Chapter 2
Empirical and Rademacher Processes

The empirical process is defined as
Z, :=n"?*(P, — P)

and it can be viewed as a random measure. However, more often, it has been viewed
as a stochastic process indexed by a function class .7 :

Zi(f)=n"2(P, = P)([f). [ €F

(see Dudley [59] or van der Vaart and Wellner [148]).
The Rademacher process indexed by a class .% was defined in Sect. 1.3 as

Ri(f)=n"" e f(X)). f € 7,

i=1

{e;} being i.i.d. Rademacher random variables (that is, &; takes the values +1 and
—1 with probability 1/2 each) independent of {X;}.

It should be mentioned that certain measurability assumptions are required in the
study of empirical and Rademacher processes. In particular, under these assump-
tions, such quantities as || P, — P || & are properly measurable random variables. We
refer to the books of Dudley [59], Chap.5 and van der Vaart and Wellner [148],
Sect. 1.7 for precise formulations of these measurability assumptions. Some of the
bounds derived and used below hold even without the assumptions of this nature, if
the expectation is replaced by the outer expectation, as it is often done, for instance,
in [148]. Another option is to “define”

E|P, — P|llz := sup; E|| Py, — Pllg : ¢ C F,¥ is finite, ,
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18 2 Empirical and Rademacher Processes

which provides a simple way to get around the measurability difficulties. Such an
approach has been frequently used by Talagrand (see, e.g., [140]). In what follows,
it will be assumed that the measurability problems have been resolved in one of
these ways.

2.1 Symmetrization Inequalities

The following important inequality reveals close relationships between empirical
and Rademacher processes.

Theorem 2.1. For any class %

function @ : Ry — R

of P-integrable functions and for any convex

1
lE@(EIIRnII%) <E®(||P.— Pllz) E®(2Rll5),
where F. .= {f — Pf : f € F}. Inparticular,
1
SEIRul|7. < EllPy — Pllz < 2E|[Ru]| .

Proof. Assume that the random variables X1, ... X, are defined on a probability
space (.(_2, Z:‘,]P’). We will also need two other probability spaces: (.(~2, D) ,]f") and
(£2¢, X, P;). The main probability space on which all the random variables are
defined will be denoted (£2, X', IP) and it will be the product space

(2,2.P) = (2.2,P) x (2, £,P) x (2, Z.. P,).

The correspondlng expectations will be denoted by E,E,E, and E. Let
(X I.....X,) be an independent copy of (Xi,..., X,). Think of random variables
Xi... X as being defined on (.Q z, ]P’) Denote P, the empirical measure based
on (Xl, ..., X,) (it is an independent copy of P,). Then EP, f = Pf and, using
Jensen’s 1nequa11ty,

E(|IP, = Plls) = Bo(IP, —EP, |5 ) = Eo(IE(P, — P)l»)

Fou)

j=1

< BB (1P, - Pull5) = I‘Efw(

Since X1, ..., X,, X1,..., X, arei.i.d., the distribution of (X1,..., X,, X1...., X,)
is invariant with respect to all permutations of the components. In particular, one
can switch any couple X;, X ;. Because of this,
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)

for an arbitrary choice of 6; = +1 or 0; = —1. Define now i.i.d. Rademacher
random variables on (£2,, X, P,) (thus, independent of (X1, ..., X, X1,..., Xy)).
Then, we have

n~! Z(SX,. —agj)H ) = ESEE@(
F

Jj=1

EE@(

n~' > 6y, —agj)H ) = Em(
j=1 7z

n! Zo,-(ax,. —85)
j=1

EE@(

n! Zej((?xj — SXj)H )
j= 7

and the proof can be completed as follows:

n! Zej((?xj - SXj)H )
j=1 7

1 -
~-E.E®
) T3 (

o (P, — Pl) 51&81@1@@(

=582

=E(2|R, 7).

-1
> ety

j=1

2818)(/

)

The proof of the lower bound is similar. O

The upper bound is called the symmetrization inequality and the lower bound is
sometimes called the desymmetrization inequality. The desymmetrization inequality

is often used together with the following elementary lower bound (in the case of
D(u) = u)

E||Ry|lz. = EllRullz — sup [Pf|E|R,(1)| =
feF

- suprez | Pf
2 E|Ry |7 — sup [P | E|n”! Zsj ?=E|Ry|5 — —LF.
feF = N
2.2 Comparison Inequalities for Rademacher Sums

Givenaset T C R” and i.i.d. Rademacher variables ¢;,i = 1,2, ..., itis of interest
to know how the expected value of the sup-norm of Rademacher sums indexed by T’

Zte,

i=1

R,(T) := Esup

teT




20 2 Empirical and Rademacher Processes

depends on the geometry of the set 7. The following beautiful comparison inequality
for Rademacher sums is due to Talagrand and it is often used to control R, (T") for
more complex sets 7" in terms of similar quantities for simpler sets.

