Chapter 2
Mathematical Background

This chapter is devoted to present the mathematical tools which are used in this book
to analyze the nonsmooth circuits and their time-discretizations. This chapter does
not aim at being exhaustive. The unique objective is that the book be sufficiently
self-contained and that all the mathematical notions which are the foundations of the
nonsmooth dynamical systems that are presented, be easily available to the readers
who are not familiar with such tools. For this reason the results are given without
proofs. After a brief recall of some basic tools, we come back to the circuits of
Chap. 1 and rewrite their dynamics using new mathematical frameworks. Many of
the tools which are presented in this chapter, will be used, or presented in an other
way in Chap. 4.

2.1 Basics from Convex and Nonsmooth Analysis

In this section one recalls some definitions and properties that are associated with
convex sets and functions, their subdifferentiation, and multifunctions (or set-valued
functions). Classical and introductory references are Hiriart-Urruty and Lemaréchal
(2001) and Rockafellar (1970) for convex analysis, Smirnov (2002) for multivalued
functions, Facchinei and Pang (2003) and Murty (1988) for variational inequalities
and complementarity problems.

2.1.1 Convex Sets and Functions

2.1.1.1 Definitions and Properties

Definition 2.1 (Convex sets) A subset C of R” is said convex if (1 —A)x +Ay € C
whenever x e C and y € C and A € (0, 1).

V. Acary et al., Nonsmooth Modeling and Simulation for Switched Circuits, 33
Lecture Notes in Electrical Engineering 69,
DOI 10.1007/978-90-481-9681-4_2, © Springer Science+Business Media B.V. 2011


http://dx.doi.org/10.1007/978-90-481-9681-4_2

34 2 Mathematical Background

non-convex set convex set

(@) (b)

non-convex set

©

non-convex set non-convex set

(d) ©

convex set

(2) non-convex set

(h)

Fig. 2.1 Planar convex and non-convex sets

As a consequence C is convex if and only if it contains all the convex combina-
tions of its elements. Examples of planar convex and non-convex sets are depicted
in Fig. 2.1.

Definition 2.2 (Cones) A subset C of R” is called a cone if it is closed under posi-
tive scalar multiplication, i.e. Ax € C when x € C and X > 0.

Examples of convex and non-convex cones in three dimensions are depicted in
Fig. 2.2. The sets in Fig. 2.1(c) and (h) are non-convex cones. The set in Fig. 2.1(g)
is a convex cone. When a cone C is closed, then necessarily 0 € C. The set of
solutions to Ax > 0 where A is a constant matrix, is a polyhedral convex cone.

Definition 2.3 (Polar cones) Let C € R” be a non empty convex cone. The polar of
C is the set

C°={seR"|(s,x)<Oforallx € C}. (2.1)

Examples of cones and their polar cone are depicted in Fig. 2.3. Polarity may
be seen as a generalization, in a unilateral way, of orthogonality. Hence, if C is
a subspace then C° is its orthogonal subspace. The polar cone obtained from C
depends on the scalar product that is used in the definition: changing the scalar
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product changes C°. When C is a non empty closed convex cone, then C° is also
a non empty closed convex cone, and C°° = C (i.e. the polar of the polar is the
original cone).

Many authors rather speak of conjugate or dual cones, which are defined as C* =
{s e R" | (s, x) > 0 forall x € C}. Therefore C° = —C™. The polar cone to R’} is
R” , whereas its dual cone is simply itself.
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Remark 2.4 Given a non empty set C, not necessarily convex, one may define also
its dual cone as the set C* = {s e R"” | sT y > 0 for all y € C}. This is indeed a cone
as can be checked.

An interesting result is the next one:

Proposition 2.5 Let C;, 1 < i < m, be non empty convex cones of R". Then
(Z;"Zl CH)y=Ccrnegn---ncy.

Obviously this also holds for dual cones.

Definition 2.6 (Convex functions) Let C be a non empty convex set in R". A func-
tion f : C — R is said convex on C when, for all pairs (x,y) € C x C and all
X € (0, 1), it holds that:

JOx+ A =2y <Af)+ A =2)f().

If this holds with strict inequality then the function is said strictly convex. If f(-)
is not identically +oo it is named a proper function.

The sum of two convex functions is again convex. The composition of a con-
vex function f : R" — R with a linear mapping A : R”" — R”", denoted as
(f o A)(:) = f(A(")), is again convex. The domain of a function f(-) is defined
as dom(f) = {x € R"| f(x) < 400}, so a proper function has dom( f) # . Convex
functions may have a bounded domain. For instance the indicator function of a con-
vex set C, defined as ¥c(x) =01if x € C, Yc(x) = 400 if x ¢ C, takes the value
+o00 everywhere outside the set C. Thus dom(i¢) = C. It is nevertheless a convex
function, and C € R” is a convex set if and only if ¥¢(-) is a convex function. In-
dicator functions have been introduced by J.J. Moreau in the context of unilaterally
constrained mechanical systems. They may be interpreted as a nonsmooth potential
function associated with the contact forces, when frictionless unilateral constraints
are considered.

Differentiable convex functions, i.e. the functions f(-) which possess a gradient
V f(x) at all x € R", enjoy the following properties.

Proposition 2.7 Let f: U — R be a function of class C', with U C R" an open
set, and let C C U be a convex subset of U. Then f(-) is convex on C if and only if
fOZ2fxX)+(Vfx),y—x)forallx andyinC.

We will see that this is generalized when f(-) fails to be C! but is only subdif-
ferentiable. When the function is at least twice differentiable, it can be also charac-
terized from its Hessian matrix.

Proposition 2.8 Let [ : U — R be a function of class C%, with U C R" an open
convex set. Then f(-) is convex on U if and only if its Hessian matrix V? f (x) is
semi-positive definite for all x € U, i.e. (V2 f(x)y,y) >0 forall y € R".
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However many convex functions are not differentiable everywhere (most of
them, in fact). A first example is the above indicator function of a set C. The sim-
plest example is the absolute value function f : R — R, x + |x|, which is not
differentiable in the usual sense at x = 0. We will see later that it is nevertheless
subdifferentiable at x = 0: the usual derivative (the slope) is replaced by a set of
derivatives (called the subgradients). The usual result that a convex function has a
minimum at x if and only if its derivative is zero at x, extends to subdifferentiable
convex functions.

Definition 2.9 (Conjugate functions) Let f : R” — R U {+o00} be a proper convex
function. The conjugate of f(-) is the function f*(-) defined by:
R'sye ()= sup {{(y,x)— f(0)} (2.2)
xedom( f)

The mapping f + f™* is called the Legendre-Fenchel transform, or the conjugacy
operation.

As we shall see below, the conjugacy operation is useful when one wants to invert
the graph of a certain multifunction (see all definitions below) that may represent the
characteristic of some electronic device. Representing the (current, voltage) charac-
teristic or the (voltage, current) characteristic amounts then to invert a graph and
this is done through the Legendre-Fenchel transform.

Theorem 2.10 (Fenchel-Moreau) Assume that f(-) is convex, proper and lower
semi-continuous. Then f**(-) = f(-).

Applying twice the conjugacy operation yields the original function.

Example 2.11 Let us compute the conjugate function g(y) = f*(y) of the absolute
value function f(x) = |x|. We get:

g(y) = sup({x, y) — |x|). (2.3)

xeR

If x > 0 then g(y) = sup, g x(y — 1). Soif y > 1 one obtains g(y) = 400, and if
v < 1 one obtains g(y) =0.If x < 0then g(y) =sup,gx(y+1).Soif y > —1 one
obtains g(y) =0, and if y < —1 one obtains g(y) = 4-o00. If x =0 clearly g(y) =0.
We deduce that g(y) = ¥[—1,1;()), the indicator function of the interval [—1, 1]. By
the Fenchel-Moreau theorem, it follows that g*(x) = f**(x) = |x|. More generally
the conjugate of f : R"” — R, x > |[x|| is the indicator function of the unit ball
of R". The above calculations can be easily generalized by varying the slopes of the
absolute value function. Take f : R — R, x > ax if x <0, x — bx if x > 0. Then

) = Vap ().

Example 2.12 Let C be a closed non empty convex cone, and C° its polar cone.
Then the indicator function of C, ¢ (-), is the conjugate to the indicator function of

Coie YE() = Yo ().
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Let us now introduce a notion that is useful to characterize the convexity of a
function, and which also permits to link convex functions and convex sets.

Definition 2.13 (Epigraph of a function) Let f : R" — R U {400} be a proper
function (not necessarily convex). The epigraph of f(-) is the non empty set:

epi(f) ={(x,m) eR" xR [n= f(0)}

Notice that 7 is taken in R so it does not take the infinite value. In particular
a function is convex if and only if its epigraph is convex. This may even be taken
as a definition of convex functions. The epigraph of the absolute value function
is depicted in Fig. 2.4. This is a convex cone of the plane, defined as epi(|x|) =
{(x,n) e R xR |n>|x|} C R% Consider now the set C = {x € R? | (x; — a)* +
(x2 —b)* < r2} that is a closed disk with radius r centered at (a, b). The epigraph
of its indicator function ¥ ¢ (-) is depicted in Fig. 2.5: epi(¢¥¢c) = {(x,n) € C x R |
n > 0}. This is a half cylinder pointing outwards the plane (x1, x2).
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Fig. 2.6 Lower and upper &)
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Remark 2.14 Convex functions can be identified with their epigraph. Convex sets
can be identified with their indicator function. This permits to pass from functions
to sets, i.e. from analysis to geometry.

Before introducing the next notion, let us recall that the notation liminf means
the lower limit. Given a subset S € R", [ = liminf,_,, f(x) for x € clS means
that:! for all € > 0, there exists a neighborhood N (x) such that f(y) > — € for all
y € N(x), and in any neighborhood N (x), there is y € N (x) such that f(x) <[ +e€.

Definition 2.15 (Lower and upper semi-continuity) Let f : S C R” — R, and let
x € §. Then f(-) is lower semi-continuous at x if f(x) <liminfy_, f(y). It is
upper semi-continuous at x if f(x) = limsup,_, . f(y).

A function is both lower and upper semi-continuous at x if and only if it is con-
tinuous at x. There is a local version of lower and upper semi-continuity at a point
x, which states that the property holds in a small ball centered at x. An example
of a locally lower and upper semi-continuous function is depicted in Fig. 2.6. The
function f (-) is locally lower semi-continuous at x» and x3. It is locally upper semi-
continuous at xo and xj. It is neither lower nor upper semi-continuous at x4. Lower
semi-continuous functions have a closed epigraph. Lower semi-continuity is an im-
portant property for the existence of a minimum of a function.

Remark 2.16 For the time being we dealt only with single-valued functions, i.e.
functions that assign to each x € R” a singleton { f(x)}. There exists a notion of
upper semi-continuity for multivalued functions (see below for a definition). How-
ever it is not a generalization of the upper semi-continuity of single-valued func-
tions, in the sense that a single-valued function that is upper semi-continuous in the
sense of multivalued functions, is necessarily continuous. This is why J.-B. Hiriart-
Urruty has proposed to name the multivalued upper semi-continuity the outer semi-
continuity (Hiriart-Urruty and Lemaréchal 2001, §0.5), to avoid confusions.

1c1 S is the closure of the set S.
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A way to characterize the lower semi-continuity of a function f(-) is through its
epigraph. Indeed f(-) is lower semi-continuous if and only if its epigraph epi( f) is
closed. This can be checked in Fig. 2.6: locally the epigraph is open at x¢ and x1,
whereas it is closed at x5 and x3. The indicator function ¢ (-) of a closed non empty
set is lower semi-continuous. For instance the epigraph of the indicator function
depicted in Fig. 2.5 is a closed half cylinder (an unbounded, but closed set).

Remark 2.17 As a matter of fact, convex functions that take bounded values on R”
(i.e. dom(f) = R") necessarily are continuous functions. They are even locally Lip-
schitz continuous at every point. This means that the semi-continuity is a notion that
is automatically satisfied by bounded convex functions. The only convex function
we shall meet for which this is not the case is the indicator of a convex set of R”,
that is not continuous on R” but is lower semi-continuous.

Definition 2.18 (Normal and tangent cones to a non empty convex set) Let C € R”
be a closed convex set. The (outward) normal cone to C at x € C is the set:
Ne(x)={seR"|(s,y —x) <0 forallyeC}.

The tangent cone to C at x € C is the set:

Tc(x) = {y € R" |3 (xp)k>0, xx € C with . lim x;=x, and 3 ()i >0, ok =0,

— 400

. . X — X
such that lim o =0and lim x; = =yr.
k—+00 k—+00 (0774

There are other, equivalent ways to define the tangent cone, like

Te(x) =c1(U Uro —x)>,

yeC r>0

where cl(-) denotes the closure (the closure of a set S C R” is the set plus its bound-
ary; it is also the smallest closed set of R” that contains S). It is important to remark
that the normal cone is defined through a variational process: one varies y inside
C to find the normal vectors s that form N¢(x). The normal cone (see Fig. 2.7) is
the outward normal cone, i.e. it points outside the set C. The definition of a tangent
cone as given in Definition 2.18 is not very friendly. There is a much simpler way
to characterize the tangent cone when C is convex, as the next proposition shows.

Proposition 2.19 Let C C R” be a closed non empty convex set and let x € C. Then
the tangent and normal cones are closed convex cones, and N¢(x) = (T¢ (x))° and
Te(x) = (Nc(x))°.
Therefore starting from the definition of the normal cone, we may state at x € C:
Te(x) ={d e R" | (s,d) <O0forall s € Nc(x)},

which is also a variational definition of the tangent cone. One finds that when x €
Int(C), then N¢(x) = {0} and T¢(x) = R".
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One sees in Fig. 2.8 that the tangent cones locally reproduce the “shape” of the
set C. When C is polyhedral at x then Tc(x) ~ C. When C is differentiable at x
then T¢(x) is an inwards halfspace. It is also visible in the figures that the tangent
and normal cones are polar cones one to each other. The fact that both the normal
and tangent cones to C at x are the empty set when x ¢ C is a consequence of the
definition of the indicator function of C, that takes infinite values in such a case.

Example 2.20 (Closed convex polyhedra) Let us assume that the set C is defined as
C={xeR"|Ex+ F<0,EcR"™" F cR"}. Inother words C is defined with
m inequalities E;x + F; < 0 where the m vectors E; € R*" are the rows of the
matrix E and the F;s are the components of F. Let us define the set of the active
constraints at x € C as

Ix)={i=1,...,m|Eix+ F; =0}
that is a set of indices. Then:

Tc(x)={d eR" | (E;,d) <O0fori e I(x)}, 2.4)
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and

Nc(x):{ Z G E!, o 20}. (2.5)

iel(x)

Therefore the normal cone is generated by the outwards normal vectors to the facets
that form the set C at x. When x ¢ C one ususally defines T¢ (x) and N¢(x) both
equal to 0.

Remark 2.21 The fact that Nc(-) and T¢(-) are polar cones has a strong physical
meaning. In mechanical systems subject to frictionless unilateral constraints, (nor-
mal) contact forces belong to Nc(-) whereas velocities belong to T¢ (). Thus the
contact forces and the velocity form a pair of reciprocal variables (sometimes also
called dual variables), whose product is a mechanical power. In electricity the volt-
age and the current are reciprocal variables since their product is an electrical power.

2.1.1.2 Subdifferentiation

Definition 2.22 (Subgradients, subdifferentials) A vector y € R” is said to be a
subgradient of a convex function f(-) at a point x if it satisfies:

fO)—f@ =y y—x (2.6)

for all y € R". The set of all subgradients of f(-) at x is the subdifferential of f(-)
at x and is denoted df (x).

When f (x) is finite, the inequality (2.6) says that the graph of the affine function
h(y) = f(x) + yT(y — x) is a non vertical supporting hyperplane to the convex
epigraph of f(-) at (x, f(x)), see (2.8) below. If a function f(-) is differentiable
at x, then df (x) = {V f(x)}. The following holds:

Theorem 2.23 Let f : R" — R be a convex function. Then f(-) is minimized at x
over R" if and only if 0 € 3f (x).

This is a generalization of the usual stationarity condition for differentiable func-
tions.

Proposition 2.24 Let f(-) be a lower semi-continuous, proper and convex func-
tion. Then 0f (-) is a closed convex set, possibly empty. If x € Int(dom(f)), then
af (x) #@. In particular, if f :R" — R is convex, then for all x € R", of (x) is a
non empty, convex and compact set of R".

Example 2.25 Let us start with the absolute value function. If x # 0, then it is dif-
ferentiable and d9|x| = {1} if x > 0, 9|x| = {—1} if x < 0. At x = 0 one looks for
reals y such that |y| > yy for all reals y. If y > 0 one finds y < 1. If y <0 then
one finds ¥ > —1. One concludes that —1 < y < 1. Therefore 9|0] = [—1, 1]. That
x = 0 is a minimum is obvious.
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Example 2.26 (Normal cone as the subdifferential of the indicator function) Let
C C R" be a non empty closed convex set, and such that Int(C) contains an n-
dimensional ball of radius r > 0. Then the subgradients of the indicator function of
C at x are the vectors y satisfying ¥c(y) — ¥c(x) = yT(y —x) forall y e R". Let
x €Int(C). We get ¥c(y) = yT (y — x). Let y € Int(C), so that 0 > y 7 (y — x) for
all y € Int(C). In view of the assumptions on x and C there exists a ball of positive
radius centered at x, contained in Int(C). We may choose y in C such that y — x is
anywhere inside this ball. It follows that necessarily y = 0. Therefore dy¢ (x) = {0}
when x € Int(C). Let now x ¢ C, so that ¢ (y) > 400+ y T (y —x) forall y € R,
Take for instance y € C so that we get ¥ 7 (x — y) > 4o00. This is impossible and
we conclude that 3¢ (x) =@ when x ¢ C. Let now x € Bd(C), the boundary of the
set C. We get c(y) >y T (y —x) forall y € R". Take y € C, then the subgradients
have to satisfy 7 (y —x) <0 for all y € C. Precisely, such vectors y belong to the
normal cone N¢(x), see Definition 2.18. We conclude that provided one takes as a
convention that Nc(x) =@ if x € C, then 9y c(-) = Nc(+).

Example 2.27 (Normal cone to a finitely represented set) If C is finitely represented,
i.e. C ={x e R"| g(x) <0}, with g(-) lower semi-continuous, proper, and convex
such that 0 € dg(x), then:

{0} if g(x) <0,
Nc(x) = l ] if g(x) >0,
Ridg(x) if g(x)=0.

The three different cases correspond respectively to x in the interior of C, x
outside C, and x on the boundary of C. The notation R} dg(x) is for {An |1 >0
and n € dg(x)}. One can say that on Bd(C) the normal cone is generated by
the subgradients of the function g(-). Consider for instance the set of R? defined
as C = {(x1,x2) | x2 = |x1]}. Thus g(x) = |x1| — x2, and there is a corner at
x1 = x2 =0.One has 9g(0, 0) = ([7_1’1”). Therefore at the corner point N¢ ((0, 0)) =
{An|m e[—1,1],n2 = —1, A > 0}. We will see below that this can be interpreted
as the normal cone to the epigraph of the absolute value function. This is depicted
in Fig. 2.9.

