
Chapter 2
Asymptotic Behavior of the Universally
Consistent Conditional U-Statistics
for Nonstationary and Absolutely Regular
Processes

Echarif Elharfaoui, Michel Harel, and Madan L. Puri

Abstract A general class of conditional U-statistics was introduced by W. Stute
as a generalization of the Nadaraya–Watson estimates of a regression function. It
was shown that such statistics are universally consistent. Also, universal consis-
tencies of the window and kn-nearest neighbor estimators (as two special cases
of the conditional U-statistics) were proved. Later, (Harel and Puri, Ann Inst Stat
Math 56(4):819–832, 2004) extended his results from the i.i.d. case to the absolute
regular case. In this paper, we extend these results from the stationary case to the
nonstationary case.

2.1 Introduction

Let fZi D .Xi ; Yi /I i 2 N
�g be a sequence of random vectors with continuous

distribution functions Hi .z/, i 2 N
�, z 2 R

d � R
s , defined on some probability

space .˝;A; P /.
Assume that Hi admits a strictly positive density and Hi has the two marginals

Fi and Gi .
Let h be a function of k-variates (the U kernel) such that for some r > 2, h 2 L�

r ,
which means that Efsupˇ jh.Yˇ /jrg < C1 (where sup extends over all permuta-
tions ˇ D .ˇ1; : : : ; ˇk/ of length k, that is, over all pairwise distinct ˇ1; : : : ; ˇk

taken from N
�) which implies that for all integers i1; i2; : : : ; ik .i1 < i2 < : : : <

ik/ h.Yi1 ; : : : ; Yik / 2 Lr , the space of all random variables Z for which jZjr is
integrable. In order to measure the impact of a few X ’s, say .X1; : : : ; Xk/, on a
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function h.Y1; : : : ; Yk/ of the pertaining Y ’s, set

m.x/ � m.x1; : : : ; xk/ WD EŒh.Y1; : : : ; Yk/jX1 D x1; : : : ; Xk D xk � (2.1)

where m is defined on R
dk .

For estimation of m.x/, [7] proposed a statistic of the form

un.x/ D un.x1; : : : ; xk/ D
P

ˇ h.Yˇ1
; : : : ; Yˇk

/
Qk

j D1 KŒ.xj � Xˇj
/=hn�

P
ˇ

Qk
j D1 KŒ.xj � Xˇj

/=hn�
(2.2)

where un is defined on R
dk , K is the so-called smoothing kernel satisfying

R
K.u/

du D 1 and fhn; n � 1g is a sequence of bandwidth tending to zero at appropriate
rates. Here summation extends over all permutations ˇ D .ˇ1; : : : ; ˇk/ of length k,
that is, over all pairwise distinct ˇ1; : : : ; ˇk taken from 1; : : : ; n. Stute [7] proved the
asymptotic normality and weak and strong consistency of un.x/ when the random
variables f.Xi ; Yi /; i � 1g are independent and identically distributed. Harel and
Puri [3] extended the results of [7] from independent case to the case when the
underlying random variables are absolutely regular. Stute [9] also derived the Lr

convergence of the conditional U -statistics under the i.i.d. set up.
If a number of the Xi ’s in the random sample are exactly equal to x which can

happen if X is a discrete random variable, P Y .�jX D x/ can be estimated by the
empirical distribution of the Yi ’s corresponding to Xi ’s equal to x. If few or none
of the Xi ’s are exactly equal to x, it is necessary to use Yi ’s corresponding to Xi ’s
near x. This leads to estimators bP Y

n .�jX D x/ of the form

bP Y
n .�jX D x/ D

nX

iD1

Wni .x/1lŒYi 2��

where Wni .x/ D Wni .x; X1; : : : ; Xn/ .1 � i � n/ weights those values of i for
which Xi is close to x more heavily than these values of i for which Xi is far from x

and 1lA denotes the indicator function of A.
Let g be a Borel function on R

s such that g.Y / 2 Lr . Corresponding to Wn is
the estimator ln.x/ of l.x/ D E.g.Y /jX D x/ defined by

ln.x/ D
nX

iD1

Wni .x/g.Yi /:

