
Chapter 2
Expanding Random Maps

For the convenience of the reader, we first give some introductory examples. In
the remaining part of this chapter we present the general framework of expanding
random maps.

2.1 Introductory Examples

Before giving the formal definitions of expanding random maps, let us now consider
some typical examples.

The first one is a known random version of the Sierpiński gasket (see, for example
[15]). Let � D �.A; B; C / be a triangle with vertexes A; B; C and choose a 2
.A; B/, b 2 .B; C / and c 2 .C; A/. Then we can associate to x D .a; b; c/ a map

fx W �.A; a; c/ [ �.a; B; b/ [ �.b; C; a/ ! �;

such that the restriction of fx to each one of the three subtriangles is a affine map
onto �. The map fx is nothing else than the generator of a deterministic Sierpiński
gasket. Note that this map can be made continuous by identifying the vertices
A; B; C (Fig. 2.1).

Now, suppose x1 D .a1; b1; c1/; x2 D .a2; b2; c2/; ::: are chosen randomly
which, for example, may mean that they form sequences of three dimensional
independent and identically distributed (i.i.d.) random variables. Then they generate
compact sets

Jx1;x2;x3;::: D
\

n�1

.fxn
ı ::: ı fx1

/�1.�/

called random Sierpiński gaskets having the invariance property f �1
x1

.Jx2;x3;:::/ D
Jx1;x2;x3;:::. For a little bit simpler example of random Cantor sets we refer the
reader to Sect. 5.3. In that example we provide a more detailed analysis of such
random sets.

V. Mayer et al., Distance Expanding Random Mappings, Thermodynamical Formalism,
Gibbs Measures and Fractal Geometry, Lecture Notes in Mathematics 2036,
DOI 10.1007/978-3-642-23650-1 2, © Springer-Verlag Berlin Heidelberg 2011

5
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Fig. 2.1 Two different generators of Sierpiński gaskets

Fig. 2.2 A generator of degree 6

Such examples admit far going generalizations. First of all, we will consider
much more general random choices than i.i.d. ones. We model randomness by taking
a probability space .X; B; m/ along with an invariant ergodic transformation � W
X ! X . This point of view was up to our knowledge introduced by the Bremen
group (see [1]).

Another point is that the maps fx that generate the random Sierpiński gasket
have degree 3. In the sequel of this manuscript, we will allow the degree dx of all
maps to be different (see Fig. 2.2) and only require that the function x 7! log.dx/ is
measurable.

Finally, the above examples are all expanding with an expanding constant

�x � � > 1 :

As already explained in the introduction, the present monograph concerns random
maps for which the expanding constants �x can be arbitrarily close to one.
Furthermore, using an inducing procedure, we will even weaken this to the maps
that are only expanding in the mean (see Chap. 7).
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The example of random Sierpiński gasket is not conformal. Random iterations of
rational functions or of holomorphic repellers are typical examples of conformal
random dynamical systems. Random iterations of the quadratic family fc.z/ D
z2 C c have been considered, for example, by Brück and Büger among others (see
[8] and [9]). In this case, one chooses randomly a sequence of bounded parameters
c D .c1; c2; :::/ and considers the dynamics of the family

Fc1;:::;cn
D fcn

ı fcn1
ı ::: ı fc1

; n � 1:

This leads to the dynamical invariant sets

Kc D fz 2 CI Fc1;:::;cn
.z/ 6! 1g and Jc D @Kc :

The set Kc is the filled in Julia set and Jc the Julia set associated to the sequence c.
The simplest case is certainly the one when we consider just two polynomials

z 7! z2 C �1 and z 7! z2 C �2 and we build a random sequence out of them. Julia
sets that come out of such a choice are presented in Fig. 2.3. Such random Julia
sets are different objects as compared to the Julia sets for deterministic iteration of
quadratic polynomials. But not only the pictures are different and intriguing, we

Fig. 2.3 Some quadratic random Julia sets
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will see in Chap. 5 that also generically the fractal properties of such Julia sets are
fairly different as compared with the deterministic case even if the dynamics are
uniformly expanding. In Chap. 8 we present a more general class of examples and
we explain their dynamical and fractal features.

