Chapter 2
Expanding Random Maps

For the convenience of the reader, we first give some introductory examples. In
the remaining part of this chapter we present the general framework of expanding
random maps.

2.1 Introductory Examples

Before giving the formal definitions of expanding random maps, let us now consider
some typical examples.

The first one is a known random version of the Sierpiniski gasket (see, for example
[15]). Let A = A(A, B,C) be a triangle with vertexes A, B, C and choose a €
(A,B),b € (B,C)andc € (C, A). Then we can associate to x = (a, b, c) a map

fe: A(A,a,¢) U Aa, B,b) U A(b,C.a) — A,

such that the restriction of f; to each one of the three subtriangles is a affine map
onto A. The map f is nothing else than the generator of a deterministic Sierpinski
gasket. Note that this map can be made continuous by identifying the vertices
A, B, C(Fig.2.1).

Now, suppose x; = (a1,b1,c¢1), X2 = (az,bz,¢3),... are chosen randomly
which, for example, may mean that they form sequences of three dimensional
independent and identically distributed (i.i.d.) random variables. Then they generate
compact sets

jxl,xz,x3,... = ﬂ(fxn ©...0 fxl)_l(A)

n>1

called random Sierpiriski gaskets having the invariance property fx_ll (Fxrx3,.) =
Fx1 ,x2.x3,.... For a little bit simpler example of random Cantor sets we refer the
reader to Sect.5.3. In that example we provide a more detailed analysis of such
random sets.
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Fig. 2.1 Two different generators of Sierpifiski gaskets

A

Fig. 2.2 A generator of degree 6

Such examples admit far going generalizations. First of all, we will consider
much more general random choices than i.i.d. ones. We model randomness by taking
a probability space (X, %, m) along with an invariant ergodic transformation 6 :
X — X. This point of view was up to our knowledge introduced by the Bremen
group (see [1]).

Another point is that the maps fy that generate the random Sierpiriski gasket
have degree 3. In the sequel of this manuscript, we will allow the degree d, of all
maps to be different (see Fig. 2.2) and only require that the function x +— log(dy) is
measurable.

Finally, the above examples are all expanding with an expanding constant

yx=y>1.

As already explained in the introduction, the present monograph concerns random
maps for which the expanding constants yx can be arbitrarily close to one.
Furthermore, using an inducing procedure, we will even weaken this to the maps
that are only expanding in the mean (see Chap. 7).
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The example of random Sierpinski gasket is not conformal. Random iterations of
rational functions or of holomorphic repellers are typical examples of conformal
random dynamical systems. Random iterations of the quadratic family f.(z) =
7> + ¢ have been considered, for example, by Briick and Biiger among others (see
[8] and [9]). In this case, one chooses randomly a sequence of bounded parameters
¢ = (c1, ¢, ...) and considers the dynamics of the family

Fcl,...,cn = fcn o fcnl ©..0 fCls n>1.

This leads to the dynamical invariant sets
He={2 € C: Fey..c,(2) /> 00} and 7o = 3%,

The set .%7; is the filled in Julia set and _Z, the Julia set associated to the sequence c.

The simplest case is certainly the one when we consider just two polynomials
z+> 722+ A and z — 22 + A, and we build a random sequence out of them. Julia
sets that come out of such a choice are presented in Fig.2.3. Such random Julia
sets are different objects as compared to the Julia sets for deterministic iteration of
quadratic polynomials. But not only the pictures are different and intriguing, we

Fig. 2.3 Some quadratic random Julia sets
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will see in Chap. 5 that also generically the fractal properties of such Julia sets are
fairly different as compared with the deterministic case even if the dynamics are
uniformly expanding. In Chap. 8 we present a more general class of examples and
we explain their dynamical and fractal features.

2.2 Preliminaries

Suppose (X, %, m, 0) is a measure preserving dynamical system with invertible
and ergodic map 0 : X — X which is referred to as the base map. Assume
further that (_#x, px), x € X, are compact metric spaces normalized in size by
diam,, (_7x) < 1. Let

7 = U{x}x I 2.1)

xeX

We will denote by By (z, r) the ball in the space (_Zx, 0x) centered at z € _Z, and
with radius r. Frequently, for ease of notation, we will write B(y,r) for By(z,r),
where y = (x, z). Let

Tx: 7x — o), x€X,

be continuous mappings and let 7 : ¢ — _# be the associated skew-product
defined by

T(x,z) = (0(x), Tx(2)). (2.2)

For every n > 0 we denote Ty := Tgn-1(x) 0 ... 0 Tx : Fx — Fgn(x). With this
notation one has 7" (x, y) = (6" (x), T} (y)). We will frequently use the notation

xp =0"(x), nez.