Theorem 2.2. Let T C R" andlet ¢; : R +— R, i = 1,...,n be functions such
that ¢; (0) = 0 and
lpi(u) — i) < [u—v|, u,v € R

(thatis, @; are contractions). For all convex nondecreasing functions ® : Ry — Ry,
— sup ;i (t;)e; ) <E® (sup ti & )
o (5mly £

i=1 i=1
Proof. First, we prove that for a nondecreasing convex function @ : R — R and
for an arbitrary A : T — R

E® (sup|:A(t) + pr, (t,)e,jD <Eo® (sup[A(t) + Zt 8,i|) 2.1

teT i=1 teT i=

We start with the case n = 1. Then, the bound is equivalent to the following
E® (sup[t1 + £<p(tz)]) <Eo® (sup[tl + stz])
(€T teT

for an arbitrary set 7 C R? and an arbitrary contraction ¢. One can rewrite it as

1

3 (cb (?IGJTP[II + @(h)]) + ¢(§:71")[t1 - <P(lz)]))

< %( (?2?[11 + 12]) + @(SUP[fl - 12]))

If now (t1,;) € T denotes a point where sup,cr[ti + ¢(f2)] is attained and
(s1,52) € T is a point where sup, 7 [t; — ¢(f2)] is attained, then it is enough to show
that

@(tl + (p(tz)) + @(sl — (p(sz)) < @(fgg[ﬁ + tz]) + @(sup[tl — tz])

teT

(if the suprema are not attained, one can easily modify the argument). Clearly, we
have the following conditions:

t 4+ @(t2) = 51+ @(s2) and 11 — @(12) < 51 — @(s2).

First consider the case when t, > 0,5, > 0 and #, > ;. In this case, we will prove
that

@(tl + (p(tz)) + @(sl - (p(sz)) < @(11 + tz) + @(sl - sz), 2.2)
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which would imply the bound. Indeed, for
a:=t +(tr).b:=t +t.c:=s51—5.d:= s —@(s2).

we have a < b and ¢ < d since ¢(t2) < t2, @(s2) < s, (by the assumption that ¢
is a contraction and ¢(0) = 0). We also have that

b—a=t6—-¢{t)=s5—¢@)=d—c,
because again ¢ is a contraction and #, > s,. Finally, we have
a=10+¢()=s1+¢(s2) =51 —5=c.

Since the function @ is nondecreasing and convex, its increment over the interval
[a, b] is larger than its increment over the interval [c, d] ([a, b] is longer than [c, d]
and a > c¢), which is equivalent to (2.2).

If £, > 0,5, > 0 and s, > 17, it is enough to use the change of notations (¢, 5) +>
(s, ) and to replace ¢ with —¢.

The case , < 0,5, < 0 can be now handled by using the transformation
(t1,1n) — (11, —t) and changing the function ¢ accordingly.

We have to consider the case #, > 0,5, < 0 (the only remaining case #, < 0,
s, > 0 would again follow by switching the names of ¢ and s and replacing ¢
with —¢). In this case, we have ¢(t;) < t,, —@(s2) < —s;, which, in view of
monotonicity of @, immediately implies

@(tl + (p(tz)) + @(sl — (p(sz)) < 45(11 + tz) + @(sl —sz).

This completes the proof of (2.1) in the case n = 1.
In the general case, we have

E® (sup[A(r) e (r,»)siD

1eT i1
n—1
=K . e Ee, @ (sup [A(t) + ) pilt)e + enqo(tn)D-
teT i1
The expectation E,, (conditional on ¢, ..., &,—1) can be bounded using the result

in the case n = 1. This yields (after changing the order of integration)

n n—1
Eo (SUP[AUHZ wf(tf)eiD < E;,E,... snlq?(sup[A(t)+8ntn+Z wf(tf)eiD.