Remark 2.28 This notion of a generalized derivative of a convex function that is not
differentiable in the usual sense, is totally disjoint from the notion of generalized
derivatives in the sense of Schwartz’ distributions. A Schwartz’ distribution 7 is
a functional (i.e. a function of functions) which associates with test functions ¢(-)
taken in a special space of functions, a real (or complex) number denoted (7', ¢).
For instance, the generalized derivative of the absolute value function in the sense
of Schwartz’ distributions, is the function f : R — R with f(x) = —1is x <0,
f(x)=11if x >0, and f(0) can be given any bounded value. The distribution
is then defined as (T, ¢) = |, dom(p) f(@®)p(t)dt. The so-called Heavyside function
has a generalized derivative that is the Dirac measure at + = 0, however it is not
a convex function and therefore does not possess a subdifferential in the sense of
Definition 2.22.
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Fig. 2.9 Normal cones to a pY)
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The usual differentiation rule for composed functions, the so-called chain rule,
extends to subdifferentiation as follows.

Proposition 2.29 (Chain rule) Let f : R" — R U {+00} be a convex lower semi-
continuous function, and A : R™ — R" be an affine mapping.> Assume that a point
yo = Axg exists at which f(-) is finite and continuous. The subdifferential in the
sense of convex analysis of the composite functional f o A : R" — R U {400} is
given by

d(foA)(x)=Abdf(Ax), VYxeR™ 2.7)

For the sum of convex functions the result is as follows.

Theorem 2.30 (Moreau-Rockafellar: subdifferentiate of a sum) Let f; : R* - RU
{400}, 1 <i < 2 be proper convex functions, and let f(-) = Ziz=1 fi(-). Assume
that the convex sets dom( f;), 1 <i < 2, have a point in common X and that fi(-) is
continuous at x. Then

2

af (x) = _df;(x). forall x € dom(f) Ndom(f3).

i=1

The result can obviously be extended to cope with the sums of more than two
functions.

2J.e. Ax = Agx + b with Ay linear.
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The Normal Cone to the Epigraph There is a relationship between the subgra-
dients of a function and the normal cone to the epigraph of the function. Indeed:

Nepi p(x, f(x)) ={(Ay,—2),y € 3f (x) and A > O}. (2.8)

The normal cone to the epigraph is therefore generated by the vectors (y, —1) where
y is a subgradient. Normal cones to the epigraph of the function f(x) =ax ifx <0
and f(x) = bx if x > 0 are depicted in Fig. 2.10.

Inversion of Graphs The graph of the subdifferential df (-) is equal to the set
gr(@f) ={(x,y) e R" xR" | y € 3f (x)}.

The conjugacy operation on a convex lower semi-continuous proper function (i.e.
not identically equal to +00) defines the inversion of the graph of its subdifferential.
In fact, if f(-) is a closed proper convex function, df*(-) is the inverse of df (-) in
the sense of multivalued mappings. In other words:

xedf(y) ifandonlyifyedf*(x). 2.9)

This is illustrated in Fig. 2.11 for the absolute value function (see Examples 2.11,
2.25 and 2.26). In particular one has Nj_1,1(1) = R4 and Nj—1,1;(—1) = R_. Inver-
sion of graphs occurs when passing from (i (¢), v(¢)) to (v(¢), i (¢)) characteristics of
electronic devices, see for instance the Zener diode voltage/current law in Fig. 1.8.

Link with Optimization let f(-) be a proper lower semi-continuous convex func-
tion. We consider the constrained optimisation problem:

(COPT):  min f(x) = min (f + ¥¢)(x).
xeC xeR”
Clearly one has:

x is a solution of (COPT) <« 0e€d(f + ¥c)(x).
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Fig. 2.11 Conjugating, subdifferentiating and inverting

Now if f(-) is continuous at a point in C we can rewrite the right-hand-side of
the equivalence as (see Theorem 2.30):

0€df(x)+dyc(x)=0f(x) + Nc(x). (2.10)

If f(-) is of class C! one obtains —V f(x) € Nc(x) as a necessary and sufficient
condition to be fullfilled by a solution.

Remark 2.31 Convex functions can be identified with their epigraph. Convex sets
can be identified with their indicator function. This permits to pass from functions
to sets, i.e. from analysis to geometry.

2.1.2 Multivalued Functions

The normal cone to a convex set C C R” defines a multivalued mapping, since it
assigns to each x in C aset N¢(x) € R”. Normal cones are an important example of
set-valued mappings, or multifunctions. Another example taken from the previous
section is the subdifferential df(-) when f(x) = |x|. At x =0 one has df(0) =
[—1, 1]. We conclude that the subdifferentials of convex functions f(-) usually are
multifunctions x +— af (x).
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2.1.2.1 Definitions

Definition 2.32 (Multivalued function, domain, image, graph, inverse map) A mul-
tivalued function F'(-) (or multi-function, or set-valued function, or set-valued map)
from a normed space X to a normed space Y is a map that associates with any x € X
a set: F(x) C Y. A multifunction is completely characterized by its graph, defined
as
gr(F)={(x,y) e X xY |y€e F(x)}.
The domain of the multifunction F(-) is the set
dom(F)={xe€ X | F(x) #d}.
The image of the multivalued function F (-) is defined as
im(F)={yeY|3dx e Xsuchthaty € F(x)}.
The inverse map F~': Y — X of F(.) is defined by:

F7'y)={x e X|(x,y) e gr(F)}.

In most applications X and Y are subsets of or equal to R” or R™, respectively,
for some n and m. Notice that some authors adopt the convention F : X = Y to
distinguish multivalued mappings, which we shall not do here. There are several
different classes of multivalued maps. As pointed out in the introduction of this sec-
tion, subdifferentials are multivalued functions. These are in fact the most common
multifunctions we will encounter in this monograph. Other examples are:

e F:R— R, x+ [—1, 1], which assigns to each x an interval, see Fig. 2.12(a).

e F:R— R, x— [—|x], |x]|], see Fig. 2.12(b).

e The inverse of many single-valued function is set-valued. For instance the func-
tion in Fig. 2.12(c) is single valued, and its inverse in Fig. 2.12(d) is set-valued
since F(0) =[—a, b] (a >0, b > 0).

We shall not meet multifunctions of the type of Fig. 2.12(a) and (b) in this book.

2.1.2.2 Maximal Monotone Mappings

Definition 2.33 (Maximal monotone mapping) A multivalued mapping F : S C
R" — R” is said to be monotone on S if for every pairs (x1, y;) and (x3, yp) in its
graph one has:

(x1 —x2,y1 —y2) 2 0. (2.11)

It is strictly monotone on S if the inequality is strict > O for all x # y. It is £—
monotone on S if there exists a constant ¢ > 0 such that:

(x1 — x2, y1 — ¥2) = cllx; — x2 5. (2.12)

If £ =2 is strongly monotone on S. It is maximal monotone if its graph is not
properly contained in the graph of any other monotone mapping.
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Fig. 2.12 Multivalued functions

The maximality is to be understood in terms of inclusions of graphs. If the map-
ping is maximal, then adding anything to its graph so as to obtain the graph of a new
multivalued mapping, destroys the monotonicity (the extended mapping is no longer
monotone). In other words, for every pair (x, y) € (R” x R") \ gr(F) there exists
(x’,y") € gr(F) such that (x — x’, y — ) < 0. This is illustrated in Fig. 2.13. The
mapping whose graph is in Fig. 2.13(a) is monotone, however it is not maximal.
The one in Fig. 2.13(b) is maximal monotone. Intuitively, starting from a mono-
tone mapping, maximality is obtained after “filling-in” the gaps (consequently con-
tinuous monotone mappings are maximal). In the planar case maximal monotone
mappings have a non decreasing curve.

Operations that Preserve the Monotonicity, and Some Properties

e If F:R” — R” is monotone then its inverse mapping F~'(-) is monotone (in the
single valued case, a non decreasing function has a non decreasing inverse).

e If F:R" — R" is monotone then A F(-) is monotone for any A > 0.

o If F| : R" — R" and F, : R" — R” are monotone, then (F] + F»)(-) is monotone.

e F:R" — R”" is monotone, then for any matrix A and vector b, the mapping
T (x) = AT F(Ax + b) is monotone.

e F(-) is maximal monotone if and only if F ~1(.) is maximal monotone.

e The graph of a maximal monotone mapping is closed.

e If F(-) is maximal monotone, then both F(-) and F~!(-) are closed-convex-
valued.
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Fig. 2.13 Monotone mappings

Link with Subdifferentials of Convex Functions The following holds, which is
the generalization that when a convex function R — R is differentiable, then its
gradient is non decreasing.

Theorem 2.34 Let f : R" — RU{+00} be convex and proper. Then the multivalued
mapping of : R" — R" is monotone. A proper lower semi-continuous function is
convex if and only if 3f (-) is maximal monotone.

As a corollary, the normal cone to a non empty closed convex set of R"” is a
maximal monotone mapping. Indeed the indicator function of such a set is proper,
lower semi-continuous and convex. Let M be a positive semidefinite matrix (not
necessarily symmetric). Then the mapping x — Mx is maximal monotone. If M is
positive definite then it is even strongly monotone.

2.1.2.3 Generalized Equations

A generalized equation is an equation of the form 0 € F(x), where F(-) is a mul-
tivalued function. It is of great interest to study the conditions that assure the ex-
istence and the uniqueness of solutions to such equations, as a prerequisite to the
development of efficient numerical algorithms to solve them (see for instance (2.10)
that represents the necessary and sufficient conditions of a constrained optimisation
problem). The notion of monotonicity has long been recognized as a crucial prop-
erty that guarantees the well-posedness of generalized equations. The next result
concerns generalized equations of the form:

0e F(x)+ Nc(x), (2.13)
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where C C R" and F : C — R" is a function. Implicitly it is understood that the
solution satisfies x € C, since otherwise N¢(x) = @. Let C be convex. This gener-
alized equation therefore states that —F (x) € Nc(x), i.e. —F(x) is a subgradient
of the indicator function ¢ (-) at the point x. We have already encountered such a
generalized equation in (2.10).

Theorem 2.35 Let C be closed convex and F () be continuous. Then:

o [If F(-) is strictly monotone on C, the generalized equation in (2.13) has at most
one solution.

e If F(-) is £-monotone on C for some & > 1, the generalized equation in (2.13)
has a unique solution.

Example 2.36 Let F : R*? — R?, x > (527), and C = {(x1,x2) € R? | x| > 0}.
We know from (2.5) that N¢(0) = {a(_ol), a >0} =R_e; where e; = (10)7. We
deduce that all x with x; = 2k, k > 0, are solutions of the generalized equation
—F(x) € Nc(x). Clearly F(-) is not monotone on C. Notice in passing that the
solutions have to lie on the boundary of C, for otherwise one has N¢ (x) = {(0 O)T}
in the interior of C and it is impossible to have both components of F(-) which

vanish at the same time.

Let us now state a result which related inclusions into normal cones and projec-
tions, for a particular value of the function F(-).

Proposition 2.37 Let M = M T < 0 be an xn matrix, and C CR" be a closed
convex non empty set. Then

M(x —y) e —=Nc(x)

(2
1
x = argmin—(z — )T M(z — y) (2.14)
zeC 2
N2

x =projy (C; y),

where proj,, indicates that the projection is done in the metric defined by M.

Notice one thing: we may rewrite the first inclusion as Mx + N¢(x) > My, i.e.
(M -+N¢c)(x) = My. Let M be positive semidefinite. Then using basic arguments
from nonsmooth analysis one may deduce that the operator x > Mx + Nc(x)
is maximal monotone, being the sum of two maximal monotone operators. Thus
it has an inverse operator that is also maximal monotone and we may write x =
(M -+N¢)~'(My). In case M is definite positive symmetric we recover the projec-
tion operator.
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2.2 Non Convex Sets

All the sets that we will meet in this book are convex sets, therefore we shall not need
extensions of the foregoing definitions to the non convex case. Let us just mention
in passing that such generalizations exist, and may be useful in other fields like
contact mechanics where the sets one works with usually are finitely represented.
That is, there exists functions f; : R" - R, 1 <i <m, suchthat R" 5 C ={x €
R" | fi(x) <0,1<i < m}. When the functions f;(-) are linear, or affine functions
of the form f;(x) = A;x + a; such that C is not empty, then C is a polyhedron,
hence it is convex. When the functions f;(-) are nonlinear, assuming the convexity
of C is much too stringent and other notions have to be used.

2.3 Basics from Complementarity Theory

In Chap. 1 we have seen that complementarity is a notion that is often met in the
nonsmooth modeling approach of electronic devices and mechanical systems with
unilateral constraints. Complementarity theory is the branch of applied mathematics
that deals with problems involving complementarity relations. There are many dif-
ferent such problems and we will present only few of them (see for instance Acary
and Brogliato 2008 for an introduction, Facchinei and Pang 2003 and Cottle et al.
1992 for more complete presentations). Most importantly we shall insist on the links
that exist between complementarity problems and convex analysis, normal cones to
convex sets, generalized equations, and variational inequalities.

2.3.1 Definitions

Definition 2.38 (Linear Complementarity Problem (LCP)) Let M € R"*" be a con-
stant matrix, g € R" be a constant vector. A linear complementarity problem (LCP)
is a problem of the form:

7220,

{w:Mz+q =0, (2.15)
wlz=0,

where z is the unknown of the LCP.

A more compact way to write the complementarity between two variables w and
z is:

O0<wlz>0. (2.16)

This is adopted in the sequel. We will often name (2.16) the complementarity rela-
tions, or complementarity conditions between w and z. Strictly speaking, the com-
plementarity constraint is the equality w”z = 0. It is also worth noting that due
to the non negativity conditions, w’ z = 0 is equivalent to its componentwise form
w;zi =0foralli €{l,...,n}.
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Definition 2.39 (Nonlinear Complementarity Problem (NCP)) Let F : R” — R” be
a nonlinear function. A nonlinear complementarity problem (NCP) is a problem of
the form:

0<xLF(x)=0 (2.17)

where x is the unknown of the NCP.
When F(x) is affine then one obtains an LCP.

Definition 2.40 (Cone Complementarity Problem (CCP)) Let C C R" be a cone,
and F : C — R”" a mapping. A Cone Complementarity Problem (CCP) is a problem
of the form:

C>xLF(x)eC* (2.18)

where x is the unknown of the CCP.

Obviously we may also write equivalently C 5 x L —F (x) € C° using the polar
cone. The LCP is a CCP with F(-) affine and C = R’}. A CCP in the plane is
depicted in Fig. 2.14. It is apparent that for F'(x) to be non zero, x has to lie on
the boundary of C. When x is in the interior of C then F(x) = (0 0)7, due to the
orthogonality imposed between x and F(x) and the fact that the boundaries of polar
cones satisfy some orthogonality constraints. One therefore finds again a similar
conclusion to the one drawn in Example 2.36. This suggests a close relation between
the CCP and normal cones, see Sect. 2.3.3 for a confirmation of this observation.

Definition 2.41 (Mixed Linear Complementarity Problem (MLCP)) Given the ma-
trices A € R"*" B ¢ R™"*"M C ¢ R"*™ D c R™*" and the vectors a € R", b €
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R™, the mixed linear complementarity problem denoted by MLCP(A, B, C, D, a, b)
consists in finding two vectors # € R"” and v € R” such that

Au+Cv+a=0,
O0<vLlDu+Bv+b>=0.

The MLCP can be defined equivalently in the following form denoted by MLCP(M,
q,¢6,7)

(2.19)

w=Mz+gq,
:w,- =0, Vie &, (2.20)
0<ziLlw; >0, Vie s,

where & and .# are finite sets of indices such that card(&U ) =nand &N .7 = .

The MLCP is a mixture between an LCP and a system of linear equations. In
this book we shall see that MLCPs are common in nonsmooth electrical circuits,
arising directly from their physical modeling and their time-discretization. To pass
from (2.19) to (2.20), one may do as follows: define z = (), M = (4 ), ¢ = (}).

DB
There is another way to define mixed complementarity problems as follows:

Definition 2.42 (Mixed Complementarity Problem (MCP)) Given a function F :
R? — R? and lower and upper bounds [, u € R, find z e R?, w, v € Ri such that

F(@)=w—wv,
I <z<u,
CDTw=0 2.21)

w—2Tv=0,

where R = R U {+00, —00}.

Note that the problem (2.21) implies that
—F(z) € N, (2). (2.22)

The relation (2.22) is equivalent to the MCP (2.21) if we assume that w is the pos-
itive part of F(z), that is w = F*(z) = max(0, F(z)) and v is the negative part of
F(2), that is v = F~(2) = max(0, —F(z)). In case F(z) = Mz + g one obtains a
mixed linear complementarity problem.

2.3.2 Complementarity Problems: Existence and Uniqueness
of Solutions

The fact that an LCP possesses at least one, several, or no solutions, heavily depends
on the properties of the matrix M in (2.15). For instance, the LCP

o)) (o) ()=
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has an infinity of solutions of the form x = (x; 0)T, x; > 1. On the other hand, the
scalar LCP

0<xL—x+¢g=0

has no solution if ¢ = —1. Indeed the orthogonality implies x(x + 1) = 0, that is
x =0 or x = —1. The second solution is not acceptable, and x =0 yields —1 > 0.
If g = 0 there is a unique solution x = 0. If g = 1 there are two solutions: x =0 and
x=1.

The fundamental result of complementarity theory is as follows:

Theorem 2.43 The LCP 0 < x L Mx +q > 0 has a unique solution for all q if and
only if M is a P-matrix.

This was proved by Samelson et al. (1958). The important point of this theorem
is that the “if and only if” condition holds because one considers all possible vec-
tors g. As the above little example shows, by varying g one may obtain LCPs whose
matrix is not a P-matrix and which anyway do possess solutions, possibly a unique
solution. A P-matrix is a matrix that has all its principal minors positive.> A posi-
tive definite matrix is a P-matrix. In turn a P-matrix that is symmetric, is positive
definite. However many P-matrices are neither symmetric nor positive definite. For

instance the matrices
<2 24) <2 1) (1 0) (i _11 _13>
0 2 2 2 6 1 | 23 o
with o > 0, are P-matrices. The determinants of the second and the third matrices

are negative, so they are not positive definite. The following holds (Lootsma et al.
1999):

Lemma 2.44 If M € R"*" is a P-matrix, then M s a P-matrix.

