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Introduction

Water is a critical factor limiting forest growth, either by absence (Stephenson 
1990; Pigott and Pigott 1993) or excess (Kreuzwieser et al. 2004). In most parts of 
Central Europe, moderate water stress is typically to be expected during short rain-
less periods that occur at irregular intervals in most summers (Backes and Leuschner 
2000; Czajkowski et al. 2005) while severe droughts are episodic events (Lloyd-
Hughes and Saunders 2002). In the Mediterranean Basin water strongly limits plant 
growth and survival (Lloret et  al. 2004). This is especially true for some 
Mediterranean tree genera, which are thought to have evolved before the onset of 
the present summer-dry climate (Petit et al. 2005). Floods, temporary cover of land 
by water, occur in most parts of Europe on a regular basis and originate among 
other things from rivers, mountain torrents and Mediterranean ephemeral water 
courses (EXCIMAP 2007).
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There is now convincing evidence that the global climate is changing at an 
unprecedented rate, putting forest health in jeopardy (Chapter 3, this volume). 
While total annual precipitation is predicted to be stable in most Northern and 
Central European regions, model calculations of the future climate predict an 
increasing frequency and severity of exceptional summer droughts and heatwaves, 
and floods during winter and spring, thus increasing the risks of both water-logging 
(Bárdossy and Caspary 1990; Nisbet 2002; Hundecha and Bárdossy 2005) and 
drought (Hulme et al. 2002; Kunstmann et al. 2004; Rowell 2005; Frei et al. 2006). 
In the Mediterranean Basin, a disproportionately strong increase of summer tem-
perature and aridity is predicted under future climates (Iglesias et al. 2000; IPCC 
2007). While existing meteorological models still embody considerable uncertainty 
in predicting future precipitation pattern in detail, especially for mountain regions, 
changes in the seasonal pattern of precipitation, severer summer droughts and winter 
flooding will lead to changes in a range of below ground processes. These changes 
include effects on gas exchange, nutrient mineralization, interactions between trees 
and mycorrhizal fungi, as well as effects on root growth and physiology. Such 
changes may potentially alter the distribution and composition of European forest 
by affecting the water- and nutrient-uptake directly, and indirectly by changing the 
competitive abilities of tree species to obtain these resources (Kozlowski 1997; 
Geßler et al. 2007; Rewald and Leuschner 2009b).

In this chapter we discuss the effects of soil water on below ground processes, 
first briefly describing the spatial heterogeneity of tree roots and soil water, and 
then discuss the effects of soil water deficit and soil water excess.

Biogenic Causes of Soil Moisture Heterogeneity

In predictions of the effects of changing water availability on below ground 
processes, soil water availability within a stand is often assumed to be relatively 
homogeneous. However, it has become increasingly apparent that soil moisture var-
ies greatly within a stand (Göttlein and Manderscheid 1998). These authors could 
show that variability in the hydraulic properties of soil and tree root distribution 
causes substantial heterogeneity of soil water tension. Furthermore, the degree of 
heterogeneity increased at high water tension compared to low water tension. Much 
of the heterogeneity was due to preferential water flow. Preferential water flow has 
been shown to be due to factors such as macropore flow (Beven and Germann 1982), 
fingering (Hillel and Baker 1988) and funnelled flow (Kung 1990). In addition stand 
structural factors such as tree rooting density (Pärtel and Helm 2007; Lange et al. 
2009) and tree canopy effects on throughfall and stemflow will influence the spatial 
and temporal variability of soil moisture (Staelens et al. 2006; Dalsgaard 2007). This 
may be due to individual crown interception efficiency in relation to crown structure 
(Staelens et al. 2006) and to the formation of canopy gaps (Dalsgaard 2007). An 
example of the influence of canopy gaps on soil moisture is shown in Fig. 2.1. While 
soil water content was relatively homogenous in January to April, it decreased 
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steadily during spring and summer in two growing seasons to 64% and 68% of field 
capacity in the closed forest (June–September; n = 10, 0–0.9 m depth) but remained 
high, 90% and 93% of field capacity in gap positions (n = 10). Differences were 
significant (Tukey–Kramer adjusted t-test; P < 0.05; Dalsgaard 2007). Throughfall 
was significantly higher in gaps than in closed forest positions in spring (20%, 
April–May), summer (30%, June–September) and annually (17%).

Root architecture of structural roots and distribution of fine roots in the soil are 
of great importance as they determine plant access to water. Fine root density 
generally shows an exponential decrease with soil depth (Gale and Grigal 1987; 
Leuschner et al. 2004b), however many species of trees have a structural coarse root 
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Fig. 2.1  Smoothed values of volumetric soil water content (Q) at 0–0.5 m depth in and around a 
canopy gap during the summer of 2000 in a Fagus sylvatica forest at Suserup Skov, Denmark. The 
maps show values for July (a), August (b) and September (c). The Q values are placed at the 
boundaries between the different zones of Q (see Dalsgaard 2007 for details). Field capacity (FC) 
varied across positions, but there was no significant difference in FC between zones. Panel (d) 
shows the location of trees in and around the gap (gray circles). The size of the circles is scaled 
from tree diameter. The gap centre is at (0.0) m, a black line indicates the edge of the gap
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system which penetrates into deeper soil layers, thus enabling access to subsoil 
resources of water (Köstler et al. 1968; Kozlowski et al. 1991; Jackson et al. 1999; 
Chapters 7 and 10, this volume). For example, Quercus spp. have been found to 
successfully reduce water stress by deep rooting (Čermák et al. 1980; Badot et al. 
1994; Bréda et al. 1995), whereas Fagus sylvatica roots are less frequent in greater 
depths (Leuschner et  al. 2001) and Fagus might thus be more susceptible to 
drought.