1eT prt teT eyt

The proof of (2.1) can now be completed by an induction argument.
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Finally, to prove the inequality of the theorem, it is enough to write

Zmr,)e, )
= Ed)( I:(Supz(pl([l)gl) (SUPZ<P1(lz)( Ei ) i|)
i=l1 + i=l1 +

=3[e((pren) ) oo owen) )]

i=1

1
E® (— sup

teT

where a4 = a Vv 0. Applying the inequality (2.1) to the function u > @(u4),
which is convex and nondecreasing, completes the proof. O

We will frequently use a corollary of the above comparison inequality that
provides upper bounds on the moments of the sup-norm of Rademacher process
R, on the class

={pof:feF}
in terms of the corresponding moments of the sup-norm of R, on .% and Lipschitz
constant of function ¢.

Theorem 2.3. Let ¢ : R +— R be a contraction satisfying the condition ¢(0) = 0.
For all convex nondecreasing functions @ : Ry — Ry,

1
501 Rl ) <0 (IR0 115).

In particular,

EllRnllyo7 < 2E|| Ry | 7

The inequality of Theorem 2.3 will be called the contraction inequality for
Rademacher processes.

A simple rescaling of the class .# allows one to use the contraction inequality in
the case of an arbitrary function ¢ satisfying the Lipschitz condition

lom) — ()| < Llu—v|

on an arbitrary interval (a, b) that contains the ranges of all the functions in .%. In
this case, the last bound of Theorem 2.3 takes the form

E”Rn ”(poy < 2LE||Rn ||J’J

This implies, for instance, that
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n

n' Y e f(X0)

i=1

n_l Zn:é‘ifz(x,')

i=1

E sup
fez

(2.3)

< 4UE sup
fez

provided that the functions in the class .# are uniformly bounded by a constant U.

2.3 Concentration Inequalities

A well known, simple and useful concentration inequality for functions
Z =g(X1,...,Xn)

of independent random variables with values in arbitrary spaces is valid under so

called bounded difference condition on g : there exist constants ¢;, j = 1,...,n
such that forall j =1,...,n andallxl,xz,...,xj,x},...,xn
/
g(xl,...,xj_l,xj,xjH,...,x,,)—g(xl,...,xj_l,xj,xjH,...,x,,)‘ <cj.
2.4)

Theorem 2.4 (Bounded difference inequality). Under the condition (2.4),

212
J=1"

and

212
P{Z-EZ <—t} <expi—~=— (-
> j=16€j
A standard proof of this inequality is based on bounding the exponential moment
Ee*?~EZ) "using the following martingale difference representation

n
Z-EZ = Z[E(Z|X1,...,Xj) —E(Zle,...,Xj_l)},
j=1

then using Markov inequality and optimizing the resulting bound with respect to
A > 0.

In the case when Z = X +---4X,,, the bounded difference inequality coincides
with Hoeffding inequality for sums of bounded independent random variables (see
Sect. A.2).

For a class .% of functions uniformly bounded by a constant U, the bounded
difference inequality immediately implies the following bounds for || P, — P| &,
providing a uniform version of Hoeffding inequality.
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Theorem 2.5. Forallt > 0,

tU )
B{iPu = Plls ZEIP = Plls + o) < expl=r/2)

and

tU
Bli7 = Pls < BIP, = Pl — o} < expl=r’/2)

Developing uniform versions of Bernstein’s inequality (see Sect. A.2) happened
to be a much harder problem that was solved in the famous papers by Talagrand
[138, 139] on concentration inequalities for product measures and empirical pro-
cesses.

Theorem 2.6 (Talagrand’s inequality). Let Xi,..., X, be independent random
variables in S. For any class of functions % on S that is uniformly bounded by

a constant U > 0 and for allt > 0
<K L1 1 1+tU
=R TkU 8 v

P{ ‘Hgf(xf)

where K is a universal constant and V' is any number satisfying

>t

=l el

V=Esup > fAX0).

fe&?i=1

Using symmetrization inequality and contraction inequality for the square (2.3),
it is easy to show that in the case of i.i.d. random variables Xi,..., X, with
distribution P

Y s f(X)

i=1

n
E sup Zfz(X,) <n sup Pf>+8UE (2.5)
reF feF F

The right hand side of this bound is a common choice of the quantity V' involved in

Talagrand’s inequality. Moreover, in the case when E f(X) = 0, the desymmetriza-
tion inequality yields