Consequently the class of P-matrices plays a crucial role in complementarity
problems. Other classes of matrices exist which assure the existence of solutions
to LCPs. For instance copositive matrices and Pyp-matrices. A matrix M € R"*" is
said copositive on a cone C € R" if xT Mx > 0 for all x € C. It is strictly copositive
on acone C C R" if xT Mx > 0 for all x € C \ {0}. It is copositive plus on a cone
C CR" if it is copositive on C and {xT Mx =0,x e C} = (M + MT)x = 0. When
C =R’} then one simply says copositive. For instance (1 _1) is copositive on R,

10
2 2 1 2
3 3 2 3
-2 1 5 =2
1 -2 1 2
is strictly copositive on Ri.
3If A is an m x n matrix, I is a subset of {1, ..., m} with k elements and J is a subset of {1, ..., n}

with k elements, then we write [A]7,; for the k x k minor of A that corresponds to the rows with
index in / and the columns with index in J. If / = J, then [A];_; is called a principal minor. They
are sometimes called subdeterminants.
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The study of copositive matrices is a hard topic, especially when copositivity on
general convex sets is considered. One may simplify it in some cases. For instance if
C is a closed convex polyhedral cone represented as {Gz | z € Rfi} where G € R"*?
has rank p, then copositivity of M on C is equivalent to the copositivity of GT MG
on Ri (Hiriart-Urruty and Seeger 2010). There exists criteria to test the copositivity
on positive orthant (cones of the form Rﬁ). Well-known results are the following
ones:

Proposition 2.45 Let M = MT € R**2. Then M is copositive on Rﬁ_ if and only if
ai1 20, a2 >0, a2+ Jainan > 0. Let M = MT e R3*3. Then M is copositive

) . A A

on RS if and only if aj1 >0, ax >0, as3 > 0, bip = arp + Jfarian >0, bi3 =
A

a13 + /anaszz 2 0, byz = axz + Jaxasz > 0, and

Jaiiaxnasz + ain/azz + ajz/ax + axa/an ++/2b12b13b23 > 0.

See Hiriart-Urruty and Seeger (2010) for references and more results on coposi-
tive matrices, see also Goeleven and Brogliato (2004) for the first application in the
field of Lyapunov stability of fixed points of evolution variational inequalities. The
next proposition states some results on existence of solutions of complementarity
problems with copositive matrices.

Proposition 2.46

(1) Consider the LCP in (2.15). Suppose that M is copositive plus and that there
exists an x* satisfying x* > 0 and Mx* + q > 0. Then the LCP in (2.15) has a
solution.

(i) Consider the CCP in (2.18), with C a closed convex cone. Suppose that M
is such that the homogeneous LCP 0 < x L Mx > 0 has x = 0 as its unique
solution. Then if M is copositive on C, the CCP in (2.18) has a non empty and
bounded set of solutions.

A matrix is Py if all its principal minors are non negative. For instance

0 1 1
(5 4) (o 0 1)
0 00
are Pp. So a Pp-matrix is not necessarily positive semidefinite, however posi-

tive semidefinite matrices are Py-matrices, and symmetric Py-matrices are positive
semidefinite. The following lemma holds (Lin and Wang 2002):

Lemma 2.47 Let M € R"™" be invertible. Then the following statements are equiv-
alent:

o M is a Py-matrix,
e MT isa Py-matrix,
e M lisa Po-matrix.
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The Py property is not sufficient to guarantee the existence of solutions. Consider

the LCP with ¢ = (=1 DT, M = (8 11) that is a Pp-matrix. One may check by

inspection that it has no solution. However the following is true.

Proposition 2.48 Consider the LCP in (2.15). Suppose that M is such that the
homogeneous LCP 0 < x L Mx > 0 has x =0 as its unique solution. Then M is a
Po-matrix if and only if for all vectors q the LCP (2.15) has a connected solution
set.

This proposition does not state that the solution set is non empty, however. There-
fore relaxing the P-property to the Pp-property destroys almost completely the
powerful result of Theorem 2.43. It follows from Theorems 2.46 and 2.48 that the
copositivity is much more useful than the Py property. We will, quite unfortunately,
encounter Py-matrices in nonsmooth electrical circuits!

Remark 2.49 A positive semidefinite matrix is copositive plus.

Other classes of matrices exist which guarantee under various conditions on g
that the LCP (2.15) has solutions. We refer the reader to the above mentioned liter-
ature for more details on these classes.

Let us end this section by pointing out an important addendum to Theorem 2.43:

Proposition 2.50 Let the matrix M be a P-matrix. Then the unique solution of the
LCP in (2.15) is a piecewise-linear function of q, therefore Lipschitz continuous.

This result is sometimes used to characterize the right-hand-side of some nons-
mooth dynamical systems.

2.3.3 Links with Inclusions into Normal Cones

To see how things work, let us start with the complementarity conditions 0 < x L
y > 0 with x and y scalar numbers. Let us show that this is equivalent to the in-
clusion —x € N¢(y) with C = R,. Suppose x and y satisfy the inclusion. If y > 0
then Nc(y) = {0} so that x = 0. If y =0 then Nc(y) =R_sox > 0. Now if x > 0
then —x < 0 and necessarily y = 0. Finally if x = 0 then y may be anywhere in R .
Consequently x and y satisfy 0 <x L y > 0. Conversely let 0 <x Ly > 0. If
y>0then x =0.If y=0 then x > 0 so that —xz < xy forany z > 0. If y > 0

then x = 0 so that xz =0 < xy = 0 for any z > 0. In any case the scalar s EY —X
satisfies s(z — y) < O for all z > 0, which precisely means that s € Nc(y), see Def-
inition 2.18. We have shown that for x e R and y e R

0<xLly>0 < —xeNc(y). (2.23)

Obviously due to the symmetry of the problem we may replace the right-hand-
side of (2.23) by —y € N¢ (x). In fact the following is true, in a more general setting.
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Proposition 2.51 Let C C R" be a non empty closed convex cone. Then:

CoxlyeC® & yeNck). (2.24)

We may also write CCPs with the dual cone C*as C>x L yeC* & —ye
Nc(x). The link with Fig. 2.14 is now clear. In this figure one has — F (x1) € N¢(x1)
which is generated by the outwards normal vector to the right boundary of C. Also
Nc(x2) = {(00)7} and one has F(x3) = (00)7.If y = —M (x — ¢) for some ¢ and
positive definite symmetric M then one may use Proposition 2.37 to calculate the
solution x of the cone complementarity problem (2.24) as the projection of ¢ in the
metric defined by M on the cone C.

The link between the generalized equation (2.13) and the CCP is clear as well
from Proposition 2.51. Finally let us see how to relate Propositions 2.37 and 2.50.
Indeed one may easily deduce the following equivalences:

0<xLMx+g>0

¢
_Mx—quR'jr(x) (2.25)

—x —M~'qge M~ Ngn (x),
x =projy (R ; —M~'q)
where the second equivalence is obtained under the assumption that M = M7 > 0.

Since the projection operator is a single-valued Lipschitz continuous function, the
result follows.

2.3.4 Links with Variational Inequalities

Let us start with a simple remark about the generalized equation (2.13) when C is
convex. Using the definition of the normal cone in Definition 2.18, we may write
equivalently:

Find x € C such that: (F(x),y—x)>0 forallyeC (2.26)

which is a variational formulation of the generalized equation. In fact (2.26) is a
variational inequality (VI). In a more general setting, we have the following set of
equivalences which extends Proposition 2.37. Let ¢ () be a proper, convex lower

. . . . . A
semi-continuous function R” — R. Then for each y € R” there exists a unique x =
Py(y) € R" such that

(x —y,v—x)+¢@)—p(x) >0, forallveR". 2.27)

The mapping Py : R" — R" is called the proximation operator. It is single-valued,
non expansive and continuous. The next equivalences hold:



58 2 Mathematical Background

xeR" (Mx+4+q,v—x)+¢()—¢(x)=>0, forallveR”
(2
xeR" x=Psy(x —(Mx +q)) (2.28)

¢
xeR" Mx+qe—0¢(x).

The first formulation in (2.28) is called a VI of the second kind. Such variational
inequalities are met in the study of static circuits (i.e. circuits with resistors and
nonsmooth electronic devices) or in the study of the fixed points of dynamical cir-
cuits, see Addi et al. (2010). The link between (2.28) and (2.26) is done by setting
¢ (-) = Y¥c(-), the indicator function of C, and F(x) = Mx +q.

2.3.5 Links with Optimization

‘We have seen that there is a close link between inclusions into a normal cone (which
are a special case of generalized equations) and optimization one side, and a close
link between complementarity problems and inclusions into a normal cone on the
other side. See (2.10) and Sect. 2.3.3 respectively. Consequently, there must exist a
link between complementarity and optimization.

Let us consider the following optimization problem:

1
Minimize Q(x)=Cx + ExTDx

subjectto  Ax > b, (2.29)

x =0,

where D € R is symmetric (if it is not, replace it by D + DT without modify-
ing Q(x)). The so-called Karush-Kuhn-Tucker necessary conditions that have to be
satisfied by any solution of (2.29) are:

CT+Dx— ATy —u,
0<ylAx—-b2>0, (2.30)
O<ulx>0.

Defining & = (3), AT = (A7 1), b = (3), this may be rewritten more compactly as:

T AT
{C + Dx — ATy, 231)

0<ALAx—b>0.

This is under the f0~rrn of an MLCP, see (2.19). If the matrix D is invertible, one has
x=D"1—=CT + AT}) and we obtain:

0<ALAD Y (—=CcT + AT —b >0, (2.32)

that is an LCP with matrix M = AD~' AT and vector ¢ = —AD~'CT — b. Condi-
tions on A and D such that this LCP is well-posed may be studied.
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2.4 Mathematical Formalisms

This section provides a quick overview of the definition and the well-posedness of
various types of nonsmooth dynamical systems, and on the nature of their solutions
(usually the solutions are at most C°[R . ; R"], and they can contain jumps, or even
Dirac measures or higher degree distributions). In view of the fact that complemen-
tarity problems, generalized equations, inclusions into normal cones, variational in-
equalities, possess strong links, it will not come as a surprise that their dynamical
counterparts also are closely related. As we shall see later in this chapter and also
in Chap. 4, the models of electrical circuits do not necessarily exactly fit within
the mathematical formalisms below, in particular because in the simple circuits of
Chap. 1, no algebraic equality appears. In more complex circuits the dynamical
equations generation usually yields differential algebraic equations (DAE). Study-
ing such “simplified” models is however a first mandatory step. For a more complete
exposition of various nonsmooth models and formalisms we refer the reader to Part I
of Acary and Brogliato (2008).

To start with, let us provide a general definition of what one calls a differential
inclusion.

Definition 2.52 A differential inclusion may be defined by
x(t) € F(t,x(1), t€[0,T], x(0)=xo, (2.33)

where x : R — R” is a function of time ¢, x : R — R” is its time derivative, F :
R x R* — R" is a set-valued map which associates to any point x € R" and time
teRaset F(t,x) CR",and T > 0.

In general the inclusion will be satisfied almost everywhere on [0, T'], because
x(-) may not be differentiable for all t € [0, T']. If x(-) is absolutely continuous then
X (-) is defined up to a set of Lebesgue measure zero on [0, T']. In fact it happens that
there are several very different types of differential inclusions, depending on what
the sets F(x) look like.

Remark 2.53 One should not think that since the right-hand-side is multivalued then
necessarily a differential inclusion has several solutions starting from a unique ini-
tial xg. This depends a lot on the properties of F (¢, x), and many important classes
of differential inclusions enjoy the property of uniqueness of solutions.

Definition 2.52 implicitly assumes that the solutions possess a certain regularity,
for instance they are not discontinuous. When state jumps are present, one has to
enlarge this definition to so-called measure differential inclusions. We shall not give
a general definition of a measure differential inclusion (see Leine and van de Wouw
2008, Sect. 4.3 for this). In Sect. 2.4.1 important cases are presented. The literature
on each of the class of nonsmooth dynamical systems presented below, is vast. Not
all the references will be given, some classical or useful ones are provided, anyway.
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2.4.1 Moreau’s Sweeping Process, Measure Differential Inclusions

The sweeping process is a particular differential inclusion that has been introduced
by Moreau (1971, 1972, 1973, 1977) in the context of unilateral mechanics. It has
received considerable attention since then.

2.4.1.1 First Order Sweeping Process

The basic first order sweeping process as introduced by J.J. Moreau is a differential
inclusion of the form

—Xx(t) € Nc¢ry(x(t)), almost everywhere on [0, T], x(0) =x9 € C(0), (2.34)

where C : [0, T] — R" is a moving set. A function x : [0, T] — R" is a solution of
(2.34) if:

e x(1)eC(t)forallr €[0,T],
e x(-) is differentiable at almost every point t € (0, T),
e x(-) satisfies the inclusion (2.34) for almost every t € (0, T').

An important extension is the perturbed sweeping process:

—X(t) € Neay(x(t) + f(t,x(1)),
almost everywhere on [0, T'], x(0) € C(0). (2.35)

Remark 2.54 Why the name sweeping process? When x(t) € Int(C(t)), where Int
means the interior, then the normal cone Nc)(x(¢)) = {0,}, the zero vector of R".
The solution of (2.34) stays at rest, while the solution of (2.35) evolves according to
an ordinary differential equation. When x (¢) lies on the boundary of C(¢), then the
normal cone is not reduced to the zero vector, and the meaning of the inclusion is
that there exists an element of Nc () (x(¢)), call it y () € R”", such that the solution
x () does not quit C(-) in a right neighborhood of ¢. If C(-) is moving then x(-) has
the tendency to be swept by C(-). This is depicted in Fig. 2.15.

A basic existence and uniqueness of solutions result is the next one, that is sim-
plified from Edmond and Thibault (2005, Theorem 1). The notions of absolutely
continuous functions and sets may be found in Sect. A.1. Recall that L'([0,T],R)
is the set of Lebesgue integrable functions such that fab Il f(®)]dt < +oo for all
0<a<b<TT.

Theorem 2.55 Let C(t) be for each t a non empty with non empty interior closed
convex subset of R", which varies in an absolutely continuous way. Suppose that:

o For every n > 0 there exists a non negative function ky(-) € LY([0, T],R) such
that for all t € [0, T] and for any (x, y) € B[O, n] x B[O, n] one has: || f(¢t,x) —
FEDN< k@) llx =yl
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Ne (x(ty)) = {03

Clty)

Fig. 2.15 A moving convex set C(¢) (the normal cones are depicted with dashed lines)

e there exists a non negative function B(-) € L'([0, T1,R) such that for all t €
[0, T'] and for any x € Usepo,11C (s), one has || f(t, x)|| < B(#)(L + [[x]]).

Then for any xo € C(0) the perturbed sweeping process in (2.35) has a unique
absolutely continuous solution.

Uniqueness is to be understood in the class of absolutely continuous functions.
A quite similar result can be stated when C(-) is Lipschitz continuous in the Haus-
dorff distance. Then the solutions are Lipschitz continuous.* The next result is an
existence result in the case where C(¢) may jump, and consequently the state x (-)
may jump as well. One easily conceives that the inclusions in (2.34) and (2.35) have
to be rewritten because at the times when x (-) jumps, its derivative is a Dirac mea-
sure. Then one has to resort to measure differential inclusions to treat in a proper
way such systems. The relevant definitions can be found in Sects. A.3, A4, A.5
and A.6. The next theorem is a simplified version of Edmond and Thibault (2006,
Theorem 4.1).

Theorem 2.56 Let C(t) be for each t a non empty closed convex subset of R",
and let the set valued map C(-) be RCBV on [0, T15 Suppose there exists some non

“It is a fact that the solutions functional set is a copy of the multifunction C (¢) functional set.
3See Sect. A.4.



62 2 Mathematical Background

negative real B such that || f (¢, x)|| < B(1 + ||x||) for all (t,x) € [0, T] x R". Then
for any xog € C(0) the perturbed sweeping process

—dx € Ney(x(@) + f(t, x(@)dA,  x(0) = xo (2.36)

has at least one solution in the sense of Definition A.7.

The inclusion in (2.36) is a measure differential inclusion, see Sect. A.6 for an in-
troduction to such evolution problems. A is the Lebesgue measure (i.e. dX = dt), dx
is the differential measure associated with x(-). Roughly speaking, dx is the usual
derivative outside the instants of jump, and it is a Dirac measure at the discontinuity
times. This formalism may appear at first sight a mathematical fuss, however it is a
rigorous way to represent such dynamical systems and naturally leads to powerful
time-discretizations. In Edmond and Thibault (2006) it is considered a multivalued
perturbation term in (2.36). In Moreau (1977) the perturbation is zero (this is the
original version of the first order sweeping process) and uniqueness of solutions is
proved. In Brogliato and Thibault (2010) the uniqueness of solutions is proved for
both the absolutely continuous and the RCBV cases, when f (¢, x) = Ax +u(¢). For
an introduction to the sweeping process see Kunze and Monteiro Marques (2000).

2.4.1.2 Second Order Sweeping Process

The second order sweeping process has been developed for Lagrangian mechan-
ical systems subject to m unilateral constraints f;(g) > 0, 1 <i < m. However
since some electrical circuits may be recast into the Lagrangian formalism (see
Sect. 2.5.4), it is of interest to briefly recall it. The unilateral constraints define an
admissible domain of the configuration space: @ = {g e R" | fi(¢q) 20,1 <i <m},
where ¢ is the vector of generalized coordinates. In such systems the velocity may
be discontinuous at the impact times, and the post-impact velocity is calculated as
a function of the pre-impact one via a restitution law. Following similar steps as
for the above measure differential inclusions, we may define the differential mea-
sure associated with the generalized acceleration, denoted as dv, where v(-) is al-
most everywhere equal to the generalized velocity ¢(-). The original point is in the
right-hand-side of the inclusion. If the constraints are perfect (no friction), then the
contact reaction force R lies in the normal cone to @ at g: —R(t) € Ny (g (t)). One
would like, however, to go a step further: the measure differential inclusion should
encapsulate the restitution law at impact times (more exactly, it should encapsu-
late a particular restitution law, since the choice of restitution laws is a modeling
choice). J.J. Moreau has proposed to replace the inclusion —R(#) € Ng (¢(¢)) by the
inclusion:

—R(1) € N7y gy (w(2)) (2.37)
which is the normal cone at w(t) = %ﬁl’(ﬂ to the tangent cone to @ at g (),

and e € [0, 1] is a restitution coefficient. Let us now write the Lagrange measure
differential inclusion:

—M(q(t))dv + F(q@),v(tT),t)dt € Nty gy (w(r)) (2.38)
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where F(q(t), v(tT), t) accounts for the nonlinear and exogenous terms of the dy-
namics (Coriolis, centripetal forces, control inputs), and M(q) = MT (¢) is pos-
itive definite. In order to analyze the differential inclusion in (2.38) we will use
Proposition 2.37 and the material in Sects. A.5 and A.6. As we saw just above
for the first order sweeping process with discontinuous state, at an impact time
the velocity v(-) undergoes a discontinuity, and its differential measure is dv =
@) —v())8; + [0(t)]dt +dy, see (A.3) in Sect. A.3. One has dt({t}) =0 and
d&y({t}) = 0 because these two measures are non atomic. From the interpretation of
the inclusion of a measure in a convex cone we obtain:

v(T) + ev(t))

(2.39)

—M(@0))w) —v@) € NT¢(q(t))< I te

Since the right-hand-side is a cone, we may multiply the left-hand-side by any non
negative scalar and the inclusion remains true. Let us multiply it by ﬁ:

v — v ) Fev(T) —ev(tT)
—M(CI(I))< ( 1 ( )
+e
vt +ev(tT)
€ N7 (1)) (T) (2.40)
Using Proposition 2.37 we deduce that at an impact time ¢:
vt +ev) . -
Tt Proj gy (Te (g ()5 v(E 7)), (2.41)
+e
that is:
V() = —ev(t ™) + (1 + &projyy g ey To (@ (1) v 7)), (2.42)

which is a generalized formulation of the well-known Newton’s impact law between
two frictionless rigid bodies. The advantage of Moreau’s rule is that it provides in
one shot the whole post-impact velocity vector. Also it is based on a geometrical
analysis of the impact process which may serve as a basis for further investigations.
It can be shown that Moreau’s impact law is energetically consistent for e € [0, 1]
(i.e. the kinetic energy decreases at impacts), and it guarantees that the post-impact
velocity is admissible (i.e. it points inside @).

