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Abstract The present paper focuses on trajectory optimization problems for
multibody vehicle models, accounting for the presence of pilot-in-the-loop effects
and fast dynamic components in the solution. The trajectory optimal control prob-
lem is solved through a direct approach by means of a novel hybrid single–multiple
shooting method. Specific focus of the present work is the inclusion of pilot mod-
els in the optimization process, in order to improve the fidelity of the solution by
considering the entire coupled human-vehicle system. In particular we investigate a
series of maneuvers flown with helicopters, quantifying the performance loss due to
human limitations of the pilot-vehicle system with respect to the sole vehicle case.

1 Introduction

The ability to simulate maneuvers of rotorcraft vehicles flying at the boundaries of
their operating envelope is a valuable asset for performance analysis, handling qual-
ities research, design and certification, pilot training, and support to the flight test
activity. In general the maneuver of interest can be fully described in terms of quan-
tities which should be minimized of maximized, subject to a variety of equality and
inequality constraints [8–13]. Hence, one can usually give a precise mathematical
definition of a maneuver by formulating an equivalent optimal control problem. The
formulation of such a problem necessitates of a model of the vehicle system with its
inputs, states and outputs, of a cost function and of a list of all constraints.
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Clearly, the fidelity of the predictions made using this approach crucially hinges
on the fidelity of the vehicle model. On the one hand, fidelity improvements may be
obtained by considering a more sophisticated description of the vehicle; the current
state-of-the-art calls for first-principle multibody models of the vehicle, coupling
structural, fluid and servo fields. On the other hand, one might clearly consider
the inclusion of a model of the pilot. In fact, in the absence of a pilot model, the
solution of a trajectory optimization problem amounts to finding the limit perfor-
mance trajectory flyable by a “perfect” pilot. In reality, the pilot is a complex system
which can be modeled so as to account for sensory perceptions, learned behavior
and biomechanical properties. Therefore, it is reasonable to assume that a maneuver
optimized considering just a flight mechanics model of the vehicle will in general
tend to overestimate the vehicle performance, as this has been computed without ac-
counting for the limitations of various nature of a real pilot. To verify whether this
is indeed the case, the present work tries to quantify this hypothesized performance
loss due to the inclusion of a pilot model in the trajectory optimization process.

A human pilot model should account for various effects:

� Sensorial perception: the sensorial system of the pilot provides for a perception
of movements, body position, accelerations, vibrations, etc., which enable the
pilot to build a representation of the current situation.

� Control behavior: the pilot, based on the input provided by the sensorial infor-
mation, evaluates the situation and, on the basis of a desired goal, elaborates a
control law based on experience and training.

� Command actuation: the neuro-musculoskeletal system of the pilot acts like an
actuator that takes as input the control law and translates it into movements of
the vehicle controls (collective, cyclics, pedal).

In the literature, there is a wide range of pilot models which have been formulated
for different applications. As suggested in [21], pilot models can be subdivided in
the following categories:

� Crossover Model: a basic model for single-axis tracking tasks, which is use-
ful for tuning more complete models. In the region of the open-loop crossover
frequency, the product of the pilot transfer function and that of the vehicle is
approximated as an integrator with time delay [26].

� Isomorphic Models: all models which try to explicitly approximate the dy-
namics of the human sensory and control systems. The Structural Model offers
a simplified structural representation of the pilot dynamics in compensatory
systems [20, 29]. Particular emphasis is given to sensorial feedback, which
typically includes proprioceptive and vestibular feedbacks, while the neuro-
muscular components of the model is approximated with a second order filter.
The Biophysical Models give more emphasis to the dynamics of the pilot neu-
romuscular system [27]. Finally, Biodynamic Models are based on multibody
dynamics approaches [22], and are used for investigating the effects of an accel-
erating/vibrating environment on the pilot control capabilities.

� Algorithmic Models: models whose principal focus is the control behavior of
the pilot, but which may include some isomorphism achieving a good degree of
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completeness. A typical example of this category is the Optimal Control Model,
which considers the human pilot as an optimal controller [17], and where the
sensorial component is taken into account by using a Kalman filter.

