�Yn 6< e�tImg � P

n
tr

�
e�Yn

�
� e�t

o
� e��t

Etr.e�Yn /: (2.9)

To bound the matrix moment generating function Etr.e�Yn/; observe that

Etr.e�Yn/ D EEntr expf�Yn�1 C log e�Xng D EEnG�Yn�1 .e
�Xn/:

where En denotes the conditional expectation given X1; : : : ; Xn�1: Using Lieb’s
theorem (see Proposition 2.2), Jensen’s inequality for the expectation En and the
independence of random matrices Xj ; we get

Etr.e�Yn/ � EG�Yn�1 .Ee
�Xn/ D Etr expf�Yn�1 C log Ee�Xng:

Using the same conditioning trick another time, we get

Etr.e�Yn/ � Etr expf�Yn�1 C log Ee�Xng
D EEn�1tr expf�Yn�2 C log Ee�Xn C log e�Xn�1g D EEnG�Yn�2Clog Ee�Xn .e

�Xn�1 /

and another application of Lieb’s theorem and Jensen’s inequality yields

Etr.e�Yn/ � Etr expf�Yn�2 C log Ee�Xn�1 C log Ee�Xng:
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Iterating this argument, we get

Etr.e�Yn/ � tr expflog Ee�X1 C log Ee�X2 C � � � C log Ee�Xng: (2.10)

Next we have to bound Ee�X for an arbitrary Hermitian random matrix with
EX D 0 and kXk � U: To this end, we use the Taylor expansion:

Ee�X D Im C E�2X2

	
1

2Š
C �X

3Š
C �2X2

4Š
C : : :




� Im C �2EX2

	
1

2Š
C �kXk

3Š
C �2kXk2

4Š
C : : :




D Im C �2EX2

	
e�kXk � 1 � �kXk

�2kXk2


:

Under the assumption kXk � U; this yields

Ee�X � Im C �2EX2

	
e�U � 1 � �U

�2U 2



:

Denoting �.u/ WD eu�1�u
u2

; we easily get

log Ee�X � �2EX2�.�U /:

We will use this bound for each random matrixXj and substitute the result in (2.10)
to get

Etr.e�Yn/ � tr exp
n
�2E.X2

1 C � � � CX2
n/�.�U /

o

� m exp
n
�2kE.X2

1 C � � � CX2
n/k�.�U /

o
:

In view of (2.9), it remains to follow the usual proof of Bernstein–Bennett type
inequalities to obtain (2.6).

To prove (2.7), we bound Ee�X in a slightly different way. We do it for an
arbitrary Hermitian random matrix with EX D 0 and

���kXk
���
 ˛

_ 2E1=2kXk2 � U .˛/:

For all � > 0; we get
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Ee�X � Im C �2EX2

	
e�kXk � 1� �kXk

�2kXk2



� Im C�2EX2

	
e�� � 1���

�2�2



C Im�

2
EkXk2

	
e�kXk � 1��kXk

�2kXk2


I.kXk � �/:

Take M WD 2.log 2/1=˛U .˛/ and assume that � � 1=M: It follows that

EkXk2
	
e�kXk � 1 � �kXk

�2kXk2


I.kXk � �/ � M2

EekXk=MI.kXk � �/ �

M2
E
1=2e2kXk=M

P
1=2fkXk � �g:

Since, for ˛ � 1;

M D 2.log 2/1=˛U .˛/ � 2
���kXk

���
 1

(see Sect. A.1), we get Ee2kXk=M � 2 and also

PfkXk � �g � exp

�
�2˛ log 2

�
�

M

�˛�
:

Therefore, the following bound holds:

Ee�X � Im C �2EX2

	
e�� � 1 � ��

�2�2



C 21=2�2M2 exp

�
�2˛�1 log 2

�
�

M

�˛�
Im:

Take now � WD M 21=˛�1

.log 2/1=˛
log1=˛ M2

�2
and suppose that � satisfies the condition

�� � 1: This yields the following bound

Ee�X � Im C C1

2
�2.EX2 C �2Im/;

which implies that

log Ee�X � C1

2
�2.EX2 C �2Im/

with some constant C1 > 0:We use the last bound for each random matrixXj ; j D
1; : : : ; n and deduce from (2.10) that, for some constants C1; C2 > 0 and for all �
satisfying the condition

� U .˛/

�
log

U .˛/

�

�1=˛
� C2; (2.11)

we have
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Etr.e�Yn/ � tr exp

�
C1

2
�2.EX2

1 C � � � C EX2
n C n�2Im/

�
;

which further implies that

Etr.e�Yn / � m expfC1�2n�2/g:

Combining this bound with (2.8) and (2.9), we get

PfkYnk � tg � 2m exp
n
��t C C1�

2n�2
o
:

The last bound can be now minimized with respect to all � satisfying (2.11), which
yields that, for some constantK > 0;

PfkYnk � tg � 2m exp

�
� 1

K

t2

n�2 C tU .˛/ log1=˛.U .˛/=�/

�
:

This proves inequality (2.7). ut
The next bounds immediately follow from (2.6) and (2.7): for all t > 0; with

probability at least 1 � e�t

����
X1 C � � � CXn

n

���� � 2

�
�

r
t C log.2m/

n

_
U
t C log.2m/

n

�
(2.12)

and, with some constant C > 0;

����
X1 C � � � CXn

n

���� � C

�
�

r
t C log.2m/

n

_

U .˛/

�
log

U .˛/

�

�1=˛
t C log.2m/

n

�
: (2.13)

Note that the size m of the matrices has only logarithmic impact on the bounds.
It is easy to derive Bernstein type exponential inequalities for rectangular

m1 �m2 random matrices from the inequalities of Theorem 2.7 for Hermitian
matrices. This is based on the following well known isomorphism trick (sometimes
called Paulsen dilation). Denote by Mm1;m2.R/ the space of all m1 � m2 matrices
with real entries and by Hm.C/ the space of all Hermitian m �m matrices. Define
the following linear mapping

J W Mm1;m2.R/ 7! Hm1Cm2.C/; where JS WD
�
O S

S� O

�
:

Clearly,



2.5 Further Comments 31

.JS/2 WD
�
SS� 0

0 S�S

�
:

Therefore,
kJSk D kSS�k1=2 _ kS�Sk1=2 D kSk

and, for independent random matricesX1; : : : ; Xn in Mm1;m2.R/ with EXj D 0; we
have

�2 WD n�1�kE.X1X
�
1 /C � � � C E.XnX

�
n /k _ kE.X�

1 X1/C � � � C E.X�
n Xn/k

�

D n�1kE..JX1/
2 C � � � C .JXn/

2/k:

The following statement immediately follows from Theorem 2.7 by applying it
to the Hermitian random matrices JX1; : : : ; JXn:

Corollary 2.1. 1. Let m WD m1 C m2. Suppose that, for some U>0 and for all
jD1; : : : ; n; kXjk � U: Then

P

�
kX1 C � � � CXnk � t

�
� 2m exp

�
� t2

2�2nC 2Ut=3

�
: (2.14)

2. Let ˛ � 1 and suppose that for some U .˛/ > 0 and for all j D 1; : : : ; n;

���kXjk
���
 ˛

_ 2E1=2kXk2 � U .˛/:

Then, there exists a constantK > 0 such that

PfkX1 C � � � CXnk � tg � 2m exp

�
� 1

K

t2

n�2 C tU .˛/ log1=˛.U .˛/=�X/

�
:

(2.15)

2.5 Further Comments

Initially, the theory of empirical processes dealt with asymptotic problems: uniform
versions of laws of large numbers, central limit theorem and laws of iterated
logarithm. It started with the work by Vapnik and Chervonenkis (see [147] and
references therein) on Glivenko-Cantelli problem and by Dudley [59] on the
central limit theorem (extensions of Kolmogorov–Donsker theorems). Other early
references include Koltchinskii [80], Pollard [122] and Giné and Zinn [69]. Since
Talagrand [138, 139] developed his concentration inequalities, the focus of the
theory has shifted to the development of bounds on sup-norms of empirical
processes with applications to a variety of problems in statistics, learning theory,
asymptotic geometric analysis, etc (see also [137]).
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Symmetrization inequalities of Sect. 2.1 were introduced to the theory of empiri-
cal processes by Giné and Zinn [69] (an earlier form of Rademacher symmetrization
was used by Koltchinskii [80] and Pollard [122]).

In Sect. 2.2, we follow the proof of Talagrand’s comparison inequality for
Rademacher sums given by Ledoux and Talagrand [101], Theorem 4.12.

Talagrand’s concentration inequalities for product measures and empirical pro-
cesses were proved in [138, 139]. Another approach to their proof, the entropy
method based on logarithmic Sobolev inequalities, was introduced by Ledoux. It
is discussed in detail in [100] and [107] (see also [30]). The bounded difference
inequality based on the martingale method is well known and can be found in many
books (e.g., [51, 107]).

Noncommutative Bernstein’s inequality (2.6) was discovered by Ahlswede and
Winter [4]. This inequality and its extensions proved to be very useful in the recent
work on low rank matrix recovery (see Gross et al. [71], Gross [70], Recht [124],
Koltchinskii [88]). Tropp [142] provides a detailed review of various inequalities of
this type.
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