When ¢(t) € Int(®), then simple calculations show that Nz, 4 (1)) (w(?)) = {0,}
since Tg (¢ (t)) = R". Thus the differential inclusion (2.38) is the smooth Lagrange
dynamics. Notice that when ¢(¢) lies on the boundary of @, and if v(¢z™) belongs
to the interior of T (¢ (2)), then from (2.42) we get projM(q(,))(Tq; (g@®);v(@)) =
v(t7) and v(tT) = v(t7).

The well-posedness of the second order sweeping process has been studied
in Monteiro Marques (1985, 1993), Mabrouk (1998), Dzonou et al. (2007), and
Dzonou and Monteiro Marques (2007). The position ¢ (-) is absolutely continuous,
and the velocity v(-) is RCLBV. For non mathematical introductions to the La-
grangian sweeping process, see Acary and Brogliato (2008) and Brogliato (1999).
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Fig. 2.16 An RLC circuit L
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2.4.1.3 Higher Order Sweeping Process

The so-called higher-order sweeping process, defined and studied in Acary et al.
(2008), is an extension of the above measure differential inclusion in cases where
the solutions are not measures but distributions of larger degree. The interested
reader may have a look at Acary et al. (2008) or at Acary and Brogliato (2008,
Chaps. 5 and 11). Circuits with nonsmooth electronic devices may possess cur-
rents and/or voltages which are distributions (Dirac measure and its derivatives),
provided the current and/or voltage sources are controlled by internal variables. It
is known in circuits theory modeled by differential-algebraic equations (DAE) that
such internally-controlled sources may increase the index of the system. This is di-
rectly linked to the relative degree of the complementarity variables. Clearly in the
case of circuits made of dissipative elements, getting solutions that contain distribu-
tions of degree strictly larger than 2 (i.e. derivatives of Dirac measures) is possible
only with controlled sources. Let us provide an example, with the RLCD circuit de-
picted in Fig. 2.16. Let us assume that the voltage u(-) is a dynamic feedback of the
“output” the voltage across the diode, A(?):

u=»x+ Lxz,
x3(t) = x4(1), (2.43)
x4(t) = A(1).

Inserting this control input inside the circuit’s dynamics, one obtains:
x1(1) = x2(2),
. R 1
x2() = —fex2(t) — gex1(f) + x3(1),

x3(t) = x4(1),
x4(t) = A (1),
0< () Lw(t)=—x(1) >0.

This dynamics is written under the form of a linear complementarity system (see
(2.53) below). It is easily calculated that D = CB = CAB = 0 while CA%B =1,

(2.44)
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so that the relative degree between A and w is equal to 3. The dynamical system as
it is written in (2.44) is not complete, in the sense that one cannot perform its time-
integration without adding supplementary modeling informations. In fact, it is miss-
ing in (2.44) a state re-initialization rule which enables one to compute a state jump
when the admissible domain boundary x, = 0 is attained. In Acary et al. (2008)
a complete framework is proposed that enables one to give a rigorous meaning to
the dynamics in (2.44), together with a time-stepping method and some preliminary
convergence results. Such a dynamical system is then embedded into a differential
inclusion whose solutions are Schwartz’ distributions, and which is an extension
of (2.38). The state jumps are automatically taken into account in the formulation.
Then the system can be integrated in time and the domain {x € R* | x, < 0} is an
invariant subset of the state space.

To summarize, Moreau’s sweeping processes are particular differential in-
clusions into normal cones to moving sets. It was originally introduced in the
field of Mechanics. Electrical circuits with nonsmooth electronic devices have
recently been recast into sweeping processes, which facilitates their analysis.

2.4.2 Dynamical Variational Inequalities

Dynamical variational inequalities (DVI) are evolution problems of the form:

x(t) € dom(yp) forallt >0,
X+ fx@),t),v—x@))+ o) —ex@)) >0 forallveR",

for some convex, proper and lower semi-continuous function ¢ : R” — R. The DVI
in (2.45) may be named a VI of the second kind. Let us choose ¢(-) = ¥¢(-) for
some non empty, closed convex set C € R". Then we obtain:

x(t)eC for all t > 0,
x@®)+ fx@),t),v—x())>0 forallveC,

which is a DVI of the first kind. From (2.6) it easily follows that —x(z) — f(x(2), 1)
is a subgradient of ¢(-) at x(¢). We may therefore rewrite (2.45) equivalently as:

{ x(t) € dom(p) forallt >0,

(2.45)

(2.46)

. 2.47

5O + F(x(0),1) € —0p(x (1)), (247
which is a differential inclusion. If ¢ (-) = ¥¢(+), the indicator function of the set C,
then d¢(x) = N¢(x), the normal cone to C at x. Then the DVI (2.45) is an inclusion
into a normal cone. Suppose now that ¢(-) = ¥c(,x)(-), i.e. the set C may depend
on ¢t and x. Then we obtain:

{x(t) e C(t,x(1)) forall t > 0,

(x@) + f(x@),),v—x() >0 forallve C(t,x(1)), (2.48)
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which is a quasi DVI. Moreau’s sweeping process is one particular type of a QDVI
with C(x) = T () (the tangent cone to the admissible domain of the configuration
space), see (2.37) and (2.38). A well-known result for the existence and uniqueness
of solutions of DVIs is Kato’s Theorem (Kato 1968). Let us present one extension
of Kato’s theorem. Let us introduce the following class of differential inclusions,
where x (1) € R":

x(t)e —Ax@®)+ f(t,x(t)), ae.on(0,T),
{ 2(0) = xo. (2.49)

The following assumption is made:

Assumption 2.57 The following items hold:

(1) A() is a multivalued maximal monotone operator from R" into R", with do-
main dom(A), i.e., for all x € dom(A),y € dom(A) and all x' € A(x),y’ €
A(y), one has

&=y (x—y)=o. (2.50)

(i1) There exists L > 0 such that for all t € [0, T], for all x1,x; € R", one has

I f @, x1) = f(z, x|l < Lilxr —x2-
(iii) There exists a function @ (-) such that for all R > 0:

af
(D(R) = Sup{ H a1 ('a v) ‘ ” v ||$2((0,T);R")< R} < 400.
)

£L2((0,T);R?

The following is proved in Bastien and Schatzman (2002).

Proposition 2.58 Let Assumption 2.57 hold, and let xo € dom(A). Then the dif-
ferential inclusion (2.49) has a unique solution x : (0, T) — R”" that is Lipschitz
continuous with essentially bounded derivatives.

It suffices to recall that the subdifferential of a convex proper lower semi-
continuous function ¢(-) defines a maximal monotone mapping (see Theorem 2.34),
to conclude about the well-posedness of the DVI in (2.45) using Proposition 2.58.

2.4.3 Complementarity Dynamical Systems

Just as there are many kinds of complementarity problems, there are many kinds of
complementarity systems, i.e. systems that couple an ordinary differential equation
to a set of complementarity conditions between two slack variables. The circuits
whose dynamics are in (1.3), (1.16), and (1.38) are particular complementarity sys-
tems.
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2.4.3.1 Some Classes of Complementarity Systems

Let us give a very general complementarity formalism as follows:

Gx@®),x(t),t,A) =0,
{C*akLw(r)eC, (2.51)
Fx@),t,x, w())=0,

where C C R™ is a closed convex cone, C* is its dual cone, A € R”™ may be inter-
preted as a Lagrange multiplier, x(¢) € R", F(-) and G(-) are some functions. The
variables A and w form a pair of slack variables. Such a formalism is by far too gen-
eral to be analyzed efficiently (and to be subsequently simulated efficiently!). One
has to split the class of dynamical systems in (2.51) into more structured subclasses.
Some examples are given now.

Definition 2.59 (Dynamical Complementarity Systems) A dynamical complemen-
tarity system (DCS) in an explicit form is defined by:

x(t) = f(x(@),t, 1)),
{w(t) = h(x(1), A1), (2.52)
0<w() L) >0.

If the smooth dynamics and the input/output function are linear, we speak of
linear complementarity systems.

Definition 2.60 (Linear Complementarity Systems) A linear complementarity sys-
tem (LCS) is defined by:

xX()=Ax()+ BL(t),
{ w(t) =Cx(t) + DA(1), (2.53)
O0<w() L) =0.
When the functions F(-) and G(-) are linear and the cone C is a non negative
orthant one gets:

Definition 2.61 (Mixed Linear Complementarity Systems) A mixed linear com-
plementarity system (MLCS) is defined by:

Ex(t) = Ax(t) + BA(t) + F,
{ Muw(t) = Cx(t) + DA(t) + G, (2.54)
0 < w(t) LA) >0.

If both the matrices E and M are square full rank and £ = F' = 0, we are back to
an LCS as in (2.53). See for instance Example 7 in Brogliato (2003) for a system that
fits within MLCS. One may also call such systems descriptor variable complemen-
tarity systems. As shown in Brogliato (2003) many systems with piecewise-linear
characteristics may be recast into (2.54).

Remark 2.62 1t is not clear whether or not the variable x in (2.54) should be called
the state of the MLCS. Indeed if E is not full rank then some of the components of
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x do not vary and satisfy only an algebraic constraint. As such they cannot be called
a state variable. Some examples are given in Chap. 7, Sects. 7.2 and 7.3.

Definition 2.63 (Nonlinear Complementarity Systems) A nonlinear complementar-
ity system (NLCS) is defined by:

X(1) = fx@), 1) + g(x())A(D),
{w(t) = h(x(1), (1)), (2.55)
0<w() L) >0.

If g(x) = —Vh(x), one obtains so-called gradient type complementarity systems
which are defined as follows:

Definition 2.64 (Gradient Complementarity System) A gradient complementarity
system (GCS) is defined by:

x(1) + f(x(1) = Vg(x()A),
[ w(r) = g(x(1)), (2.56)
0 w() LAa@) =0.

The above complementarity systems are autonomous, without explicit depen-
dence on time. Obviously one may define non autonomous CS, with exogenous
inputs. For instance the non autonomous LCS dynamics is:

X(1) = Ax (1) + BA(t) + Eu(r),
{ w(t) = Cx(t) + DA(t) + Fu(r), (2.57)
0<w() LA >0.

More details on the definitions and the mathematical properties of CS can be
found in Camlibel et al. (2002b), Camlibel (2001), van der Schaft and Schumacher
(1998), Shen and Pang (2007), Heemels and Brogliato (2003), Brogliato (2003),
and Brogliato and Thibault (2010). Roughly speaking, a lot depends on the relative
degree between the two complementarity variables w and A. The relative degree is
the number of times one needs to differentiate the “output” w along the dynamics
in order to recover the “input” A. As an example let us consider the following scalar
LCS:

0< A Lwt)=x(t)=0.

Then w(t) = x(t) = A(t) so that the relative degree is r = 1. If now w(t) =
x(t) + A(t) then r = 0. Most of the results on existence and uniqueness of solutions
to complementarity systems hold for relative degrees O or 1, in which case only
measures appear in the dynamics. When r > 2 distributional solutions have to be
considered, see Acary et al. (2008) where such LCS are embedded into the higher
order sweeping process. The well-posedness of (2.57) has been shown in Camli-
bel et al. (2002b) when (A, B, C, D) defines a dissipative system (see Brogliato
et al. 2007 for a definition). Local existence and uniqueness results are presented in
van der Schaft and Schumacher (1998) for (2.55). Global existence and uniqueness
of RCLBYV (with state jumps) and absolutely continuous solutions is shown for LCS

{x(z) =x(t) + A, (2.58)
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(2.57) and NLCS (2.55) in Brogliato and Thibault (2010), under an “input-output”
constraint. In Acary et al. (2008) LCS with high relative degree have been embed-
ded into the so-called higher order sweeping process, that is a differential inclusion
whose solutions are distributions.®

In the field of electrical circuits, one shall often encounter systems of the type
(2.54) with a singular matrix E. From the material of Chap. 1 and the analysis of
the dynamics of the circuits in Fig. 1.10, one easily guesses that the dynamics in
(2.51) through (2.57) are not complete: a state reinitialization rule is missing (this
was already pointed out in (1.61)). See Sect. 2.4.3.2 for more details on jump rules
in a complementarity setting.

2.4.3.2 State Jump Laws

State jump rules are a well-known and widely studied topic in nonsmooth mechan-
ics, where they correspond to velocity discontinuities created by impacts between
rigid bodies. The realm of impact dynamics in nonsmooth mechanics is vast, and it
has its counterpart in nonsmooth circuits. It is apparent from most of the examples
which are analyzed in Chap. 1, that we may in a first instance write the dynamics of
the presented circuits as:

x(t) = Ax(t) + BA() + Eu(?),
w(t) = Cx(t) + DA(t) + Fu(t), (2.59)
0<w() LA@) =0

for some matrices A, B, C, D, E and F of appropriate dimensions. The state is x(¢),
the external excitation is u(¢) (it may be voltage sources or current sources). Let us
analyze intuitively the necessity for state jumps (see also the analysis we made for
the circuit in (1.16)). Suppose for instance that D = 0, and that w(¢) = 0 for some ¢.
Assume that at ¢, u(-) jumps from a value u(¢~) such that Cx(¢7) 4+ Fu(t™) =0
to a value u(¢t™) such that Cx(+7) + Fu(t™) < 0. In order to respect the model
dynamics the state has to jump to a value such that Cx(t*) + Fu(t™) > 0. If such
a right-limit does not exist, we may conclude that the model is not well-posed and
should be changed. The necessity for state jumps may also arise in some circuits
with ideal switches, from topology changes. When the switch is ON, the dynamics is
a certain differential-algebraic equation (DAE). When the switch is OFF, it becomes
another DAE. However the value of the state just before the switch, may not be
admissible initial data for the DAE just after the switch. It is well-known that a
DAE with inconsistent initial data, has a solution that may be a distribution (Dirac
and derivatives of Dirac).

State jumps have been introduced in Sect. 1.1.5 for the circuit in Fig. 1.10. There
the numerical method in (1.17) suggested the jump law in (1.20) (equivalently (1.26)
and (1.27)). In particular the form (1.27) is a quadratic program, hence an attractive

%This seems to be the very first instance of a distribution differential inclusion, with a complete
analysis and a numerical scheme.
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formulation from a numerical point of view. Before stating the state jump law pre-
sented in Frasca et al. (2007, 2008) and Heemels et al. (2003) (below the formulation
is different from the one in these papers, and rather follows from convex analysis
arguments as in Brogliato and Thibault (2010, Remark 2), we need some prepara-
tory material. The quadruple (A, B, C, D) is said to be passive if the linear matrix
inequality:

<—ATP +PA —-PB+CT

> =prT
_BTP1C D+ DT >/0 and P=P" >0 (2.60)

has a solution P. The quadratic function V (x) = %xTPx is then a so-called storage
function of the system x(¢) = Ax(¢t) + BA(¢t), w(t) = Cx(¢t) + DA (¢), with supply
rate (A, w) = AT w. The linear matrix inequality in (2.60) is then equivalent to the
dissipation inequality:

t
Vx()) —V(x()) < / w(w(s), A(s))ds foranyt>0. (2.61)
0

Let us define the set K = {z € R" | Cz + Fu(t*) € Qp}, with Op = {z e R" |
2>0,Dz>0,zI Dz =0). 07 and K* are their dual cones. If D =0 then Qp =
RY = Q%

+ D

Proposition 2.65 Let us consider the LCS in (2.59), and suppose that (A, B, C, D)
is passive with storage function V (x) = %xTPx, P = PT > 0. Suppose a jump
occurs in x(-) at time t, so that x(tT) = x(t7) + Bp; where A = p;8;. Suppose
that F and C are such that Fu(t) € QE + Im(C). For any x(t™) there is a unique
solution to:

+ 1 — T _
x(t )=argm1n§(x—x(t )" P(x—x(1")) (2.62)

xeK

that is equivalent to:
P(x(tT) —x(t7)) e =Nk (x(th)) (2.63)
and to
K>x(tT) LP(x(tT) —x(t7)) e K*. (2.64)

Then the post-jump state x(tT) is consistent with the complementarity system’s dy-
namics on the right of t.

The equivalences are a consequence of Propositions 2.37 and 2.51. The condition
Fu(t) € O}, +Im(C) is a sort of constraint qualification condition, which guaran-
tees that the LCP O < A L Cx + Fu + DA > 0 has a solution (see Sect. 5.2.2 for a
similar condition, stated in a different context). Notice that we have implicitly as-
sumed that A is a measure, which indeed is the case. Recall also that the LCS in
(2.59) can be interpreted, by splitting y into its components satisfying w; (t™) > 0
and those satisfying w;(t*) = 0, as a DAE. Such a DAE corresponds to what one
may call a mode of the system. Consistency of x(¢) means consistency with re-
spect to this DAE. In other words, the state jump rule does not only have a physical



2.4 Mathematical Formalisms 71

motivation but also guarantees that the system is coherent once x (-) has jumped to a
new value, in the sense that there is a unique mode of the LCS such that the resulting
DAE has x (¢ 1) as its consistent initial state.

We note that BT PBp, = BT P(x(tT) — x(t7)). If B € R™™ has full rank m
(which in particular implies that m < n) then the multiplier magnitude at ¢ is given
uniquely by p; = (BT PB) " 'BT P(x(tT) — x(t7)).

Remark 2.66 This way of modeling and formulating state jump rules for electrical
circuits with nonsmooth electronic devices, is inspired from J.J. Moreau’s frame-
work of unilateral mechanics, see Sect. 2.4.1 and e.g. Brogliato (1999, pp. 199-200).
Notice that (2.63) means that x (¢ ") is the projection of x(¢~) onto K in the metric
defined by the matrix P. Compare with (2.42) with e = 0. In Frasca et al. (2008) the
state jumps in electrical circuits are given a physical meaning in terms of charge/flux
conservation. It is noteworthy that Proposition 2.65 does not apply to the controlled
circuit (2.44) which has to be embedded into the higher order sweeping process.