2.2 Preliminaries

Suppose .X; B; m; �/ is a measure preserving dynamical system with invertible
and ergodic map � W X ! X which is referred to as the base map. Assume
further that .Jx; �x/, x 2 X , are compact metric spaces normalized in size by
diam�x

.Jx/ � 1. Let

J D
[

x2X

fxg � Jx : (2.1)

We will denote by Bx.z; r/ the ball in the space .Jx ; %x/ centered at z 2 Jx and
with radius r . Frequently, for ease of notation, we will write B.y; r/ for Bx.z; r/,
where y D .x; z/. Let

Tx W Jx ! J�.x/; x 2 X;

be continuous mappings and let T W J ! J be the associated skew-product
defined by

T .x; z/ D .�.x/; Tx.z//: (2.2)

For every n � 0 we denote T n
x WD T�n�1.x/ ı ::: ı Tx W Jx ! J�n.x/. With this

notation one has T n.x; y/ D .�n.x/; T n
x .y//. We will frequently use the notation

xn D �n.x/; n 2 Z:

If it does not lead to misunderstanding we will identify Jx and fxg � Jx .

2.3 Expanding Random Maps

A map T W J ! J is called a expanding random map if the mappings Tx W
Jx ! J�.x/ are continuous, open, and surjective, and if there exist a function
� W X ! RC, x 7! �x , and a real number � > 0 such that following conditions
hold.

Uniform Openness. Tx.Bx.z; �x// � B�.x/

�
Tx.z/; �

�
for every .x; z/ 2 J .

Measurably Expanding. There exists a measurable function � W X ! .1; C1/,
x 7! �x such that, for m-a.e. x 2 X ,

%�.x/.Tx.z1/; Tx.z2// � �x%x.z1; z2/ whenever %.z1; z2/ < �x; z1; z2 2 Jx :
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Measurability of the Degree. The map x 7! deg.Tx/ WD supy2J�.x/
# T �1

x .fyg/ is
measurable.

Topological Exactness. There exists a measurable function x 7! n�.x/ such that

T
n�.x/
x .Bx.z; �// D J

�
n� .x/

.x/
for every z 2 Jx and a.e. x 2 X: (2.3)

Note that the measurably expanding condition implies that TxjB.z;�x/ is injective
for every .x; z/ 2 J . Together with the compactness of the spaces Jx it yields
the numbers deg.Tx/ to be finite. Therefore the supremum in the condition of
measurability of the degree is in fact a maximum.

In this work we consider two other classes of random maps. The first one consists
of the uniform expanding maps defined below. These are expanding random maps
with uniform control of measurable “constants”. The other class we consider is
composed of maps that are only expanding in the mean. These maps are defined
like the expanding random maps above excepted that the uniform openness and the
measurable expanding conditions are replaced by the following weaker conditions
(see Chap. 7 for detailed definition).

1. All local inverse branches do exist.
2. The function � in the measurable expanding condition is allowed to have values

in .0; 1/ but subjects only the condition

Z

X

log �x dm > 0:

We employ an inducing procedure to expanding in the mean random maps in order
to reduce then to the case of random expanding maps. This is the content of Chap. 7
and the conclusion is that all the results of the present work valid for expanding
random maps do also hold for expanding in the mean random maps.

2.4 Uniformly Expanding Random Maps

Most of this paper and, in particular, the whole thermodynamical formalism is
devoted to measurable expanding systems. The study of fractal and geometric
properties (which starts with Chap. 5), somewhat against our general philosophy, but
with agreement with the existing tradition (see for example [5,12,17]), we will work
mostly with uniform and conformal systems (the later are introduced in Chap. 5).