If it does not lead to misunderstanding we will identify ¢, and {x} x _Z,.

2.3 Expanding Random Maps

Amap T : ¢ — _7 is called a expanding random map if the mappings T :
JIx — _Jo(x) are continuous, open, and surjective, and if there exist a function
n:X — R4, x = 1y, and a real number £ > 0 such that following conditions
hold.

Uniform Openness. Ty(Bx(z,1x)) D Box)(Tx(2), §) forevery (x,z) € 7.

Measurably Expanding. There exists a measurable function y : X — (1, +00),
X > Yy such that, for m-a.e. x € X,

00(x)(Tx(21), Tx(22)) = yx0x(21,22) whenever 0(z1,22) < Nx,21,22 € Fx .
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Measurability of the Degree. The map x > deg(Tx) := supyc 4, # T ({y}) is
measurable.

Topological Exactness. There exists a measurable function x — ng(x) such that

T;S(x)(Bx(z, §) = /Qns(x)(x) forevery z€ #y andae. x € X. (2.3)

Note that the measurably expanding condition implies that 7| g(.,5,) is injective
for every (x,z) € _#. Together with the compactness of the spaces _#Z it yields
the numbers deg(7y) to be finite. Therefore the supremum in the condition of
measurability of the degree is in fact a maximum.

In this work we consider two other classes of random maps. The first one consists
of the uniform expanding maps defined below. These are expanding random maps
with uniform control of measurable “constants”. The other class we consider is
composed of maps that are only expanding in the mean. These maps are defined
like the expanding random maps above excepted that the uniform openness and the
measurable expanding conditions are replaced by the following weaker conditions
(see Chap. 7 for detailed definition).

1. All local inverse branches do exist.
2. The function y in the measurable expanding condition is allowed to have values
in (0, 00) but subjects only the condition

/ log yx dm > 0.
X

We employ an inducing procedure to expanding in the mean random maps in order
to reduce then to the case of random expanding maps. This is the content of Chap. 7
and the conclusion is that all the results of the present work valid for expanding
random maps do also hold for expanding in the mean random maps.

2.4 Uniformly Expanding Random Maps

Most of this paper and, in particular, the whole thermodynamical formalism is

devoted to measurable expanding systems. The study of fractal and geometric

properties (which starts with Chap. 5), somewhat against our general philosophy, but

with agreement with the existing tradition (see for example [5,12,17]), we will work

mostly with uniform and conformal systems (the later are introduced in Chap. 5).
A expanding randommap T : _# — ¢ is called uniformly expanding if

— Yx = infrex yx > 1,
— deg(T) := sup,cy deg(Ty) < oo,
— Mgy 1= SUP,cx Ne(X) < 00.
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2.5 Remarks on Expanding Random Mappings

The conditions of uniform openness and measurably expanding imply that, for every
¥y = (x,z) € ¢ there exists a unique continuous inverse branch

Ty_1 D Boy(T(y).6) = Bx(y.1x)

of Ty sending T%(z) to z. By the measurably expanding property we have

o(T; (21). Ty ' (z2)) < v 'o(z1.22)  for z1.22 € By (T(1).§) 2.4

and
T, (B (T(). ) C Bx (.77 '€) C Be(3.6).

Hence, for every n > 0, the composition
T," =Ty oTriy 0. 0Ty Boneoy(T"(1),6) — Bx(».6)  (2.5)
is well defined and has the following properties:
T, ™ Bon(x)(T" (), §) — Bx(y,§)
is continuous,
T" o 1" = W|gyncyane, Ty (1 (R) =2
and, for every 71,25 € B@n(x)(T" ), é),

o(T,"(21). T, "(22)) < (v2) ' o(z1. 22). (2.6)

where Y = yxVo(x) ** - Von—1(x)- Moreover,

T (Bognx)(T" (). £)) C Bx(y, (y2)~'€) C Bx(y, ). 2.7

Lemma 2.1 For every r > 0, there exists a measurable function x + n,(x) such
that a.e.