Let D have full rank m. Then Qp = {0}, O}, =R", K =R" and K* = {0}.
Therefore from Proposition 2.65 x(t*) = x(¢7): there is no state jumps, and the
trajectories are continuous functions of time. This is quite consistent with the ob-
servation that when D is a P-matrix, then the complementarity conditions of the
LCS define an LCP that has a unique solution A* whatever u(¢) and x (). Moreover
this A* is a Lipschitz function of u and x. Consequently the LCS in (2.57) is an
ordinary differential equation with a Lipschitz continuous right-hand-side, and with
C!(R*; R") solutions.

When D =0, then one has Op =R%, 0}, =0}, K ={zeR" | Cz +
Fu(t™) > 0}. Then a state jump may occur depending on the value of u(t") (see
Sect. 5.2 for further comments on state jumps).

Complementarity dynamical systems constitute a large class of nonsmooth
systems. Existence and uniqueness of global solutions have been shown in
particular cases only. Simple electrical circuits with nonsmooth electronic
devices like ideal diodes are modeled with linear complementarity systems.
They undergo state jumps which may be justified from physical energetical
arguments, similarly to restitution laws of mechanics.

2.4.3.3 Examples

Let us end this section on complementarity dynamical systems by providing fur-
ther illustrating examples (several examples have already been presented in the
foregoing chapter). Let us consider the electrical circuit in Fig. 2.17 that is com-
posed of two resistors R with voltage/current law u(¢) = Ri(t), four capacitors
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Fig. 2.17 Electrical circuit i
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Fig. 2.18 A 4-diode bridge wave rectifier
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C with voltage/current law Cu(t) = i(t), and two ideal diodes with characteris-
tics 0 < vi(r) Lij(r) >0 and 0 < va(¢) L i3(t) > O respectively. The state vari-
ables are x1 (1) = [y i1(t)dt, x2(t) = [y i2(t)dt, x3(1) = v2 (1), and A1 (1) = —i3(1),
A2(t) =v1(1).
The dynamics of this circuit is given by:
i1(t) O\ /x10) 0
X)) | = L x@ )+ (1) A1),
x1(1)
ogmuw(t):( 9 é) <x2(z))+<8 8)1(:)20.
RC x3(7) R
The matrices A, B, C and D in (2.53) are easily identified. It is noteworthy that
the feedthrough matrix D is positive semi-definite only.
Let us consider the four-diode bridge wave rectifier in Fig. 2.18, with a capacitor
C > 0, an inductor L > 0, a resistor R > 0. Its dynamics is given by:
: o —1 1 1
a0 [0 —e|[no] [0 0 =& ¢,
0] [L 0 Jlen] o0 0 0 (2.66)
O<w() La@) =0,
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. . . T . .
where x; = v, xp =iL, A= (—vpr1 — vpr2ipr1ipr2)' .,y =(ipriipF2 —
T
UpF1 — Upgz2)® and

0 0 E x -1 0
0 0 X1 11 0 —1
— R R A. 2.67
el IS [x2]+ 1 0 0 0 267
10 01 0 0

Notice that in this example the dimension of the state vector is 2 while the dimension
of the LCP variables is 4 (in a Systems and Control language, the “input” has a larger
dimension than the state). The matrix D is a full rank, positive semi-definite matrix.
As a second example of a diode bridge, let us consider the circuit obtained from the
circuit of Fig. 2.18 by dropping the capacitor and the inductance outside the bridge,
and adding a capacitor C in parallel with the resistor inside the bridge. The state x
is the voltage across the capacitor. We assume that each diode has a current/voltage
law of the form V; € —d¢i (i), k =1, 2, 3, 4, for some convex, proper lower semi-
continuous functions ¢ (-). The material of Sect. 2.3.3 together with Example 2.26
should help the reader to find that if @i(-) = ¥ (-) for some convex set K, then
the diode k possesses a complementarity formulation of its current/voltage law. The
dynamics of this circuit is given by:

. 1
x(t):—ﬁx(t)—i—(% 0 & 0)r@),

1 0 -1 0 O 2.68)
0 1 0 1 -1
0 0O 1 0 O

with wy = Vpgr1, w2 = ipr2, w3 = Vpr1, wy = Vpre, and A = (ipr1 Vpr2
ipri ipr2)T. The matrix D has rank 2, it is positive semi-definite since it is skew
symmetric.

These three examples show that electrical circuits may yield LCS as in (2.53)
with matrices D that may be positive semi-definite with full rank, skew sym-
metric, or positive semi-definite with low rank. The fact that the D matrix,
which is the system’s LCP matrix, may be non symmetric, is a strong feature
of electrical circuits with ideal diodes.

In Chap. 7 we will study other examples that yield MLCS as in (2.54).

2.4.4 Filippov’s Inclusions

Filippov’s inclusions are closely linked to so-called variable structure systems, or
switching systems. The study of such systems started in the fifties in the former
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USSR, and is still a very active field of research in control theory, because of the
efficiency of sliding mode controllers (Yu and Kaynak 2009; Utkin et al. 2009). Let
us start from a switching system of the form:

() =Aix(t)+a;@t) ifx@) ey, i, x(0)=xeR" (2.69)

for constant matrices A; and time-functions a; (¢), and a partitioning of R” in poly-
hedral sets y; is defined:

(i) the sets x; are finitely represented as x; = {x e R" | C;x + D; > 0}, C; €
R™Mixn Di ERm’XI
(i) UL, xi =R",
(iii) foralli # j, (xi \ 9xi) N (x; \ 9x;) =9,
(iv) the sets x; have an nonempty interior.

Conditions (iii) and (iv) imply that x; N Int(x;) =@ for all i # j. We denote
the set of indices of the partition as .#], i.e. the set of polyhedra is {x;}ic.#, . Ob-
viously .#; may be finite, or infinite. The properties (ii) and (iii) mean that the
polyhedral sets y; cover R”, and their interiors are disjoint: only their boundary
may be common with the boundary of other sets. The dynamics in (2.69) defines a
polyhedral switching affine system. We may write compactly the system (2.69) as
x(t) = f(x(¢), t) for some function f (-, -) that is constructed from the vector fields
fi(x,t) = Ajx 4+ a;(¢). It is clear that unless some conditions are imposed on the
boundaries dy;, the vector field f(-, ) is discontinuous on dy;. The simplest ex-
ample is when f;(x) = a;, fj(x) =aj, i # j, and a; # a;. Then three situations
may occur when a solution reaches a boundary between two cells x; and x;: (i) the
trajectory crosses the switching surface 0 x; (that coincides with 0 x; at the consid-
ered point in the state space), (ii) the trajectory remains on the boundary and then
evolves on it (this is called a sliding motion, (iii) there are several possible future
trajectories: one that stays on the boundary, and others that leave it (this is called a
spontaneous jump in the solution derivative).

2.4.4.1 Simple Examples

The simplest cases that enable one to clearly see this are the scalar switching sys-
tems:

. 1 if 0,
HO=g0+1_ s, (2.70)
. —1 if 0,
=g+, ;fijo Q2.71)
. 1 if 0,
=g+, ;fijo (2.72)

with x(0) € R and |g(?)| < % for all ¢ > 0, where g(-) is a continuous function of

time (for instance g(r) = %sin(t)). In (2.70)-(2.72) we intentionally ignored the
value of the discontinuous vector field f(x, t) at x = 0. It is easy to see that:
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e In case (2.70) all trajectories with x(0) 7% 0 converge (in finite time) to the “sur-
face” x =0.

e Incase (2.71) all trajectories starting with x (0) < O diverge to —oo, all trajectories
with x(0) > 0 diverge to +o0.

e In case (2.72) all trajectories starting with x(0) < 0 reach x = 0 in finite time; all
trajectories starting with x(0) > 0 diverge to 4-o00.

In all three cases we are not yet able to determine what happens on the “surface”
x = 0. The solution proposed by Filippov is to embed these systems into a class
of differential inclusions, whose right-hand-side is the closed convex hull of the
vector fields at a discontinuity, disregarding the value (if any) of the vector fields on
surfaces of zero measure in the state space. This gives for the three above cases:

1 if x <0,

(1) ef{g)} + { ~1 if x > 0, 2.73)
[—1,1] ifx=0,
1 if x <0,

%) e {g()} + { 1 if x > 0, (2.74)
[—1,1] ifx=0,

() =1+g@®) (2.75)

with x(0) € R. Some comments arise:

e Since Filippov ignores values on sets of measure zero, one can in particular as-
sign any value to the vector field on x = 0 in (2.70), (2.71) or (2.72): this does
not change the right-hand-sides of the differential inclusions in (2.73), (2.74) or
(2.75);
e Letus write (2.70)—(2.72) as x(t) = g(t) + h(x(¢)). Suppose we assign the value
h(0) = a to the vector field in the above three systems in (2.70), (2.71) and (2.72).
Then:
— the three systems have a fixed point at x = 0 if and only if g(#) = —a for all ¢;
— if x(0) =0, then (2.70) has a solution on R" if and only if g(¢) = —a; this
solution is x (¢) = 0. Otherwise the system can not be given a solution, because
if at some ¢ one has x(#) = 0, then x(f) # 0 so that the trajectory has to leave
the origin. However the vector field outside x = 0 tends to immediately push
again the solution to x = 0: a contradiction. We conclude that the trajectories
that start with x(0) # O exist until they reach x = 0, and not after;

— if x(0) = 0, then (2.71) has a unique global in time solution that diverges
asymptotically either to +o00 or —oo depending on the sign of g(0) 4 a; (2.72)
also has a unique solution that diverges to +oo.

Consider now the three Filippov’s systems in (2.73), (2.74) and (2.75). Then:

e x =0 is a fixed point of (2.73) and (2.74). However (2.75) has no fixed point
exceptif g(t) = —1;

o the trajectories of (2.73) with x(0) # 0 reach x = 0 in a finite time ¢*, and then
stay on the “surface” x = 0; this is due to the fact that on the switching surface
x =0, there is always one element of the multivalued part of the right-hand-side,
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i.e. [—1, 1], that is able to compensate for g(¢) and to guarantee that x(r) =0
for all r > t*; the origin x = 0 is an attractive surface called a sliding surface
(the name surface is here not quite appropriate, but will be in higher dimensional
systems).

o the differential inclusion in (2.74) has at least three solutions starting from x (0) =
0: x() =0, x(t) =1t + folg(s)ds and x(¢) = —t + fég(s)ds. A spontaneous
jump exists. Actually for all 7 > 0 the functions x(¢) = 0 for ¢ € [0, T'], and
x(t)=t—T+ [;g(s)dsfort >T orx(t)=—t — T + [; g(s)ds fort > T are
solutions.

The conclusion to be drawn from these simple examples is that embedding
switching systems into Filippov’s inclusions, may drastically modify their dynam-
ics. This is a modeling step whose choice has to be carefully made from physical
considerations.

2.4.4.2 Filippov’s Sets

The general definition of a Filippov’s set, starting from a general bounded vector
field f(x) (with possible points of discontinuity) is as follows:

F)y=( () ©nvf((x+eBy)\N) (2.76)

e>0u(N)=0
where B, is the unit ball of R”, u is the Lebesgue measure and conv(vy, vy, ..., v,)
denotes the closed convex hull of the vectors vy, va, ..., v,. Let us provide some

insight on (2.76):

e by construction F(x) is always non empty, closed and convex for each x;’

e let x € R". One considers the convex hull of all the values of f(z), with z €
x +€B, and e — 0. If f(-) is continuous at x then there is only one such values
that is nothing else but f(x), and F(x) = {f(x)}. If f(-) is discontinuous at x
then all the different values that it takes in a neighborhood of x are taken into
account;

o the definition of the set in (2.76) disregards what happens on subspaces of mea-
sure zero in R”, denoted as N in (2.76). In R?, it ignores the “isolated” values the
vector field f(x) may take on planes, lines, points. For instance in (2.70) one may
assign any value of the right-hand-side at x = 0, without changing its Filippov’s
set in (2.73). Similarly for the other two systems;

e as alluded to above, embedding switching systems into Filippov’s inclusions is a
particular choice; other notions exist, see Cortés (2008) for an introduction.

e in practice the computation of a solution in the sense of Filippov may not always
be easy, because it may boil down to calculate the intersection between a hyper-
surface and a polyhedral set. This is particularly true when switching attractive
surfaces with co-dimension larger than 2 exist.

7The boundedness of f(x) is essential here.
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Starting from (2.76), the Filippov’s differential inclusion is:
() e F(x(1)), x(0)=x0eR". (2.77)

When particularized to the switching systems in (2.69), one obtains for x € ¥ 2
Xiy N Xiy Mo N xip With iy #Eip # - F g

F(x) =conv(A; x +a;, Ai,x +aiy, ..., Ajx +a;,) (2.78)

and one disregards the possible values on X' which is of codimension k& > 0 and
therefore of measure zero in R”. The set F(x) in (2.78) is a polyhedral set of R": a
segment if k =2, a triangle if k =3, etc.

2.4.4.3 Existence of Absolutely Continuous Solutions

It happens that a differential inclusion whose right-hand-side is a Filippov’s set,
always possesses at least one solution that is absolutely continuous. Before stating
the result let us provide a definition.

Definition 2.67 (Outer semi-continuous differential inclusions) A differential in-
clusion is said to be outer semi-continuous if the set-valued map F : R — R”
satisfies the following conditions:

1. it is closed and convex for all x € R";
2. it is outer semi-continuous, i.e. for every open set M containing F(x),x € R,
there exists a neighborhood £2 of x such that F(£2) C M.

Filippov’s sets satisfy such requirements when the discontinuous vector field f(-)
is bounded, and the next Lemma applies to Filippov’s differential inclusions.

Lemma 2.68 Let F(x) satisfy the conditions of Definition 2.67, and in addition
IFx)] <c(l+ |x|) for some ¢ > 0 and all x € R". Then there is an absolutely
continuous solution to the differential inclusion x(t) € F(x(t)) on R, for every
X0 € R".

This result extends to time-varying inclusions F (¢, x) (Theorem 5.1 in Deimling
1992). The notation || F(x)|| < c¢(l + ||x||) means that for all £ € F(x) one has
€] < c(1+ ||x|]): this is a linear growth condition. In view of (2.78) a solution has
to satisfy the differential equation

k
i) = Za,- J(Anx(0) +ai), (2.79)

j=1

for some o;; € (0, 1) with le‘:l a;, =1
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2.4.4.4 Uniqueness of Solutions

The uniqueness of solutions is a more tricky issue than the existence one, as in gen-
eral it is not guaranteed by the Filippov’s set. Example (2.74) shows that even in very
simple cases uniqueness may fail. In order to obtain the uniqueness property one has
to impose more on the set-valued mapping F(-). The maximal monotone property
can be used to guarantee the uniqueness of the solutions, see Proposition 2.58. It is
easy to check that the system in (2.73) fits within the framework of Proposition 2.58,
whereas the system in (2.74) does not.

When the switching surface is of codimension 1 (said otherwise: there is only one
differentiable switching surface), then the following criterion that is due to Filippov
(1964, 1988), assures the uniqueness of solutions.

Proposition 2.69 Let us consider the polyhedral switching system in (2.69) with two
cells x1 and xo with a common boundary dx1 = 0 x> denoted as X. Let us denote
[ R" - R”" its discontinuous piecewise-linear vector field. If, for each x € X,
either fy,(x) = A1x +ay points into x2, or fy,(x) = Axx + ay points into x1, then
there exists a unique Filippov’s solution for any x(0) € R".

The proposition says that if the switching surface X is attractive, or if it is cross-
ing, then the differential inclusion constructed with the Filippov’s set (2.76) enjoys
the uniqueness of solutions property, within the set of absolutely continuous func-
tions. When X is attractive then the solution slides along it (a sliding motion), in the
other case it justs crosses X.

Notice that if the convex combination in (2.79) is unique so is the solution. The
point is that when the discontinuity surface is of codimension larger than 2, the
conditions of Proposition 2.69 are no longer sufficient to guarantee the uniqueness
of such a convex combination.

Example 2.70 This example is taken from Johansson (2003). We consider the fol-
lowing piecewise-linear system:

x1(1) = x2(2) — sgn(x1 (1)),
{ X2(1) = x3(1) — sgn(x2(1)), (2.80)

x3(1) = =2x1 (1) — 4x2(t) — 4x3(1) — x3(¢) sgn(x2(r)) sgn(xy (1) + 1),
where sgn(-) is here just the discontinuous single valued sign function. This switch-
ing system has four cells y;. The surfaces ¥ = {x € R3 [ x1 =0, x| <1}, X =
{x eR3|x2 =0, |x3] <1}, and the line X ={x e R? | x; =0,x2 =0, |x3] < 1}
are attractive. Therefore the Filippov solutions slide on these surfaces once they at-
tain them. Both X' and X, are of codimension 1 so that Proposition 2.69 applies.
However X5 is of codimension 2. It can be checked that the following two sets of
coefficients:

1 4 sgn(x3) 1+ x3 X3 1
a=T =5 a3——7+0l1, W= o

and

B1 =, B2 =ai, B3 =y, Ba =3,
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both define differential equations as in (2.79) whose solution is a solution of the
Filippov’s inclusion for (2.80).

There exists a more general property than monotonicity which guarantees the
uniqueness of solutions: the one-sided-Lipschitz-continuity. This property, that is
useful to show uniqueness of solutions, was introduced for stiff ordinary differential
equations by Dekker and Verwer (1984) and Butcher (1987), and for differential in-
clusions in Kastner-Maresch (1990-1991) and Dontchev and Lempio (1992). It was
already used by Filippov to prove the uniqueness of solutions for ordinary differen-
tial equations with discontinuous right-hand-side Filippov (1964). Let us provide a
definition that may be found in Dontchev and Farkhi (1998).

Definition 2.71 The set valued map F : R” — 28"\ f where F (¢, x) is compact for
all x € R" and all ¢ > 0, is called one-sided Lipschitz continuous (OSLC) if there
is an integrable function L : R™ — R such that for every xi, x, € R", for every
y1 € F(t, x1), there exists y, € F (¢, xp) such that

(x1 — x2, y1 — y2) < L()||x1 — x2|.

It is called uniformly one-sided Lipschitz continuous (UOSLC) if this holds for all
v € F(t,x2).

It is noteworthy that L(-) may be constant, time-varying, positive, negative, or
zero. We recall that here (-, -) simply means the inner product in R”, but the OSLC
condition may also be formulated for other inner products.

Example 2.72 All set-valued mappings that may be written as F'(¢,x) = f(¢,x) —
@(x), with ¢ : R” — R" are multivalued monotone mappings, and f (¢, x) is Lips-
chitz continuous, are UOSLC. The OSLC constant L is equal to max(0, 1), where
A is the Lipschitz constant of the function f(, -).