More generally if we now consider the estimates of m.x/ defined in (2.4), this leads
to weighting those values of ˇ for which Xˇ D .Xˇ1

; : : : ; Xˇk
/ is close to x more

heavily than the values of ˇ for which Xˇ is far from x.
This is why, as in [8], we study a fairly general class of conditional U -statistics

of the form
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mn.x/ D
X

ˇ

Wˇ;n.x/h.Yˇ / (2.3)

designed to estimate m.x/, where Wˇ;n.x/ is defined from a function Wn.x; y/ by
Wˇ;n.x/ D Wn.x; Xˇ /, Yˇ D .Yˇ1

; : : : ; Yˇk
/, and the summation in (2.3) takes

place over all permutations ˇ D .ˇ1; : : : ; ˇk/ of length k such that 1 � ˇi �
n; i D 1; : : : ; k:

Remark 2.1. The estimator defined in (2.2) is a special case of the estimator defined
in (2.3), see (2.23).

In order to make mn.x/ a local average, Wˇ;n.x/ has to give larger weights to those
h.Yˇ / is close to x. For this general class of conditional U -statistics (defined in
(2.3)) and for i.i.d. random variables, [8] derived the universal consistency. Harel
and Puri [4] extended his results from the i.i.d. case to the absolute regular case.
In this paper, we extend it to the nonstationary case and absolutely regular r.v.’s
which allow broader applications that include, among others, hidden Markov models
(HMM) described in detail in [4].

We shall call Wˇ;n universally consistent if and only if

mn.X/ ! m.X/ in Lr

under no conditions on h (up to integrability) or the distribution of f.Xi ; Yi /; i � 1g.
Here XD.X0

1 ; : : : ; X0
k

/ is a vector of X ’s with the same distribution as .X1; : : : ; Xk/

and independent of f.Xi ; Yi /; i � 1g.

2.2 Preliminaries

Let .Zi /i�1 be a stochastic process indexed by the positive integers, taking value
in a finite dimensional Euclidean space H. Identifying H with a product of a finite
number copies or the real line, we write Hi for the distribution function of Zi . We
will assume that the process has some form of asymptotic stationarity, implying that
the sequence Hi converges in a sense to be made precise to a limiting distribution
function H .

For i � j , let Aj
i denote the �-algebra of events generated by Zi ; : : : ; Zj . We

shall say that the nonstationary stochastic process is absolutely regular if

sup
n2N�

max
1�j �n�k

E

8
<

:
sup

A2A1

j Ck

ˇ
ˇP.A j Aj

1/ � P.A/
ˇ
ˇ

9
=

;
D ˇ.k/? # 0 as n ! 1

where N
� D f1; 2; : : :g:

All along the paper, we assume that .?/ holds with a geometrical rate;
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X

m�1

mˇ
ı

1Cı .m/ < 1 for some ı > 0: (2.4)

We consider a parameter � in H whose components can be naturally estimated by
U-statistics. To be more formal and precise, we assume that � is defined as follows.
Let k be an integer, to be the degree of the U-statistics. Let � be a function from H

k

into H, invariant by permutation of its arguments. We are interested in parameters
of the form

� D
Z

Hk

� dH ˝k D
Z

Hk

�.z1; : : : ; zk/

kY

lD1

dH.zl/: (2.5)

and the function � is called the kernel of the parameter �:

Example 2.1. Take H to be R. The mean vector corresponds to taking k D 1 and �

is the identity.

Example 2.2. Take H to be R
2. Consider � to be the two-dimensional vector whose

components are the marginal variances. We take k D 2 and � is going to be
a function defined on .R2/2. It has two arguments, each being in R

2, and it is
defined by

�
�
.u; v/; .u0; v0/

� D
 

u2 C u02

2
� uu0;

v2 C v02

2
� vv0

!

:

Such a parameter can be estimated naturally by a U-statistics, essentially replac-
ing H ˝k in .5/ by an empirical counterpart. By using the invariance of �, the
estimator of � is then of the form

b�n D
 

n

k

!�1
X

ˇ

�.Zˇ1
; : : : ; Zˇk

/: (2.6)

To specify our assumption on the process, it is convenient to introduce copies
of H. Hence we write Hi ; i � 1, an infinite sequence of copies of H. The basic idea
is to think of the process at time i as taking value in Hi and we think of each Hi as
the i th component of H

1: We then agree on the following definition.

