Chapter 2

Asymptotic Behavior of the Universally
Consistent Conditional U-Statistics

for Nonstationary and Absolutely Regular
Processes

Echarif Elharfaoui, Michel Harel, and Madan L. Puri

Abstract A general class of conditional U-statistics was introduced by W. Stute
as a generalization of the Nadaraya—Watson estimates of a regression function. It
was shown that such statistics are universally consistent. Also, universal consis-
tencies of the window and kj,-nearest neighbor estimators (as two special cases
of the conditional U-statistics) were proved. Later, (Harel and Puri, Ann Inst Stat
Math 56(4):819-832, 2004) extended his results from the i.i.d. case to the absolute
regular case. In this paper, we extend these results from the stationary case to the
nonstationary case.

2.1 Introduction

Let {Z; = (X;,Y;); i € N*} be a sequence of random vectors with continuous
distribution functions H;(z), i € N*, z € R? x R®, defined on some probability
space (£2, A, P).

Assume that H; admits a strictly positive density and H; has the two marginals
F; and G;.

Let /1 be a function of k-variates (the U kernel) such that forsomer > 2,h € L},
which means that E{supg |h(Yp)|"} < +o0 (where sup extends over all permuta-
tions B = (B1,...,PBr) of length k, that is, over all pairwise distinct f1, ..., Bx

taken from N*) which implies that for all integers i1, i2,...,if (i1 < iz < ... <
ix) h(Y;,,..., Y ) € Ly, the space of all random variables Z for which |Z|" is
integrable. In order to measure the impact of a few X’s, say (Xy,..., Xg), on a
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function A(Y1, ..., Yy) of the pertaining Y’s, set
m(x) = m(xy,...,xx) := E[h(Y1,...,Y)| X1 = x1,..., X = x¢] 2.1

where m is defined on R%¥.
For estimation of m(x), [7] proposed a statistic of the form

Yph (¥, ... . Yg) TT5—y KI(x; — Xp,)/ hnl
Y g [T52 Kl(xj — Xp,)/ ha]

un(X) = up(x1,...,X5) = 2.2)

where uy, is defined on R%* K is the so-called smoothing kernel satisfying [ K (u)
du = 1 and {h,, n > 1} is a sequence of bandwidth tending to zero at appropriate
rates. Here summation extends over all permutations 8 = (81, ..., Br) of length k,
that is, over all pairwise distinct 81, ..., B taken from 1, ..., n. Stute [7] proved the
asymptotic normality and weak and strong consistency of u, (x) when the random
variables {(X;, Y;), i > 1} are independent and identically distributed. Harel and
Puri [3] extended the results of [7] from independent case to the case when the
underlying random variables are absolutely regular. Stute [9] also derived the L,
convergence of the conditional U -statistics under the i.i.d. set up.

If a number of the X;’s in the random sample are exactly equal to x which can
happen if X is a discrete random variable, PY (-|X = x) can be estimated by the
empirical distribution of the Y;’s corresponding to X;’s equal to x. If few or none
of the X;’s are exactly equal to x, it is necessary to use Y;’s corresponding to X;’s
near x. This leads to estimators ﬁ,{ (-|X = x) of the form

n
PYCIX =x) =) Wai(0)lly, e

i=1

where W, (x) = Wyi(x, X1,...,X,) (1 < i < n) weights those values of i for
which X; is close to x more heavily than these values of i for which X; is far from x
and 114 denotes the indicator function of A.

Let g be a Borel function on R* such that g(Y) € L,. Corresponding to W, is
the estimator /,, (x) of [(x) = E(g(Y)|X = x) defined by

In(x) = Z Wai(x)g(Yi).

i=1

More generally if we now consider the estimates of m(x) defined in (2.4), this leads
to weighting those values of 8 for which Xg = (Xg,,..., Xp, ) is close to x more
heavily than the values of 8 for which Xg is far from x.