Example 2.73 Consider F(x) = sgn(x), the set-valued sign function. For all x1, x2,
and y; € F(x1), y2 € F(x2), one has (x; — x2, y1 — y2) = 0. Therefore the multi-
function — F (-) satisfies (x; —x3, —y1 + y2) < 0 and is UOSLC with constant L =0
(this is consistent with Example 2.72 with ¢ (x) = d|x|). However F(-) is not OSLC,
hence not UOSLC. Indeed take x; > 0, x5 < 0, so that y; =1, y, = —1. We get
(x1 —x2)(y1 — y2) =2(x1 — x2) > 0. OSLC implies that 2(x; — x2) < L(x] — x2)?
for some L. A negative L is impossible, and a nonnegative L yields L > ﬁ As
X1 — x2 approaches 0, L diverges to infinity.

As shown in Cortés (2008), the one-sided-Lipschitz-continuity cannot be satis-
fied by discontinuous vector fields as in (2.69), with L > 0. However a maximal
monotone mapping F(-) necessarily has its opposite —F (-) that is UOSLC with
L = 0. The next result holds.

Lemma 2.74 Let F(-,-) be UOSLC with constant L, and let x1 : [ty, +00) — R",
x3 @ [tg, +00) — R" be two absolutely continuous solutions of the DI. x(t) €
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F(t,x(t)), ie. x1(t) € F(t,x1(t)) and x,(t) € F(t,x2(t)) almost everywhere on
[tg, +00). Then

llx1(2) = x2(6)|| < exp(L(r —10)) ||x1(20) — x2(70)l (2.81)

for all t > ty. In particular, the differential inclusion: x(t) € F(t,x(t)) enjoys the
uniqueness of solutions property.

When particularized to maximal monotone mappings one has to consider inclu-
sions of the form x(t) € — F (¢, x(t)) (see (2.49) and Proposition 2.58).

2.4.4.5 Detection of the Sliding Modes

Let us consider the switching system in (2.69). It is of interest to propose a criterion
for the detection of the attractive surfaces. First of all notice that a sliding mode may
occur if the (discontinuous) vector field points towards the switching surface on both
sides of it: this is called a first-order (or regular) sliding mode. But it may also occur
if it is tangent to the switching surface on both sides of it, while its time derivatives
still both point towards the switching surface: this is called a second-order sliding
mode. And so on for higher order sliding modes.

To start with let us assume that the boundary X;; between the two cells x; and
Xj» is included into the subspace {x e R"| ch + d;j = 0}. Suppose also that the

polyhedron x; is such that c X+ dij 20 for all x € x; (and consequently c X+
dij <0 forall x € x;). Then the set:

,,—{er‘l,|c (Ax+a,)<0andc (Ajx+aj)>0} (2.82)

is a first-order (or regular) sliding set for the switching system (2.69) on ;. If at
some point x € X;; one has cT(A iX +a;) =c; (A ix +aj) =0 while —zc”x(t) =
c < 0in x; and d x(t) > 01in x; (in other words cT (A2x + Aja;) <0 and

T(A X+ Ajaj) > 0) then a second-order sliding mode occurs. It is possible to
constmct a hnear programme to calculate the points inside a regular sliding set as
follows (Johansson 2003):

(x*, €*) = argmine

C; D; 0
Cj D;
. J J 0
subject to: T X+ T
—Cl-in ija €
T'p. , €
cijAj Cijaj

If €* > 0 then the switching system has a non empty regular sliding set on S;;.
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2.4.5 Maximal Monotone Inclusions, Unilateral Differential
Inclusions

Maximal monotone differential inclusions are essentially differential inclusions as
in (2.49). They are not “standard” differential inclusions, because their right-hand-
side may not be a compact subset of R"”. The most typical example is when the
right-hand-side is a normal cone to a convex non empty set. In view of the material
of Sect. 2.4.2 we will not investigate more such differential inclusions.

Remark 2.75 (Relay systems) A popular class of discontinuous systems in the Sys-
tems and Control research community, is made of so-called relay systems. Their
well-posedness has been investigated in several papers, see e.g. Lootsma et al.
(1999), Lin and Wang (2002) and Acary and Brogliato (2010). Relay systems are as
follows:

X(1) = Ax(t) + Bu(t),
y(@) =Cx(t) + Du(r), (2.83)
u(t) € —Sgn(y(1)),

where Sgn(y) = (sgn(y1)sgn(y2) - --sgn(y,))T, sgn(-) is the sign multifunction,
x() e R", u(t) € R™, y(¢t) € R™. Such discontinuous systems may belong to the
class of Filippov’s differential inclusions, or maximal monotone differential inclu-
sions, and can also be rewritten into a complementarity systems formalism. Some
subclasses of relay systems are Filippov’s inclusions (see for instance the simple
example (2.73) and replace g(¢) by a linear term Ax(¢)), and other subclasses are
of the maximal monotone type with a right-hand-side that is not necessarily a Filip-
pov’s set (see Acary and Brogliato 2010). This last result may come as a surprising
fact because the right-hand-side of relay systems contains the multivalued sign func-
tion, that is a common ingredient in simple Filippov (and sliding mode) systems. It
is however easily checked that the system:

x(1) € —CT Sgn(Cx (1)) (2.84)

with C = (] 7"). Sgn(z) = (sgn(z1.....sgn(z,))” for any vector z € R", has a
maximal monotone right-hand-side x — C” Sgn(Cx). However the set CT Sgn(Cx)
may strictly contain the Filippov’s set of the associated discontinuous vector field
at x = 0, that is the closed convex hull of the vectors (2,0)7, (0,2)7, (0, —2)7,
(—2,0)T. This indicates that the Filippov framework for embedding switching sys-
tems may not always be the most suitable framework.

In Lootsma et al. (1999) and Lin and Wang (2002) the uniqueness of continu-
ous, piecewise-analytic solutions is proved, relying on complementarity arguments.
In Acary and Brogliato (2010) relay systems are recast into differential inclusions
(2.49) and the well-posedness is shown via Proposition 2.58.
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2.4.6 Equivalences Between the Formalisms

We have seen in Sects. 2.3.3, 2.3.4 and 2.3.5 the close link between generalized
equations, complementarity problems, and variational inequalities. Quite naturally
similar relations exist between their dynamical counterparts. In Sect. 2.4.2 the link
between dynamical variational inequalities and differential inclusions into normal
cones is established, see (2.47). To start with let us consider the DVI in (2.45), with
¢(-) = ¥c(-) (the indicator function of C) for some non empty closed convex set C.
Then the DVI is equivalent to (2.46) and using (2.24) it is easy to obtain that it is
also equivalent to the complementarity system:

X(t) == f(x(@), 1) + A1),
{ C3x(t) LA(r) eC*. (2.85)

As another example we may consider the differential inclusion in (2.73). As seen
in Sect. 2.4.4 this is a Filippov differential inclusion. This is also a differential in-
clusion of the type (2.49) whose set-valued right-hand-side is a maximal monotone
operator x — sgn(x), where sgn(-) is the multivalued sign function. We also have
the following for two reals y and z:

Al — A2

2 b
O M L—z+1z]20,
0<ry Lz+|z| =0.

yesgn(z) & y=
(2.86)
A+ Ay =2, {

Indeed let z > 0, then A =0 and A; > 0 so that Ay =2 and y = 1. Let z < 0, then
A =0and A» >20sothat A\ =2 and y =—1. Let z=0, then A; > 0 and X, > 0.
Since Ay =2—Aywegety=1—Azsoy << 1.Similarly A, =2—Xjand y =] — 1
so y > —1. Finally when z = 0 we obtain that y € [—1, 1]. The complementarity
conditions in (2.86) do represent the multivalued sign function. One may therefore
rewrite in an equivalent way the differential inclusion (2.73) as:

i) = —HF2,

A+ =2,

0<hy L =x(1) +1x(1)] >0,
0< g L) +1x(n)] >0,

which is a complementarity system that may be recast into (2.51). Still there exists
another formalism (Camlibel 2001):

(2.87)

x(t)=1-=2Aq, 5 88
- 0 1y(% s (2.88)
0< (V) + (50 LG =0

This complementarity system belongs to the class in (2.54) with E and M iden-
tity matrices of appropriate dimensions, F =1, G = ((1)) It may also be recast into
(2.57) choosing u(t) = 1. Let us continue with another mathematical formalism for
(2.73). We know from Example 2.25 that the subdifferential of the absolute value
function x € R — |x|, is the sign multifunction. We can therefore use (2.47) and its
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equivalent form in (2.45) to rewrite equivalently (2.73) as the dynamical variational
inequality:

{ x(t) eR forallt >0, (2.89)

(D), v —x(1)) — v+ |x(®)] =0 forallveR.

Let us provide the detailed proof of the fact that the multivalued relay function
may be rewritten as a variational inequality. The variational inequality formalism of
y € —sgn(x) is: x € R and

(y,v—x)+|v]|—|x| =20 forallvelR.
Indeed:

e x =0:weget(y,v)+|v|] =>0forall v,ie. ye[—1,+1],

e x >0:weget(y,v—x)+|v] —x >0 forall v. Take v =0: (y, —x) —x >0 1i.e.
x(y + 1) =0 which implies y = —1.

e x <0:weget(y,v—x)+|v]—x >0 forall v. Take v=0: (y, —x) +x > 0 i.e.
x(y — 1) =0 which implies y = 1.

The sign multifunction, also called the relay multifunction, is maximal mono-
tone, it is a Filippov’s set, and it can be represented through various comple-
mentarity relations or with variational inequalities of the second kind.

This however does not contradict the comments in Remark 2.75 that circuits with
relay functions may not always be Filippov’s inclusions, because a lot depends then
on the matrices A, B, C, D. Let us finally notice that using Examples 2.11, 2.25,
2.26, and finally (2.9), one infers that the following holds:

yesgn(x) <& xeN_1,n(). (2.90)

Let us now consider the LCS in (2.59). Let us assume that D = 0, and that there
exists a matrix P = PT > 0 such that

PB=cCT. (2.91)

This may be a consequence of the LMI in (2.60) (see Sect. AS in Brogliato et al.
2007). Let us make the state space variable change z = Rx, where R is the symmet-
ric positive definite square root of P. We further define the following two sets:

K@) ={xeR"|Cx+ Fu(t) >0} (2.92)
and
St):=R(K(@))={Rx|xe K@)}, (2.93)

which are convex polyhedral for each fixed 7. In Brogliato and Thibault (2010) it
is shown that, when the input signal u(-) is absolutely continuous and under certain
conditions, the LCS in (2.59) is equivalent to a perturbed sweeping process and to
a dynamical variational inequality. When u(-) is locally BV, things are a bit more
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tricky in the sense that the perturbed sweeping process formalism has to be recast
into measure differential inclusions, and encapsulates the LCS one. The following
constraint qualification is supposed to hold:

Rge(C) — R =R™, (2.94)

where Rge is the range. This is quite similar to the constraint qualification in Propo-
sition 2.65 when D = 0. The equality in (2.94) means that for all x € R™, there
exists y € Rge (C) and z € R such that z — y = x. Obviously it holds whenever the
linear mapping associated with C is onto, i.e. the matrix C has rank m, but also in
many other cases. Then we have the following result when solutions are absolutely
continuous: the LCS in (2.59) is equivalent to the differential inclusion

—2(t) + RAR™'2(t) + REu(r) € N5y (z(1)), (2.95)
which is a perturbed sweeping process, that is in turn equivalent to the DVI
(z(t) = RAR™'2(t) = REu(t), v — z(1)) >0
forall v e S(¢), z(t) € S(¢) forall t > 0. (2.96)

The passage from the complementarity system to the perturbed sweeping process
uses the fact that thanks to (2.91) one can formally rewrite the complementarity
system into a gradient form in the z coordinates.

The equivalences between various formalisms are understood as follows: given
an initial condition x(0) = R~!z(0), then both systems possess the same unique so-
lution over R™. The rigorous proof may be found in Brogliato and Thibault (2010),
where it is also shown that the state jump laws in Proposition 2.65 readily fol-
low from basic convex analysis arguments. When the state is prone to disconti-
nuities then the measure differential inclusion formalism has to be used, similarly to
(2.36) where the solution is to be understood as in Definition A.7. The state variable
change z = Rx relying on the input/output property P B = CT has been introduced
in Brogliato (2004), where the equivalence between passive LCS and inclusions into
normal cones is established. Equivalences between gradient complementarity sys-
tems in (2.64), projected dynamical systems, dynamical variational inequalities and
inclusions into normal cones are shown in Brogliato et al. (2006). Such studies are
rooted in Cornet (1983) and Henry (1973).

Complementarity dynamical systems, dynamical variational inequalities, dif-
ferential inclusions into normal cones, belong to the same family of non-
smooth evolution problems. The dynamics of electrical circuits with nons-
mooth electronic devices such as ideal diodes, can be recast into such mathe-
matical formalisms.

2.5 The Dynamics of the Simple Circuits

Let us now return to Sect. 1.1 of Chap. 1 and use the material of this chapter to
rewrite the dynamics of the simple circuits. The objective of this section is to show
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how one may take advantage of the mathematical tools which have been introduced
in the foregoing sections, to analyze and better understand the dynamics of nons-
mooth electrical circuits.

2.5.1 The Ideal Diode Voltage/Current Law

Let us consider the ideal diode of Fig. 1.1 whose complementarity formalism is in
Fig. 1.2(b). Using (2.23) we may rewrite its voltage/current law as

—(w(t)+a) e Np+(i(t) +b) & —(i(t)+b) e Ng+ () +a). (2.97)

A variational inequality formalism is also possible using (2.26) and (2.13): find
v(t) > —a such that:

(v(®) +a,y—i(t)—b)>0 forally>0. (2.98)

2.5.2 The Piecewise-Linear Diode Voltage/Current Law

We now consider the diode of Fig. 1.2(d). Let us see how the MCP formulation in
(2.21) may be used to represent its characteristic. First of all its voltage/current law
is expressed in a complementarity formalism as:

0< —v(®) + Ropi (1) L —v(1) >0, (2.99)
which we may again rewrite as
—v(t) + Roypi(t) € Np+(—v(1)). (2.100)
Using (2.25) we infer that
—v(r) = proj(Ro; Rogi (1)). (2.101)

Let us now turn our attention to (2.21). We may choose w = F(z) = F(z) = v(t) —
Ropi(t) =w 2> 0,8 with v=01in (2.21), z = —v(t), [ = 0 and u = +o00. Thus we
rewrite equivalently the voltage/current law as:

v(t) — Royi (1) 20,
0< —v(t) < 400, (2.102)
v(t)(v(t) — Roi (1)) = 0.

2.5.3 A Mixed Nonlinear/Unilateral Diode

The various diode models in Fig. 1.2 may be enlarged towards mixed models that
contain some unilateral effects, and nonlinear smooth behaviour. Consider for in-
stance the voltage/current law whose graph is in Fig. 2.19. The function v - g(v)

8 Ft+(2) = max(0, F(z)).
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Fig. 2.19 A diode with a i(t)
mixed nonlinear/unilateral
behaviour

satisfies g(0) = 0 and g(v) < O for all v > 0. The voltage/current law may take
various equivalent forms:

0<—g®) +i() Lv@) =0 & —g)+it) € —Np+(v(t)). (2.103)

One checks that v(¢) > 0 implies that i () = g(v(¢)), while v(¢) = 0 implies
i(#) 2 0. Let us now consider the circuit of Fig. 2.20, with a voltage source u(¢).
The state variables are x1(-) the capacitor charge, and x5 (-) the current i (¢) through
the circuit. The convention of Fig. 1.1 is chosen. One obtains:

. 01 0
{x(r) =(20)x0+ (1) +um),
O<w() =—gW@)) +x2(r) Lo() 20,
which is an NLCS as in (2.55), letting A(#) = v(¢). The complementarity conditions
in (2.104) define an NLCP (or NCP). If x>(¢) < 0 and x,(¢) is in the image of g(-),
then —g(v(t)) = —x2(t) > 0 for some v(¢) > 0. Uniqueness holds if the function
g(+) is monotone (strictly decreasing). If x;(#) > O then v(¢) = 0 is a solution of the
NCP. In Sect. 2.3.2 we gave results for LCP only. Well-posedness results for NCPs
as in (2.17) exist, see for instance Facchinei and Pang (2003), Propositions 2.2.12
and 3.5.10.

(2.104)

2.5.4 From Smooth to Nonsmooth Electrical Powers

The introduction of the indicator function and of its subdifferential, allows one to
embed the ideal diode into a rigorous mathematical framework that is useful for
the analysis of circuits which contain such devices. As depicted in Fig. 2.21 it also
permits in a quite convenient way to define the electrical power that is associated
with such a nonsmooth multivalued electrical device. This is quite related with so-
called Moreau’s superpotential functions. So-called electrical superpotentials have
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Fig. 2.20 A circuit with a C
mixed diode |l
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Fig. 2.21 From smooth to nonsmooth powers

been introduced in Addi et al. (2007, 2010) and Goeleven (2008). Let us consider a
proper convex lower semi-continuous function ¢ : R — R U {4-00}. Suppose that an
electrical device has the ampere-volt characteristic that is represented by v € d¢(i).
Then ¢(-) is called an electrical superpotential. Superpotentials have been intro-
duced in mechanics by Moreau (1968). Consider Fig. 1.3 and let us reverse the
coordinates so as to obtain the characteristic of v(¢) as a function of i(z). The su-
perpotential of the ideal diode is easily found to be ¢ (i) = ¥+ (i), the indicator
function of R*. Thus v € 3yp+ (i) so that v =0if i > 0 while v <0 if i =0. The
(i, v) characteristic is maximal monotone. One may draw the parallel between the
ampere-volt characteristic of a constant positive resistor, # = Ri, whose power func-
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k) df1(x)

Z

—ax

—Vex

z

4

Fig. 2.22 Subdifferentials

tionis £ = %Riz, and the ampere-volt characteristic of the ideal diode v € dyp+ (i)
whose power multifunction is Y+ (i). The same applies to the Zener diode, with a
different superpotential, see (1.7) and Figs. 2.11 or 2.22.

Remark 2.76 As a convention superpotentials define a maximal monotone mapping.
This means that the current/voltage mapping has to be chosen in accordance. The
conventions of Fig. 1.1 and (2.97) are not suitable.

2.5.5 The RLD Circuit in (1.16)

From (2.24) one deduces that 0 < w(t) = x(¢) —i(¢) L v(t) > 0 is equivalent to
v(t) € —Ng, (x(t) —i(¢)). From the fact that Ng, (x(t) —i (1)) = 0yr, (x(¢) —i(?))
and that Yr, (x(#) —i(t)) = Y[i(1),+00) (x (1)) we find that (1.16) may be equivalently
rewritten as:

R
(1) = Tx(1) € Nii) 400 (r(0). (2.105)

When i : R — R is not a constant function, this is a first order perturbed sweep-
ing process. When i(-) is an absolutely continuous function, it follows from The-
orem 2.55 that x(-) is also absolutely continuous. If i(-) is of local bounded vari-
ations and right continuous, then it may jump and at the times of discontinuities
in i(-), x(-) may jump as well. In this situation Theorem 2.56 applies. Suppose
for instance that at time ¢ one has x(¢~) = i(¢~) and that i(+7) > i(¢7). Then if
x(t7) =x(@t™) it follows that x (¢ 7) < i (¢T): this is not possible since it implies that
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Niit+),400) (X (t%)) = @. There fore a jump has to occur in x(-) at ¢ to keep the state
inside the set [i(z), +00).