A expanding random map T W J ! J is called uniformly expanding if

– �� WD infx2X �x > 1,
– deg.T / WD supx2X deg.Tx/ < 1,
– n�� WD supx2X n�.x/ < 1.
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2.5 Remarks on Expanding Random Mappings

The conditions of uniform openness and measurably expanding imply that, for every
y D .x; z/ 2 J there exists a unique continuous inverse branch

T �1
y W B�.x/.T .y/; �/ ! Bx.y; �x/

of Tx sending Tx.z/ to z. By the measurably expanding property we have

%.T �1
y .z1/; T �1

y .z2// � ��1
x %.z1; z2/ for z1; z2 2 B�.x/

�
T .y/; �

�
(2.4)

and
T �1

y .B�.x/.T .y/; �// � Bx.y; ��1
x �/ � Bx.y; �/:

Hence, for every n � 0, the composition

T �n
y D T �1

y ı T �1
T .y/ ı : : : ı T �1

T n�1.y/
W B�n.x/.T

n.y/; �/ ! Bx.y; �/ (2.5)

is well defined and has the following properties:

T �n
y W B�n.x/.T

n.y/; �/ ! Bx.y; �/

is continuous,

T n ı T �n
y D IdjB�n.x/.T n.y/;�/, T �n

y .T n
x .z// D z

and, for every z1; z2 2 B�n.x/

�
T n.y/; �

�
,

%.T �n
y .z1/; T �n

y .z2// � .�n
x /�1%.z1; z2/; (2.6)

where �n
x D �x��.x/ � � � ��n�1.x/: Moreover,

T �n
x .B�n.x/.T

n.y/; �// � Bx.y; .�n
x /�1�/ � Bx.y; �/: (2.7)

Lemma 2.1 For every r > 0, there exists a measurable function x 7! nr .x/ such
that a.e.

T nr .x/
x .Bx.z; r// D J�nr .x/.x/ for every z 2 Jx : (2.8)

Moreover, there exists a measurable function j W X ! N such that a.e. we have

T j.x/
x

�j.x/
.Bx

�j.x/
.z; �// D Jx for every z 2 Jx

�j.x/
: (2.9)

Proof. In order to prove the first statement, consider �0 > 1 and let F be the set
of x 2 X such that �x � �0. If �0 is sufficiently close to 1, then m.F / > 0.
In the following section such a set will be called essential. In that section we also
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associate to such an essential set a set X 0CF (see (2.10)). Then for x 2 X 0CF , the
limit limn!1.�n

x /�1 D 0. Define

XCF;k WD fx 2 X 0CF W .�k
x /�1� < rg:

Then XCF;k � XCF;kC1 and
S

k2N XCF;k D X 0CF . By measurability of x 7! �x ,
XCF;k is a measurable set. Hence the function

X 0CF 3 x 7! nr .x/ WD minfk W x 2 XCF;kg C n�.x/

is finite and measurable. By (2.7) and (2.3),

T nr .x/
x .Bx.z; r// D J�nr .x/.x/:

In order to prove the existence of a measurable function j W X ! N define
measurable sets

X�;n WD fx 2 X W n�.x/ � ng, X 0
�;n WD �n.X�;n/ and X 0

� D
[

n2N
X 0

�;n:

Then the map
X 0

� 3 x 7! j.x/ WD minfn 2 N W x 2 X 0
�;ng

satisfies (2.9) for x 2 X 0
�
. Since m.�n.X�;n// D m.X�;n/ % 1 as n tends to 1 we

have m.X 0
�
/ D 1. ut

2.6 Visiting Sequences

Let F 2 F be a set with a positive measure. Define the sets

VCF .x/ WD fn 2 N W �n.x/ 2 F g and V�F .x/ WD fn 2 N W ��n.x/ 2 F g:

The set VCF .x/ is called visiting sequence (of F at x). Then the set V�F .x/ is just a
visiting sequence for ��1 and we also call it backward visiting sequence. By nj .x/

we denote the j th-visit in F at x. Since m.F / > 0, by Birkhoff’s Ergodic Theorem
we have that

m.X 0CF / D m.X 0�F / D 1;

where

X 0
CF WD

n
x 2 X W VCF .x/ is infinite and lim

j !1
nj C1.x/

nj .x/
D 1

o
(2.10)
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and X 0�F is defined analogously. The sets X 0CF and X 0�F are respectively called
forward and backward visiting for F .