Definition 2.1. A canonical p-subspace of H
1 is any subspace of the form Hi1 ˚

: : : ˚ Hip with 1 � i1 < � � � < ip. We write Sp for a generic canonical p-subspace.

Remark 2.2. For .i1; : : : ; ip/ ¤ .j1; : : : ; jp/, if we note Sp D Hi1 ˚ : : : ˚ Hip and
S

0
p D Hj1

˚ : : : ˚ Hjp
, we have Sp ¤ S

0
p, with Sp � H

1 and S
0
p � H

1:

The origin of this terminology is that when H is the real line, then a canonical
p-subspace is a subspace spanned by exactly p distinct vectors of the canonical
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basis of H
1. We write

P
Sp�Hn for a sum over all canonical p-subspaces included

in H
n.

To such a canonical subspace Sp D Hi1 ˚ : : : ˚ Hip we can associate the distri-
bution function HSp

of .Zi1 ; : : : ; Zip / as well as the distribution function with the
same marginals

H ˝Sp D ˝1�j �pHij D ˝Hi �Sp
Hi : (2.7)

Clearly the marginal of H ˝Sp are independent, while that of HSp
are not.

Consider two nested canonical subspace Sp and Sk�p where Sk�p � H
n 	 Sp:

For a function � symmetric in its argument and defined on Sp ˚Sk�p , we can define
its projection onto the functions defined on Sp by

z 2 Sp ! �.z; Sk�p/ D
Z

Sk�p

�.z; y/ dH ˝Sk�p .y/: (2.8)

Identifying Sp ˚ Sk�p with H
k and H

p with Sp; that allows to project functions
defined on H

k onto functions on H
p: However, with this identification, the projec-

tion depends on the particular choice of Sk�p in H
n: To remove the dependence in

Sk�p ; we sum over all choices of Sk�p in H
n 	 Sp by

�Sp
.z/ D

 
n � p

k � p

!�1
X

Sk�p�Hn	Sp

�.z; Sk�p/: (2.9)

Let k be an integer and for each n � k, consider a kernel �n � � of degree k

depending on n.
A U-statistics of degree k is defined by

Un D
 

n

k

!�1
X

ˇ

�n.Zˇ1
; : : : ; Zˇk

/, (2.10)

we can then define an analogue of Hoeffding decomposition when the random vari-
ables come from a nonstationary process. For this purpose, consider, firstly, an
expectation of Un if the process had no dependence, namely,

Un;0 D
 

n

k

!�1
X

Sk�Hn

Z

Sk

� dH ˝Sk : (2.11)

Then for any p D 1; : : : ; k, we define

Un;p D
 

n

p

!�1
X

Sp�Hn

Z

Sp

�Sp
d ˝Hi �Sp

.ıZi
� Hi / (2.12)

where ıf:g is the Dirac function.
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Finally, for p > k, we set
Un;p D 0: (2.13)

The analogue of Hoeffding decomposition is the equality

Un D
X

0�p�k

 
k

p

!

Un;p: (2.14)

Note that this decomposition makes an explicit use of convention (2.13), and this is
why this convention was introduced.

We now need to specify exactly what we mean by asymptotic stationary of a pro-
cess. For this, recall the following notion of distance between probability measures.

Definition 2.2. The distance in total variation between two probability measures
P and Q defined on the same �-algebra A is

jP � QjA D sup
A2A

jP.A/ � Q.A/j:

If Sp is a canonical subspace of H
1, we write �Sp

the �-algebra generated by the
Zi ’s with Hi � Sp . We write P the probability measure pertaining to the process
.Zi /i�1, which is a probability measure on H

1.