The capability of root systems to explore the soil for heterogeneously distributed 
moisture is crucial for successful water uptake (Cole and Mahall 2006). Although 
it is known that water uptake of individual roots can differ within soil horizons 
(Coners and Leuschner 2005), possibly resulting from moisture differences, studies 
about species-specific differences in the detection of water, e.g. via hydrotropism, 
are lacking. Such foraging traits might be very important in densely rooted mixed 
forests (Rewald and Leuschner 2009a), where competitors could potentially pre-
empt moist soil patches. In Loblolly pine (Pinus taeda), Parker and Van Lear 
(1996) investigated the effect of soil moisture and heterogeneity on root distribu-
tion. Fine root density was higher on xeric and sub-xeric soils than soil with inter-
mediate water contents. However, on all soil types fine root density was ca. 17 
times higher in old root channels and ca. four times higher on rock surfaces 
compared to the bulk soil matrix. Root channels provide not only easier root pen-
etration paths through the soil but were also preferential flow paths for water, as 
were rock surfaces. Rooting in soil patches with different moisture contents as 
shown in a study by Parker and Van Lear (1996), can allow a transfer of water from 
wet soil to dry soil via ‘hydraulic lift’ (Caldwell et al. 1998) or ‘hydraulic redistri-
bution’ (Burgess et  al. 1998; Schulze et  al. 1998). Hydraulic redistribution can 
re-wet dry topsoil layers, possibly facilitate nutrient uptake and buffer plants 
against water deficits (Richards and Caldwell 1987; Ryel 2004; Pereira et al. 2006; 
Chapter 4, this volume).

Effects of Soil Water Deficit

Soil

Water deficit causes major changes in the biological, chemical and physical nature 
of the soil. For example, extreme drought conditions typically induce a dramatic 
reduction in the amount, structure and activity of the soil microbial community. In 
general, however, soil microorganisms can survive and persist at much lower soil 
water potentials than plant roots, particularly as they have the ability to enter a 
dormant state and survive in very thin water films. Unlike roots, the soil microbial 
community can also rapidly recover from this inactive state within minutes of 
rewetting (Jones and Murphy 2007). The impact of drought on soil processes and 
ecosystem functioning and resilience remains somewhat controversial (Borken and 
Matzner 2009). Drought tends to reduce mineralization of soil organic matter while 
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subsequent rewetting can significantly enhance the turnover of carbon (C) and 
nitrogen (N) in soils (Sardans et al. 2008; Chapter 3, this volume). However, the net 
balance of greenhouse gas exchange remains unclear as it depends greatly on forest 
type, soil type and the duration and severity of the drought (Almagro et al. 2009). 
It is well documented that drought induces lysis of root and microbial cells and that 
rewetting-induces a flush of nutrients and a stimulation of soil respiration (Inglima 
et al. 2009). Originally, it was thought that this enhanced CO

2
 evolution and associ-

ated loss of soil organic matter would cause a decline in soil quality. Recent 
evidence, however, suggests that the loss of CO

2
 from soil is much less than if the 

soil had been maintained at an optimal water content for microbial activity (i.e. 
−0.05 to −0.5 MPa; Borken et al. 2006). The benefit of drought in reducing green-
house gas emissions has also been seen for N

2
O where water deficit turned a 

Norway spruce forest from a N
2
O source to a sink (Goldberg and Gebauer 2009). 

A similar response has also been observed for CH
4
 (Muhr et al. 2008). In a com-

prehensive review, Borken and Matzner (2009) concluded that organic matter 
stocks are progressively preserved with increasing duration and intensity of drought 
periods; however, increased fire risk may ultimately enhance the risk of organic 
matter losses under dry conditions. Another major issue associated with drought 
periods is that water deficit induces organic surfaces in soil to become hydrophobic 
and water repellent (Cerdà et al. 1998). Consequently, upon rewetting, water tends 
to travel down macropores resulting in hydrological bypass of the soil’s upper hori-
zons, resulting e.g., in losses of nitrate contained in rain and snow-melt water 
(Schleppi et al. 2004). Alternatively, the hydrophobic organic horizons can prevent 
infiltration inducing surface runoff and erosion (Doerr et al. 2009). This hydropho-
bicity also tends to reduce soil organic matter cycling and can reduce potential 
leaching losses due to bypass flow (Hentschel et al. 2007).

