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Synonyms
Nanomaterials application in soil and food testing

Definition
Nanomaterials: generally referring to materials with the
size of 0.1–100 nm.
Carbon nanotube: allotropes of carbon with a cylindrical
nanostructure.
Biosensor: a device for the detection of an analyte that
combines a biological component with a physicochemical
detector component.

Introduction
The Food and Agriculture Organization (FAO) is the
main United Nations agency specializing in all aspects
of food quality and safety, and in all the different
stages of food production, harvest, postharvest handling,
storage, transport, processing, and distribution. Food
analysis is the discipline dealing with the development,
application, and study of analytical procedures for charac-
terizing the properties of foods (Nielsen, 2003). These
analytical procedures are used to provide information
about a wide variety of different characteristics of foods,
including their composition, structure, physicochemical
properties, and sensory attributes. This information is
critical to our rational understanding of the factors that
determine the properties of foods, as well as to our ability
to economically produce foods that are consistently safe,
nutritious, and desirable and for consumers to make
informed choices about their diet. One of the most

important reasons for analyzing foods from both the
consumers and the manufacturers’ standpoint is to ensure
that they are safe.

Precision farming has been a long-desired goal to max-
imize output (i.e., crop yields) while minimizing input
(i.e., fertilizers, pesticides, and herbicides) through moni-
toring environmental variables and applying targeted
action. A soil analysis is used to determine the level of
nutrients found in a soil sample. Quality crops with high
yields require a sufficient supply and maintenance of
nutrient elements. As nutrients are utilized by one crop
and not replaced for subsequent crop production, yields
will decrease accordingly. Accurate monitoring of nutrient
before and after crop production and soil analysis results
will help the efficient management of fertilizer applica-
tions. Soil analysis can also help to reduce agricultural
waste and thus keep environmental pollution to a mini-
mum. Researchers are exploring to come up with sensors
for detection of soil nutrients, pesticides, pollutants up to
very minute fractions by exploiting novel properties of
nanomaterials.

The definition of nanomaterial is based on the prefix
“nano,” which is from the Greek word meaning “dwarf.”
The word nanomaterials is generally used when referring
to materials with the size of 0.1–100 nm; however, it is
also inherent that these materials should display different
properties from bulk (or micrometric and larger) materials
as a result of their size (Rao et al., 2004). These differences
include physical strength, chemical reactivity, electrical
conductance, magnetism, and optical effects. The poten-
tial of nanomaterials to revolutionize the health care,
textile, materials, information and communication tech-
nology, and energy sectors has been well publicized. In
fact, several products enabled by nanomaterials are
already in the market, such as antibacterial dressings,
transparent sunscreen lotions, stain-resistant fabrics,
scratch-free paints for cars, and self-cleaning windows.
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Nanomaterials such as nanotubes (NTs), nanowires
(NWs), and nanoparticles present new opportunities as
sensing platforms for biological and environmental appli-
cations. Having micrometer-scale lengths and nanometer-
scale diameters, NTs and NWs can be manipulated with
current microfabrication, as well as self-assembly tech-
niques to fabricate nanoscale devices and sensors
(Rao et al., 2004). Examples of different nanomaterials-
based analytical techniques for the detection of major
families of environmental pollutants, i.e., organic contam-
inants, heavy metals, and air pollutants are reported.
Application of the nanomaterials in the field of soil and
food analysis is promising. This article covers the recent
developments and issues in electrochemical biosensors
for food analysis such as ease of preparation, robustness,
sensitivity, and realizations of mass production of the
detection strategies. This article also emphasizes the cur-
rent development of electrochemical biosensors combined
with nanotechnology.

The synthesis, characterization, and utilization of
nanomaterials are part of an emerging and rapidly growing
field. Nanomaterials may be grouped under nanoparticles
(the building blocks), nano-intermediates, and nano-
composites. Nanostructured materials are synthesized by
supramolecular chemistry yielding nanoassemblies (Rao
et al., 2004). The nanoparticles serve as the building blocks
of nanomaterials and devices. They include nanocrystalline
materials such as ceramic, metal and metal oxide
nanoparticles; fullerenes, nanotubes, nanorods, and related
structures; nanofibers andwires, and precise organic as well
as hybrid organic–inorganic nanoarchitechtures such as
dendrimers and polyhedral silsesquioxanes, liposomes, or
nanosomes, respectively.

Nanocrystalline materials
Included here are ceramics, metals, and metal oxide
nanoparticles. These materials are assembled from
nanometer-sized building blocks, mostly crystallites.
The building blocks may differ in their atomic structure,
crystallographic orientation, or chemical composition.
In other words, materials assembled of nanometer-sized
building blocks are microstructurally heterogeneous,
consisting of the building blocks (e.g., crystallites) and
the regions between adjacent building blocks (e.g., grain
boundaries). One of the primary applications of metals
in chemistry is their use as heterogeneous catalysts in
a variety of reactions (Rao et al., 2004). Due to their
vastly increased surface area over macroscale materials,
nanometals and oxides are ultrahigh activity catalysts.
Nanometals and oxides are also widely used in the forma-
tion of nanocomposites. Aside from their synthetic utility,
they have many useful and unique magnetic, electric, and
optical properties.

Carbon nanotubes
Carbon nanotubes (CNTs) are hollow cylinders of carbon
atoms. Their appearance is that of rolled tubes of graphite

such that their walls are hexagonal carbon rings and are
often formed in large bundles. Generally speaking, there
are two types of CNTs: single-walled carbon nanotubes
(SWCNTs) and multi-walled carbon nanotubes
(MWCNTs) (Rao et al., 2004). As their names imply,
SWCNTs consist of a single, cylindrical graphene layer,
whereas MWCNTs consist of multiple graphene layers
telescoped about one another. CNT-based nanodevices
are a hot research area at the moment. Applications could
include novel semiconducting devices, chemical sensors,
and ultrasensitive electromechanical sensors (Wang,
2005).

Nanocomposites
Nanocomposites are materials with a nanoscale structure
that improve the macroscopic properties of products.
Typically, nanocomposites are clay, polymer or carbon,
or a combination of these materials with nanoparticle
building blocks. Nanocomposites, materials with nano-
scale separation of phases can generally be divided into
two types: multilayer structures and inorganic/organic
composites. Multilayer structures are typically formed by
gas phase deposition or from the self-assembly of mono-
layers. Inorganic/organic composites can be formed by
sol–gel techniques, bridging between clusters (as in
silsequioxanes), or by coating nanoparticles, in polymer
layers for example.

Biosensors
Biosensors are molecular sensors that combine
a biological recognition mechanism with a physical trans-
duction technique. They provide a new class of inexpen-
sive, portable instrument that permit sophisticated
analytical measurements to be undertaken rapidly at
decentralized locations. The sampling component of
a biosensor contains a bio-sensitive layer that can either
contain bioreceptors or be made of bioreceptors cova-
lently attached to the transducer. The interaction of the
analyte with the bioreceptor is designed to produce an
effect measured by the transducer, which converts the
information into a measurable effect, for example, an elec-
trical signal. There are four major types of transducers:
electrochemical (electrodes), mass (piezoelectric crystals
or surface acoustic wave devices), optical (optrodes) and
thermal (thermistors or heat-sensitive sensors). Among
the various types of biosensors, the electrochemical bio-
sensors are the most common as a result of numerous
advances leading to their well-understood biointeraction
and detection process (Eggins, 2002).

The state of the art of nanomaterials and nanotechnol-
ogies represents a new trend in the development of sensors
and electronic chips that will have a big impact on the
future of nanoscience. It is essential to distinguish between
nanotechnology and nanomaterials, because in the first
case nanotechnologies represent new possibilities for sen-
sor construction and for the developing of novel methods.
In the second case, nanomaterials have been widely used
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to immobilize enzymes, antigens, and nucleic acids on
transducer surfaces, to promote the direct electron transfer
reactions, and to amplify and orient the analytic signal of
the bio-recognition events.

Applications
In chromatography
Separation science, based on chromatographic and elec-
trophoretic techniques, has achieved many advances
employing nanomaterials. Separation media and channels
in the above two approaches have sizes and shapes compa-
rable to those of nanomaterials, which makes the latter
useful for specific applications in separation science on
a micro- and nanometer scale. Nanomaterials have played
various roles (e.g., modifier, stabilizer, and stationary
phase) in chromatography. The effective pi–pi interac-
tions between fullerenes and phenyl group have utilized
to develop fullerene-based stationary phases for the sepa-
ration of solutes with phenyl moieties in their structures.
The conjugated pi- electron system on the surface of
SWCNT as well as surface functionalization provides an
opportunity to synthesize a stationary phase with good
selectivity (Zhang et al., 2006). Nanoparticles, including
silica nanoparticles, gold nanoparticles, titanium oxide
nanoparticles, polymer nanoparticles, molecularly
imprinted polymers, molecular micelles, and dendrimers,
used as pseudostationary phases in CEC, have been
reviewed by Nilsson et al. (2006).