� Behavioral Models: models which consider the human pilot as a black box
with nonlinear behavior. There are two principal approaches in this category:
Fuzzy-Logic Models, which are based on fuzzy-set theory describing cause-and-
effect relationships [25, 29], and Neural Network Models, which rely upon the
capabilities of neural networks of accurately describing nonlinear input-output
relationships, mapping pilot cues into control tasks [23].

Clearly, the most appropriate choice of a pilot model is strictly related to the par-
ticular application considered. In the framework of trajectory optimization, we need
to account for all three aspects listed above, namely sensorial perception, control be-
havior, and command actuation. Furthermore, it would be preferable to work with
a model formulated in state space form, so as to ease its integration in the overall
maneuver optimal control problem.

The sensorial perception can be modeled by formulating appropriate observers,
for example using Kalman filtering [17]. As a first step towards the goals set forth
in this study, we have neglected this aspect of the problem in the present paper, al-
though we plan on considering it in the continuation of this activity. In fact, although
the inclusion of an observer in the maneuver optimal control problem formulation
does not pose conceptual difficulties, we have postponed the modeling of this com-
ponent of the pilot system because of the difficulty in finding data for the tuning of
the filters.

The second aspect of the modeling, i.e. the control behavior, is in part already in-
cluded in the formulation of a maneuver optimal control problem. In fact, the pilot
elaborates a control law based on desired goals and constraints, which are in fact
the very cost function and constraints which enter into the definition of the optimal
control problem. However, some aspects of the control behavior are more subtle and
difficult to model, such as for example the skills and experience of the pilot. Such
effects are hard to model in precise mathematical terms, but we speculate here that
they might be rendered through appropriate modifications of the cost function. For
example, the modeling of piloting skills might account for degraded piloting be-
havior for maneuvers which require increased coordination and activity among the
controls (increased workload) [15]. Such effects are easily included in the proposed
maneuver optimal control approach, since the coding requires trivial modifications
to the cost function routines. Nonetheless, specific experimental data are lacking, so
that even in this case we have not considered these aspects in the present work, while
waiting to perform experiments with pilots in a simulator to gather the observations
necessary for the tuning of such models. Therefore, in this paper the control behav-
ior is translated in the choice of a cost function that includes a problem-dependent
goal quantity (e.g. altitude loss, time, etc.), and a control term which penalizes ex-
cessive control activity and/or excessive control rates; specific details on the choice
of the cost functions are given below in the section of the paper devoted to the ap-
plications. Such modeling, although rather simple, probably captures a significant,
and possibly the most significant, part of the pilot behavior.
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The third aspect of the problem, the command actuation, can be modeled in a
variety of ways. The more sophisticated approach is based on first-principle model-
ing of the musculoskeletal system using multibody dynamics, and typically includes
rigid bodies with their inertial parameters, joints, muscles with their mechanical and
physiological properties, interactional forces with the environment, and other com-
ponents as required for the accurate representation of the real bio-system. Such level
of detail is probably not necessary for capturing the effects of the limitations of the
bio-system on the vehicle flight mechanics performance. Hence, a simpler approach
is used here, where the effects of the musculoskeletal system are rendered in a global
equivalent sense through the use of simple delay and filter models, as detailed below.

There are two principal approaches to the solution of trajectory optimization
problem: indirect [16, 28] and direct methods [5–7, 10, 13]. Following our previ-
ous work [11], we prefer the direct approach even for the applications which are the
focus of the present paper. In fact, in the case of the indirect methods one has first
to derive the optimal control governing equations by using the calculus of varia-
tion, and then numerically solve the arising two-point boundary value problem. The
manipulation of the vehicle equations of motion for deriving the optimal control
governing equations makes it very hard or inefficient, if not altogether impossible,
to use black-box flight simulators, where more often than not one does not have
access to the source code. In the case of coupled vehicle-pilot models, the equations
tend to become even more involved, so that here again the use of a direct approach
allows for a simpler implementation. In fact, the direct approach does not require
any manipulation of the equations, as one first discretizes the problem by time step-
ping (using either a transcription or a shooting method [11]) and then solves the
resulting Non-Linear Programming (NLP) problem by a standard solver, such as
SQP (Sequential Quadratic Programming).