This is why, as in [8], we study a fairly general class of conditional U -statistics
of the form
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ma(x) =Y Wpu(x)h(Yp) (2.3)
B

designed to estimate m(x), where Wg ,(x) is defined from a function W, (x,y) by
Wgn(x) = Wu(x,Xg), Yg = (Yp,,...,Yg,), and the summation in (2.3) takes
place over all permutations 8 = (B4,...,Px) of length k such that 1 < ; <
n,i=1,...,k.

Remark 2.1. The estimator defined in (2.2) is a special case of the estimator defined
in (2.3), see (2.23).

In order to make m, (x) a local average, Wpg , (X) has to give larger weights to those
h(Ypg) is close to x. For this general class of conditional U -statistics (defined in
(2.3)) and for i.i.d. random variables, [8] derived the universal consistency. Harel
and Puri [4] extended his results from the i.i.d. case to the absolute regular case.
In this paper, we extend it to the nonstationary case and absolutely regular r.v.’s
which allow broader applications that include, among others, hidden Markov models
(HMM) described in detail in [4].
We shall call Wg ,, universally consistent if and only if

my(X) > m(X) in L,

under no conditions on % (up to integrability) or the distribution of {(X;, ¥;), i > 1}.
Here X=(X?,..., X,?) is a vector of X ’s with the same distribution as (X1, ..., X%)
and independent of {(X;, Y;), i > 1}.

2.2 Preliminaries

Let (Z;);>1 be a stochastic process indexed by the positive integers, taking value
in a finite dimensional Euclidean space H. Identifying H with a product of a finite
number copies or the real line, we write H; for the distribution function of Z;. We
will assume that the process has some form of asymptotic stationarity, implying that
the sequence H; converges in a sense to be made precise to a limiting distribution
function H. _

Fori < j, let .A{ denote the o-algebra of events generated by Z;, ..., Z;. We
shall say that the nonstationary stochastic process is absolutely regular if

sup max E { sup |P(A|.A{)—P(A)| =Bk)* L0 as n — o0

1<j<n—k
neN* 1=j=n Ae.A‘j?°+k

where N* = {1,2,...}.
All along the paper, we assume that (*) holds with a geometrical rate;
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Z mﬂlsﬁ(m) < oo forsomed > 0. (2.4)

m>1

We consider a parameter £ in H whose components can be naturally estimated by
U-statistics. To be more formal and precise, we assume that £ is defined as follows.
Let k be an integer, to be the degree of the U-statistics. Let ¢ be a function from HF
into HI, invariant by permutation of its arguments. We are interested in parameters
of the form

k
= dH®* = SO dH(z). 2.5
e=[ o IRE w [Jart @5

and the function ¢ is called the kernel of the parameter &.

Example 2.1. Take H to be R. The mean vector corresponds to taking k = 1 and ¢
is the identity.

Example 2.2. Take H to be R2. Consider £ to be the two-dimensional vector whose
components are the marginal variances. We take k = 2 and ¢ is going to be
a function defined on (Rz)z. It has two arguments, each being in R2, and it is
defined by

2 2

u? +u' L VY ,

, -w].
2 2

¢ ((Lt, V)’ (ulv V/)) = ( — uu

Such a parameter can be estimated naturally by a U-statistics, essentially replac-
ing H®* in (5) by an empirical counterpart. By using the invariance of ¢, the
estimator of £ is then of the form

-1
£, = (Z) > $(Zp,..... Zg)- 2.6)
p

To specify our assumption on the process, it is convenient to introduce copies
of H. Hence we write H;, i > 1, an infinite sequence of copies of H. The basic idea
is to think of the process at time i as taking value in H; and we think of each Hj; as
the ith component of H*. We then agree on the following definition.

Definition 2.1. A canonical p-subspace of H* is any subspace of the form H;, &
... ®H;, with 1 <iy <--- <i,. We write S, for a generic canonical p-subspace.

Remark 2.2. For (iy,....ip) # (j1.....jp) if wenote S, = H;, &... ®H;, and
S, =H;, &... H;,, wehave S, # S/, with S, C H* and S, C H*.