In optical sensors
Nanomaterials-based optical sensors have been much
interested to the trace detection of analytes of interest in
the agriculture and food industry. The changes in the
optical properties of nanomaterials such spectral absor-
bance, photoluminescence (PL), and chemiluminescence
(CL) phenomena induced by the interaction between
nanomaterials and various analytes is utilized to the deter-
mination of chemical and biochemical analytes (Shi et al.,
2004). Quantum dots (QDs) are nanocrystals of inorganic
semiconductors that are somewhat restricted to a spherical
shape of around 2–8 nm diameter (Smith and Nie, 2004).
Their fluorescent properties are size-dependent and there-
fore they can be tuned to emit at desired wavelengths
(between 400 and 2,000 nm) if synthesized in different
composition and size. In this way, QDs of different sizes
can be excited with a single wavelength and emission con-
trolled at different wavelengths, thus providing for simul-
taneous detection. These, together with their highly robust
emission properties, make them more advantageous for
labeling and optical detection than conventional organic
dyes (Patolsky et al., 2006). Their high quantum yields
and their narrow emission bands produce sharper colors,
lead to higher sensitivity and the possibility of
multiplexing of analysis (Tully et al., 2006). The unique
optical properties of plasmonic nanoparticles have led to
the development of label-free chemical and environmental
sensor since the surface plasmon resonance (SPR) is

sensitive to the local environment. Some research groups
are exploring biosensors based on the SPR exhibited by
metal nanoparticles (Haes and Van Duyne, 2002).

In electrochemical biosensors
One-dimensional (1-D) nanostructures, such as CNT and
semiconductor- or conducting polymer nanowires, are
particularly attractive materials for working electrode in
biosensors. Nature of biosensing surface is very impor-
tant, namely, the prolonged use of the sensor and an antic-
ipated extended storage and working stability. High
surface-to-volume ratio and electron transport properties
of CNT opens the possibility of developing superior elec-
trochemical sensing devices, ranging from amperometric
enzyme electrodes to label-free DNA hybridization
biosensors (Zhang et al., 2009). The possibility of direct
electron-transfer between enzymes and electrode surfaces
could pave the way for superior reagentless biosensing
devices, as it obviates the need for co-substrates or
mediators and allows efficient transduction of the
bio-recognition event. “Trees” of aligned CNT in the
nanoforest, prepared by self-assembly, can act as molecu-
lar wires to allow electrical communication between the
underlying electrode and redox proteins covalently
attached to the ends of the SWCNT (Gooding et al.,
2003). Viswanathan et al. (2009) demonstrated that verti-
cally aligned SWCNT on gold electrode for pesticides
determination (Figure 1). Arrays of nanoscopic gold tubes
or wires have been prepared by electroless deposition of
the metal within the pores of polycarbonate particle
track-etched membranes (Marc and Sophie, 2003).
A sensitive and selective genomagnetic assay for the elec-
trochemical detection of food pathogens based on in situ
DNA amplification with magnetic primers reported by
Lermo et al. (2007). Liposomes are microscopic, fluid-
filled, pouches with endless walls that are made of layers
of phospholipids identical to the phospholipids that make
up cell membranes. Electroactive marker encapsulated
immuno liposomes are typically used as signal amplifier
for electrochemical immunoassays (Viswanathan et al.,
2006). Chitosan (CS) is the second abundant polysaccha-
ride and a cationic polyelectrolyte present in nature.
Chitosan nanoparticles are promising biometarials for
various analytical applications. Ferrocene-conjugated
chitosan nanoparticles were used as the electroactive
indicator of hybridization (Kerman et al., 2008).

Electronic tongue
Electronic tongue systems are hybrid micro or nanoarrays
of electronic sensors that measure and compare tastes.
E tongue is mainly based on potentiometric, voltammetric,
ion-selective field-effect transistor (ISFET), piezoelectric,
and optical sensors with pattern recognition tools for data
processing. The information given by each sensor is
complementary and the combination of all sensors results
generates a unique fingerprint. Most of the detection
thresholds of sensors are similar or better than those of
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human receptors. The electronic tongue appeared to be
capable of distinguishing between different sorts of bever-
ages: natural and artificial mineral waters, individual and
commercial brands of coffee, flesh food, and commercial
and experimental samples of soft drinks containing differ-
ent sweeteners (Scampicchio et al., 2008). Ciosek and
Wroblewski (2007) have reviewed about recent develop-
ments of multisensor array based electronic tongue for
food and soil analysis.

Electronic nose
Electronic nose is a specific kind of semiconducting
sensor arrays that can mimic the natural olfaction sense,
according to the electronic response (e.g., voltage, resis-
tance, conductivity) arising from the different gas sensors,
usually metal-oxide chemosensors. After exposure of the
volatile compounds to the sensor array, a signal pattern
is collected and results are evaluated with multivariate
analysis or processed by an artificial neural network.
Arrays of these nanosensors are able to detect molecules
on the order of one part per million, sniffing molecules
out of the air or taste them in liquid, suggesting applica-
tions in foods and food industry. A novel hybrid chemical
sensor array composed of individual In2O3 nanowires,
SnO2 nanowires, ZnO nanowires, and single-walled car-
bon nanotubes with integrated micromachined hotplates
for sensitive gas discrimination was demonstrated by

Chen et al. (2009). Mycotoxins are secondary metabolites
that mold produce naturally from some fungal species.
Many researchers have reported efficient e-nose applica-
tion such as mycotoxins analysis in grains (Falasconi
et al., 2005), Salmonella typhimurium in stored beef
(Zhang et al. 2008).

Mass-sensitive sensors
Researchers have taken advantage of the unique coupled
semiconducting and piezoelectric properties of metal
oxide nanowires to create a new class of electronic compo-
nents and devices that could provide the foundation for
a broad range of sensor applications. Plata et al. (2008)
reported the microcantilever-based sensor for the determi-
nation of total carbonate in soil.

Conclusions
Soil and food analysis has become a very important and
interesting area of research because of the rapid expansion
of food trade and awareness of organic farming. Quality
food is important both for consumer protection and also
for the food industry. Nanomaterials such as
nanoparticles, nanowires, and nanotubes open a new door
as sensing platforms for sensor applications. They have
allowed introducing novel strategies in sensors and bio-
sensor technology. In particular, the development and
application of nanomaterials in soil and food analysis are
discussed, with focus on sensors, separation and
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extraction techniques, including the use of nanomaterials
as transducer elements for sensors. Although not fully
implemented yet, tiny sensors and monitoring systems
enabled by nanotechnology will have a large impact on
future precision farming methodologies. The prediction
is that nanotechnology will transform the entire food
industry, changing the way food is produced, processed,
packaged, transported, and consumed.
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NATURE CONSERVATION MANAGEMENT
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Synonyms
Biological resources management

Definition
Nature conservation management (NCM) is a system of
actions aimed at permanent conservation and sustainable
use of the resources and values of the natural environment.
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The main elements of NCM system
The growing scale of anthropogenic transformation of the
environment causes that NCM is becoming an increas-
ingly important field of human activity and requires higher
and higher qualifications. At present, the NCM system
(NCMS) comprises the integrated functioning of five sub-
systems (Chmielewski, 2007): (1) subsystem of diagnosis
(DS); (2) planning subsystem (PS); (3) decision-taking
subsystem (DTS); (4) subsystem of tasks realization
(TRS); (5) certificate and control subsystem (CCS).