Definition 2.3. The process .Zi /i�1 with probability measure P on H
1 is geo-

metrically asymptotically stationary if there exists a strictly stationary process with
distribution Q on H

1, and a positive � less than 1, such that for i � 1,

jP � Qj�Hi
� � i : (2.15)

We suppose that there exists a strictly stationary process .Z�
i /i�1 with probabil-

ity measure Q on H
1, which is absolutely regular with the same rate as the process

.Zi /i�1. H is the distribution function of Z�
i , H admits a strictly positive density

and H has the two marginals F and G:

We define the function �� on H1 by

z 2 H1 7! ��.z; H
k 	 H1/ D

Z

Hk	H1

�.z; y/ dH ˝.k�1/: (2.16)

Next, we denote

U �
n;1 D n�1

nX

iD1

Z

H1

��d.ıZ�

i
� H/:

2.3 Assumptions and Main Results

In this section, we identify H D H
0 � H

00 with R
d � R

s. For a generic canonical
p-subspace Sp of H

1, we write S1;k and S2;k its projections respectively in H
01

and H
001.
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We consider the nonstationary sequence of random vectors fZi D .Xi ; Yi /I i 2
N

�g with values in R
d � R

s and continuous distribution functions Hi and Hi has
the two marginals Fi and Gi .

We assume that the sequence fZi gi�1 is absolute regular with rates (2.4) and
(2.15) is satisfied with its associated stationary sequence feZi D .eX i ;eY i /I i 2 N

�g
of stationary random vectors.

For the ease of convenience, we shall write Wˇ for Wˇ;n.
Consider the following set of assumptions:

(i) There exists functions Vn.x; y/ on R
2dk such that for each l 2 L�

r , z.n/ D
.z1; : : : ; zn/ 2 R

dn and y.n/ D .y1; : : : ; yn/ 2 R
sn

X

ˇ

Wn.x; zˇ /l.yˇ / D
P

ˇ Vn.x; zˇ /l.yˇ /
P

ˇ Vn.x; zˇ /

where zˇ D .zˇ1
; : : : ; zˇk

/ and yˇ D .yˇ1
; : : : ; yˇk

/:

(ii) There exists a function V.x/ on R
dk such that for each scalar function q on R

dk

verifying Z

jV.x/q.x/jrdF˝k.x/ < 1
we have

lim
n!1

 
n

k

!�1
X

S1;k�H0n

Z

S1;k

q.z/Vn.x; z/dF˝S1;k .z/ D q.x/ Qf .x/

Z

V.z/dz

where Qf .x/ D Qk
j D1 f .xj / and f is the density function of F .

(iii) Define the kernel of degree k by

�n.z; y/ D h.y/Vn.x; z/
.Z

Vn.x; u/dF˝k.u/:

Suppose that

sup
Sk�H1

Z

Sk

j�nj2C2ı dP�Sk
< 1 (2.17)

sup
Sk�H1

Z

Sk

j�nj2C2ı dQ�Sk
< 1 (2.18)

where ı > 0.

Remark 2.3. Our conditions (i) and (ii) are completely different from conditions
(ii) to (v) in [8]. Our conditions are more general and more easy to verify. More, the
condition (i) in [8] is not necessary.

The following theorems generalize Theorems 2.1, 2.2, 2.3 and 2.4 in [4] from the
stationary dependent case to the nonstationary dependent case.
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Theorem 2.1. Assume that h 2 L�
r . Then under (i)–(iii), (2.4) and (2.15),

mn.X/ ! m.X/ in Lr ; as n ! 1;

where r D 2 C 2ı, that is

E Œjmn.x/ � m.x/jr�.dx/� ! 0 as n ! 1 (2.19)

where � denotes the distribution of .X1; X2; : : : ; Xk/.

Corollary 2.1. Under the conditions of Theorem 2.1 and (2.34) in Sect. 2.4, mn.x/

! m.x/ with probability one for �-almost all x.

Remark 2.4. In [4], we supposed that h is bounded, this condition is not necessary
now.

Theorems 2.2 and 2.3 deal with two special cases: window weights and NN-weights.
Consistency of window estimates for the regression function has been obtained
by [2] and [5]. NN-weights for the regression function have been studied in [6],
Theorem 2.