E

F

Zeif(x,»)Hy <2E|Y " (X))
i=1 i=1

As aresult, one can use Talagrand’s inequality with

; F(X0) H

V =nsup Pf*+ 16UE
ez

and the size of H Y f(XD)

- is now controlled it terms of its expectation only.
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This form of Talagrand’s inequality is especially convenient and there have
been considerable efforts to find explicit and sharp values of the constants in such
inequalities. In particular, we will frequently use the bounds proved by Bousquet
[33] and Klein [77] (in fact, Klein and Rio [78] provide an improved version of
this inequality). Namely, for a class .% of measurable functions from S into [0, 1]
(by a simple rescaling [0, 1] can be replaced by any bounded interval) the following
bounds hold forall # > 0 :

Bousquet bound

t 4 _
Plips=Pls 2 EI2 - Plls + Ph (o3 + 2w - Pls) 4yt <

Klein-Rio bound

t 4 _
P17, = Plls <BIP, - Pl - h (o3 + 28I - PI5) <o

Here
0} (#) = sup (Pf2=(Pf)?).
feF

We will also need a version of Talagrand’s inequality for unbounded classes of
functions. Given a class .# of measurable functions f : S + R, denote by F
an envelope of .%, that is, a measurable function such that | f(x)| < F(x),x € S,
f € 7. The next bounds follow from Theorem 4 of Adamczak [1]: forall « € (0, 1]
there exists a constant K = K («) such that

Adamczak bound

1/a

t <ot
Vo N -

1/a

! <e.
Vo N -

Concentration inequalities can be also applied to the Rademacher process which
can be viewed as an empirical process based on the sample (X1, 1), . . . (X, €e,)in
the space S x {—1, 1} and indexed by the class of functions F={f:feZF),
where f(x,u) ;= f(x)u, (x,u) € S x{—1,1}.

t
Bl Pls = K[BIP - Pls +0r(3), 4| mas £y

<j=n

and

t
PLEI Pl = K[ 1B Plotor () 4] may FOX)
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2.4 Exponential Bounds for Sums of Independent
Random Matrices

In this section, we discuss very simple, but powerful noncommutative Bernstein
type inequalities that go back to Ahlswede and Winter [4]. The goal is to bound
the tail probability P{|| X + --- + X, || > t}, where X}, ..., X, are independent
Hermitian random m x m matrices with EX; = 0 and || - || is the operator norm.!
The proofs of such inequalities are based on a matrix extension of the classical proof
of Bernstein’s inequality for real valued random variables, but they also rely on
important matrix inequalities that have many applications in mathematical physics.
In the case of sums of i.i.d. random matrices, it is enough to use the following well
known Golden-Thompson inequality (see, e.g., Simon [133], p. 94):

Proposition 2.1. For arbitrary Hermitian m x m matrices A, B
tr(e?t8) < tr(e’e?).
It is needed to control the matrix moment generating function
Etrexp{A(X: +--- + X,)}.

This approach was used in the original paper by Ahlswede and Winter [4], but
also in [70, 88, 124]. However, it does not seem to provide the correct form of
“variance parameter” in the non i.i.d. case. We will use below another approach
suggested by Tropp [142] that is based on the following classical result by Lieb
[102] (Theorem 6).

Proposition 2.2. For all Hermitian matrices A, the function
G4(S) :=trexp{A + log S}

is concave on the cone of Hermitian positively definite matrices.

Given independent Hermitian random m xm matrices X1, ..., X, withEX; =0,
denote

o2 = n—IHE(Xf+---+X3)

Theorem 2.7. 1. Suppose that, for some U>0andforall j =1,...,n,||X;| < U.
Then

t2
Pl X+ + Xl =2ty <2 —_— . 2.6
Xt Xz o] <amef - 2o

2. Leta > 1 and suppose that, for some U@ > 0 and forall j = 1,...,n,

For the notations used in this section, see Sect. A.4.
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H||X]~||HW V2E2| X2 < U@,

Then, there exists a constant K > 0 such that

1 r?
Xt ot s (27
X+ 4+ X = 1) < ’"e"p% K no? + (U@ log U@/~ 7

Inequality (2.6) is a direct noncommutative extension of classical Bernstein’s
inequality for sums of independent random variables. It is due to Ahlswede and
Winter [4] (see also [70, 124, 142]). In inequality (2.7), the Loo-bound U on ||.X /||
is replaced by a weaker ,-norm. This inequality was proved in [88] in the i.i.d.
case and in [89] in the general case. We follow the last paper below. Note that, when
o — 00, (2.7) coincides with (2.6) (up to constants).