(1) For rational management of nature conservation we
must first acquire knowledge about the functioning
of natural ecosystems and about their responses to
various human actions (Pullin, 2007; Wu and Hobbs,
2007). Organization for economic co-operation and
development (OECD) presents the organization of
the system of natural environment diagnosis as the
following sequence: Drivers – Pressures – State –
Impact – Response, referred to by the abbreviation
DPSIR model (Watt and Young, 2007). Driving
forces are anthropic activities and processes that
cause pressures production (agriculture, industry,
transport, etc.), consumption, recreation, etc. Pres-
sures are described as direct stress from the anthropic
system on the natural environment: release of pollut-
ing substances, radiation emissions, use of soil, intake
of natural resources, and other changes of the natural
environment. State – means conditions and tenden-
cies in the natural environment, air, water and soil
quality, global temperature, loss of biodiversity, etc.
The description of the state of the environment is not
easy: it should comprise at least four stages: (a) retro-
spection, that is, analysis of changes that have taken
place in the environment over the last several decades;
(b) inventory of nature resources; (c) valuation of
nature resources; and (d) analysis of the potential of
the natural environment (Chmielewski, 2001).
Impacts are effects on the anthropic system due to
changes in the natural environment: negative conse-
quences on human health, economic loss in produc-
tion activities, floods, etc. Responses are actions of
the anthropic system aimed at solving environmental
problems (prevention, pollutants elimination, biodi-
versity conservation, ecosystem restoration, ecologi-
cal compensation, etc.) (Fiedler and Jain, 1992).
The “Responses” element, however, is not a typical
element of the diagnostic system as it comprises ele-
ments of three further subsystems of the NCMS (2–4).

(2) The results of diagnosis of the state of the natural envi-
ronment constitute the basis for initiating the planning
subsystem, the main element of which are nature
management plans (or nature conservation plans) for
the most valuable areas: national parks, nature
reserves, Natura 2000 sites, landscape parks, etc., as
well as the sustainable development strategies and
local development plans for the various levels of hier-
archy of administrative organization of the country.

Nature management plans are mostly worked out by
the governmental nature conservation services;
however, in the process of their preparation local
government representatives take part as well.
Achievement of compatibility and agreement of the
provisions of the nature conservation plans with the
local development plans are of key importance for
smooth management of resources of the natural
environment.

(3) On the basis of these two types of plans, the adminis-
trative decisions concerning nature conservation
actions as well as land-use changes, housing and road
construction, development of services, and other
activities are undertaken. They may pertain, for exam-
ple, to water damming, stand reconstruction, moor
plant succession control, but also to the architecture
style of buildings, tourist facilities, and creating
tourist routes and educational paths. All administra-
tive decision should contain relevant provisions
concerning the conservation of natural values, sus-
tainable utilization of nature resources, and harmoni-
ous scenic beauty design. Unfortunately, many
decisions – particularly those concerning new eco-
nomic investments, neglect the ecological conditions
or marginalize them.

(4) and (5) Observance of the provisions contained in
administrative decisions is of fundamental importance
for nature conservation and landscape quality. This
purpose is served by a system of certification, control,
standards, and indexes of quality of the environment
(Keulartz and Leistra, 2008; Schmidt et al., 2008).
However, losses observed in the resources and values
of the natural environment indicate that in many
regions that system is not effective. For a better nature
conservation management it is necessary to develop
urgently a network of biodiversity and landscape
diversity monitoring as well as urban monitoring. It
is also necessary to systemize the gathering of these
data, by a common introduction of Spatial Informa-
tion Systems based on advanced computing technolo-
gies. Such systems are one of the key instruments
facilitating effective protection and sustainable man-
agement of resources and unique natural values areas
on the world scale.

Key instruments for effective functioning of the
five subsystems of NCMS
Each of the five subsystems of the NCMS has at its dis-
posal specialist instruments that should ensure its effective
functioning. Of key importance for the subsystem of diag-
nosing, the state of the natural environment is the financ-
ing and organization of research and of the network of
monitoring of the natural environment. For better under-
standing of the functioning of nature and for the purpose
of development of effective methods of nature resources
management theories are constructed as well as models
for conservation and wildlife management (Samson and
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Knopf, 1996; Harris, 2007). For the quality of the plan-
ning subsystem, of fundamental importance is the legal
system, the quality of education of landscape ecologists,
landscape architects, space planners and engineers, as well
as the operating conditions of design companies and
offices. The quality of administrative decisions depends
primarily on the quality of the relevant legislation and on
the level of professionalism of administration officers
and on the quality of internal audit. In the process of real-
ization of the plans and decisions, that is, in the course of
the practical utilization of nature resources, highly impor-
tant is the ecological policy of the particular countries,
their legal systems, ecological education of the people,
education of the administrative cadre, organization of the
system of certification and audit. At all levels of organiza-
tion and at all stages of implementation an important
instrument of the NCMS should be the cost-effectiveness
analysis, permitting to identify which NCM methods and
techniques should be applied for the invested funds and
undertaken organization activities to bring the best
ecological effects (Wätzold, 2005).

Conclusion
NCM is becoming a more and more extensive and highly
specialist branch of knowledge and a broader and broader
forum of practical activity. The NCM system has an exten-
sive infrastructure and numerous instruments that should
ensure its effective operation. In spite of all this, we are
still witnessing many processes unfavorable for nature,
such as the shrinking of the ecological space, landscape
structure fragmentation, and loss of biodiversity. These
challenges necessitate further intensive work on the eco-
logical education of the society and on the development
of the NCM system at the level of regions, countries,
continents, and the whole biosphere.
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Synonyms
Artificial Intelligence; Artificial Neural Network; Neural
Network

Definition
Artificial neural network (ANN) – a mathematical model,
based on the calculations made by the network of
interconnected artificial neurons or perceptrons. Neural
networks are a subclass of wider range of calculation tech-
niques called soft learning techniques.

Introduction
First ideas concerning artificial neural networks are dated
back to 1940s, when for the first time model of an artificial
neuron was formulated (McCulloch and Pitts, 1943) and
basic methods of neural networks training was developed
(Hebb, 1949). Further theoretical developments and first
practical applications of neural networks took place in
1950s and 1960s. The first image classification system
was built (Rosenblatt, 1958). A new effective method of
network learning-supervised training was developed
(Widrow and Hoff, 1960). The multipurpose neural net-
works ADALINE and MADALINE, used for weather
forecasting, in adapting control systems, and for image
recognition, was built (Widrow, 1962). After initial period
of rapid developments, works on neural networks stag-
nated some, until 1980s, when performance of computa-
tional systems increased enough, to allow for new ANN
applications. New types of neural networks were
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discovered and a new type of training algorithm was
developed (Hopfield, 1982; Kohonen, 1984). From
1980s period of rapid theoretical developments and
increasing practical applications started.

Nowadays artificial neural networks emerged into one
of the wider used soft learning techniques. The artificial
neural networks are used in scientific developments and
in wide range of practical applications.Many agrophysical
objects and processes may be modeled by artificial neural
networks.

Basic concepts of neural networks
Artificial neural networks are mathematical models which
allows for data processing or information storage. These
mathematical models consist of neural network them-
selves and algorithms or methods for neural network train-
ing and evaluation of its performance. Concept of artificial
neural network was taken from organization of biological
brain. Neural network is a set of interconnected
artificial neurons and links between them.

Artificial neurons, called also in ANN nomenclature
a perceptron, have properties similar to real brain’s biolog-
ical neuron. It has many inputs, called dendrites, and only
one output – axon. In fact, behavior of the perceptron is
modeled by simple nonlinear function of the form
Equation 1:

y ¼ fact w0 þ
Xn

i¼ 0

wixi

 !
(1)

where y – is an output signal from neuron considered, xi –
are input signals from other neurons, wi – are weights
specific for i-th dendrite of artificial neuron, w0 – is
a constant bias signal used in many neural networks types
(called also inhibitory input), finally fact – is a so called
activation function. Based on this equation, the output of
each neuron is simply a weighted sum of input signals,
processed by additional activation function.

There are many types of activation functions used in
ANN developments. Some of them commonly used are
grouped in Table 1.

In neural networks, output from one neuron is
connected to inputs of other neurons. This net of
interconnected neurons has parallel data processing capa-
bilities, and may be used to store the information.

There are many neural networks topologies, but in
agrophysical research two of them are commonly used.
For applications based on evaluation of the output, based
on input variables, multilayer neural networks are used.

These neural networks are mainly feedforward neural
networks, but some applications utilize feedback neural
networks also. If modeled problem is based on some kind
of classification, self-organizing map (SOM) neural
networks are typically used.

The wider range of applications uses single layer or
multilayer feedforward network. Such network has lay-
ered architecture, see Figure 1. The first neuron layer
consists of input neurons. These neurons are used to enter
processed data into the network. Following input layer are
one or more hidden layers. The last is the output layer,
values of neurons from this layer represent results gener-
ated by neural network for specific input values. Outputs
of neurons in feedforward networks from one layer are
connected to inputs of neurons in the next layer. This
allows for trained network to evaluate its output for input
variables.