Assume that x(-) jumps at ¢ = ¢;. From Theorem 2.56 we know that it is of local
bounded variation and right continuous provided i(-) is. The differential inclusion
in (2.105) has to be interpreted as a measure differential inclusion, i.e.:

R
—dx — zx(ﬁ)d: € Nij(+).+00) (x (1)), (2.106)

where dx is the differential measure associated with x(-). Thus (2.106) represents
the inclusion of measures into a normal cone to a convex set. Recall that due to the
way we constructed this inclusion, the elements of the normal cone are the —v(¢)
and that they also are measures. More precisely, it follows from the first line of
(1.16) that if x(-) jumps at ¢, then necessarily v is a Dirac measure with atom equal
to ¢t (something like §;). At t = #; which is an atom of the differential measure dx
one obtains:

—x(t) +x(17) € Nijety o) (1)), (2.107)
since dt ({t1} = 0. We now may use (2.14) to infer that:
x(tf“) = proj([i(tf’), +00); x(#;)). (2.108)

It may be verified by inspection that (2.108) is equivalent to (1.26). Remember
that we deduced (1.26) from the backward-Euler discretization algorithm of (1.16).
This result suggests that the backward-Euler method in (1.17) is the right time-
discretization of the measure differential inclusion (2.106). The advantage of using
(2.106) is that it provides the whole dynamics in one shot. And it provides a rigorous
explanation of the state jump rule.

Remark 2.77 All quantities are evaluated at their right limits in (2.106). Intuitively,
this is because one wants to represent the dynamics in a prospective way. More
mathematically, this permits to integrate the system on the whole real axis even in
the presence of jumps in i (-).

Let us investigate the time-discretization of (2.106), with time step 4 > 0. We

propose in a systematic way to approximate dx by == on [i, fx+1), and to

approximate the right-limits by the discrete variable at ;4 1. Then one obtains from
(2.106):

—Xk4+1 + Xk — h%Xk € Nijy1,4+00) Xk+1) = Nr, (X1 — ig+1).  (2.109)
Using (2.24) this is equivalent to:
R_ > —xp41 +xk—h§ka_xk+1 —ir+1 €R, (2.110)
because R_ is the polar cone to R . Transforming again we get:

R
0 < xp1 — Xk +hzxk L xpq1 —ig+1 2 0. (2.111)
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Recalling that the elements of Ng, (xx41 — ix4+1) are equal to —og 1 = —hvgy
(see Sect. 1.1.5), one finds that (2.111) is equal to the complementarity conditions
of (1.17). It suffices to replace x4 by its value in the first line of (1.17) to recover
an LCP with unknown Avjy1.

Therefore the time-discretization of the measure differential inclusion (2.106)
yields the backward Euler scheme in (1.17). From the BV version of Theorem 2.88
the approximated piecewise-linear solution xV (-) converges to the right continuous
of local bounded variations solution of (2.106), including state jumps. The mea-
sure differential inclusion formalism is very well suited for the derivation of time-
stepping schemes. Moreover it shows that the scheme has to be implicit. Indeed it
is easy to see that writing N[;,,,,+o0) (Xk) in the right-hand-side of (2.109) yields a
discrete-time system which cannot be advanced to step k + 1. The implicit way is
the only way.

Remark 2.78 In the left-hand-side of (2.109) we can replace %xk by %xk+ 1 to get
a fully implicit scheme, then we get the same algorithm if the same operation is
performed in (1.17).

Remark 2.79 Let us rewrite (2.105) as:

fc(t)+%x(t)=—v(t), 2112
{wneNmaﬂmua». (2112)

The representation as a Lur’e system in Fig. 1.18 is clear. From (2.109) the same
can be done with respect to Fig. 1.19.

The measure differential inclusion in (2.106) is the correct formalism for the
circuit of Fig. 1.10 when the current source delivers a current i (¢) that jumps.
It allows one to encompass all stages of motion (continuous and discontinuous
portions of the state trajectories) and to get a suitable discretization in one
shot.

2.5.6 The RCD Circuit in (1.3)

Using (2.25) the second line of (1.3) can be rewritten as —% - % + Rl—cz(t) €

Ng, (v(2)). This is equivalent to v(¢) = proj(R; —u(t) + %z(r)). Inserting this into
the first line of (1.3) one obtains:

i =-"01 Logs L (R-—<n+i(m @.113)
U=~ + et 7 Proj ( Ras —u o0 ). .

Since the projection operator is single valued Lipschitz continuous, (2.113) is noth-
ing else but an ordinary differential equation with Lipschitz continuous right-hand-
side.
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Fig. 2.23 Two Zener diodes v(t)
mounted in series

2.5.7 The RLZD Circuit in (1.7)

The inclusion that represents the Zener diode voltage/current law is v(t) €
F,(—i(t)) in (1.7). From Fig. 1.6(a) it follows that the graph of this voltage/current
law is maximal monotone. From Theorem 2.34 we may write it as the subdifferen-
tial of some convex lower semi-continuous proper function. This function is given
by fi(—i) = {“jw 120 (see Fig. 2.22). Thus .Z;, (i (t)) = df1(—i). We infer that
the dynamics of this circuit is given by the differential inclusion:

u(t) 1
x(t)+— (l)_T Zafl(—x(t)). 2.114)

The right-hand-side of (2.114) takes closed convex values, and the multivalued map-
ping y — %8 f1(y) is maximal monotone. Therefore this differential inclusion may
be recast either into Filippov’s inclusions, or in maximal monotone inclusions (see
Sects. 2.4.4 and 2.4.5).

Similar developments hold for the voltage/current law in Fig. 1.6(b). Both char-
acteristics can also be represented in a complementarity formalism.

2.5.8 Coulomb’s Friction and Zener Diodes

Let us consider the Zener diode characteristic in Fig. 1.6 with a = 0. If two diodes
are mounted in opposite series as in Fig. 2.23, then the voltage/current law is given
by:

v(r) e Vo 0lz(n)],  z() =—i(), (2.115)

where each diode has the voltage/current law v;(¢) € %#;, (—i;(t)) of Fig. 1.6 on
the left, with @ = 0. One obtains (2.115) by performing the operations as de-
picted in Fig. 2.24. This may be proved using Moreau-Rockafellar’s Theorem

2.30. One has vy € 3f»(—i) with fo(—i) = {V( m?:ijg, —v; € 3f1(—i) with
fl(—l)—{ (=D ~1 =% By Theorem 2.30 one has vy — vy € dfa(—i)+df1(—i) =

3(f1 + fo)(—i). And 3fo(—i) + 8f1 (—i) = {V( (0iti<0 . whose subdifferential
is multivalued at i = 0.
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Fig. 2.24 The sum of the two Zener voltage/current laws

Reversing the sense of the diodes does not change the voltage/current law of the
two-diode system, as may be checked. Consider now the circuit of Fig. 2.25, where
each Zener box contains two Zener diodes mounted in series as in Fig. 2.23. Its
dynamics is given by:

LU + &[5 G1(s) = i2(s)ds = vi (0),

LL2(0) + & [ (i2(s) — i1(s))ds = va (1), 2.116)
vi() € Vo 0lzi@)],  z1(t) = —ir (1),

v(t) € Vo dlz2(0)|,  z2(0) = —ia(2).

Denoting x; (1) = fé i1(s)ds and xp(¢) = fot ir(s)ds we can rewrite (2.116) as:

F1(0) + 7 (1(0) = x2(1)) € =% sgn(x1 (1)),

(1) + 7o (x2(r) = x1(1) € =% sgn(x2(1)), 2.117)
x1(0) = x10, x2(0) = x20, X1 (0) = x10, X2(0) = X20,
where we used d|x| = sgn(x) for all reals x, and Proposition 2.29 with A = —1.

The circuit in Fig. 2.25 has therefore exactly the same dynamics as a two degree-of-
freedom mechanical system made of two balls subjected to Coulomb’s friction at the
two contact points, related by a constant spring and moving on a line (see Sect. 3.11
in Acary and Brogliato 2008). The quantity V, plays the role of the friction coeffi-
cient, L plays the role of the mass, é is the stiffness of the spring. As shown in Pratt
et al. (2008) such a system can undergo, with a specific choice of the initial data,
an infinity of events (stick-slip transitions in Mechanics) when a specific external
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Fig. 2.25 Circuit with Zener
diodes

—_—— C

i (t) =i (t)

Zener diodes Zener diodes

i (t) ir(t)

excitation is applied to it. Obviously the dynamics in (2.117) can be recast into the
framework of Fig. 1.18. It is also a Filippov’s differential inclusion and Lemma 2.68
applies.

Remark 2.80 In Glocker (2005), Moeller and Glocker (2007) it is shown that the
DC-DC buck converter can be written as a Lagrangian system, whose mass matrix
consists of a diagonal matrix with either inductances or capacitances as its entries
(this depends on the choice of the state variables). This is related to the choice of the
state variables as the capacitors charges and the currents. We recover from another
example that such a choice of the state variables yields a Lagrangian system whose
mass matrix is made of the inductances. Indeed we can rewrite (2.117) as:

Mx(t)+ Kx(t) € —BSgn(Cx(t)) (2.118)
1 _ 1

with x7 = (x; x2), M = (L)), K = (_Cl f), Sgn(Cx) = (sgn(x1) sgn(x2)",
c C

B = (‘6 ‘97 ) C = I, the identity matrix. One remarks that the condition (2.91)

is trivially satisfied with P = B~!. The multivalued mapping x — B Sgn(Cx) is
maximal monotone. The system is already under the canonical form in (2.49) and
Proposition 2.58 applies.

2.5.9 The RCZD Circuitin (1.11)

The voltage/current law v(¢) € .%,(i(¢)) in (1.11) may be rewritten using the subd-
ifferential of the convex lower semi-continuous proper function f (i) = {g Vet ﬂi ;8

(see Fig. 2.22). We obtain that .%, (i) = df (i). From (1.11) we deduce that

1 u(t) v()
v(t)ef)f —R—Cx(t)+T—T s (2.119)
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that is a generalized equation. Since f(-) is convex proper lower semi-continuous,
this is equivalent to:

u(t) v()
= + R +3f*(v(1)) = Ni—v, 01 (v(1)), (2.120)
where we made use of (2.9) to pass from (2.119) to (2.120) (see also Fig. 2.11). The
last equality should be obvious from Fig. 1.8(a) and from Fig. 2.11. Since R > 0
it follows that the mapping v > % is strongly monotone. From Theorem 2.35 one
infers that the generalized equation (2.120) has a unique solution. In Chap. 1 we
studied this generalized equation in a graphical way, see Fig. 1.9.

Now let us rewrite (2.120) as:

1
Oe R—Cx(t) —

1 u(t) v(t)
—x(t) — ——+ — € —N|- 1)). 2.121
RC ®) R R [ VZ’O](v( ) ( )
Using Proposition 2.37 we deduce that:
(1) = it [—V,,0] ——1 (1) + —(t) (2.122)
v(f) = pro ; X . .
Proj @7 RC R

Inserting (2.122) into (1.11) one finds that the dynamics of this circuit is an ordinary
differential equation with Lipschitz continuous right-hand-side.

2.5.10 The Circuitin (1.41)

2.5.10.1 Embedding into Differential Inclusions

First of all it follows from (2.23) (or from (2.25)) that the linear complementarity
system in (1.41) can be rewritten as the differential inclusion:

X1(1) = x2(1) — gex1(1),
Xo(t) € — fx1 () — Yg- (x2(1)),

where YR+ (+) is the indicator function of R, and we used several tools from convex
analysis: the equivalence (2.23) and Proposition 2.29. This allows us to transform
the complementarity 0 < v(r) L —x2(¢) > 0 into —v(f) € dYr+(—x2(¢t)). Letting
F(x2) = e (—x2) we get 0f (x2) = —9Yp-+ (—x2) and since f(x2) = Yp- (x2) we
obtain that v(¢) € dyr- (x2(¢)). Thus for obvious definitions of the matrices A, B
and C° we may rewrite the system (2.123) as:

X(t) — Ax(t) € —BNy-(Cx(1)), (2.124)

(2.123)

with the state vector x7 = (x1 x2). For such a circuit it may be checked that the
“input-output” relation (2.91) is satisfied trivially because B = C. Therefore us-
ing again Proposition 2.29 we infer that there exists a proper convex lower semi-
continuous function g(-) such that dg(x) = BNgr-(Cx(¢)). Using Theorem 2.34

9The matrix C in (2.124) is not to be confused with the capacitor value in (2.123).
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it follows that the multivalued operator x — dg(x) is maximal monotone. Using
again Proposition 2.29 we infer that g(x) = Nk (x) where K = {x € R? | Cx <0}
is a convex set. Therefore we can rewrite (2.124) as:

%(t) — Ax(f) € —Ng (x (1)) (2.125)

which fits within (2.49) so that Proposition 2.58 applies. Notice that the condi-
tion xg € dom(A) of Proposition 2.58 translates into x3(0) < 0 for our circuit. If
x2(07) > 0 then a jump has to be applied initially to the state, according to Propo-
sition 2.65. In such a case the right mathematical formalism for (2.123) is that of a
measure differential inclusion:

dx — Ax(t)dt € =Nk (x(1)) (2.126)

and the solution has to be understood in the sense of Definition A.7. In particular at
an atom ¢ of the differential measure dx one obtains x(t1) —x(t7) € —Ng (x(t 1))
and it follows from (2.14) that x (¢t 7) = proj(K; x(t 7)). Notice that we wrote x (tT)
in the normal cone argument, because the solution is right-continuous, see Defini-
tion A.7. Therefore within the framework of measure differential inclusions one has
x()=x@").

2.5.10.2 Linear Complementarity Problems

Let us now consider this system from another point of view. Let us assume that
on some time interval [t1, 2], t; < tr, one has x>(¢) = 0 for all ¢ € [#1, t2]. Let us
first construct an LCP which allows us to compute X (#) at any time 7 inside [#1, 2]
(in fact we are interested mainly by what happens on the right of # = 7, since we
suppose that x;(-) is identically zero on the whole interval). From (1.41) it follows
that v(¢) = —Lx(t) — %xl (t). Since x> (¢) = 0 and the state is continuous, it follows
that the complementarity 0 < v(z) L —x2(¢) > 0 implies:

0<v() L —x2(¢) = 0. (2.127)

Indeed if —x»(¢) < 0 it follows from Proposition 7.1.1 in Glocker (2001) (see also

Proposition C.8 in Acary and Brogliato 2008) that x5 (7) > 0 in a right neighborhood

of ¢, which is forbidden. Moreover if —x>(¢#) > O then by the same proposition it

follows that x>(7) < O in a right neighborhood of ¢, and therefore v(tr) = 0 in this

neighborhood. Consequently the complementarity between v and x, holds as well.
Starting from (2.127) it easily follows:

1
0< ~Lia(t) = x1() L —k20) >0, (2.128)

which is an LCP with unknown —x>(¢). From Theorem 2.43 this LCP has a unique
solution, which can be found by simple inspection:

(1) if x1(¢#) < 0 then —x7(¢) = O: the trajectory stays on the boundary;
(ii) if x1(¢) > 0 then —x,(¢) = %xl(t) > (: the trajectory leaves the boundary;
(iii) if x1(#) =0 then —x7(¢) = O: this is a degenerate case.
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Now notice that we may instead work with the multiplier v(¢#) and rewrite the
LCP (2.128) as:

0< éxl(t) + %v(t) L@ =0. (2.129)

Then we have:

(i) if x;(t) < Othenv(t) = —%xl(t) > (0 and from the dynamics —x,(¢) = 0: the
trajectory stays on the boundary;
(ii) if x1(#) > O then v(¢#) = 0 and from the dynamics —x,(¢) = %xl(t) > 0: the
trajectory leaves the boundary;
(iii) if x;(¢) =0 then v(z) = 0 and from the dynamics —x,(¢) = 0: this is a degen-
erate case.

One may therefore work with either LCP in (2.128) or in (2.129) and reach the
same conclusions.

2.5.10.3 Some Comments

For such a simple system both the differential inclusion and the complementarity
formalisms may be used to design a backward Euler numerical scheme, as done in
Chap. 1 for several circuits, and in Sects. 2.6.1 and 2.6.2 in a more general setting.
The obtained set of discrete-time equations boils down to solving an LCP at each
time step. If the trajectory is in a contact mode as in Sect. 2.5.10.2, the LCP solver
takes care of possible “switching” between the contact and the non-contact modes.
The material in Sect. 2.5.10.2 is useful when one wants to use an event-driven nu-
merical method. From the knowledge of the state vector x; at some discrete time #,
and under the condition that x,(#;) = 0, one then constructs an LCP as in (2.128) or
(2.129) to advance the method. The LCP that results from the time-stepping back-
ward Euler method in (2.142) and the event-driven LCP obtained from (2.129), are
obviously not equal one to each other.

2.5.11 The Switched Circuit in (1.52)

Concerning a piecewise—linear system as in (1.52), one has to know whether the
vector field is continuous or discontinuous on the switching surface that is defined
here by the boundary bdx that separates x; and x2. At the points x such that x € dx
and A1x # Asx, something has to be done. One solution is to embed the right-hand-
side into Filippov’s sets (see Sect. 2.4.4), so as to obtain a Filippov’s differential
inclusion.

If one considers the piecewise—linear system in (1.51) where the triggering sig-
nal u.(¢) is purely exogenous, the picture is different. The system is then a non-
autonomous system (due to the exogenous switches). One may assume that u.(¢) is
such that the switching instants satisfy 7z > #x + § for some § > 0. An ambiguity
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still remains in (1.51) because the right-hand-side is not specified when u, = 0. One
may choose to write the right-hand-side as a convex combination of Ajx(¢) and
Apx(t) if ¢ corresponds to a switching instant.

2.5.12 Well-Posedness of the OSNSP in (1.45)

The OSNSP in (1.45) possesses a unique solution x4 at each step k, for any data.
To prove this, let us transform the system (1.42), that is written compactly as

%(1) = Ax (1) — Bu(t) + Eu(?),
{v(t) e Z(w()), (2.130)
w(t) =Cx(1).