Proof. Denote Y, := X; + --- + X,, and observe that ||Y,|| < ¢ if and only if
—tl,, <Y, <tl,. It follows that

IED{”Yn” EZ}SP{Yn ftlm}"i']P){Yn #_Zlm}- (2-8)
The next bounds are based on a simple matrix algebra:
P{Y, £ t1,} = P{e*n £ My < P{tr(e””) > em} < e MEtr(e!).  (2.9)

To bound the matrix moment generating function Etr(e*"

), observe that
Etr(e*'") = EE,trexp{AY,_; + loge**n} = E]EnGlyn_l(eAX”).
where [E, denotes the conditional expectation given Xj,..., X,—;. Using Lieb’s

theorem (see Proposition 2.2), Jensen’s inequality for the expectation [E, and the
independence of random matrices X ;, we get

Etr(e*’") < EGyy, , (Ee**") = Etrexp{AY,—; + logEe**"}.
Using the same conditioning trick another time, we get

Etr(e*'") < Etrexp{AY,_; + log Ee*¥"}
= EE,_trexp{AY,_s + log Ee**" 4+ loge**n—1} = EE, Gy, s +log EetXn (eMn=1)

and another application of Lieb’s theorem and Jensen’s inequality yields

Etr(e*) < Etrexp{AY,_5 + log Ee**"—1 4 log Ee*¥n}.
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Iterating this argument, we get
Etr(e™") < trexp{log Ee**! + logEe**2 + ... 4 log Ee**"}. (2.10)

Next we have to bound Ee*X for an arbitrary Hermitian random matrix with
EX =0and || X| < U. To this end, we use the Taylor expansion:

AX _ 242 1 AL
Ee** =1, + EA°X 2!+3!+ m

(1 AlX] AX” }
= +...

1 AX  A%x? i|

2 2 &
= o+ AEX 2!+ 3! 4!

AL WYY
=1, + 22Ex?| &
* BRI

Under the assumption || X || < U, this yields

AU 1
EeMX < I, + AZEXZ[M}

2202

e'—1
u2

Denoting ¢ (1) := — we easily get

log Ee*® < A2EX2¢(AU).

We will use this bound for each random matrix X ; and substitute the result in (2.10)
to get

Etr(e*) < tr exp{)LzIE(Xlz Foeet X,f)¢(w)}
< mexp(R[E(X] + -+ XDI$ (U)}.

In view of (2.9), it remains to follow the usual proof of Bernstein—Bennett type
inequalities to obtain (2.6).

To prove (2.7), we bound Ee*¥ in a slightly different way. We do it for an
arbitrary Hermitian random matrix with EX = 0 and

V2EV? | X|P < U@,

x|,

For all T > 0, we get
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MXL g - x|
Ee™¥ < I, + A2Ex?| &
=it 2ZIX]?
1 A1 x|
<1, + A EX| AT L E|X 11X > 7).
R S e R D R L

Take M := 2(log2)"/“U® and assume that A < 1/M. It follows that

X — 1 — 2 x|
E|X|? I(X]| > 1) < M2E! XM 1 x| > 7) <
[ II[ 21X }(II | >17) < e (IXII=7) <

M2EV22IXUMBI2 0 x|l > 1),

Since, fora > 1,
M =2(log2)/*U@ > 2H||X||H
Y1

(see Sect. A.1), we get Ee2IXI/M < 2 and also

T o
P{IX|| >} < —2%log2| — ] ;.
{ ||_f}_eXP{ 0g (M) }
Therefore, the following bound holds:

Ee*" < I, + A’EX? rol-de £ 21202 % expl 2% og 2 — y
— m Aztz M m-

1/a—1 2 . .y
Take now v := M (1%,;;/2)1 = lo gl/e % and suppose that A satisfies the condition

At < 1. This yields the following bound
C
BeM < Iy + S AP EX? + 071y,
which implies that
C
log Ee™¥ < TIAZ(]EXZ +021,)

with some constant C; > 0. We use the last bound for each random matrix X ;, j =
1,...,n and deduce from (2.10) that, for some constants C;, C, > 0 and for all A
satisfying the condition

U@\ /e
AU® (log ) <C,, (2.11)
o

we have
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Etr(e’) < trexp %/\Z(EXIZ + e+ ]EX,% +no’l,)y,
which further implies that
Etr(e*"") < mexp{CiA*no?)}.
Combining this bound with (2.8) and (2.9), we get
P{||Y,|| > ¢} < 2m exp{—m + Clkznaz}.