Multibody vehicle models of rotorcraft systems include both slow flight
mechanics scales and faster aero-elastic ones [14]. To treat more effectively this
class of optimal control problems of multibody systems, we use multiple shoot-
ing on the flight mechanics scales, and single shooting on the faster aero-elastic
ones; this avoids the enforcement of the multiple shooting gluing constraints for
the faster scales, which greatly enhances convergence and in turn reduces the
computational cost.

The paper is organized according to the following plan. At first, we describe the
pilot model considered in this work and we present the equations of the coupled
pilot-vehicle system. Secondly, we formulate in general terms the trajectory op-
timization problem. A discussion about the possible numerical solution strategies
to solve this problem are given next; namely, we first describe the direct tran-
scription approach and then we present the direct hybrid single–multiple shooting
method. Finally, we investigate a number of maneuvering rotorcraft problems, and
we assess the pilot-in-the-loop effects on the computed limit performance of the
vehicle.
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2 Coupled Pilot-Vehicle Model

As argued in the introduction, enriching a vehicle model by adding a pilot model is
a way to improve the performance predictions made using trajectory optimization.
The main task of a pilot is to govern the vehicle by deciding a suitable control law
in relation with the maneuver goals, based on the current perception of the situation
as provided by his/her sensory system. The optimal control model proposed in [24]
and revisited in [17] is a possible way of rendering these effects. In the present work
we adopt a similar approach, reformulating it in the context of trajectory optimiza-
tion. This way, the decision level control behavior of the pilot can be considered as
embedded in the objective function of the maneuver optimal control problem.

The two remaining aspects of human pilot limitations are due to sensorial per-
ceptions and command actuation. As a first step towards the more ambitious goal of
a complete pilot modeling system, we consider here a simple actuator pilot model
(Fig. 1), in order to assess its impact on the vehicle performance predictions, as well
as on the computational cost and robustness of the numerical procedures.

The vehicle equations of motion can be expressed as

f . Px;x;u; t/ D 0; (1)

where x are the flight mechanics states, and u the vehicle control inputs (collective,
longitudinal and lateral cyclics, and pedal). More in general, rotorcraft multibody
models are described in terms of differential–algebraic equations which also include
Lagrange multipliers and constraint equations; however, in the sole interest of a
lighter notation and simpler discussion, we consider in the following the ordinary
differential set of equations expressed by (1).

The pilot actuator system is modeled using a pure time delay [17], operating
in series with a second order filter for the neuromuscular element [29] for each
control input. The pure time delay is approximated by a second-order Padè transfer
function, which provides excellent accuracy over the frequency range of the pilot
(0.1–10 rad/s) [17]; for the single channel we have:

Yd .s/ D 1 � 1
2
.�s/C 1

8
.�s/2

1C 1
2
.�s/C 1

8
.�s/2

: (2)

Delay Filter Plant
u ud uf

Pilot

Fig. 1 Pilot model: pure delay and second-order filter
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The second-order filter [29] is written as

Yf .s/ D !2
NM s

s2 C 2�NM!NM s C !2
NM

: (3)

The series of delay and filter on each control channel can be written in linear state
space form as

Pxp D A xp C B u; (4a)

uf D C xp C D u; (4b)

where xp is the neuromuscular state of length 4nu, where the number of control
inputs nu is equal to 4 for a rotorcraft vehicle. The elements of matrices A, B, C and
D depend on the delay and filter parameters, and in particular on the time constant
� of the pure delay, and on the damping factor �NM and undamped natural frequency
!NM of the open-loop neuromuscular system. Referring to Fig. 1, it should be noted
that the inputs of the pure time delay module are the “desired” command pilot inputs
u, while the inputs of the neuromuscular module are the delayed command inputs
ud . Finally, the delayed and filtered inputs uf actuate the rotorcraft vehicle model.