The origin of this terminology is that when H is the real line, then a canonical
p-subspace is a subspace spanned by exactly p distinct vectors of the canonical
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basis of H. We write } 5 for a sum over all canonical p-subspaces included
in H".

To such a canonical subspace S, = H;, & ... H; , We can associate the distri-
bution function Hs, of Ziy,.... Z; p) as well as the distribution function with the
same marginals

H®? = ®i<j<pH;, = Qu,cs, Hi. 2.7)

i

Clearly the marginal of H ®S? are independent, while that of Hs , are not.

Consider two nested canonical subspace S, and Sg_, where Sx_, C H" ©S,,.
For a function ¢ symmetric in its argument and defined on S, &Sk _ ,, we can define
its projection onto the functions defined on S, by

L€S) = (2 Sk_p) = /S B, y) AHDS1 (). 2.8)

Identifying S, ® Sk—, with H* and H? with S p» that allows to project functions
defined on H¥ onto functions on HPZ. However, with this identification, the projec-
tion depends on the particular choice of Sg_, in H". To remove the dependence in
Sk—p, we sum over all choices of Sy, in H" © S by

-1

n—

s, (2) = (k _ p) Yo @Sy (2.9)
p Sk—pCH'OS)

Let k be an integer and for each n > k, consider a kernel ¢, = ¢ of degree k

depending on n.
A U-statistics of degree k is defined by

-1
Uy = (Z) > $a(Zpyo . Zp)s (2.10)
5

we can then define an analogue of Hoeffding decomposition when the random vari-
ables come from a nonstationary process. For this purpose, consider, firstly, an
expectation of U, if the process had no dependence, namely,

-1
Upo = (Z) S | ¢ dH®x. @2.11)
Sy CH”? Sk
Then forany p = 1,..., k, we define
-1
n
Un,p = ( ) > [ $s, d ®s,cs, 6z, — Hy) (2.12)
PJ) s, cun /e

where 4y ; is the Dirac function.
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Finally, for p > k, we set
Un,p =0. (2.13)

The analogue of Hoeffding decomposition is the equality

Un= Y <k>U,,,,,. (2.14)

0<p<k P

Note that this decomposition makes an explicit use of convention (2.13), and this is
why this convention was introduced.

We now need to specify exactly what we mean by asymptotic stationary of a pro-
cess. For this, recall the following notion of distance between probability measures.

Definition 2.2. The distance in total variation between two probability measures
P and Q defined on the same o -algebra A is

|P — Qla = sup |P(4) — Q(A4)].
AcA

If S, is a canonical subspace of H*, we write o5, the o-algebra generated by the
Z;’s with H; C S,. We write P the probability measure pertaining to the process
(Z;)i>1, which is a probability measure on H*.

Definition 2.3. The process (Z;);>1 with probability measure P on H> is geo-
metrically asymptotically stationary if there exists a strictly stationary process with
distribution Q on H®°, and a positive t less than 1, such that fori > 1,

|P = Qloy, <7 (2.15)

We suppose that there exists a strictly stationary process (Z);>1 with probabil-
ity measure Q on H, which is absolutely regular with the same rate as the process
(Zi)i=1. H is the distribution function of Z, H admits a strictly positive density
and H has the two marginals F and G.

We define the function ¢* on H; by

zeH; — ¢*(z HF 0 H,)) = / ¢z, y) dH®*D, (2.16)
HK OH;

Next, we denote

n
Ur =n" Z/H ¢*d(zx — H).
1

i=1

2.3 Assumptions and Main Results

In this section, we identify H = H’' x H” with R? x R. For a generic canonical
p-subspace S, of H*®, we write S; x and S, x its projections respectively in H'*®
and H"*°.
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We consider the nonstationary sequence of random vectors {Z; = (X;,Y;); i €
N*} with values in R4 x RS and continuous distribution functions H; and H; has
the two marginals F; and G;.

We assume that the sequence {Z;};>1 is absolute regular with rates (2.4) and
(2.15) is satisfied with its associated stationary sequence {Z = (X Y ); i € N*}
of stationary random vectors.