Mycorrhizal Fungi

Mycorrhizas are among the most widespread associations between microorganisms 
and higher plants, and provide a range of benefits to forest trees of which the best 
demonstrated is an increased nutrient acquisition, but they also may be beneficial for 
water uptake and protection against pathogens. The extensive extramatrical or extra-
radical mycelium formed by ectomycorrhiza and arbuscular mycorrhiza, respec-
tively, is thought to play a primary role in promoting nutrient acquisition (especially 
P; Smith and Read 2008). Both arbuscular- and ectomycorrhizas form associations 
with forest tree species, and both are more pronounced in infertile soils. 
Ectomycorrhizas are more common on moist soils with a high organic matter con-
tent, whereas trees infected with arbuscular mycorrhizas tend to be growing on more 
mineral soils (Smith and Read 2008). The degree of colonisation by mycorrhizas is 
often influenced by the availability of N and P in the soil. Paul and Clark (1996) 
argue that the total nutrient pool in soils is of no importance and it is the low con-
centration of a nutrient such as P in the aqueous phase that promotes the infection.
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Mycorrhizas have the potential to affect tree water relations both through direct 
uptake of water and via nutritional factors. Considerable uncertainty exists about 
the influence of mycorrhizas on host hydraulics and water uptake (Hampp and 
Schaeffer 1999; Nardini et al. 2000), but also on the response of the fungal com-
munity to drought (Shi et al. 2002). Due to the large contact area between hyphae 
and soil particles, mycorrhiza formation has been suggested to improve water avail-
ability to the host plants (Duddridge et al. 1980; MacFall et al. 1991; Augé 2001), 
and to support acclimation to drought stress (Davies et  al. 1996; George and 
Marschner 1996). However the benefits to the host tree may be species-specific. 
Steudle and Heydt (1997) found only a marginal influence of mycorrhization on 
water uptake of Fagus sylvatica saplings, however Quercus spp. showed a strong 
decline in transpired water after the extramatrical hyphae net of the mycorrhiza had 
been severed (Egerton-Warburton et  al. 2003). Furthermore, the extramatrical 
hyphae were found to transfer water between roots of ‘donor’ Quercus individuals, 
performing hydraulic lift, and ‘receiver’ plants, possibly resulting in multiple ben-
efits during drought. These benefits could include enhanced water and nutrient 
uptake and/or redistribution (Leake et al. 2004), a rapid recovery from desiccation, 
or refilling of embolized vessels. However, it remains an open question if similar 
mechanisms exist in other tree species, and if the quantities of redistributed water 
account for significant reduction of water stress.

Drought reduces both nutrient uptake by roots and transport from the roots to 
shoots, due to decreased transpiration rates and impaired active transport and mem-
brane permeability (Alam 1999). The decline in soil moisture also results in a 
decrease in the diffusion rate of nutrients in the soil to the absorbing root surface 
(Raynaud and Leadley 2004). P is a nutrient the uptake of which is mostly affected 
by low soil moisture (Marschner 1997). Under conditions of reduced P mobility, 
the extensive hyphal network and increased P mobilisation through exudates from 
the hyphae and plant roots help to maintain P acquisition (Liebersbach et al. 2004). 
Another beneficial effect of the mycorrhizal association in dry conditions is the 
increased uptake of potassium (K) by trees especially in the seedling stage. 
K increases the drought resistance of plants through its function in stomatal regulation 
and osmoregulation (Marschner 1997). Maintenance of water balance at low soil 
water potentials is critical for maintenance of a positive carbon balance. In 
Mediterranean countries, where summers are dry, mycorrhizas help seedling sur-
vival among plants considered resistant to drought. Domínguez Núñez et al. (2006) 
used seedlings of Quercus ilex and Quercus faginea inoculated with the mycor-
rhizal fungus Tuber melanosporum to establish a stand in south-eastern Spain. 
These authors could show that mycorrhizal inoculation improved seedling growth 
and increased water and P uptake during summer drought.

Despite the beneficial effect of the mycorrhizal association on forest plants 
during drought periods, the development of the mycorrhizal association is affected 
by low soil moisture content. Valdéz et  al. (2006) observed that drought years 
reduced biomass of both fine and ectomycorrhizal roots of Pinus oaxacana by 
almost 60%. In the field, Bell and Adams (2004) found that the number of root tips 
of Pinus pinaster and Pinus radiata associated with the fungus Rhizopogon was 
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reduced in areas of low rainfall amounts (<380 mm). It seems that extreme moisture 
deficit affects mycorrhizas to such extent that below a certain moisture percentage 
mycorrhizal plants are equally affected as nonmycorrhizal ones. Similarly, in Pinus 
pinaster, Bakker et al. (2006) demonstrated an increase in long-distance explora-
tion types of ectomycorrhizas (Rhizopogon and Scleroderma spp.) on drier sites and 
an increase in contact exploration types on wetter sites. In both the work of Bell and 
Adams (2004), and Bakker et al. (2006) soil organic matter was a co-variant, with 
the wetter sites having higher organic matter contents. In a growth chamber experi-
ment, Kennedy and Peay (2007) found that Pinus muricata plants infected by the 
ectomycorrhizal fungus Rhizopogon had similar biomass, photosynthesis, conduc-
tance and total leaf biomass as non-mycorrhizal plants. However, all these para
meters increased significantly in the mycorrhizal plants when soil moisture 
increased and reached a percentage of 13. This work emphasises that mycorrhizas 
may not be beneficial to plants at very low soil water contents.

Although mechanisms of improved drought tolerance by mycorrhization have 
been postulated, the effect of water stress on mycorrhizal community diversity is 
only poorly understood. Kernaghan (2005) reviewed the environmental factors 
influencing the mycorrhizal fungal communities. He argued that the most important 
factor is the structure of the associated plant communities through the variety of 
root exudates. It is probable that drought indirectly affects mycorrhizal diversity by 
selection of the most drought resistant plants.