Collecting together (1) and (4), we can write the governing equations of the cou-
pled pilot-vehicle model as

Pxp D A xp C B u; (5a)

uf D C xp C D u; (5b)

f . Px;x;uf ; t/ D 0: (5c)

Formally, by collecting all states in a unique state vector xT
pv D .xT ;xT

p /
T , by

collecting all dynamic equations (5) into a single function f pv and eliminating all al-
gebraic equations, we can write the governing equations of the coupled pilot-vehicle
system in the following compact form:

f pv. Pxpv;xpv;u; t/ D 0: (6)

When optimizing a maneuver considering only the stand-alone vehicle model,
one uses (1); on the other hand, when the pilot is included in the optimization the
augmented system (6) is used. Formally, the two are identical, so that no changes
are necessary to the trajectory optimization software for dealing with the coupled
pilot-vehicle model.

3 Formulation of Maneuvers as Optimal Control Problems

A maneuver can be defined as a dynamic transition between two steady state
(trimmed) configurations [18], although in the present context it is useful to give a
looser interpretation of the term by considering also the case of terminal conditions
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which are not trimmed. Clearly, given a starting and arrival configuration, there is
an infinite number of ways to transition between the two. A possible way to re-
move this arbitrariness is to formulate a maneuver as a constrained optimal control
problem [8–10, 13].

The maneuver optimal control problem requires the minimization or maxi-
mization of a cost or merit function (e.g. time, altitude loss, control activity, fuel
consumption, etc.), which in general can be expressed in terms of the vehicle states
or outputs and of the control inputs. Furthermore, the optimization problem is con-
strained by a number of conditions that should be met by the solution:

� First, the so-called compatibility conditions must be fulfilled at each time instant
of the maneuver; in other words, it is required that the computed solution satisfies
the equations of motion of a suitable flight mechanics model of the vehicle.

� Second, the solution should remain within the flight envelope and operational
limits of the vehicle.

� Finally, most maneuvers of practical interest (Category-A, ADS-33, flare at the
exit of an autorotation, etc.) are typically characterized by other equality and
inequality constraints which need to be met in order to satisfy given performance
and procedural requirements and that, collectively, contribute to giving a precise
definition of the maneuver of interest.

The maneuver optimal control problem can be formally expressed as:

min
x;y;u;T

J D �.y; t/
ˇ
ˇ
T

0
C

Z T

0

L.y ;u; Pu; t/ dt; (7a)

s.t.: f . Px;x;u/ D 0; (7b)

y D h.x;u/; (7c)

g.y;u; t/ 2 Œgmin;gmax�: (7d)

Solving the problem consists in finding the control function u.t/, and hence
through (7b) and (7c) the associated functions x.t/ and y.t/, which minimize
the cost J given by (7a). In general, the cost includes a boundary quantity which
accounts for values of the outputs at the initial and/or final instants, as well as an
integral cost term. The problem is defined on the interval˝ D Œ0; T �, t 2 ˝ , where
the final time T is typically unknown and must be determined as part of the solution
to the problem.

The model governing equations appear among the problem constraint conditions,
and are expressed by (7b) and (7c), where x are the states, u the inputs and y the
outputs. As shown in the previous section, the model governing equations (7b) can
be represented by (1) when considering the stand-alone vehicle model, or by (6) for
the coupled pilot-vehicle case.

All maneuver-defining and/or envelope-protection constraints are expressed as
generic algebraic non-linear constraints by (7d). These may include as special cases
boundary (initial (t D 0) and/or terminal (t D T )) conditions, constraints at
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unknown internal time events (t D Ti ), generic constraints defined over the whole
maneuver duration (t 2 Œ0; T �), which clearly may also include, as it is often the
case in practical applications, simple bounds on the inputs and states/outputs.

4 Direct Solution of Maneuver Optimal Control Problems

As discussed in [11], the direct approach is often the preferable way to solve the
optimal control problem (7), for a series of practical advantages with respect to
the classical indirect method. According to the direct approach, the optimal control
problem is first discretized and subsequently optimized. This procedure yields a
discrete parameter optimization or NLP problem [19], which can be written as

min
z

K.z/; (8a)

s.t. a.z/ D 0; (8b)

b.z/ 2 Œbmin;bmax�; (8c)

where z is a vector of algebraic unknowns, andK is a scalar objective function which
represents an approximation of the cost J of (7a). The equality constraints (8b)
are generated by the discretization of the equations of motion (7b,7c), while the
inequality constraints (8c) by all other maneuver-defining constraints (7d). Notice
that the problem defined by (8) is characterized by unknown algebraic parameters z,
while the optimal control problem (7) by functional unknowns.