In what follows, j � j denotes the maximum norm on R
d . We also write

kXˇ � xk WD max
1�i�k

jXˇi
� xi j:

To define window weights, put (see [8])

Wˇ .x/ D
(

1lŒkXˇ�xk�hn�=
P

ˇ 1lŒkXˇ�xk�hn� if well defined
0 otherwise:

(2.20)

Here hn > 0 is a given window size to be chosen by the statistician. Then we have
the following results:

Theorem 2.2. Assume hn ! 0 and nhd
n ! 1 as n ! 1. Then, under the

conditions (2.4) and (2.15), we have

mn.X/ ! m.X/ in Lr ;

where Wˇ .x/ in (2.3) is given by (2.20).

For the NN-weights, recall that Xj is among the knNN of x 2 R
d if dj .x/ WD

kXj � xk is among the kn-smallest ordered values d1Wn.x/ � : : : � dnWn.x/ of the
d’s. Ties may be broken by randomization.

For a given 1 � kn � n, set

Wˇ .x/ D
�

k�d
n if Xˇi

is among the kn � NN of xi for 1 � i � k

0 otherwise:
(2.21)
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Theorem 2.3. Assume that kn ! 1 and kn=n ! 0 as n ! 1. Then, under the
conditions (2.4) and (2.15), we have

mn.X/ ! m.X/ in Lr ;

where Wˇ .x/ in (2.3) is given by (2.21).

We now consider as estimator of m.x/, the statistics of the form

mn.x/ D un.x/ (2.22)

where un.x/ is defined in (2.2). Then, in view of (2.3) we have

Wˇ;n.x/ D
Qk

j D1 KŒ.xj � Xˇj
/=hn�

P
ˇ

Qk
j D1 KŒ.xj � Xˇj

/=hn�
(2.23)

where K.x/ is a so-called smoothing kernel satisfying
R

K.u/du D 1 and
limu!1 jujK.u/ D 0 and fhn; n � 1g is a sequence of bandwidths tending to
zero. This special case was studied by [7] for i.i.d. random variables, and from
Theorem 2.1, we can generalize his result for nonstationary dependent random vari-
ables. The following theorem establishes that the universal consistency still holds
for conditional U-statistics involving kernel K and a sequence of bandwidth hn.

Theorem 2.4. Assume that hn ! 0 and nhd
n ! 1 as n ! 1. Then, under the

conditions (2.4) and (2.15), we have

mn.X/ ! m.X/ in Lr ;

where m.x/ is given (2.1).

2.4 Proof of Theorems and Corollary 2.1

First, we show that mn is the ratio of two U -statistics. Let x D .x1; : : : ; xk/ be fixed
throughout. Let

Un.h; x/ D Un.x/ D Un D
 

n

k

!�1
X

ˇ

h.Yˇ /Vn.x; Xˇ /
.Z

Vn.x; u/dF˝k.u/:

Hence mn.x/ D Un.h; x/
ı

Un.1; x/ and Un.h; x/, for each n � k, is a nonstationary
U -statistic as defined in (2.10) with a hind depending on n.
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Consider the sequence of functionals

�n.h; x/ � �n D
 

n

k

!�1
X

Sk�Hn

Z

Sk

�ndH ˝Sk

where �n is defined in (iii).
Note that �n D E.Un/:

The decomposition defined in (2.14) can be written as

Un D �n C
kX

pD1

 
k

p

!

Un;p

where Un;p is defined as in (2.12).
To prove Theorem 2.1, the following lemmas are needed.

Lemma 2.1. Under the conditions of Theorem 2.1

E.Un;p/2 D O.n�2/:

Proof. We shall consider the case p D 2: The proofs in the cases c D 3; : : : ; k

are analogous and so they are omitted.
We first note that

Un;2 D
 

n

2

!�1
X

S2�Hn

Z

S2

�S2
d˝Hi �S2

.ıZi
� Hi /

so we have

E.Un;2/2 D
 

n

2

!�1
X

1�i1<i2�n

X

1�l1<l2�n

J..i1; i2/; .l1; l2//

where

J..i1; i2/; .l1; l2// D E

�Z

S2

�S2
d˝1�j �2Hij

.ıZij
� Hij /

�
Z

S 0

2

�S 0

2
d˝1�m�2Hlm

.ıZlm
� Hlm

/

!