Fine Roots

The root:shoot ratio is an important means of adjustment to altered soil moisture 
levels (Osunubi and Davies 1981; Chapter 4, this volume). Alteration of this ratio 
can be achieved by long term developmental changes in allocation, or through 
short term responses to changes in a specific environmental variable. It has been 
well documented that tree species adapted to more xeric conditions have higher 
root:shoot ratios (Joslin et  al. 2000), thus increasing the ratio between water 
absorbing and transpiring surface. However, results for both seedlings and mature 
trees grown under different soil moisture regimes are contradictory (e.g. Thomas 
2000; Pronk et al. 2002; Meier and Leuschner 2008a, b). Changes in root:shoot 
ratio are often achieved by alteration of fine root biomass. The direction of 
change, i.e. increase or decrease, and magnitude of root biomass response to 
drought largely depends on tree species or variety, but also on study duration and/
or study design (e.g., light regime; Climent et  al. 2006; Manes et  al. 2006). 
However, two general trends can be noticed: (i) an increase of root biomass in 
response to drought have mostly been found in conifer species (e.g., Gower et al. 
1992; Parker and Van Lear 1996), which are known to differ in their root growth 
strategies from deciduous broad-leaved trees (Bauhus and Messier 1999), and (ii) 
a decrease of root biomass in European deciduous tree species (e.g., Fort et al. 
1998; Chiatante et al. 2006).



12 B. Rewald et al.                                                  

Change in root biomass is highly species-specific and connected to altered root 
turnover rates. Although data on changes in root turnover rates under soil drought 
are scarce, both unaltered (Joslin et al. 2000) and increased (Pietikäinen et al. 1999; 
Chiatante et al. 2006) turnover rates have been found in Mediterranean and temperate 
forests. For example, the fine root biomass in the organic layer (0.5–6 cm thick) of 
an unmanaged mature Quercus petraea stand (Unterlüß, Lower Saxony, Germany; 
52°83¢N, 10°26¢E; stem density: 44 ha−1, tree height: 28 m, stem basal area: 12.3 m2 
ha−1) was significantly reduced after three months of experimentally-induced sum-
mer drought (Table 2.1). In contrast, more drought sensitive tree species like Fagus 
sylvatica and Quercus robur were found to retain their root biomass in the upper soil 
horizons even under severe drought, resulting in high turnover rates (Konôpka et al. 
2005; Mainiero and Kazda 2006). It is possible that a less flexible carbon-investment 
strategy during drought and the subsequently increased fine root turnover are partly 
involved in a higher drought sensitivity of tree species.

Change in fine root morphology is another potential adaptation to altered soil 
moisture. However, the detection of adaptation mechanisms is hampered by the large 
variation of root morphology and architecture within species or individuals, possibly 
caused by soil heterogeneity (Fitter 1994; Meier and Leuschner 2008a). The finest 
(first order) roots are most important parts of the root system for water uptake 
(Rieger and Litvin 1999; Lindenmair et al. 2004; Rewald et al. 2010). Thus, specific 
root area (SRA) and length (SRL) could be expected to increase during drought. In 
contrast to this assumption, both the SRA and the SRL of Betula pendula, Fagus 
sylvatica and other tree species decreased under reduced water availability 
(Aspelmeier and Leuschner 2006; Ostonen et al. 2007; Meier and Leuschner 2008b). 

Table 2.1  Case study within two unmanaged forest patches stocked with 200 years-old Quercus 
petraea trees (see Rewald 2008 for details). Root density (RD

org.
) and proline concentration of fine 

roots in the organic layer after 3-month (June–August 2004) of two different soil moisture treat-
ments (Control and Reduced soil moisture). Specific conductivity (k

s
) and degree of embolism of 

fine roots (diameter d = 0.7–2 mm) and coarse roots (d = 2–6 mm) after three subsequent summers 
differing in water availability (June–August, 2004–2006). Significant differences are indicated by 
different letters (RD

org.
 and proline: Scheffé test, P < 0.05; k

s
 and embolism: Kruskal–Wallis H test, 

P < 0.05; mean ± SE; n = sample size; n.d. = no data)

n
RD

org.
  

[g d.wt l−1] n
Proline [mmol 
g d.wt−1] n

k
s
 [10−3 m2 

MPa−1 s−1]

Degree of 
embolism 
[%]

Control
Fine roots 20 6.5 ± 0.1 a 10 10.4 ± 3.3 a 9 1.2 ± 0.3 a 20.8 ± 6.7 ab
Coarse roots – n.d. – n.d. 15 3.0 ± 1.7 ac 10.5 ± 5.3 b

Reduced soil moisture a

Fine roots 20 2.3 ± 0.1 b 10 93.0 ± 29.4 b 11 2.5 ± 0.8 b 36.7 ± 9.3 ac
Coarse roots – n.d. – n.d. 10 10.0 ± 3.1 c 46.3 ± 10.9 c
a A sub-canopy roof (11 m × 11 m × 2 m) was used to reduce soil moisture during summer months 
(June–August), resulting in a soil moisture reduction of 5–15 vol% compared to ambient-watered 
control.
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The underlying mechanisms must remain speculative, but may include increased 
mortality/shedding of root tips and finest roots, stimulated ethylene production 
resulting in larger root diameter, (re-) growth of less ramified roots by increased 
turnover rates and higher soil mechanical impedance, and increased root tissue den-
sities (Clark et al. 2003; Manes et al. 2006; Trubat et al. 2006).