For the ease of convenience, we shall write Wg for Wpg ;.

Consider the following set of assumptions:

(i) There exists functions Vj(x,y) on R24¥ such that for each [ € Lcr, 2™ =
(2152 20) € R and y™ = (y1,..., yy) € R*"

2.p Vn(x.2p)l(yp)
> p Va(x,2p)

Z Wy (X’ Zﬁ)l(yﬂ) =
B

where zg = (z8,,...,28,) and yg = (¥g,, .., Vg )-
(ii) There exists a function V(x) on R4¥ such that for each scalar function q on R4k
verifying

/WﬁM@WﬂﬁW@<m

we have

-1
lim (Z) Z [ q(2)Vy(x,2)dF®S1% (z) = q(x)f(x)/ V(z)dz

n—o0
S1.xCH"

where f (x) = ]_[];-:1 f(x;)and f is the density function of F.
(iii) Define the kernel of degree k by

$r(23) =B Va(x.2) | [ Valx P ),

Suppose that
sup [ |pul*T? dPoy, < 00 2.17)
Sk CH®® JSg
sup [ |pa*T dQy, < o0 (2.18)
Sk CH®® JSg
where § > 0.

Remark 2.3. Our conditions (i) and (ii) are completely different from conditions
(ii) to (v) in [8]. Our conditions are more general and more easy to verify. More, the
condition (i) in [8] is not necessary.

The following theorems generalize Theorems 2.1, 2.2, 2.3 and 2.4 in [4] from the
stationary dependent case to the nonstationary dependent case.
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Theorem 2.1. Assume that h € L. Then under (i)—(iii), (2.4) and (2.15),
my(X) > m(X) inL,, asn — o0,
where r = 2 + 26, that is
E [|my(x) — m(x)|" u(dx)] > 0asn — oo (2.19)

where 1 denotes the distribution of (X1, X2, ..., Xg).

Corollary 2.1. Under the conditions of Theorem 2.1 and (2.34) in Sect. 2.4, my(X)
— m(x) with probability one for p-almost all x.

Remark 2.4. In [4], we supposed that & is bounded, this condition is not necessary
now.

Theorems 2.2 and 2.3 deal with two special cases: window weights and NN-weights.
Consistency of window estimates for the regression function has been obtained
by [2] and [5]. NN-weights for the regression function have been studied in [6],
Theorem 2.

In what follows, | - | denotes the maximum norm on R¢. We also write

Xs — x|| := max |Xg — x;|.
IXp — x| = max |Xp, —xil

To define window weights, put (see [8])

Wp(x) = (1)1[||Xﬁ—x||shn]/ 2_p Miixg—xl<hs)  if well defined (2.20)

otherwise.

Here h, > 0 is a given window size to be chosen by the statistician. Then we have
the following results:

Theorem 2.2. Assume h,, — 0 and nh,“l’ — oo as n — oo. Then, under the
conditions (2.4) and (2.15), we have

my(X) > m(X) in L,,

where Wg(X) in (2.3) is given by (2.20).

For the NN-weights, recall that X ; is among the k,NN of x € R? if d;(x) :=
| X; — x| is among the k,-smallest ordered values d.,(x) < ... < du:n(x) of the
d’s. Ties may be broken by randomization.

For a given 1 <k, <n, set

k;d if Xg. is amongthe k, — NN of x; for1 <i <k

W, =
p(x) 0 otherwise.

2.21)
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Theorem 2.3. Assume that k, — oo and k,/n — 0 as n — co. Then, under the
conditions (2.4) and (2.15), we have

my(X) > m(X) in L,
where Wg(X) in (2.3) is given by (2.21).
We now consider as estimator of m(x), the statistics of the form
My (X) = utn(X) (2.22)

where u, (x) is defined in (2.2). Then, in view of (2.3) we have

151 Kl(xj — Xp,)/ ha]
> TT5—1 Kl(x; — Xp,)/ ]

Wp . (X) = (2.23)

where K(x) is a so-called smoothing kernel satisfying [ K(u)du = 1 and
limy—oo [u|K(u) = 0 and {h,, n > 1} is a sequence of bandwidths tending to
zero. This special case was studied by [7] for i.i.d. random variables, and from
Theorem 2.1, we can generalize his result for nonstationary dependent random vari-
ables. The following theorem establishes that the universal consistency still holds
for conditional U-statistics involving kernel K and a sequence of bandwidth /,,.