S2 D Hi1 ˚ Hi2 and S 0
2 D Hl1

˚ Hl2
:

So from condition (2.4) and condition (iii), we have from Lemma 2.1 in [10] the
inequalities:
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(i) If 1 � i1 < i2 � l1 < l2, then

J..i1; i2/; .l1; l2// � M fˇ.l2 � l1/g ı
1Cı I l2 � l1 � i2 � i1 (2.24)

and

J..i1; i2/; .l1; l2// � M fˇ.i2 � i1/g ı
1Cı I i2 � i1 � l2 � l1 (2.25)

where M is a finite positive constant.
Thus, using (2.24) and (2.25), we obtain

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

1�i1<i2�l1<l2�n

J..i1; i2/; .l1; l2//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D O.n2/: (2.26)

Similarly
(ii) If 1 � i1 < l1 < i2 < l2 � n, then

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

1�i1<l1<i2<l2�n

J..i1; i2/; .l1; l2//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D O.n2/: (2.27)

(iii) If 1 � i1 < l1 � l2 < i2 � n, then

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

X

1�i1<l1�l2<i2�n

J..i1; i2/; .l1; l2//

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

D O.n2/: (2.28)

From (2.26), (2.27) and (2.28), we obtain

E.Un;2/2 D O.n�2/:

Thus the result for the case p D 2 is proved. ut
Lemma 2.2. Under the condition of Theorem 2.1, for �-almost all x

�n.h; x/

�n.1; x/
! m.x/; n ! 1:

Proof. By definition, we have

�n.h; x/ � � D
 

n

k

!�1
X

Sk�Hn

Z

Sk

�ndH
˝Sk :
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Put

� 0
n.h; x/ D

 
n

k

!�1
X

Sk�H0n

Z

Sk

h.y/Vn.x; z/dF˝Sk .y; z/:

From condition (2.15), we deduce

j�n.h; x/ � � 0
n.h; x/j ! 0 as n ! 1: (2.29)

From condition (ii) in Sect. 2.3, we have

lim
n!1

 
n

k

!�1
X

S1;k�H0n

Z

S1;k

m.z/Vn.x; z/dF˝S1;k .z/ D m.x/ Qf .x/

Z

V.z/dz

(2.30)

and so

lim
n!1

 
n

k

!�1
X

S1;k�H0n

Z

S1;k

Vn.x; z/dF˝S1;k .z/ D Qf .x/

Z

V.z/dz: (2.31)

By definition, we have

�n.h; x/ D
 

n

k

!�1
X

Sk�H0n

Z

Sk

h.y/Vn.x; z/dF˝Sk .y; z/

D
 

n

k

!�1
X

Sk�H0n

Z

S1;k

 Z

S2;k

E.h.y/jX D z/Vn.x; z/dG˝S2;k .y/

!

� dF˝S1;k .z/

D
 

n

k

!�1
X

S1;k�H0n

Z

S1;k

m.z/Vn.x; z/dF˝S1;k .z/: (2.32)

From (2.29)–(2.32), we deduce easily that

�n.h; x/

�n.1; x/
! m.x/; n ! 1:

To prove Theorem 2.1, from Lemmas 2.1 and 2.2, we now have to show that for
�-almost all x,

Un;1.h; x/ ! 0 in probability:
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Since

Un;1.h; x/ D n�1
X

S1�Hn

Z

S1

�S1
d ˝Hi �S1

.ıZi
� Hi /

D n�1

nX

iD1

Z

Hi

�Hi
d.ıZi

� Hi /

we have

E.Un;1/2 D n�2E

 
nX

iD1

Z

Hi

�Hi
d.ıZi

� Hi /

!2

D n�2

nX

iD1

E

�Z

Hi

�Hi
d.ıZi

� Hi /

�2

C 2n�2
X

1�i<j �n

E

( �Z

Hi

�Hi
d.ıZi

� Hi /

�

�
 Z

Hj

�Hj
d.ıZj

� Hj /

!)