Root elongation rate, which is positively correlated with root diameter, could be 
a more important attribute for maximizing uptake rates of low-diffusive nutrients 
such as P than root surface area (Silberbush and Barber 1983; Raven and Edwards 
2001). In order to exploit more soil regions with plant-available water, higher elon-
gation rates are suggested to be most favourable in soil with a heterogeneous dis-
tribution of moisture or in the case of inter-specific competition for water. 
Furthermore, roots of larger diameter, and consequently a lower SRA:SRL ratio 
have lower construction and maintenance costs per unit biomass than thinner roots 
(Eissenstat and Yanai 1997). Most likely, there must be a trade-off between the 
benefits of a large absorbing surface area per unit biomass and an increased contact 
with the soil, and the benefits of increased ‘long-distance’ foraging and reduced 
maintenance costs under water shortage. However, rates of water uptake per root 
surface area have been found to vary significantly between individual root branches 
and species (Korn 2004; Burk 2006). For example, Fagus sylvatica has been found 
to possess higher root-surface-area related sap-flow rates than Quercus petraea 
(Coners and Leuschner 2002). Furthermore, even under well-watered conditions, 
Fagus sylvatica roots showed higher root surface-specific flows on a site with a 
more continental climate than on a more oceanic site (Burk 2006), indicating a yet 
unknown, but highly plastic uptake pattern on drier sites. Unfortunately, no infor-
mation is available about such plasticity in uptake kinetics for other tree species.

Physiological Adaptation of Roots

The capacity of roots for water uptake is determined not only by root surface area and 
foraging, but by the resistance of tissues to water transport as well. Drought is known 
to induce short- and long-term alterations of the radial pathway, usually resulting 
in an increase of radial resistance (Huang and Nobel 1993; Steudle 2000). Water 
channel proteins in the cell membranes (aquaporins) mediate the short-term adjust-
ment of the symplastic pathway to drought stress (Yamada et al. 1997). Although data 
for woody plants is scarce, studies on herbaceous plants suggest that aquaporins are 
present in virtually all root types (Kirch et al. 2000; Kaldenhoff and Fischer 2006), 
and especially in cells that control water uptake and radial water flow (Schäffner 
1998). The regulation of root aquaporins enables a very tight coupling between root 
water uptake and whole plant physiology, e.g. by facilitating water flow under moist 
conditions, or reducing water loss to the soil via unintended hydraulic redistribution 
by ‘more tight’ membranes. A higher expression of aquaporins, and, thus, higher root 
surface area-specific conductance, is suggested to compensate for a reduced root 
system size in water-stressed olive trees, explaining in part the above-average 
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drought-tolerance of this species (Lovisolo et al. 2007; Secchi et al. 2007). However, 
knowledge of drought-induced adaptations in root physiology, resulting in altered 
water uptake rates, is still rare for most European tree species.

Osmotic adjustment is another mechanism, allowing plants to tolerate periods of 
drought (Chaves et al. 2003; Aranda et al. 2004; Chapter 3, this volume). Osmotic 
adjustment enables sustained root growth under moderate levels of drought stress 
by partial turgor recovery and maintenance of the ability to loosen cell walls (Hsiao 
and Xu 2000). Proline is an important component of this osmoregulation; its con-
centrations have been found to increase strongly in response to drought stress in 
roots of mature Fagus sylvatica and Quercus petraea trees (Table  2.1; Rewald 
2008) and has been suggested to explain differences in drought-tolerance (Hare 
et al. 1998; Ennajeh et al. 2006; Garcia-Sánchez et al. 2007). Drought is thought to 
facilitate suberization of the root rhizodermis, subsequently limiting the apoplastic 
by-pass and reducing the radial conductivity of roots (Zimmermann and Steudle 
1998). However, previous studies provide convincing evidence of water uptake 
even by strongly suberized regions of woody roots (Chung and Kramer 1975; 
MacFall et al. 1990, 1991). Increased root suberization under drought stress might 
therefore correlate better with general stress-tolerance (Schreiber et  al. 2005), 
instead of explaining different water uptake rates (Leuschner et al. 2003).

Changes in Root Axial Conductivity and Hydraulic Safety 
Under Drought

Different species or even genotypes of woody plants may differ substantially with 
respect to root axial conductivity (e.g., Huber 1956; Larcher 2001). A majority of 
previous studies has reported reduced root conductivities in response to stress (e.g., 
Machado and Tyree 1994; Nardini and Pitt 1999; Trubat et  al. 2006), thereby 
improving plant water status by reducing water loss to the atmosphere and the soil 
(Meinzer et al. 1996; Trillo and Fernández 2005). In contrast, the rarely observed 
increase of root axial conductivity (Table 2.1) is suggested to facilitate water uptake 
by reducing the flow resistance (Nardini and Pitt 1999). Although axial conductivity 
has previously been considered a minor limiting factor of whole-root conductivity as 
compared to radial conductivity (e.g., Steudle 1994), Hacke et  al. (2000) demon-
strated that whole-plant water use and axial conductivity of woody plants during 
water stress were in accordance. Especially the large root systems of mature trees 
with greater path lengths (West et  al. 1999; Addington et  al. 2006) and reduced 
potential gradients due to large root:leaf area ratios (Grier et al. 1981; Vanninen et al. 
1996) illustrate the importance of sufficient root axial conductivities. Increased root 
conductivities could be a particularly effective adaptation in plants that respond to 
drought with a reduction of fine root biomass.