Common feature of feedback neural networks is its
recurrence. Due to this, outputs of neurons from one layer
are connected to input of the same layer. This kind of neu-
ral network may be used for modeling of processes,
because of calculated output values changes for each
subsequent evaluation.

Training of the neural networks
Neural network consists of neurons and weights describ-
ing connections between neurons. While number and type
of neurons for specific neural network is fixed, weights for
each connection may be changed. Processes of adjustment
of weight values have a crucial role for applications of
neural networks, and it is called neural network training.
There are many algorithms/methods used for ANN train-
ing. Generally each neural network topology has specific

Neural Networks in Agrophysics, Table 1 Sample activation
functions
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Neural Networks in Agrophysics, Figure 1 Feedforward neural
network.
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training method. Training methods may be generalized
into two categories: supervised training and unsupervised
training.

In most of agrophysical applications, where feedforward
or feedback neural networks are used, proper method of
network training is some kind of supervised training tech-
nique. Supervised training assumes knowledge of proper
output responses for set of inputs. The origin of this dataset
is application dependent, but the most frequent source of
training data is some kind of experiment, survey, or mea-
surement. The basic idea of supervised neural network
training is to compare results/outputs generated by neural
network for inputs, for which proper output values are
known. Based on difference between evaluated by network
output results and known outputs from training dataset,
called training error, weights of neural network are subse-
quently adjusted.

Data which are used for learning neural network are
commonly divided into two disjointed datasets: training
dataset and testing dataset. Training dataset is used for
training of the neural network, while on the testing dataset
performance of trained neural network is evaluated. The
aim of neural network training is to adjust neural network
weights in such way that error for testing dataset, called
test error, will be minimal. The smaller the test error is,
the better generalization properties the neural network
has, and will better perform for new, unknown input data.

Presentation of training data to the network and weight
adjustments are repeated many times, until neural network
performs well. Generally, training error decreases in sub-
sequent neural network training procedure repetitions.
However testing error, which is the criterion for neural
network evaluation, in some circumstances, may remain
at constant level, or even grow up slightly after initial
decrease. This phenomenon is known as over learning that
occurs especially when training dataset is too small in
comparison to number of neurons in the neural network.
When over learning happens, testing error increases for
subsequent steps of learning, while training error
decreases.

Agrophysical applications
Basic tool for scientific development utilizing artificial
neural networks methodology is appropriate software.
There are many commercially and freely software pack-
ages available. Beside many others, some freely available
software is worth to mention: SNNS (Zell et al., 1995) and
its successor JavaNNS. EMERGENT (Aisa et al., 2008),
and program R (R Development Core Team, 2010) with
appropriate modules are free multiplatform neural
network solutions.

Neural networks may be used in many fields of
agrophysical developments. Typical applications include:
modeling of transport processes in the soil medium,
modeling of hydrophysical properties of soils, soil classi-
fication based on different criteria, crop production
modeling, or food quality evaluation. These applications

of neural networks can be generalized into two categories:
problems based on prediction of some property and prob-
lems based on some kind of classification.

Soil science
One of the fieldswhere neural networks are extensively used
is pedotransfer functions (PTF) development. Pedotransfer
functions are mathematical models, which allow for approx-
imating difficult measurable soil parameters, based on some
easily measurable input information. Typically, soil water
retention curve and hydraulic conductivity of soils are eval-
uated by PTFs. For PTF development many techniques may
be used (Wösten et al., 2001), from legacy regression
models (Walczak et al., 2006) to neural networks and
beyond (Lamorski et al., 2008).

For PTFs development feed forward neural networks
are used, as these applications are based on approxima-
tion. Typically among others input parameters for PTFs
evaluating retention curve are: particle size distribution,
soil porosity, bulk density, and organic carbon content.
Some PTF models use as input parameter measured water
content for one specific value of water potential. The out-
put of neural network is a retention curve approximation.
There are numerous models used for evaluating soil water
retention curve, which may be divided into two classes:
models which evaluate water content for selected values
of water potential (Lamorski et al., 2008; Pachepsky
et al., 1995) and models which evaluate parameters of
some kind of retention curve approximation function,
mainly in the form of Mualem and van Genuchten
approximation (Schaap and Leij, 1998; Minasny and
McBratney, 2002).

The other usage of ANN to evaluation of hydrological
properties of soils are PTFs for soil hydraulic conductivity
approximation. Soil hydraulic conductivity is one of param-
eters which influences soil water transport phenomena. For
many purposes approximations of value of hydraulic con-
ductivity may be used instead of measured values. One of
the method, whichmay be used for soil hydraulic conductiv-
ity approximation, is to use neural network modeling. This
approach includes models for saturated hydraulic conductiv-
ity evaluation (Merdun et al., 2006; Schaap et al., 1998).
Unsaturated soil hydraulic conductivity may be approxi-
mated by neural networks also (Schaap and Leij, 2000).

Soil classification is the other application of ANN to
soil science. One of the commonly used soil classifica-
tion systems are texture based classification systems.
They allow for determination to which class soil belongs,
based on its granulometric distribution. For other pur-
poses, different classification criteria than soil texture
may be used. The common problem in soil classification
systems is that one wants to determine some kind of qual-
itative in nature soil parameter. In soil surveys such
parameters evaluation are made by properly trained and
experienced researcher. It is not easy task to map such
soil features from a set of quantitative, easily measurable
soil parameters, but there are attempts to build such
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expert systems. One of important soil properties is its
aggregation structure. Soil aggregation is a qualitative
parameter which cannot be directly connected to soil
quantitative parameters. Although there were attempts
to classify soil to one of three aggregate classes (granular,
blocky or massive) based on soil granulometric composi-
tion and organic carbon content using feed forward neu-
ral networks (Levine et al., 1996).

Crop production and food quality
The other field of investigations where artificial neural
networks are used is crop production, especially with
precision agriculture relying on advanced monitoring,
measurement (Precision Agriculture: Proximal Soil Sens-
ing) and modeling techniques. Fertilization is one of the
key practices used in crop production, proper dosage of
fertilizer, appropriate for current field conditions may be
determined by neural networks (Yu et al., 2010). Predic-
tion of crop growth is another example of usage of neural
network. There are ANN models which allow for crop
yield prediction based on some input parameters (Green
et al., 2007). Irrigation is a common agricultural tech-
nique. Effective usage of water is an important objective;
artificial neural networks may be also used in optimization
of water usage (Morimoto et al., 2007). Food quality is
very important and may be influenced by many external
factors, during crop harvesting, storage, and processing.
Some properties of crops important for food quality may
be modeled by ANN. Example applications include
method of estimation of sorption isotherm for rice
(Amiri-Chayjan and Esna-Ashari, 2010), which is impor-
tant factor influencing rice storage conditions and has
impact on rice quality. Chemicals are commonly used in
tillage practice, for crop fertilization, or protection against
pests. Unfortunately, if inappropriately used, chemical
compounds may accumulate in crops and influence qual-
ity of food produced. The key point is to prevent food con-
tamination, by optimization of chemicals usage (Du et al.,
2008). In some circumstances toxins may be introduced to
food in naturally occurring phenomena. One of applica-
tion of ANN allows for predicting contamination of pea-
nuts by aflatoxin produced by naturally occurring
mildew (Henderson et al., 2000) in dependence of plant
growth conditions.

Modeling approaches
Processes occurring in agrophysical objects may be
modeled using strict mathematical, physical, or chemical
methodology. In such approach phenomena are modeled
exactly. Although in some practical applications rigorous
modeling methodology is not needed. Artificial neural
networks are the tool which may be used in such circum-
stances. The main idea of learning based modeling is to
build and train ANN which will predict approximated
values, based on previously registered values. Forecasting
neural networks may be used for modeling wide range of
agrophysical processes. Possible applications include

forecasting of soil moisture, soil temperature, or contami-
nant concentration. There is a known model (Raju, 2001)
utilizing ANN to evaluate soil temperature and evapora-
tion, based on air relative humidity, wind speed, and air
temperature. The other study (Han and Felker, 1997)
describes method of estimation daily soil water evapora-
tion, where neural network input factors are: air humidity,
air temperature, wind speed, and soil water content. Soil
moisture predictions are also possible (Liu et al., 2008),
neural network was used for prediction of future soil mois-
ture at specified depth, based on previous values of soil
moisture readings from the same depth. Also they are suc-
cessfully used for modeling of post-harvest drying process
(Neural Networks in the Modeling of Drying Processes).