A key property of the pair (B, C) is that there exists a 3 x 3 matrix P = PT > such
that:

PB =T, PB,=CT, (2.131)

where B; and B; are the two columns of B, C| and C, are the two rows of C. The
matrix P is given by

1

o 0 0
P=10 L, O©

0 0 L,

Let us consider the symmetric positive definite square root of P, i.e. R = RT >
and R% = P. Let us perform the state vector change z = Rx. The system in (2.130)
can be rewritten as:

{ #(t) = RAR™'z(t) — RBv(t) + REu(t),
v (1) € F1(C1x(1)), v2(1) € F2(Cax (1)),

with obvious definitions of .#1(-) and .%,(-) from (1.42). A key property of the
multivalued functions .%; (+) is that there exist proper convex lower semi-continuous

functions ¢;(-) such that .%;(-) = d¢;(-). These functions are given by ¢;(x) =

{JV” gi jg and @3 (x) = ¥k (x) with K =RT. We may rewrite (2.132) as:

(2.132)

{Z(Z) =RAR™'2(t) = RBivi(t) = RByvao(1) + REu(), (5 133

vi(t) € 31 (C1R™2(1)),  va(t) € g2 (C2R™12(1)).

Using (2.131) the terms RBjv; and RBjvy may be rewritten as R’ICITUI
and R_ICZT vy, respectively. Using the inclusions in (2.133) one obtains the
two terms R‘lClTZ)(p](ClR_lz) and R_ICQTBm(CzR_lz). Now we may use
Proposition 2.29 to deduce that R"ClTawl(ClR’]z) = 9(¢1 o Ci1R™ 1) (z) and
R7'CT3¢2(CaR™'2) = 8(p2 0 C2R™1)(2). Let us denote ¢; o CiR™(:) = 1 (")
and ¢ o CoR7 () = (), and @(-) = ¢1(-) + ¢2(-). A key property is that since
the functions ¢;(-) and ¢»(-) are proper convex lower semi-continuous, then the
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multivalued mapping 0D (-) = 9¢1(-) + d¢2(-) is maximal monotone (see Theo-
rem 2.30 and the properties in Sect. 2.1.2.2). Introducing this in the first line of
(2.133) we obtain:

—2(t)+ RAR™'z(t) + REu(r) € 9 (z(1)), (2.134)

that is equivalent to (2.130) in the sense that if x(-) is a solution of (2.130) then
Z = Rx is a solution of (2.134), and vice-versa. Let us now proceed with the implicit
Euler discretization of the transformed differential inclusion (2.134). We obtain:

—Ztp1 + 2k FhRAR Y41 + hREug 1 € hd® (zx41), (2.135)
which we rewrite as
0e (I3 — hRAR_l)Zk+1 + 2k + hREuj 1 +hod (zx+1)- (2.136)

It is noteworthy that the generalized equation (2.136) is strictly equivalent to
the generalized equation (1.45). However it is now in a more suitable form 0 €
F(zk+1) = Mzi4+1 + gk + ho® (zk+1), where M is positive definite for sufficiently
small 2 > 0 and 79 ® (-) is maximal monotone. It follows that the multivalued map-
ping F(-) is strongly monotone, and from Theorem 2.35 the generalized equation
0 € F(zk+1) has a unique solution. We have thus proved the following:

Lemma 2.81 Let h > 0 be sufficiently small so that (Iz — hRAR™Y) is positive
definite. The OSNSP in (1.45) has a unique solution for any data xj and uyy1.

The arguments that we used to prove Lemma 2.81 generalize those which we
used to study the OSNSP in (1.18) and (1.15). As an illustration let us consider the
OSNSP in (1.18). Using the equivalence in (2.23) it may be rewritten as

0 € hvgt1 + gk + Nk (V1) (2.137)

with ¢ = (1 — h%)xk —ixs41 and K =R, Since the normal cone to a convex non
empty set defines a maximal monotone mapping and since / > 0, the proof follows.

2.5.13 The Bouncing Ball

Let us come back on the dynamics in (1.58). This may be recast into the Lagrangian
sweeping process (2.38):

d dt +u(t)dt =
{m v+ mgdi +u(0) . (2.138)

=k € N1y (g0 (W(2)).

The interpretation as the negative interconnection of two blocks is then clear. The
first block of Fig. 2.26 is the Lagrangian dynamics with input A and output w(z). The
second block is the nonsmooth part due to the unilateral constraint and the impact
law. It is fed by w(¢), and its output is —A. The analogy between Figs. 2.26 and 1.18
is clear. Another example showing the analogy between Mechanics (with Coulomb
friction) and circuits (with Zener diodes) is worked in Sect. 2.5.4.
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Fig. 2.26 Bouncing-ball
feedback interconnection
with the corner law

A Lagrangian w(i)
dynamics

—h €AYy (o (w(1) w(t) € T+ (q(t))

Notice that (2.138) is a measure differential inclusion, so that A and dv are dif-
ferential measures as defined in Appendix A.5. The solution has to be understood
as in Definition A.7. The first line in (2.138) is therefore an equality of measures
which we may write as diu = A. At an impact time ¢ one has du({t}) =dv({t}) =
v(tT) —v(t7) and dt ({t}) = 0 (see Sect. A.5). The measure A thus has a density p
with respect to the Dirac measure 8, and we obtain p = m(v(t*) — v(¢r7)). Going
on as in (2.40) through (2.42) one recovers the restitution law in (1.58).

The negative feedback interconnection of Fig. 2.26 shows that the bouncing ball
may be interpreted as a Lur’e system: the Lagrangian dynamics defines a dissipative
subsystem, and the feedback path is a maximal monotone operator. The advantage
of Moreau’s sweeping process is that it allows one to represent the nonsmooth dy-
namics in one shot, without requiring any “hybrid-like” point of view. The stability
Brogliato (2004) and the time-discretization method (Acary and Brogliato 2008)
follow from it.

Remark 2.82 Compare (2.105), or (2.106), with (2.138). In (2.106) the multivalued
part is a normal cone to a time varying set. In (2.138) the multivalued part is a
normal cone to a state-dependent set (a tangent cone). So if i(-) is a constant in
(2.106) the multivalued part of the inclusion that represents the electrical circuit is
just a normal cone to a constant convex set. In the case of the bouncing ball the set
remains state-dependent even if u(¢) = 0.

2.6 Time-Discretization Schemes

In Chap. 1 the backward Euler method has been introduced on the simple examples
which are studied. An insight on how the sliding trajectories that evolve on attractive
switching surfaces are simulated, is given in Fig. 1.7. This can be generalized to
more complex systems, as shown in Acary and Brogliato (2010). The numerical
schemes that will be used in the next chapters of this book are some extensions of the
backward Euler method. In this part let us focus on the implicit (or backward) Euler
scheme only. Since the objective of this book is more about “practical” numerics
than pure numerical analysis, only few results of convergence will be given in this
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section. The first result concerns the maximal monotone differential inclusions in
(2.49), the second result is for linear complementarity systems (LCS) as in (2.53),
and the third result concerns Moreau’s sweeping process in (2.36).

2.6.1 Maximal Monotone Differential Inclusions

Let T > 0. The differential inclusion (2.49) is time-discretized on [0, 7] with a
backward Euler scheme as follows:

T ACk) 3 (o x),  forallke{0,...,N =1}, (5 139
xo:,x(o),

where h = % The fully implicit method uses f(#x+1, Xx+1) instead of f(#, xk).
The convergence and order results stated in Proposition 2.83 below have been de-
rived for the semi-implicit scheme (2.139) in Bastien and Schatzman (2002). So the
analysis in this section is based on such a discretization. However this is only a par-
ticular case of a more general 6-method which is used in practical implementations.
The next result is proved in Bastien and Schatzman (2002).

Proposition 2.83 Under Assumption 2.57,'° there exists n such that for all h > 0
one has
Forallt €10, T], |x(t)—xN@®)| <n+nh. (2.140)

Moreover limy,_, o+ max,eqo,7) lx (1) —x¥ ()[12 + [5 Ilx(s) — x (s))|%ds = 0.

Thus the numerical scheme has at least order %, and convergence holds.

2.6.2 Linear Complementarity Systems

Let us consider the LCS in (2.53). Its backward Euler discretization is:
Xk+1 =Xk + hAxgy1 +h By,
Wg+1 = Cxg41 + DAgy1, (2.141)
0< Aky1 L wi =0.
Easy manipulations yield xz4+1 = (I, — hA)_1 (xx +h BAg+1) where we assume that
h is small enough to guarantee that I, — A is an invertible matrix. Inserting this
into the complementarity conditions leads to the LCP:

0 < his1 L CUy —hA) " (xk + hBrky1) + Digsr =0,  (2.142)

with unknown A1 and LCP matrix hC (I, — hA)"'B+ D. Asone may guess a lot
depends on whether or not this LCP possesses a unique solution.

10See Sect. 2.4.2.
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Assumption 2.84 There exists h* > 0 such that for all h € (0, h*) the LCP(M, by41)
has a unique solution for all by 1.

Assumption 2.85 The system (A, B, C, D) is minimal (the pair (A, B) is control-
lable, the pair (C, A) is observable), and B is of full column rank.

The approximation of the Dirac measure at r = 0 is given by hlg & §p. Assump-
tion 2.84 secures that the one-step-nonsmooth-problem algorithm to solve the LCP
generates a unique output at each step, for 2 > 0 small enough.

Let us now state a convergence result taken from Camlibel et al. (2002a).
The interval of integration is [0, T], T > 0. The convergence is understood as
limy,_ o (xN (t) —x(1), p(t)) = 0 for all ¢ € £*([0, T]; R") and all ¢ € [0, T'], which
is the weak convergence in .Z2([0, T']; R").

Theorem 2.86 Consider the LCS in (2.53) with D > 0 and let Assumption 2.84
hold. Let ()»,]CV, x,iv, w,](V) be the output of the one-step-nonsmooth-problem solver,
with the initial impulsive term being approximated by (h\g, hxo, hwg). Assume that
there exists a constant a > 0 such that for h > 0 small enough,one has ||h | < «
and ||)\,]€V | <aforall k > 0. Then for any sequence {hy}r>o that converges to zero,
one has:

(i) There exists a subsequence {hy} C {hi}x>0 such that ({AN}k,, {wN}kl) con-
verges weakly to some (A, w) and {xN }k, converges to some x(-).
(i1) The triple (A, x(-), w) is a solution of the LCS in (2.53) on [0, T] with initial
data x(0) = xg.
(iii) If the LCS has a unique solution for x(0) = xq, the whole sequence ({AN}k,
{wN k) converges weakly to (A, w) and the whole sequence {xN }k converges
to x(-).

If the quadruple (A, B, C, D) is such that Assumption 2.85 holds and is passive,
then (iii) holds.

We emphasize the notation x () since the solutions are functions of time, whereas
the notation A and w means that these have to be considered as measures. Other re-
sults of convergence for the case D = 0 can be found in Shen and Pang (2007, The-
orem 7), under the condition that the Markov parameter C B satisfies some relaxed
positivity conditions (a condition similar to the property in (2.91) which implies that
CB=BT"PB>0).

Remark 2.87 What happens when the system to be simulated does not enjoy the
uniqueness of solutions property? Let us consider for instance the Filippov’s dif-
ferential inclusion in (2.74) with g(¢) = 0, which has three solutions starting from
x(0)=0,x(t)=0, x(t) =t and x(¢) = —¢. Its implicit Euler discretization is:

Xk+1 — Xk € hsgn(xgy1). (2.143)

In Fig. 2.27, we can study this generalized equation graphically as we did in Fig. 1.7.
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step k, x; =0

3
Yk+2 Yk+1 X}CH
! ! 42 Y42

Fig. 2.27 Iterations for (2.143)

At step k there are three intersections (solutions of the generalized equation):
x,}H =0, x,%H =h and x,fH = h At step k + 1 starting from x,fH or x,fﬂ there
are two solutions: x,f+12 =0or xk+2 =2h, and xk+2 =0or xk+2 = —2h. After that
the solutions are unique. We conclude from this simple example that despite non-
uniqueness holds, the backward Euler method still performs well in the sense that
its output is made of three approximated solutions: one that stays around zero and
two that diverge as ¢. In practice either the implemented solver chooses one of them
more or less randomly, or the designer has to add some criterion that obliges the
method to choose a particular solution out of the three. Similar conclusions have
been obtained in an event-driven method context in Stewart (1990, 1996).

2.6.3 Moreau’s Sweeping Process

We shall focus in this section on a basic result that was obtained by Moreau (1977)
for sweeping processes of bounded variations with f(#, x) = 0 in (2.36). Gener-
alizations for the case where the perturbation is not zero, even multivalued, exist
(Edmond and Thibault 2006) which are based on the same type of approximation.
Let us therefore consider the differential inclusion:

—dx € Nc(x(1)), x(0) =xo, (2.144)

where the set-valued map ¢ — C(¢) is either absolutely continuous, or Lipschitz
continuous in the Hausdorff distance, or right-continuous of bounded variation, see
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C(t)

\

C(fr1)

C(fe13)

Fig. 2.28 The catching-up algorithm

Sects. A.1, A.2 and A.4 for the definitions. When the solution is absolutely contin-
uous, then dx = x(¢)dt, and since the right-hand-side is a cone, the left-hand-side
may be simplified to —x(¢). Under suitable hypothesis on the multivalued function
t — C(t), numerous convergence and consistency results (Monteiro Marques 1993;
Kunze and Monteiro Marques 2000) have been given together with well-posedness
results, using the so-called “Catching-up algorithm” defined in Moreau (1977):

—(Xk+1 — Xk) € OV C(tp41) Kk+1), (2.145)

where x; stands for the approximation of the right limit of x (-). It is noteworthy that
the case with a Lipschitz continuous moving set is also discretized in the same way.

By elementary convex analysis (see (2.25) or (2.14)), the inclusion (2.145) is
equivalent to:

Xg+1 = prox[C (tg+1); Xk ]. (2.146)

Contrary to the standard backward Euler scheme with which it might be con-
fused, the catching-up algorithm is based on the evaluation of the measure dx on
the interval (fy, tx41], i.e. dx((tx, tie1]) = x T (tx1) — x T (#). Indeed, the backward
Euler scheme is based on the approximation of x (#) which is not defined in a clas-
sical sense for our case. When the time step vanishes, the approximation of the
measure dx tends to a finite value corresponding to the jump of x(-). This remark
is crucial for the consistency of the scheme. Particularly, this fact ensures that we
handle only finite values.

Figure 2.28 depicts the evolution of the discretized sweeping process. The name
catching-up is clear from the figure: the algorithm makes x; catch-up with the mov-
ing set C(f), so that it stays inside the moving set.
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We give below a brief account on the properties of the discretized sweeping
process. More may be found in Monteiro Marques (1993) and Kunze and Mon-
teiro Marques (2000). Let us first deal with the Lipschitz continuous sweeping pro-
cess.

Theorem 2.88 Suppose that the mapping t — C(t) is Lipschitz continuous in the
Hausdorff distance with constant 1, and C(t) is non empty, closed and convex for
everyt € [0, T]. Let xg € C(0). Consider the algorithm in (2.145), with a fixed time
step h = % > 0. Let m € N be such that mT < N. Then:

(a) varp,71(x™) < ||xN(0)|| +1IT, forall t € [tx, ty41] and all N € N,

) V@) —xN ) <1t — 5|+ 2), forall t,s € [tx, tit1],

(c) from which it follows that || x(t) — x(s)|| <I|t —s| for all t,s € [0, T], where
(x(t) — x(s)) is the limit in the weak sense of{xN(t) —xN () ven,

@ [N @) <1 forall t # ti, where 3V (t) = § (1 — xi) for t € [t tes1),

() the “velocity” XN (-) converges weakly to %*(-), i.e.for all (-) € £ ([0, T1; R")
one has

T T
/0 @O, eyt — /0 (1), (),

) xN () — x(-) uniformly and % (-) = x*(-) almost everywhere in [0, T,
(g) the limit satisfies X (t) € Nc ) (x(t)) almost everywhere in [0, T1].

In the absolutely continuous and the bounded variations cases, the catching-up
algorithm may be used also to prove Theorems 2.55 and 2.56, with similar steps as
in Theorem 2.88. In the BV case the formalism has to be that of measure differential
inclusions (see Moreau 1977, §3 for a proof of existence of solutions). This book
is dedicated to electrical circuits, for more details on the numerical simulation of
mechanical systems please see Acary and Brogliato (2008).

2.7 Conclusions and Recapitulation

Chapters 1 and 2 introduce simple examples of circuits with nonsmooth electronic
devices, and the main mathematical tools one needs to understand, analyze and sim-
ulate them. Despite they possess simple topologies, these circuits are embedded into
a variety of mathematical formalisms (some of which being equivalent):

complementarity systems,

Filippov’s differential inclusions,

differential inclusions with a maximal monotone multivalued part,
dynamical variational inequalities,

Moreau’s sweeping processes (perturbed, first order),

measure differential inclusions,

piecewise-linear systems.



2.7 Conclusions and Recapitulation 105

The solutions (i.e. the trajectories) of such systems ususally are absolutely contin-
uous, or right-continuous of local bounded variations (with possible occurrence of
jumps, i.e. state discontinuities). In the more general situation where the dynamical
equations are obtained from an automatic equations generation tool, the dynamics
will not exactly fit within these classes of multivalued systems, however, but will
contain them as particular cases. Mainly because the obtained dynamics will con-
tain equalities stemming from Kirschhoff’s laws in current and voltage, which make
it belong to the descriptor systems family.

As we have seen many of these circuits can be written as complementarity
systems as in (2.57). A crucial parameter is the relative degree of the quadruplet
(A, B,C, D). Let u(t) =0 and let the initial data satisfy Cx(0) + DA(0) > 0.

e If » = 0 the solutions are continuously differentiable (D # 0), see (1.3), (1.38),
(1.39).

e If r =1 the solutions are continuous (D = 0 and CB # 0), see (1.16), (1.40),
(1.41).

e If r =2 the solutions are discontinuous (D = CB =0 and CAB # 0), see (1.58).

o If r > 3 the solutions are Schwarz’ distributions (Dirac measure and its deriva-
tives) (D =CB=CAB=CA""'B=0and CA"~! B #£0), see (2.44) and Acary
et al. (2008).

The solutions regularity is therefore intimately linked to the relative degree be-
tween the two slack variables.

Why such nonsmooth models? Mainly because conventional (say SPICE-like)
solvers are not adequate for the analog simulation of switched circuits (see Maffez-
zoni’s counterexample in Chap. 7, Sect. 7.1). This is advocated in many publications
(Maffezzoni et al. 2006; Wang et al. 2009; Mayaram et al. 2000; Maksimovic et al.
2001; Valsa and Vlach 1995; Biolek and Dobes 2007; Lukl et al. 2006). On the other
hand working with nonsmooth models implies to take into account inconsistent ini-
tial data treatment, and thus creates new challenges. NSDS takes care of all this and
is a suitable solution for the simulation of circuits with a large number of events.
The price to pay is low order on smooth portions of the state trajectories.

The NSDS method (which we could also name the Moreau-Jean’s method (Jean
1999; Acary et al. 2010)) is a “package” which comprises:

e modeling with nonsmooth electronic devices (multivalued and piecewise-linear
current/voltage characteristics),

e Moreau’s time-stepping scheme (originally called the catching-up algorithm in
the context of contact mechanics),

e OSNSP solvers (complementarity problems, quadratic programs).

In the remaining chapters of this book the NSDS method will be presented in
detail.
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