Another plastic adaptation of the tree root hydraulic system to soil water 
shortage might be the development of root branches with diverging hydraulic prop-
erties, thereby exploring the spatial heterogeneity of water reserves, as is typical for 
temporally drought-exposed soils (Göttlein and Manderscheid 1998). Several 
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previous studies have documented that root axial conductivity and water uptake rate 
can differ substantially within root systems, e.g. between deep and shallow roots 
(Pate et al. 1995; Korn 2004; Leuschner et al. 2004a; Chapter 4, this volume). Since 
individual roots or root branches are thought to act as ‘physiologically autonomous 
units’ (Shani et  al. 1993), the differentiation of the root population into high- 
conductivity and low-conductivity roots has been postulated as a favourable adaptation 
to heterogeneous environments.

While some embolism may occur even in roots of well-watered plants (Alder 
et al. 1996; Domec et al. 2004; Table 2.1), fine roots have been suggested to be 
weak, replaceable segments of the soil-plant-atmosphere continuum (SPAC; Sperry 
and Saliendra 1994; Domec et  al. 2004; Chapter 3, this volume), expedient to 
uncouple parts of the SPAC in response to more severe water shortage. Acting as 
‘hydraulic fuses’ (Zimmermann 1983), they are thought to prevent plant-wide cavi-
tation and water loss to the soil, as resulting from unintended hydraulic redistribu-
tion (Sperry and Ikeda 1997; Hacke et al. 2000). ‘Hydraulic fuse’-mechanisms that 
are assumed to prevent or reduce such leakage are: (i) shedding of fine root 
branches (Head 1973; Pereira et al. 2004), (ii) suberization of the rhizodermis and/
or aquaporin regulation (Vera-Estrella et al. 2004; Schreiber et al. 2005). Because 
there is now convincing evidence that embolism is reversible in many cases 
(Pickard 1989; Zwieniecki and Holbrook 1998; Lovisolo and Schubert 2006), cavi-
tation is suggested to be another, possibly reversible, ‘hydraulic fuse’ mechanism 
in roots (Rewald 2008). Thus, the recently found increased vulnerability to cavita-
tion in drought-stressed Quercus petraea roots (Rewald 2008) seems to be a 
straightforward adaption to drought rather than impairment by drought.

Effects of Excess Soil Water

Soil

In comparison to water deficit, the effects of excess soil water on below ground soil 
processes are relatively well understood (Richardson and Vepraskas 2000). Briefly, 
saturation of soil with water (waterlogging) for prolonged periods of time generates 
a negative impact on nearly all forests that are not adapted to hydromorphic or ripar-
ian soil conditions (White 2007). The incidence of periodic waterlogging is pre-
dicted to increase in European forests due to increases in the frequency and intensity 
of winter rainfall events (Fuhrer et  al. 2006). The resultant changes in nutrient 
cycling induced by waterlogging may have profound consequences on forest develop-
ment with some species more resilient to flooding (e.g., oak) than others (e.g., beech; 
Geßler et al. 2007). In Mediterranean woodlands, precipitation can be very abundant 
during the wet season, inducing temporary waterlogging. When the soil becomes 
saturated the rate of O

2
 diffusion into the soil is greatly reduced leading to rapid 

depletion of soil O
2
 and an inducement of hypoxic and anoxic conditions. These 

conditions reduce seed germination, root growth, soil microbial activity and may 
promote the attack of trees by pathogenic soil organisms (Burgess et  al. 1999; 
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Gómez-Aparicio et al. 2008; Pérez-Ramos and Marañón 2009). Prolonged waterlog-
ging tends to lead to a reduction in microbial activity, an increase in soil organic 
matter and greater emissions of N

2
O and CH

4
 (Pinay et al. 2000; Eglin et al. 2008). 

Flooding may also stimulate the input and redistribution of soil particles which can 
strongly influence C storage and greenhouse gas emissions (Pinay et al. 2000). To 
some extent this is driven by a reduced microbial biomass and changes in its com-
munity structure (i.e. reduction of aerobic bacteria, Gram-negative and Gram-
positive bacteria, mycorrhizal fungi and mesofauna) and an inhibition of O

2
-requiring 

enzymes which are central to the breakdown of forest litter (e.g., phenol oxidase; 
Langer and Rinklebe 2009; Unger et al. 2009). One study indicates that while CO

2
 

emissions from soil decline in flooded conditions, this is more than offset by the 
concomitant increase in N

2
O and CH

4
 making some wetland forests greater net emitters 

of greenhouse gases (GHG) than non-flooded ones (Yu et al. 2008). However, the 
overall response of soil flooding on GHG emission is likely to be highly dependent 
on a range of factors (e.g., geographical location, topography, climatic regime, 
catchment size, land use and management) making generalisations across land-
scapes difficult. In some regions of Europe deliberate flooding of organic soils is 
now occurring in an attempt to try and preserve soil organic matter stocks whose loss 
has been stimulated by historical drainage and oxygenation. Whilst this management 
approach appears to reduce CO

2
 emissions and losses of dissolved organic carbon, 

it may stimulate emissions of N
2
O and CH

4
 and may reduce forest growth and there-

fore above and below ground C storage (Silvan et al. 2002).