Theorem 2.4. Assume that h,, — 0 and nhg — oo asn — o0o. Then, under the
conditions (2.4) and (2.15), we have

my(X) > m(X) in L,,

where m(x) is given (2.1).

2.4 Proof of Theorems and Corollary 2.1

First, we show that m,, is the ratio of two U -statistics. Let x = (x1, ..., x¢) be fixed
throughout. Let

-1
Un(h,x) = Up(x) = U, = (Z) > h(Yp)Vax, X,g)// Vo (x, u)dF®* (u).
5

Hence m, (x) = Uy (h, X)/U,, (1,x) and U, (h, x), for each n > k, is a nonstationary
U -statistic as defined in (2.10) with a hind depending on 7.
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Consider the sequence of functionals

-1
uhx)=0,= (") Y [ puar®%
k Sy crn ¥ Sk
k

where ¢, is defined in (iii).
Note that 68, = E(U,).
The decomposition defined in (2.14) can be written as

“ (k
Un=9n+2( )Un,p
p=1\F

where U, p is defined as in (2.12).
To prove Theorem 2.1, the following lemmas are needed.

Lemma 2.1. Under the conditions of Theorem 2.1
E(Un,p)* = O(n™?).
Proof. We shall consider the case p = 2. The proofs in the cases ¢ = 3,...,k

are analogous and so they are omitted.
We first note that

-1
n
Un,2 = (2> Z / ¢52d®]}-]1ics2 (82,- - Hl')
S, CH” S2
so we have
-1
n
E(Unp)* = (2) Z Z J((i1.12), (I1,12))
1<iy<iz<mn 1<ly<lr<n

where
J((i1,i2), (I, 1)) = E (/S ¢S2d®15,-52H,-j (SZl.j —H;)
2
x/ bs;de| <oy, 8z, — Hlm))
S5
S> = H;, ® Hj, and S; = H;, & Hj,.

So from condition (2.4) and condition (iii), we have from Lemma 2.1 in [10] the
inequalities:
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DOIf1 <iy <ip <l <l then

J((i1,i2), (11, 1)) < MB(Us — VT I — 1y > in — iy

and
J((i1.i2), (I1.2)) < M{ﬂ(iz—il)}‘%; ir—ir >l —1

where M is a finite positive constant.
Thus, using (2.24) and (2.25), we obtain

> J((i1.i2). (. 1)) | = O(n?).

1<iy<ipz<li<lz<n

Similarly
i) If1 <iy <ly <ip <ly <n,then

> J((i1,i2), (I1,12))| = O?).
1<iy<ly<iz<lr<n
G If1 <iy <y <1, <ir <n,then
Yo JlGhi2), (k)| = O(?).
1<ii<li<lx<iz<n
From (2.26), (2.27) and (2.28), we obtain
E(Un2)? = 0(n™?).
Thus the result for the case p = 2 is proved.

Lemma 2.2. Under the condition of Theorem 2.1, for p-almost all x

On(h,x)
On(1,x)

— m(x), n — oo.
Proof. By definition, we have

n

-1
O (h,x) = 0 = (k) > PndH®SK
Sy CH" Sk

21

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)
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Put .
6! (h.x) = (Z) / h(y)Vy (x, 2)dF®5% (y, z).
S CH”
From condition (2.15), we deduce
|6, (h,x) — 6, (h,x)| > 0 asn — oco. (2.29)

From condition (ii) in Sect. 2.3, we have

Jim (Z) Z /S m(z) Vi (x, 2)dF®S1% (z) = m(x) f (x) / V(z)dz

K CH”

(2.30)

and so

Tim_ (Z) ZCJHI’” [S Vo (x, 2)dF®S15 (z) = f(x) / Vz)dz. (2.31)

By definition, we have

en<h,x)=<2) > h(y)vn<x,z)dF®Sk<y,z)

SCH
) (”)_ Z/s (/S” E(h(y)|X = 2)Va(x, Z)dG®S2,k(y)>
xdF®ka2H;
: <Z)_l z [ mEVa o). (2.32)
§1 4 CHI"

From (2.29)-(2.32), we deduce easily that

0n (R, x)
0,(1,%)

— m(x), n — oo.