Summary
Proper description of processes occurring in the soil–plant–
atmosphere continuum has a crucial role in agrophysical
development. Artificial neural networks are useful for
a range of agrophysical applications, including estimates of
soil water retention, movement, evaporation, temperature,
crop growth, post-harvest drying process, and food quality.
ANN descriptions are particularly useful when strict mea-
surement or modeling methods cannot be used.
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Synonyms
Artificial intelligence modeling

Definition
Neural network (NN) is an artificial intelligence method in
order to determine the relationship between the moisture
distribution in the material bed to be dried and the physical
parameters of the drying air temperature, humidity, and
airflow rate. During its application, an emphasis should
be given on the selection aspects of neural network struc-
ture and specifically to the influencing parameters as
sampling time, randomized training, different training
algorithms, number of hidden neurons, number of linked
data series, and type of validation data. A properly
selected structure of neural network model can be used
to determine the moisture distribution in the drying bed.
It can also be stated that besides other factors the selection
of training and validation input data for NN model has
a strong influence on the applicability.

Introduction
Concerning the postharvest processes, besides the energy
consumption impacts, the quality issues remain the most
determining factor. The main problem in the grain drying
process is to determine the moisture content in the material
bed. Overdrying requires excessive energy and even can
damage the quality of the dried material, especially in case
of seed. On the other hand, the grain will be vulnerable to
mildew if the moisture content remains high. There is an
option to determine the moisture content in the drying
bed by measurement but the accuracy of this approach is
probably not satisfactory. Weather conditions and dust
have a great effect on the accuracy, as well. Another way
to determine the moisture distribution is to calculate the
moisture content based on drying air parameters using
physically based or black-box models. Physically based
models give a moderately good result in most cases but
it normally takes a great effort to identify their parameters
and also to solve the model itself. Derivation of the
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classical black-box models seems to be an uncomplicated
approach. However, the application of such models is
mainly limited to process control.

The artificial neural network is a well-known tool for
solving complex problems and it can give reasonable solu-
tions even in extreme cases or in the event of technological
faults (Lin and Lee, 1995). Huang and Mujumdar (1993)
created a neural network in order to predict the perfor-
mance of an industrial paper dryer. The neural network
model by Jay and Oliver (1996) was used for predictive
control. Trelea et al. (1997) successfully used explicit time
and recurrent neural networks for modeling the moisture
content of thin-layer (5 cm) corn during the drying process
and for wet-milling quality at constant airflow rate and
absolute humidity and variable temperature. Thyagarajan
et al. (1997) modeled an air heater plant for a dryer using
a neural network. Sreekanth et al. (1998) predicted psy-
chometric parameters using various neural network
models. Kaminski et al. (1998) used a neural network for
data smoothing and for modeling material moisture con-
tent and temperature. The literature cited clearly encour-
ages further study of the application of artificial neural
networks to modeling of postharvest and within that the
drying process. However, application of neural networks
for drying processes takes a significant consideration to
the influence of sampling time, randomized training, dif-
ferent training algorithms, number of hidden neurons,
number of linked data series, and type of validation data.
The structure of the NN is to be selected to include all
the inputs and outputs of the drying system.

Modeling approaches
As a classical way of modeling, the physically based
models (PBM) are normally used to determine the perfor-
mance evaluation of drying process. However, the PHBs
make some difficulties in setting up the most appropriate
equations, to determine the accurate values of their para-
meters, and to find the most efficient methods for the solu-
tion. At the same time, there is a good option of the use of
NN for modeling purposes along with their uncertainties
and difficulties in determination their optimal topology
and parameters for the given problem, for example,
postharvest technology this time. Sometimes, in order to
provide input data for training the neural network a well-
identified physically based model are considered to use
instead of full-scale or laboratory measurements.

Several NN topologies could be considered for the use
of modeling the drying process as it was suggested by
Farkas et al. (2000a). The choice of a topology depends
on careful selection of the input system variables and the
controlled output variables, for example, moisture contents
in the different layers of the material bed. It should be
stated that the selection of NN topology is an essential step.

Training the neural networks
Input data used for training the neural network of differ-
ent structure should be the same. The drying air

temperature, airflow, and absolute humidity have to be
changed randomly to train higher order dynamics, as
well. The outlet air temperature and absolute humidity
in the layers could be calculated on the basis of an appro-
priate physically based model because of its difficulty in
measurements. In each training loop, each data record
can be trained, for example, with back-propagation algo-
rithm (Lin and Lee, 1995). One training step means to
calculate the error between the network output and the
desired output and to modify the weight of the neural net-
work. During the training process, all the introduced neu-
ral network structures have different training speed, for
example, the number of calculation loops in order to
reach the required accuracy. The cost function expresses
the stop condition of the training. The selection of train-
ing input data for NNmodel has a strong influence on the
applicability.

Validation the neural networks
For validation purposes, constant and multi-flow data are
normally chosen because of the real industrial drying pro-
cesses. The validation data for multi-flow dryer are taken
from outside weather parameters. The airflow is switched
between two states to simulate intermittent drying, the air
temperature, and humidity considered based on weather
condition. The selection of validation input data for NN
model has a strong influence on the applicability. During
the validation calculation beside the correlation coeffi-
cients the average and maximal deviation could be used
to estimate the behavior of the neural network model.

Sensitivity of the neural networks
Extensive studies on validation of the NN model have
been carried out along with the influences different para-
meters as the sampling time, the randomized training,
the different training algorithms, the number of hidden
neurons, the number of linked data series, and the type
of the data as it was suggested by Farkas et al. (2000b).
In this experiment, a three layer feed-forward neural
network with six hidden neurons was used. The NN
contained also delayed feedback from the output to the
input.

It was found that increasing the time step decreases
the average deviation between the original training
points and the outputs of the NN. It can be observed that
the fluctuations are larger at the beginning of the drying
if small sampling time is selected, because of the large
number of points. The explanation of this effect can be
that the back-propagation algorithm minimizes the dif-
ference between one input–output training pair in one
step, and then it modifies the network weights based
on the calculation point by point. In such a way, the neu-
ral network partly “forgets” the behavior of the process
at the beginning. The more points are used the higher
fluctuation will be at the beginning of the process. Ran-
domized training can be used for reducing this effect
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when the points are randomly selected to train the neural
network.

In order to avoid high fluctuation at the beginning of
the process, the training pairs are randomly selected from
the entire drying period. Using randomized training
pairs for back-propagation algorithm caused considerable
improvement in the results even in case of a large number
of training pairs. The result shows furthermore that there is
no fluctuation effect at the beginning of drying process, so
using randomized training pairs is to be recommended for
real applications.

Preliminary studies showed that the original back-
propagation algorithm could be slightly improved after
some modifications. The first changing was to introduce
an adaptive learning constant during the training. Another
modification was changing the weights. After such exper-
iments it can be concluded that there is almost no influ-
ence caused by the modifications, so it can be concluded
that the original algorithm could be efficiently used with-
out any modification.

A sensitivity study was performed in order to determine
the influence of the number of hidden neurons in the NN.
The sampling time was selected as 120 s along with ran-
domized training pairs and the original back-propagation
algorithm. From the results, it can be concluded that the
best approximation was achieved when the number of
hidden neurons was between 3 and 5. So the number
of neurons in the hidden layer could be optimized in any
special application cases.

As it was said before, it has been realized that a single
data series is not reasonably enough for training the NN.
Training with one data series, validation results can be
unsatisfactory in case of changing in input data. To
achieve better performance in neural network modeling
it seems a good idea to link together different number of
data series as one virtual drying process. The result shows
that increasing the number of linked data series for train-
ing increases the accuracy of the NN model. Fast random
signals caused the largest fluctuation at low number of
linked data series.

There were several trials to validate the NN with differ-
ent (constant, slow, and fast random) type of data. It can
be observed that the case of slow random training gives
reasonable good result for both constant and fast random
validations. Constant training gives the worse result for
the case of fast validation signal.

Summary
Neural network modeling is a reliable tool for determining
the moisture and temperature distribution in the course of
drying process. In order to set up an appropriate model,
sufficient number of measurements should be available
for training the neural network. The sensitivity aspect of
the neural network model should be taken into account
during the training and validation. Generally saying, the
NN can be successfully applied especially for process
control purposes.
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via nitrite.