Mycorrhizal Fungi

In Pterocarpus officinalis, Fougnies et al. (2007) found that arbuscular mycorrhizas 
contributed to flood tolerance and P acquisition. In contrast, Ray and Inouye (2006) 
found that the development of arbuscular fungus associated with Typha latifolia 
was adversely affected by flooding. Stenström (1991) could show that species of 
ectomycorrhizas vary greatly in tolerance to waterlogging. Based on the formation 
of ectomycorrhizas with Pinus sylvestris, the fungi Thelephora terrestris, Laccaria 
laccata, and Hebeloma crustuliniforme were not sensitive to flooding, whereas 
Suillus flavidus and S. bovinus were highly sensitive. It is highly probable that 
fungal species and periodicity of flooding play a crucial role in the final mycor-
rhizal distribution in forest soils.

Fine Roots

In soils with permanent or seasonal waterlogging, hypoxic conditions prevent deep 
rooting (Glenz et  al. 2006) by inhibiting root exploration of those soils layers 
(Chapter 4, this volume). This may be due to both physical factors such as water 
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preventing gas diffusion in soil pores and chemical factors such as high levels of 
reduced iron. In Picea sitchensis, the thickness of the root plate was lower in stago-
orthic gleys than humic stagno-orthic gleys (Ray and Nicoll 1998), and decreased 
individual tree stability. Bakker et al. (2006) showed that in Pinus pinaster growing 
on a humid and dry site, root distribution was significantly shallower and root 
diameter increased more with depth at the humid site. This was suggested to be due 
to more adverse soil conditions such as the presence of a hardpan, higher amounts 
of aluminium oxides and/or anoxia at depth. Similarly, Xu et al. (1997) showed that 
seasonal waterlogging of subsoils restricted the growth of fine roots of Picea abies 
and Abies grandis, but this influence was greater in Picea abies than Abies grandis. 
During the water logging period, in Abies grandis, the dead fine root biomass was 
greater than the live fine root biomass, but the fine root biomass increased by 50% 
during the non-waterlogged period. Figure 2.2 shows the effect of a high soil water 
table on the fine root distribution of Picea abies growing at three sites in the 
Krkonoše mountains, Czech Republic. At the mesic Modrý Důl and Alžbétinka 
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Fig. 2.2  Vertical distribution of fine roots of Picea abies at three sites with a different degree of 
forest decline in the Krkonoše mountains, Czech Republic. The damage to the forest cover in 
Modrý Důl, Alžbétinka and Mumlávska Hora were classified according to the Czech Forest 
Authority as second, third and fourth degree respectively. The three sites are relatively homoge-
neous in soil parent material (granite and gneiss), elevation (1,190–1,220 m a.s.l.), average annual 
precipitation (1,390–1,500 mm year−1) and temperature (2.5–3.8°C). The original forest cover 
consist of plantations of Norway spruce approximately 130 years old in Modrý Důl, older (210 
and 190 years) in Alžbétinka and Mumlávska Hora. The sites differ in the geomorphic position, 
Modrý Důl and Alžbétinka are located at mid slope, while Mumlávska Hora is on a summit. 
Within a site, bars not followed by the same indices (a, b) vary significantly between soil depths. 
Within a soil depth, bars not followed by the same indices (x, z) vary significantly between sites 
(Two-way ANOVA on log transformed data, Holms-Sidik corrected, P < 0.05; mean + SE)
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sites fine roots are found to a depth of 20 cm. In contrast at the Mumlávska Hora 
site which is subject to regular waterlogging, the fine roots are restricted mostly to 
the upper 5 cm of soil.

In sensitive tree species (e.g., Picea sitchensis), waterlogging results in death 
and dieback of fine root tips (Nicoll and Coutts 1998). However, the timing of fine 
root growth and dormancy influences the degree to which the roots are affected. 
Provenances of Picea sitchensis with earlier root dormancy were less sensitive to 
autumn waterlogging than late-dormant provenances. This has also been shown in 
floodplain tree species where root growth of Quercus pagodaeifolia, which has 
early season root growth, was more sensitive to spring floods than Quercus lyrata 
which had delayed root growth (Burke and Chambers 2003).

On soils with a permanently high water table even deep rooting species develop 
shallower rooting systems (Burke and Chambers 2003). The effect on rooting varies 
between species depending upon tolerance to water-logging (Kozlowski 1984), but 
even tolerant trees tend to have shallower root systems (Lehnardt and Brechtel 
1980) in permanently wet soils. In heterogeneously waterlogged soils, root biomass 
of more flooding tolerant species (e.g., Fraxinus pennsylvanica) decreased, but 
biomass of the less tolerant Liquidambar styraciflua was not affected. These spe-
cies-specific differences illustrate that a response of root biomass is related to a 
complex interplay of root proliferation, altered uptake kinetic, and nutrient diffu-
sion rate (Neatrour et al. 2007).

However, the rooting pattern can change rapidly due to death of roots after pro-
longed inundation (Polomski and Kuhn 1998). Further, these authors have sug-
gested in Salix spp., Populus canadensis and Alnus glutinosa that the dieback of the 
root system due to flooding led to promotion of renewal of the fine root system. 
However, under non-waterlogged conditions these tree species also tend to have 
high rates of root turnover (Lukac et  al. 2003; Ostonen 2003), which may be a 
reflection of high plasticity of the fine root system to deal with large fluctuations in 
environmental conditions. Again similar relationships have been shown in flood-
plain forests. Burke and Chambers (2003) could show that in Quercus laurifolia 
habitat with a shallow root zone and episodes of flooding and drought greater 
changes in root structure and physiology occurred than in Nyssa sylvatica habitat 
that had a deeper rooting zone and a more consistently moist to flooded 
hydroperiod.