To prove Theorem 2.1, from Lemmas 2.1 and 2.2, we now have to show that for
p-almost all x,
Uy.,1(h,x) — 0 in probability.
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Since
Unp(h,x) =n"" Z ¢s,d ®m;cs, 6z, — H;)
S| CH” S1
n
=n"! Z/ ¢H,‘d(82i — H;)
i=1"Hi
we have

n 2
W) =2 (87, — H;
EUn1)? = n E(Z[Hi"bﬂ' 5z H))

i=1

n 2
= -2 d 8 . i
n ;E([Hi@}ﬂ, 0z H))
+ 2n~2 Z E (/ ¢Hid(82i - Hl))
H;

1<i<j<n

x( ¢, d(8z; —Hj))} )
H

From Lemma 2.1 of [10] and condition (iii), we have

E(Un,1)* <2n7nM(2,h) + 4’1_2M‘7}F’S(V7h) Xn:(P + 1),3%(17)
p=1
—om™)
where M (t,h) = E{supg |¢(Xp. Yp)|'}, which implies
E(U,1)*=0m™). (2.33)

From Lemmas 2.1 and 2.2 and from (2.33), we have

Uy, (h,x) — m(x)f(x)[ V(z)dz

and
Un(1,x) > f(x) / V(z)dz in probability

as n — oo for w-almost all x.
It remains to prove the uniform integrability.
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It is an easy convergence of the Jensen’s inequality

r

sup E 1| > Va(X.Xp)h(Yp)l/ Y Va(X. Xp)
B B

neN*

< sup £ D Ve Xp)h(Yp)I"/ D Va(X. Xp)
neN* 8 8

< E {sup|h(Yp)|"p < +oc.
B

and Theorem 2.1 is proved.
The proof of Corollary 2.1 is a consequence of Lemma 2.1 and Lemma 2.3 below.
For a d-dimensional vector V', consider the norm || V|| = max;<;<g | V)|, This
norm is equivalent to the Euclidian norm and easy to work with here. We will use
this norm in Lemma 2.3 below see also [1].

Lemma 2.3. Let (V,)n>1 be a sequence of d-dimensional centered absolutely
regular and non necessarily stationary random vectors with rate satisfying

Y () B < oo (2:34)
i>1
suIIDE(IIViII’) < oo. (2.35)

Then .
n! Z Vi — 0 with probability 1, as n — oco.

i=1
)

> e) . (2.36)

) . (2.37)

Proof. For € > 0,

P(wl=e) = 7 (ms,
< Y P(

1<j=<d

n

1 .

i=1

1 (;

i=1

Forall 1 < j < d, one has from Markov’s inequality that

1
e'n’

n

EE:IGU)

i=1

o (;

i=1
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By Lemma 5.2 of [3], one has that

n r
E ( Pk ) <cn'l? (2.38)

i=1
From the above two inequalities, one deduces that

n

,
- C
ElD_ v ) < =nl2 (2.39)

=
i=1

Since r/2 > 1, the last inequality implies that forall 1 < j <d,

n
ZP(%ZVI-U) ze><oo

n>1 i=1

which, in turn, implies that

n
ZP %ZVI >e | < o0.

n>1 i=1

Lemma 4.3 then follows by Borel-Cantelli theorem.

The proofs Theorems 2.2 to 2.4 are also consequences of Theorem 2.1 by using
technics similar as in the proofs of Theorem 2.2 to Theorem 2.4 in [4]: that is to
verify that conditions (i)—(iii) are satisfied.
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