NONDESTRUCTIVE MEASUREMENTS IN FRUITS
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Escuela Politécnica Superior, University of Zaragoza,
Huesca, Spain

Synonyms
Nondestructive measurement of fruit quality

Definition
Technologies used to measure quality parameters in fruit
of not destructive form.
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Introduction
Nondestructive testing was, and still is, a priority research
area for specialty crops; its aim is to assess or quantify
product properties and characteristics for the purpose of
quality and safety monitoring and control. Sensors have
been widely recognized for their potential to identify
product properties, and they have been translated into
industrial technologies, as evidenced by thousands
of engineering research publications during the past
50 years.

Fruit quality is related to both internal variables (firm-
ness, sugar content, acid content, and internal defects)
and external variables (shape, size, external defects, and
damage). Increasing consumer demand for high-quality
fruit has led to the development of optical, acoustic, and
mechanical sensors that determine this quality (Nicolaï
et al., 2006). Fruit packing companies need to measure
these quality variables, but they need to do so in
a nondestructive manner. Manufacturers and research
groups have understood this complexity and are currently
developing sensors with this aim.

The development of sensors to measure fruit internal
and external quality variables on a nondestructive way is
one of the challenges of postharvest technology. These
include static and online sensors that use different technol-
ogies for determining fruit quality parameters. Although
many techniques are under development, some companies
already market instruments that determine the internal
quality of fruit.

Internal fruit quality parameters
Fruit firmness
Fruit firmness is one of the most important quality vari-
ables; it is an indirect measurement of ripeness and its
accurate assessment allows appropriate storage periods
and optimum transport conditions to be established.

Traditionally, fruit firmness has been estimated in
a destructive manner by means of theMagness Taylor test.
This can be performed in the laboratory or with portable
equipment, and is based on the introduction of
a cylindrical head into the flesh of a peeled fruit to measure
the maximum penetration force. Depending on the equip-
ment used, other variables can be measured such as max-
imum force, deformation, and the values for different
relationships between force and deformation. However,
the Magness Taylor test has three main drawbacks: it is
destructive, measurements are highly variable (by up to
30%), and it cannot be used in online situations. Neverthe-
less, this technique is well accepted and used for classify-
ing fruit by many packing companies and quality
laboratories.

Technical advances over the last few decades have led
to the development of nondestructive devices capable of
measuring fruit internal variables (Delwiche et al.,
1996). Originally, these devices were developed for use
in the laboratory, but have been adapted for online use
(as have weight or diameter-measuring devices).

Fruit firmness can be estimated by different techniques
including the measurement of variables extracted form
force–deformation curves, the analysis of impact forces,
the rebound technique, the measurement of acoustic
responses to vibrations and impacts, the measurement of
optical properties, and nuclear magnetic resonance
(García-Ramos et al., 2005).

Sugar content, acid content, and internal defects
The interaction between light and fruit tissues can be used
to measure fruit internal quality (Nicolaï et al., 2007). An
optical sensor consists of a light source and a receiver that
records the optical signal. The optical signal has different
wavelengths. According to the light pathway inside the
sample, there are two main optical techniques: reflectance
(incident light penetrates the external tissues and exits
toward the sensor near the entering point) and transmit-
tance (incident light goes through the tissues and hits the
sensor on the opposite side of the fruit – or at least 90�
away from entrance point).

The technology more used is the near infrared
reflectance spectroscopy (NIR). This technique, which
measures the reflected spectrum of a sample lit with halo-
gen light is closely related to that employed by optical
equipment (e.g., cameras). Much research effort is cur-
rently being made in this area.

Commercial, online, optical devices based on NIR
spectroscopy are available. Some devices were developed
for use with melons but have been successfully used with
pears, apples, peaches, and Sharon fruit. These sensors can
handle 2–5 fruits/s depending on the species. The internal
variables measured are sugar content plus an indirect mea-
surement of firmness (“ripeness”).

External fruit quality parameters
Shape and size
The estimation of the size and form of the fruit is realized
by means vision systems in the range of the visible and
near infrared spectrum (Moreda et al., 2009). Neverthe-
less, commercial vision systems do not yield in general
the high precision volume estimates required for density
sorting, because they compute volume from two-
dimensional (2D) images. Nowadays, three-dimensional
(3D) machine vision systems are beginning to be intro-
duced in some food industries. This trend could eventually
spread to fresh produce packinghouses, where 3D cameras
could be used, apart from calculating accurate volume,
shape sorting, and surface area.

Weight
Fruit weight estimation is commonly performed with an
electronic weight sizer. These sensors are implemented
in commercial fruit packing lines and can be recalibrated
for different weight groups. The accuracy achieves �1 g
working at speeds of 1 m/s (until 10 fruits/s).

512 NONDESTRUCTIVE MEASUREMENTS IN FRUITS



Color
Light in the visible region (approximately 400–780 nm)
can provide color and/or pigment information about horti-
cultural products. Skin color may be indicative of maturity
for some horticultural products such as banana, mango,
and tomato (Edan et al., 1997). However, for many other
horticultural products, skin color is not a good and reliable
indicator of their maturity/quality. Color more directly
relates to product appearance, which is important to the
consumer perception of product quality (Abbott, 1999).
Hence, color vision technology is widely used in the hor-
ticultural industry to ensure consistent product items in
size, shape, and color.

Summary
The increasing demand of fruit quality by consumers
makes necessary the development of technology to
achieve this goal. Most of the fruit packing lines already
have equipments capable of quantifying the parameters
of external quality of a fruit (size, weight, and color) in line
and of not destructive form. During the recent years, the
enterprises and research groups have developed technolo-
gies for the nondestructive measure of internal quality
parameters (sugar content, acids content, firmness, etc.).
These include static and online sensors that use different
technologies for determining fruit quality parameters.
Although many techniques are under development, some
companies already market instruments that determine the
internal quality of fruit.
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Definition
Nondestructive measurements in soil are a wide group of
techniques used in science and agriculture and applying
ground-installed sensors to evaluate the properties of soil
without causing damage.

Nondestructive and destructive measurements
Contrary to destructive measurements in soil, where the
original physical, chemical, or biological properties of
the measured object cannot be recovered, in nondestruc-
tive testing the measured object can function correctly
after the measurement process. For example, the standard
thermogravimetric method for the measurement of soil
volumetric water content is destructive, while TDR
(time-domain reflectometry) method is nondestructive.
In thermogravimetric method, the soil sample is perma-
nently removed from its original location and during the
process of drying its structure and biological components
are destroyed. In TDR method, after one-time installation
disturbance in a fixed location, repeated and automated
measurements are allowed without causing any damage
to any soil constituent.

Nondestructive measurements or tests should be distin-
guished from noninvasive ones, which include diagnos-
tics, that is, procedures that do not involve tools
breaking the soil structure (see Noninvasive Quantifica-
tion of 3D Pore Space Structures in Soils) and the skin
or physically enter the body (ultrasound, X-rays, endo-
scopes, computer tomography). The noninvasive mea-
surements that do not use sensors installed in the soil
include: NIRS (near infrared reflectance spectroscopy)
for determination of soil texture and carbon content, air-
borne and satellite remote sensing for characterizing soils
for plant available water capacity and topsoil properties
(Schmidhalter et al., 2008), GPR (Ground Penetrating
Radar), electromagnetic induction for collecting infor-
mation about field heterogeneity of soil texture and soil
water content, NIRS (near infrared spectroscopy) for
determination of soil texture and carbon content. Their pri-
mary application is precision agriculture and site-specific
soil treatment to achieve optimal plant production under
sustainable agricultural and environmental conditions.
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These methods usually require additional and traditional
ground measurements for calibration purposes.

Nondestructive measurement techniques are com-
monly used in industry because they do not permanently
alter the article being inspected saving both money and
time in product evaluation, troubleshooting, and research.

Elements of nondestructive measurements in soil
Agrophysics as an applied and interdisciplinary science
adopts nondestructive measurement techniques from other
fields of science and industry. The fundamental elements

for successful nondestructive measurements in soil apart
from a sensor, usually working in the indirect measurement
mode, are: data-logging features of the applied measure-
ment equipment, battery supply (frequently supported by
charging solar panel) powerful enough to work without
replacement for at least one measurement season, and com-
munication option (preferably wireless) to transmit mea-
sured data as well as the experiment configuration in both
direction between the field location and the operator’s
computer. Table 1 presents the selection of the most popu-
lar nondestructive measurements in soil, which are used for
the measurement of soil water status.