The most frequently reported reactions of tree root systems to waterlogging, 
and hence hypoxia, are increased formation of lenticels (Coutts 1982; Angeles 
et  al. 1986), followed by the differentiation of adventitious and flood-adapted 
roots (Topa and McLeod 1986; Colin-Belgrand et al. 1991). These adaptations 
have been described for a broad range of temperate tree species (compare 
Kozlowski 1997). Adventitious roots are produced on the original root system 
and on the submerged portions of stems and have been found to have larger SRA 
and more intercellular space (aerenchyma) than roots growing in well-aerated 
soils (Nyssa sylvatica var. biflora; Hook et  al. 1971). They are thought to 
increasing water absorption (Hook and Scholtens 1978; Tsukahara and Kozlowski 
1985; Herrera et  al. 2008), oxidizing the rhizosphere and venting soil-bound 
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ethylene and CO
2
 (Hook and Brown 1973; Drew 1997; Colmer 2003). Under 

waterlogged conditions, Havens (1997) found a 30% higher soil redox-potential 
within the rhizosphere of Fraxinus pennsylvanica seedlings than in non-rhizosphere 
soil areas.

Physiological Adaptation of Roots

As stated above, drought is thought to facilitate suberization of the root rhizoder-
mis. Under waterlogging, an increased suberization of the rhizodermis is thought to 
reduce the radial loss of oxygen in herbaceous species (Enstone et  al. 2003). 
Unfortunately, no studies on suberization of the roots of European tree species 
under waterlogging are known to these authors. However, it was shown that water 
logging results in an increased osmotic permeability and a decreased solute reflec-
tion coefficient of Larix laricina and Picea glauca (Reece and Riha 1991).  
A decrease of membrane permeability and subsequently a decrease of root conduc-
tivity (i.e. sum of radial and axial hydraulic conductivity) was measured on water-
logged Fagus sylvatica and Quercus spp. seedlings (Schmull and Thomas 2000). 
Decreases in the hydraulic conductance of the root system due to hypoxic condi-
tions, as one would expect to find during flooding, have previously been measured 
in different Populus species (Harrington 1987; Smit and Stachowiak 1988).

In Fagus sylvatica and Quercus petraea seedlings, nitrate reductase activity of 
the roots was found to be increased under hypoxic conditions (Schmull and 
Thomas 2000). Nitrate reduction can act as a sink for protons, thus helping to 
avoid damaging cytoplasmic acidosis (Fan et al. 1997). Armstrong et al. (1994) 
summarized that survival of flooding by woody plants depends on more than one 
of the following metabolic adaptations: (1) control of energy metabolism, (2) 
availability of energy resources, (3) provision of essential gene products and syn-
thesis of macromolecules, and (4) protection against post-hypoxic injury. See 
Drew (1997) and Kreuzwieser et  al. (2002, 2004) for extensive reviews about 
metabolic adaptations of roots and whole trees to flooding. Decreased xylem sap 
osmotic potentials due to waterlogging (e.g., in Quercus petraea seedlings, Folzer 
et al. 2006) are not considered to be adaptive mechanisms but have been attributed 
to enriched solutes provided by degenerating roots, a reduction in root water 
absorption (Jackson et  al. 1996) or decreased membrane selectivity (Barrett-
Lennard 2003; Kolb et al. 2004).

Studies about the influence of flooding on root hydraulics properties of 
European tree species are virtually lacking. However, in a study on Picea sitchensis 
and Pinus contorta seedlings, xylem growth in woody roots was found to be 
ceased in the centre of the water-logged area and highly reduced in non-flooded 
parts of root system (Coutts 1982). Thus, when the flood water drains away, the 
previously flooded plants may be more drought-sensitive as their smaller and less 
conductive root systems cannot adequately replenish transpirational losses 
(Kozlowski 1997; Chapter 8, this volume).
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Conclusion and Outlook

The climate is changing, which may affect forest health and composition by 
increasing flood and drought events. Although, below ground traits are likely to 
play significant roles as adaptation mechanisms of current European forest com-
munities, the current state of knowledge of the reaction of soils, tree roots and their 
symbiotic fungi to changing soil water status is poor. Where controlled drainage 
and flooding are undertaken there is also an urgent need to translate research 
findings into policy and practice to prevent negative impacts of forest management 
(see Part II). In addition to the traditional research on root biomass and root:shoot 
ratio, the variability and plasticity of physiological and anatomical root traits in 
heterogeneous soil environments as well as interactions with mycorrhizas should be 
considered in future studies. Furthermore, to predict the development of European 
forest under a future warmer climate there is an urgent need to evaluate the outcome 
of below and above ground competition and subsequently seedling establishment in 
forest communities under changed environmental conditions. Under increasing 
drought conditions heterogeneity of soil moisture is likely to increase, but will be 
strongly linked to changes in canopy structure (Chapter 3, this volume) and the 
wetting characteristics of the forest floor, thus introducing both positive and nega-
tive ecological feed-back mechanisms. In addition, increased spatial heterogeneity 
may change the outcome of competition between tree species, benefiting tree spe-
cies with a greater plasticity and precision of root development rather than physi-
ological adaptation per se. Much of the current knowledge is derived from single 
species growing in homogeneous environments. This knowledge base is insuffi-
cient to make meaningful predictions of the effects of changes of soil water status 
on forests and forest processes.
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