T (By(z,1)) = Honroxy foreveryze f. (2.8)

Moreover, there exists a measurable function j : X — N such that a.e. we have

T;;(izx)(Bxfj(x) (Zv S)) = /X fOV every 2 € /x,j(x)- (29)

Proof. In order to prove the first statement, consider Yo > 1 and let F' be the set
of x € X such that y, > yp. If y¢ is sufficiently close to 1, then m(F) > 0.
In the following section such a set will be called essential. In that section we also
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associate to such an essential set a set X Q_ F (see (2.10)). Then for x € X Q_ F» the
limit limy— 00 (y?)~! = 0. Define

Xirp ={xeX, p: (yf)_lé <rh.

Then X1 rx C X4 F k41 and Ugey X+ 7k = X/, p. By measurability of x + yy,
X1 F k is a measurable set. Hence the function

Xip3xn(x):=minfk : x € X4 p i} +ng(x)
is finite and measurable. By (2.7) and (2.3),

T2 O (Be(z.1) = Fgnroo -

In order to prove the existence of a measurable function j : X — N define
measurable sets

Xen = {x € X 1ng(x) < nj, X¢, := 0"(Xg,) and X = U Xi

neN

Then the map
X2 x> j(x):=minfn e N:x € X{ }

satisfies (2.9) for x € Xé Since m (0" (Xg ) = m(Xg,) /' 1 asn tends to oo we
have m(Xé) =1 O

2.6 Visiting Sequences

Let F € .% be a set with a positive measure. Define the sets
Vir(x):={neN:0"(x)e F} and V_p(x):={neN:07"(x)e F}.

The set Vi (x) is called visiting sequence (of F at x). Then the set V_r (x) is just a
visiting sequence for 6! and we also call it backward visiting sequence. By n ; (x)
we denote the jth-visitin F at x. Since m(F) > 0, by Birkhoff’s Ergodic Theorem
we have that

m(Xyp)=mX_p) =1,

where

CF= {x € X : Vyg(x)is infinite and lim WEIICY) = 1}

Jim =S (2.10)
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and X' ;. is defined analogously. The sets X’ . and X'  are respectively called
forward and backward visiting for F .

Let ¥(x,n) be a formula which depends on x € X and n € N. We say that
¥ (x,n) holds in a visiting way, if there exists F with m(F) > 0 such that, for m-a.e.
x € X pandall j €N, the formula ¥(6"/ (x),n;(x)) holds, where (1, (x))?o=O
is the visiting sequence of F at x. We also say that ¥ (x, n) holds in a exhaustively
visiting way, if there exists a family Fj € .7 with limg_.o, m(F)) = 1 such that,
for all k, m-a.e. x € X;Fk, and all j € N, the formula ¥ (6"/ (x),n;(x)) holds,
where (7 (x))?"=0 is the visiting sequence of Fj at x.

Now, let f, : X — R be a sequence of measurable functions. We write that

s-lim f, = f,

n—>00

if that there exists a family Fy € % with limg_, o, m(F,) = 1 such that, for all k
and m-a.e. x € X;Fk and all j € N,

Jim i, () = £,

where (n j)?ozo is the visiting sequence of Fy at x.
Suppose that g1, ..., g% : X — R is a finite collection of measurable functions
and let by, ..., b, be a collection of real numbers. Consider the set

k
F = ()& " ((—00, bi]).
i=1

If m(F) > 0, then F is called essential for g1, ..., gx with constants by, ..., b, (or
just essential, if we do not want explicitly specify functions and numbers). Note that
by measurability of the functions g1, ..., gk, for every ¢ > 0 we can always find
finite numbers by, . . ., b, such that the essential set F for g1, ..., gr with constants
bi,...,by, has the measure m(F) > 1 —e¢.

2.7 Spaces of Continuous and Holder Functions

We denote by ¢'(_#x) the space of continuous functions gx : _#» — R and by
%' (7 ) the space of functions g : _# — R such that, fora.e. x € X, x > gy :=
gl 7. € € ( Fx). The set €'(_7) contains the subspaces ¢°(_#) of functions for
which the function x > ||gx o is measurable, and ! (_#) for which the integral

gl :=/X||gx||oodm(x) < o0,
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Now, fix ¢ € (0, 1]. By s#*(_#) we denote the space of Holder continuous
functions on _#, with an exponent «. This means that ¢, € J%(_#,) if and only
if o € €(_Fx) and v(px) < co where

Ve (@x) = inf{Hy : [@(21) — ¢(22)| < Hx0%(21.22)}. (2.1D)

where the infimum is taken over all z1, 2> € _#x with o(z1,22) < .