Nondestructive Measurements in Soil, Table 1 Selection of the most popular nondestructive and noninvasive soil water status
measurements methods

Measurement method
Directly measured quantity, physical principle, soil property
measured, and references Remarks

TDR (time domain
reflectometry)

Velocity of propagation of electromagnetic wave (step or needle
pulse) along the metallic parallel or coaxial waveguide (TDR
probe) fully inserted into the soil. It is very well correlated
with the real part of the soil complex dielectric permittivity as
well as the amount of water in soil. (Topp et al., 1980;
Noborio, 2001)

– Commonly recognized alternative for the
thermogravimetric method

– Instruments are still very expensive
– Usually no site calibration required

Attenuation of the electromagnetic wave during its travel in the
TDR probe, which results mainly from the soil electrical
conductivity-dependent ion conduction. Signal attenuation is
correlated with the soil bulk electrical conductivity and soil
salinity defined as electrical conductivity of soil extract.
(Malicki and Walczak, 1999; Robinson et al., 2003)

– Not applicable for very saline soils and
long probe rods

– Limited accuracy caused by the possible
change of the TDR probe geometry

FDR (frequency domain
reflectometry)

Phase shift (dependent on soil bulk dielectric permittivity) and
amplitude attenuation (dependent on soil salinity) of a probe
inserted into the soil treated as a lossy capacitor. Measurement
is done in single frequency generated by the probe internal
probe oscillator (50–150 MHz). (Veldkamp and O’Brien,
2000)

– Requires soil site calibration
– Probes and meters are commercially
available and cheaper than TDR
instrumentation

– Low power consumption as compared to
TDR technique

Neutron scattering Number of slow neutrons that are produced from the collision of
fast neutrons with hydrogen molecules in soil, which is
linearly related to the soil volumetric water content. Fast
neutron generator and the counter are installed in the vertical
access tube for the measurements in different layers of soil.
(Evett and Steiner, 1995)

– Requires soil-site calibration
– Precise but expensive
– Additional cost with special licensing,
operator training, handling, radiation
materials waste disposal

– Health hazard
Tensiometry Suction force or pressure exerted on a pressure transducer in

a water-filled tube connected with soil matrix by a porous cap.
The measured physical quantity is a matrix potential of soil
water, which is a basic element of the total potential of water
in the soil. (Mullins, 2001; Sisson et al., 2002)

– Limited range of work (down to about
�85 kPa)

– Require frequent servicing (air bubbles)
– In drought conditions water moves from
the tensiometer to the soil

Electrical resistance
blocks

Electrical resistance, measured with an alternating current
bridge (usually �1,000 Hz) of electrodes encased in some
type of porous material (gypsum, nylon fabric, fiberglass) that
within about 2 days will reach a quasi-equilibrium state with
the soil. This method determines soil water content and water
potential as a function of electrical resistance. (Hillel, 1998;
Spaans and Baker, 1992)

– Sensitive to soil salinity and temperature
– Requires soil-specific calibration
– Very economic and field installations can
work for several years

– Supplementary to tensiometers in the
range up to �1,500 kPa

Nuclear magnetic
resonance (NMR)
spectroscopy

Structure and composition of soil, soil organic matter and
nutrients (Randall et al., 1997), plant nitrogen metabolism.
(Mesnard and Ratcliffe, 2005)

– High spectral resolution
– Problems with equipment availability

X-ray computed
tomography

Description and quantitative measurements of soil structure
elements, especially of soil pores and pore network features,
investigation the hydro-physical characteristics of the soil, in
a functional and temporal manner, analysis of the biotic factor
influence on soil. (Taina et al., 2008; Peth et al., 2008)

– High spatial resolution (� 1 mm)
– Lack of unity, not only in the utilized
methods, but also in terminology
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There is a tendency to construct noninvasive integrated
sensors that measure more than one physical soil property
at the same time and in the same soil volume, for example,
TDR or FDR soil water content and soil salinity integrated
with an easy to implement temperature sensor (Skierucha
et al., 2006), bulk density, and water content using low-
and high-energy sources for CT scanning (Rogasik et al.,
1999; Lipiec and Hatano, 2003), penetrometers with
TDR probe sensors (Young et al., 2000; Vaz and
Hopmans, 2001) and with thermal sensors (Marczewski
et al., 2004), combined measurements system of TDR
and tensiometry (Malicki et al., 1992; Walczak et al.,
1993; Whalley, 1993), thermo-time domain reflectometry
probe for measuring soil thermal properties and water
content (Ren et al., 2003; Usowicz et al., 2006).

Summary
Nondestructive measurement methods in soil and other
environmental objects develop rapidly following the tech-
nological advances in electronics, informatics, and mate-
rials engineering. They are on the application front of
modern technology developments. Agrophysics should
take advantage of the progress of nondestructive methods
of measurements in medicine, satellite, and others
branches of science financially supported by governmen-
tal and private funds and look for the new applications in
the field of food quality and environmental protection.
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NONINVASIVE QUANTIFICATION OF 3D PORE
SPACE STRUCTURES IN SOILS
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Albrechts-University zu Kiel, Kiel, Germany

Definitions
Noninvasive research facilitates the understanding of
physical, chemical, and biological processes in soils and
their dependency on soil structure. The most commonly
employed method or device used for noninvasive exami-
nations of porous materials and their 3D architectures is
X-ray Computed (Micro)Tomography (XCT, mCT),
which can be either based on synchrotron radiation
(SR-mCT) or microfocus tube sources (MF-mCT).

XCT=X-ray computed tomography
mCT=X-ray computed microtomography
SR= Synchrotron radiation
SR-mCT=Synchrotron radiation–basedmicrotomography
Voxel = Three-dimensional equivalent to pixel
CCD=Charge-coupled device

Introduction
Soil pore spaces are of interest to soil researchers for var-
ious reasons where the traditional soil science disciplines
usually take different perspectives. The soil physicist, for
example, treats soil pore spaces mostly with respect to
water, gas, and solid particle movements, while the soil
biologist and soil chemist understands pore spaces
predominantly as an environment for root growth and
microbial activity and a pathway to access and retain nutri-
ents or contaminants, respectively. Recent research on the
soil-microbe system emphasizes that the interaction of
physical, biological, and biogeochemical processes occur-
ring within soil pore space structures deserves more appre-
ciation (Young and Crawford, 2004). Soil scientists now
begin to recognize that the physical heterogeneity of soil
structures controls both abiotic and biotic functions within
soil habitats with feedback loops between the two. In other
words, soil structure and its dynamic functional properties
regulate soil biodiversity (Crawford et al., 2005; Ettema
and Wardle, 2002) while soil microbes in turn can alter
soil structure and hence pore spaces (Six et al., 2004).
Detailed insights into pore space realms are important
not only from a soil microbial habitat perspective. Given
that the interacting mechanisms operate across scales
virtually all soil environmental processes (from transport

to sorption and turnover) maintaining biogeochemical
cycling in the pedosphere depend on pore space structures.

How to study soil pore space structures
Past research on soil structure and its associated pore
space was strongly based on traditional techniques, which
can be distinguished into direct (e.g., thin section analysis)
and indirect (e.g., water retention function) methods.
Despite profound conceptual understanding on soil struc-
ture formation and stability has been achieved the major
drawback of this traditional approach is that the
techniques are either destructive (e.g., preparation of thin
sections) or that results refer to statistical values averaged
over a bulk volume (e.g., pore size distribution) lacking
detail on the spatial configuration of pores. Another prob-
lem is that soil structure is inherently three dimensional
and that 2D analysis from thin sections bears some risk
for inaccurate interpretations of structural morphologies.
When we consider the soil pore space as a dynamic,
three-dimensional, interconnected network of voids with
a complex hierarchical organization we have to acknowl-
edge that traditional methods are insufficient for deriving
an adequate quantitative characterization of pore space
morphologies. Noninvasive imaging techniques have
made significant progress in the last decade
(Nondestructive Measurements in Soil) promising to
overcome some of the limitations involved in studying
dynamic 3D soil pore spaces.

Applications of X-ray computed tomography
in soil structure analysis
X-ray computed tomography (XCT) is the most widely
used noninvasive imaging technique to study soil struc-
ture. The technique was introduced in the discipline of soil
science by the pioneering work of Petrovic et al. (1982)
investigating soil bulk density and later followed up by
Crestana et al. (1986), who studied the spatial distribution
and temporal dynamics of water in soil. Both used medical
scanners achieving a voxel resolution in the submillimeter
range. Later efforts were made to extend the noninvasive
visualization of pore spaces beyond larger macropores
(>50 mm) toward smaller pore sizes down to the mesopore
range (<10 mm). However, because of the strong X-ray
attenuation of the mineral soil components, resolution is
generally limited by the distance the X-ray beam has to
travel from the entry to the exit of the specimen and hence
decreases with increasing sample size. As a rule of thumb,
the resolution achieved is in the range of 1/1,000 of the
sample thickness. A main limitation of conventional med-
ical scanners for analyzing small samples at high resolu-
tion, however, is that because they are built for larger
objects (human bodies) they do not reach the required
precision in terms of angular rotation of the detector and
sample positioning during image acquisition.