The last bound can be now minimized with respect to all A satisfying (2.11), which
yields that, for some constant K > 0,

1 2
P{|| Y, || >t}<2mexp{—— T }
K no? +tU@log"/* (U@ /o)

This proves inequality (2.7). O
The next bounds immediately follow from (2.6) and (2.7): for all # > 0, with

probability at least 1 — e~
[t + log(2m t 4 log(2m
( g( ) \/ g( )) (2.12)

and, with some constant C > 0,

X1+ -+ X,
n

X1+ + X, r+ log(Zm)
e B Gl Y
U@Vt 4 log(2
U@ (log ) + log( m)). (2.13)
o n

Note that the size m of the matrices has only logarithmic impact on the bounds.

It is easy to derive Bernstein type exponential inequalities for rectangular
mj X my random matrices from the inequalities of Theorem 2.7 for Hermitian
matrices. This is based on the following well known isomorphism trick (sometimes
called Paulsen dilation). Denote by M,,, , (R) the space of all m; x m, matrices
with real entries and by H,,(C) the space of all Hermitian m x m matrices. Define
the following linear mapping

J My, gy (R) = Hypy 4, (C), where JS = (SO* g)

Clearly,
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(JS)? = (SS* 0 )

0 S*S
Therefore,
1S = ISS*V> v (IS*S]'/* = ||S||
and, for independent random matrices X1, ..., X, in M, »n, (R) with EX; = 0, we
have

o =0~ (IEGGXT) + -+ EGL XDV IE(G X)) + -+ + E(XTX))
= B X + e+ (X))

The following statement immediately follows from Theorem 2.7 by applying it
to the Hermitian random matrices J Xy, ..., JX,.
Corollary 2.1. 1. Let m := m; + my. Suppose that, for some U>0 and for all
J=1L....n, | X;| < U.Then
12

—. 2.14
20%n +2Ut/3 2.14)

]P’{ X1+ 4+ X, = t} < 2mexp%—
2. Let o > 1 and suppose that for some U™ > 0 and forall j = 1,...,n,
Jixn], voEix P < v,

Then, there exists a constant K > 0 such that

12

1

P{IX1 + -+ X, = 1} < 2mexp) —— :
{” 1 ” } p{ KnO—Z+tU(a)10gl/a(U(a)/Ux)

(2.1

2.5 Further Comments

Initially, the theory of empirical processes dealt with asymptotic problems: uniform
versions of laws of large numbers, central limit theorem and laws of iterated
logarithm. It started with the work by Vapnik and Chervonenkis (see [147] and
references therein) on Glivenko-Cantelli problem and by Dudley [59] on the
central limit theorem (extensions of Kolmogorov—Donsker theorems). Other early
references include Koltchinskii [80], Pollard [122] and Giné and Zinn [69]. Since
Talagrand [138, 139] developed his concentration inequalities, the focus of the
theory has shifted to the development of bounds on sup-norms of empirical
processes with applications to a variety of problems in statistics, learning theory,
asymptotic geometric analysis, etc (see also [137]).
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Symmetrization inequalities of Sect. 2.1 were introduced to the theory of empiri-
cal processes by Giné and Zinn [69] (an earlier form of Rademacher symmetrization
was used by Koltchinskii [80] and Pollard [122]).

In Sect.2.2, we follow the proof of Talagrand’s comparison inequality for
Rademacher sums given by Ledoux and Talagrand [101], Theorem 4.12.

Talagrand’s concentration inequalities for product measures and empirical pro-
cesses were proved in [138, 139]. Another approach to their proof, the entropy
method based on logarithmic Sobolev inequalities, was introduced by Ledoux. It
is discussed in detail in [100] and [107] (see also [30]). The bounded difference
inequality based on the martingale method is well known and can be found in many
books (e.g., [51, 107]).

Noncommutative Bernstein’s inequality (2.6) was discovered by Ahlswede and
Winter [4]. This inequality and its extensions proved to be very useful in the recent
work on low rank matrix recovery (see Gross et al. [71], Gross [70], Recht [124],
Koltchinskii [88]). Tropp [142] provides a detailed review of various inequalities of
this type.
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