A function ¢ € €1 (_#) is called Holder continuous with an exponent o provided
that there exists a measurable function H : X — [l,400), x — H,, such that
log H € L'(m) and such that vy (¢y) < Hy fora.e. x € X. We denote the space
of all Holder functions with fixed & and H by s#*(_#, H) and the space of all
a-Holder functions by #%(_7) = Uy, (7., H).

2.8 Transfer Operator

For every functiong : ¢ — Canda.e.x € X let

n—1

Sngx =Y gxoT]. 2.12)
Jj=0

and,if g : X — C, then S,,g = Z;’;B g 0 67. Let ¢ be a function in the Holder
space J°*(_7 ). For every x € X, we consider the transfer operator £ = £, » :
C (%) = €(_Fo(x)) given by the formula

L) = Y gx(@e” P, we Fy. (2.13)
Ty (2)=w

It is obviously a positive linear operator and it is bounded with the norm bounded
above by
[Zxlloo = deg(Tx) exp([[@lloo)- (2.14)

This family of operators gives rise to the global operator £ : ¢ (_7) — %(J)
defined as follows:

(Z8)x W) = Lo—1(x)80-1(x)(W)-

Foreveryn > 1 and a.e. x € X, we denote

g;l = ggn—l(x) 0...0 gx : (g(/x) — (g(/gn(x))

Note that
Lrexw) = Y (e O we Fgny. (2.15)
z€Tx " (w)

where S, ¢x(z) has been defined in (2.12). The dual operator .} maps C*(_Zg(x))
into C*(_#x).
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2.9 Distortion Properties

Lemma 2.2 Let ¢ € (7, H), letn > 1 andlety = (x,z) € #. Then

n—1

|Sua (T3 1)) = Sux (T w2)| < 0% Owr.w2) D Hys (7 ()~
j=0

Sforallwi,wao € B(T}(2), §).
Proof. We have by (2.6) and Holder continuity of ¢ that

n—I1

|Sn(/’x(Ty_n (w1) — Suox (Ty_n (w))| = Z |px (ij (Ty_n (w1)) — ¢« (ij (Ty_n (w2))I
J=0

n—I1
j=0
n—1

—(n—=J) _ —(n=j)
ey ) =Ty ) (WZ))'

—(—) —(—)
= Z;)QQ(TTJ w T (w2) ) Hos .
=

hence |y (75 (w1)) = Sugpa (T (w2))| < 0% (w1 w2) Y12y Hyr oy (V7 L)
(]

Set ~
Ox 1= Qx(H) = ) Hyi () (Vg ()" (2.16)
ji=1

Lemma 2.3 The function x + Q is measurable and m-a.e. finite. Moreover, for
everyp € JC%( 7, H),

|Sn§0x(Ty_n (w1)) — Sn(Px(Ty_n(WZ))l < Qgn(x)0" (W1, w2)

foralln > 1,a.e.x € X, everyz € fx andwy,wy € B(T"(z), ) and where again
y = (x,2).
Proof. The measurability of Q follows directly from (2.16). Because of Lemma 2.2
we are only left to show that Q, is m-a.e. finite. Let y be a positive real number
less or equal to [ log yxdm(x). Then, using Birkhoff’s Ergodic Theorem for 67!,
we get that

1 Jj—1
e >
lbyggfj kE_O log vy iy Z X

for m-a.e. x € X. Therefore, there exists a measurable function C, : X — [1, +-00)
m-a.e. finite such that C),_l()c)ej’f/2 < Vé*ﬂrl(x) forall j > Oand ae. x € X.
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Moreover, since log H € L' (m) it follows again from Birkhoff’s Ergodic Theorem
that

1
lim —,logHg__,-(x) =0 m-a.e.
J—>0o0 ]

There thus exists a measurable function Cy : X — [1, +00) such that
Hyi o) < Cr(x)e™/* and  Hy—; () < Cp(x)e*/* (2.17)

forall j > 0Oanda.e. x € X. Then, fora.e.x € X,alln > 0andalla > j >n—1,

we have |
Hyjxy = Ho—t-p(gn(xy) < C (0" (x))em=Dex/4,

Therefore, still with x,, = 6" (x),

n—1 n—1
Qx, = ) He, (Vi)™ < ) Cr(an)e =X CH (g y)e = DX2
j=0 j=0
n—1 )
< CPen1)Cri(xn) Y e =DX% < € (xy 1) Cr (xa) (1 — e/ 471
j=0

Hence
0x = CH (07 (0))Cr(x)(1 —e %)~ < fo0.
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