:

From Lemma 2.1 of [10] and condition (iii), we have

E.Un;1/2 � 2n�2nM.2; h/ C 4n�2M
1

1Cı .r; h/

nX

pD1

.p C 1/ˇ
ı

1Cı .p/

D O.n�1/

where M.t; h/ D Efsupˇ j�n.Xˇ ; Yˇ /jt g, which implies

E.Un;1/2 D O.n�1/: (2.33)

From Lemmas 2.1 and 2.2 and from (2.33), we have

Un.h; x/ ! m.x/ Qf .x/

Z

V.z/dz

and

Un.1; x/ ! Qf .x/

Z

V.z/dz in probability

as n ! 1 for �-almost all x.
It remains to prove the uniform integrability.
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It is an easy convergence of the Jensen’s inequality

sup
n2N�

E

8
<

:

2

4
X

ˇ

Vn.X; Xˇ /jh.Yˇ /j=
X

ˇ

Vn.X; Xˇ /

3

5

r9
=

;

� sup
n2N�

E

8
<

:

X

ˇ

Vn.X; Xˇ /jh.Yˇ /jr=
X

ˇ

Vn.X; Xˇ /

9
=

;

� E

(

sup
ˇ

jh.Yˇ /jr
)

< C1:

and Theorem 2.1 is proved.
The proof of Corollary 2.1 is a consequence of Lemma 2.1 and Lemma 2.3 below.
For a d -dimensional vector V , consider the norm kV k D max1�j �d jV .j /j. This

norm is equivalent to the Euclidian norm and easy to work with here. We will use
this norm in Lemma 2.3 below see also [1].

Lemma 2.3. Let .Vn/n�1 be a sequence of d -dimensional centered absolutely
regular and non necessarily stationary random vectors with rate satisfying

X

i�1

.i/
r�ı

2 Œˇ.i/�
ı
r < 1 (2.34)

sup
i�1

E.kVikr / < 1: (2.35)

Then

n�1

nX

iD1

Vi ! 0 with probability 1, as n ! 1:

Proof. For 	 > 0,

P

 
1

n

nX

iD1

�
�Vi

�
� � 	

!

D P

 

max
1�j �d

ˇ
ˇ
ˇ
ˇ
ˇ

1

n

nX

iD1

V
.j /

i

ˇ
ˇ
ˇ
ˇ
ˇ

� 	

!

�
X

1�j �d

P

 ˇ
ˇ
ˇ
ˇ
ˇ

1

n

nX

iD1

V
.j /

i

ˇ
ˇ
ˇ
ˇ
ˇ

� 	

!

: (2.36)

For all 1 � j � d , one has from Markov’s inequality that

P

 ˇ
ˇ
ˇ
ˇ
ˇ

1

n

nX

iD1

V
.j /

i

ˇ
ˇ
ˇ
ˇ
ˇ

� 	

!

� 1

	rnr
E

 ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD1

V
.j /

i

ˇ
ˇ
ˇ
ˇ
ˇ

r!

: (2.37)
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By Lemma 5.2 of [3], one has that

E

 ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD1

V
.j /

i

ˇ
ˇ
ˇ
ˇ
ˇ

r!

� C nr=2: (2.38)

From the above two inequalities, one deduces that

E

 ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD1

V
.j /

i

ˇ
ˇ
ˇ
ˇ
ˇ

r!

� C

	r
nr=2: (2.39)

Since r=2 > 1, the last inequality implies that for all 1 � j � d ,

X

n�1

P

 ˇ
ˇ
ˇ
ˇ
ˇ

1

n

nX

iD1

V
.j /

i

ˇ
ˇ
ˇ
ˇ
ˇ

� 	

!

< 1

which, in turn, implies that

X

n�1

P

 �
�
�
�
�

1

n

nX

iD1

Vi

�
�
�
�
�

� 	

!

< 1:

Lemma 4.3 then follows by Borel–Cantelli theorem.
The proofs Theorems 2.2 to 2.4 are also consequences of Theorem 2.1 by using

technics similar as in the proofs of Theorem 2.2 to Theorem 2.4 in [4]: that is to
verify that conditions (i)–(iii) are satisfied.
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