Let 	.x; n/ be a formula which depends on x 2 X and n 2 N. We say that
	.x; n/ holds in a visiting way, if there exists F with m.F / > 0 such that, for m-a.e.
x 2 X 0CF and all j 2 N, the formula 	.�nj .x/; nj .x// holds, where .nj .x//1

j D0

is the visiting sequence of F at x. We also say that 	.x; n/ holds in a exhaustively
visiting way, if there exists a family Fk 2 F with limk!1 m.Fk/ D 1 such that,
for all k, m-a.e. x 2 X 0CFk

, and all j 2 N, the formula 	.�nj .x/; nj .x// holds,
where .nj .x//1

j D0 is the visiting sequence of Fk at x.
Now, let fn W X ! R be a sequence of measurable functions. We write that

s-lim
n!1 fn D f;

if that there exists a family Fk 2 F with limk!1 m.Fn/ D 1 such that, for all k

and m-a.e. x 2 X 0CFk
and all j 2 N,

lim
j !1 fnj

.x/ D f .x/;

where .nj /1
j D0 is the visiting sequence of Fk at x.

Suppose that g1; : : : ; gk W X ! R is a finite collection of measurable functions
and let b1; : : : ; bn be a collection of real numbers. Consider the set

F WD
k\

iD1

g�1
i ..�1; bi 
/:

If m.F / > 0, then F is called essential for g1; : : : ; gk with constants b1; : : : ; bn (or
just essential, if we do not want explicitly specify functions and numbers). Note that
by measurability of the functions g1; : : : ; gk , for every " > 0 we can always find
finite numbers b1; : : : ; bn such that the essential set F for g1; : : : ; gk with constants
b1; : : : ; bn has the measure m.F / � 1 � ".

2.7 Spaces of Continuous and Hölder Functions

We denote by C .Jx/ the space of continuous functions gx W Jx ! R and by
C .J / the space of functions g W J ! R such that, for a.e. x 2 X , x 7! gx WD
gjJx

2 C .Jx/. The set C .J / contains the subspaces C 0.J / of functions for
which the function x 7! kgxk1 is measurable, and C 1.J / for which the integral

kgk1 WD
Z

X

kgxk1 dm.x/ < 1:
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Now, fix ˛ 2 .0; 1
. By H ˛.Jx/ we denote the space of Hölder continuous
functions on Jx with an exponent ˛. This means that 'x 2 H ˛.Jx/ if and only
if 'x 2 C .Jx/ and v.'x/ < 1 where

v˛.'x/ WD inffHx W j'.z1/ � '.z2/j � Hx%˛
x.z1; z2/g; (2.11)

where the infimum is taken over all z1; z2 2 Jx with %.z1; z2/ � �.
A function ' 2 C 1.J / is called Hölder continuous with an exponent ˛ provided

that there exists a measurable function H W X ! Œ1; C1/, x 7! Hx , such that
log H 2 L1.m/ and such that v˛.'x/ � Hx for a.e. x 2 X . We denote the space
of all Hölder functions with fixed ˛ and H by H ˛.J ; H/ and the space of all
˛-Hölder functions by H ˛.J / D S

H�1 H ˛.J ; H/.

2.8 Transfer Operator

For every function g W J ! C and a.e. x 2 X let

Sngx D
n�1X

j D0

gx ı T j
x ; (2.12)

and, if g W X ! C, then Sng D Pn�1
j D0 g ı �j . Let ' be a function in the Hölder

space H ˛.J /. For every x 2 X , we consider the transfer operator Lx D L';x W
C .Jx/ ! C .J�.x// given by the formula

Lxgx.w/ D
X

Tx.z/Dw

gx.z/e'x.z/; w 2 J�.x/: (2.13)

It is obviously a positive linear operator and it is bounded with the norm bounded
above by

kLxk1 � deg.Tx/ exp.k'k1/: (2.14)

This family of operators gives rise to the global operator L W C .J / ! C .J /

defined as follows:
.L g/x .w/ D L��1.x/g��1.x/.w/:

For every n > 1 and a.e. x 2 X , we denote

L n
x WD L�n�1.x/ ı ::: ı Lx W C .Jx/ ! C .J�n.x//:

Note that

L n
x gx.w/ D

X

z2T �n
x .w/

gx.z/eSn'x.z/, w 2 J�n.x/; (2.15)

where Sn'x.z/ has been defined in (2.12). The dual operator L �
x maps C �.J�.x//

into C �.Jx/.
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2.9 Distortion Properties

Lemma 2.2 Let ' 2 H ˛.J ; H/, let n � 1 and let y D .x; z/ 2 J . Then

jSn'x.T �n
y .w1// � Sn'x.T �n

y .w2//j � %˛.w1; w2/

n�1X

j D0

H�j .x/.�
n�j

�j .x/
/�˛

for all w1; w2 2 B.T n
x .z/; �/.

Proof. We have by (2.6) and Hölder continuity of ' that

jSn'x.T �n
y .w1// � Sn'x.T �n

y .w2//j �
n�1X

j D0

j'x.T j
x .T �n

y .w1/// � 'x.T j
x .T �n

y .w2///j

D
n�1X

j D0

ˇ̌
ˇ'x.T

�.n�j /

T
j
x .y/

.w1// � 'x.T
�.n�j /

T
j
x .y/

.w2//
ˇ̌
ˇ

�
n�1X

j D0

%˛
�
T

�.n�j /

T
j
x .x/

.w1/; T
�.n�j /

T
j
x .x/

.w2/
�
H�j .x/;

hence jSn'x.T �n
y .w1//�Sn'x.T �n

y .w2//j � %˛.w1; w2/
Pn�1

j D0 H�j .x/.�
n�j

�j .x/
/�˛ .

ut
Set

Qx WD Qx.H/ D
1X

j D1

H��j .x/.�
j

��j .x/
/�˛ : (2.16)

Lemma 2.3 The function x 7! Qx is measurable and m-a.e. finite. Moreover, for
every ' 2 H ˛.J ; H/,

jSn'x.T �n
y .w1// � Sn'x.T �n

y .w2//j � Q�n.x/%
˛.w1; w2/

for all n � 1, a.e. x 2 X , every z 2 Jx and w1; w2 2 B.T n.z/; �/ and where again
y D .x; z/.

Proof. The measurability of Qx follows directly from (2.16). Because of Lemma 2.2
we are only left to show that Qx is m-a.e. finite. Let � be a positive real number
less or equal to

R
log �xdm.x/. Then, using Birkhoff’s Ergodic Theorem for ��1,

we get that

lim inf
j !1

1

j

j �1X

kD0

log ���j .x/ � �

for m-a.e. x 2 X . Therefore, there exists a measurable function C� W X ! Œ1; C1/

m-a.e. finite such that C �1
� .x/ej�=2 � �

j

��j C1.x/
for all j � 0 and a.e. x 2 X .
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Moreover, since log H 2 L1.m/ it follows again from Birkhoff’s Ergodic Theorem
that

lim
j !1

1

j
log H��j .x/ D 0 m-a:e:

There thus exists a measurable function CH W X ! Œ1; C1/ such that

H�j .x/ � CH .x/ej˛�=4 and H��j .x/ � CH .x/ej˛�=4 (2.17)

for all j � 0 and a.e. x 2 X . Then, for a.e. x 2 X , all n � 0 and all a � j � n � 1,
we have

H�j .x/ D H��.n�j /.�n.x// � CH .�n.x//e.n�j /˛�=4:

Therefore, still with xn D �n.x/,

Qxn
D

n�1X

j D0

Hxj
.�n�j

xj
/�˛ �

n�1X

j D0

CH .xn/e.n�j /˛�=4C ˛
� .xn�1/e�˛.n�j /�=2

� C ˛
� .xn�1/CH .xn/

n�1X

j D0

e�˛.n�j /�=4 � C ˛
� .xn�1/CH .xn/.1 � e�˛�=4/�1:

Hence
Qx � C ˛

� .��1.x//CH .x/.1 � e�˛�=4/�1 < C1:

ut
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