With synchrotron radiation sources becoming more
accessible to the scientific community, the potential of this
high energy radiation for X-ray microtomography of
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environmental samples was recognized. Pioneering work
on synchrotron radiation–based X-ray microtomography
(SR-mCT) was conducted by Flannery and colleagues
about 20 years ago (Flannery et al., 1987). They intro-
duced SR-mCT as a “new form of microscope” that pro-
duces three-dimensional images with a spatial resolution
comparable to that of a light microscope (~1 mm). The
use of SR-mCT for analyzing soil pore spaces at microme-
ter resolution was introduced by Spanne et al. (1994) but
surprisingly only recently the technique was applied to
study small-scale soil structure of natural undisturbed soils
(Altman et al., 2005; Feeney et al., 2006; Nunan et al.,
2006; Peth et al., 2008a; Peth et al., 2008b). Synchrotron
radiation sources offer a variety of special techniques
(fluorescence, absorption, diffraction, infrared) providing
excellent perspectives for plant and soil research with
a superior performance in terms of sensitivity, speed, and
resolution (Lombi and Susini, 2009). Recent develop-
ments of high-resolution laboratory mCT systems, how-
ever, will make X-ray computed microtomography
(mCT) a more readily available tool in soil structure anal-
ysis allowing for the visualization and quantification of
soil pore architectures at a resolution down to a few
microns with a quality that is very close to what is
obtained from SR facilities (Brunke et al., 2008).

Principles of X-ray computed tomography
X-ray computed tomography is based on the differences in
X-ray attenuation where an incident beam of intensity I0 is
absorbed by the internal components of the radiated object
resulting in a transmitted beam with reduced intensity (I).
This relationship is described by Lambert-Beer’s law:

I ¼ I0 expð�mDÞ (1)

where m is the overall linear attenuation coefficient (L�1)
and D is the sample thickness (L�1). The linear X-ray
attenuation coefficient (m) is a function of density and
atomic number of the components as well as the X-ray
energy used. For porous media consisting of different
phases (solid, water, and air) Equation 1 must be extended
accounting for the different phase specific attenuation
coefficients to

I ¼ I0 exp � 1� yp
� �

msrsDþ ypSwmwrwD
� �� �

(2)

where rs and rw are the densities and ms and mw the linear
attenuation coefficients of solid matter and water, respec-
tively. Sw denotes the water saturation and yp the total
porosity. Due to the low linear attenuation of air, the con-
tribution of the gaseous phase to the overall attenuation is
considered negligible and therefore omitted in Equation 2.

The incident fan-shaped X-ray beam is generated in
a high vacuum X-ray tube and transmitted through the
sample, which is mounted on a precision rotation table
(Figure 1). The sample is rotated at 0.25–0.50� steps
between 0� and 360� and at each angular step the integral
attenuation of the X-ray beam transmitting the sample is
recorded by the CCD detector. The measured angular
projections of the sample are finally reconstructed into
a 3D linear attenuation coefficient map. Commonly, atten-
uation coefficients are converted to grayscale values rang-
ing from [255] for the highest attenuation coefficient to [0]
for the lowest attenuation coefficient. Reconstructed
images finally contain the spatial configuration of soil
voids and soil components with sufficient attenuation con-
trast. Hence, the architecture of soil pore networks is avail-
able in digital format and can be analyzed quantitatively
with 3D image analysis algorithms.

A readable introduction to principles of computerized
tomography is given by Kak and Slaney (1988).

Visualization and quantification of soil pore space
structures in 3D
During a microtomography scan usually a couple of hun-
dred (often >1,000) grayscale image slices are recorded
and subsequently rendered into a 3D volume of the sam-
ple. Tools exist to visualize the 3D structure of the sample
providing some qualitative information about the pore
space architecture, e.g., the spatial arrangement and conti-
nuity of pores. However, in order to make objective com-
parisons between different samples, some kind of
morphological and topological quantification is desired.

Morphological and topological features of pore net-
works may be quantified by means of 3D image analysis
using algorithms that are based on the principles of math-
ematical morphology (e.g., Serra, 1982; Soille, 2003).
Different sets of such morphometric algorithms that are
suitable for analyzing soil pore spaces are available, e.g.,
DXSoil (Delerue and Perrier, 2002) and 3dma (Lindquist

Rotation

Sample
X-ray tube

Projection

Reconstruction Image analysis

CCD detector

Focal spot

Noninvasive Quantification of 3D Pore Space Structures in Soils, Figure 1 Typical layout of a tomography experiment with
a laboratory X-ray computed microtomography (mCT) system.
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et al., 2005). Image analysis involves the stepwise trans-
formation of the image data into sets (Horgan, 1998) from
which a variety of geometrical features of the pore space
structure can be calculated (e.g., size, shape, connectivity
and tortuosity of pore channels; pore interface area; pore
bottlenecks). Basic operations during image analysis with
the software 3dma are shown in Figure 2.

The application of 3dma for analyzing the intra-
aggregate pore space architecture of different soil aggregates
was demonstrated by Peth et al. (2008a). Figure 3 shows

an example of the reconstructed 3D X-ray attenuation
map of a small-scale soil aggregate (5-mm diameter)
and the extracted shape of the internal macropore architec-
ture. The calculation of the skeleton (medial axis) reveals
the existence of numerous convoluted narrow pores and
a few continuous pore channels. Pore channels become
visible when the 3D representation is restricted to a short
range of grayscale values corresponding to specific attenua-
tion coefficients. Obviously, larger pore channels are
plagued with highly absorbing material in this case.

Cylindrical

Cubic

Extraction of
subvolume

Global
thresholding

Local
thresholding

Segmentation

Medial axis

Throats

Network
constructions

Network
statistics

– pore/throat sizes
– channel lengths
– tortuosities
– connectivity
– etc.

Noninvasive Quantification of 3D Pore Space Structures in Soils, Figure 2 Basic image analysis steps in 3dma. (Reprinted from
Peth et al., 2008b with permission from SPIE.)

x
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z

1 Intra-aggregate macropore
2 Shrinkage crack

Noninvasive Quantification of 3D Pore Space Structures in Soils, Figure 3 Three-dimensional reconstruction (top, left) of a soil
aggregate (Alfisol, Rotthalmünster/Germany) and an xy-image slice showing shrinkage cracks and intra-aggregate macropores
(top, right). Reconstructed pore channels (bottom, left) and medial axis representation of the main pore network (bottom, right).
(Reprinted from Peth et al., 2008b with permission from SPIE.)
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This phenomenon is also often visible around root channels
and microaggregates (Figure 4).

Summary
Functional traits of soil structure, irrespective of scale,
rely on the connectivity, tortuosity, and the heterogeneity
of pore spaces in 3D (Young et al., 2001). This is often
neglected using conventional approaches of investigating
soil structure morphologies. Data concerning 3D architec-
tures of pore spaces are invaluable when studying struc-
tural genesis, gas and water transport, habitat functions,
water uptake, etc. Visualizing and quantifying the com-
plex geometry of the pore network and soil structure on
various scales is promising to enhance our understanding
of the multiple interacting physical, biological, and bio-
geochemical processes taking place in soil pore spaces.
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range of a paddy rice field soil aggregate (Stagnic Cambisol,
Yingtan/China) showing coatings around root channels and
microaggregates.
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Cross-references
Microbes and Soil Structure
Microbes, Habitat Space, and Transport in Soil
Nondestructive Measurements in Soil
Pore Morphology and Soil Functions
Soil Aggregates, Structure, and Stability
Soil Structure, Visual Assessment

NON-LIMITING WATER RANGE (NLWR)

See Soil Physical Quality

NON-THERMAL TECHNOLOGIES

See Thermal Technologies in Food Processing

NORMAL STRESS

See Soil Compactibility and Compressibility

NUMERICAL METHODS (MODEL)

Algorithms that use arithmetic and logical operations to
obtain approximate solutions to complex formulas, such
as differential equations, describing a soil process.

Cross-references
Agrophysics: Physics Applied to Agriculture
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