The specific form of the vector of algebraic unknowns and of the constraints
in problem (8) depends on the method used for performing the discretization. Our
software program TOP (Trajectory Optimization Program) [11] implements both
the direct transcription and the direct multiple shooting methods, which are briefly
reviewed next.

4.1 Direct Transcription

This method is very effective and robust, but it is typically applicable only to models
which have low-moderate complexity [13], i.e. which do not have solution time
scales which are too fast with respect to the overall maneuver duration, and/or do
not possess too large a number of states.

The time interval ˝ is partitioned as 0 D t0 < t1 < � � � < tN D T , where the
generic time element is ˝n D Œtn; tnC1�, n D .0;N � 1/, of time step size hn D
tnC1 � tn. On each time element ˝n, the governing equations (7b) are discretized
using a suitable numerical method. The resulting discrete equations are expressed as

f h.xnC1;xn;un; hn/ D 0; n D .0;N � 1/; (9)
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where f h is an algorithmic approximation of function f of (7b), xn, xnC1 are the
values of the state vector at tn and tnC1, respectively, while un represents the value of
the control vector within the step. In general there might be additional internal stages
for both the state and the control variables, depending on the numerical method [11].

The NLP problem (8) is defined as follows. First, the NLP vector of parameters
is chosen as:

z D .xnD.0;N /;u
nD.0;N �1/; T /T ; (10)

i.e. it is defined by the discrete states and control values on the computational grid,
and the final time. Notice that, if one needs a very large number of time steps to
accurately resolve the solution, the size of z will be large, up to the point of making
this approach unsuitable in terms of computational burden.

Next, the cost J of (7a) is discretized in terms of z as given by (10), obtaining the
discrete cost K of (8a). Then, the discretized ODEs within each step, (9), become
the set of NLP equality constraints appearing in (8b). Finally, all other problem
constraints and bounds, (7d), are expressed in terms of the NLP variables z and
become the NLP inequality constraints of (8b).

4.2 Direct Multiple and Hybrid Single–Multiple Shooting

Multiple shooting is typically used in applications of moderate/high complexity,
i.e. with solution time scales which are fast with respect to the maneuver duration,
and/or a moderate/large number of degrees of freedom [13].

The time domain ˝ is partitioned as 0 D t0 < t1 < � � � < tM D T with ˝m D
Œtm; tmC1�,m D .0;M �1/, where each˝m is a shooting segment. In each shooting

segment˝m, the controls are discretized as um.t/ D PN m
c

iD1 si .t/u
m
i , where si .t/ are

basis functions, in particular cubic splines in the present implementation, and um
i are

Nm
c unknown discrete control values. The control approximations are confined on

each shooting segment; this has the effect of decreasing the computational cost of
finite differencing by increasing the problem sparsity. Constraints are enforced at the
shooting segment boundaries to guarantee the continuity of the controls up to C 1.

In the case of direct multiple shooting, the NLP problem (8) is defined as follows.
First, the NLP unknown parameters are chosen as:

z D
�

xmD.0;M/;u
mD.0;M�1/

iD.1;N m
c /

; T
�T

; (11)

i.e. they represent the discrete values of the states at the interfaces between shooting
segments, the discrete values of the controls within each segment, and the final time.

Next, the governing ODEs (7b) are marched in time within each shooting seg-
ment˝m, starting from the initial conditions provided by the values of the states xm

at the left boundary of the segment. The effect of the forward integration is to gen-
erate a discrete time history of states within ˝m, which we label xm

i , i D .1;Nm/,
where Nm is the number of steps taken in that segment. The last value of this
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sequence is named exmC1 D xm
N m , and represents the new estimate of the state

variables at the right boundary of the shooting segment. Segments are then glued
together by imposing the following equality constraints

xm � exm D 0; m D .2;M/: (12)

Multiple shooting segments are used for stabilizing the forward integration of the
vehicle equations of motion [4]. This is particularly important when analyzing un-
stable systems, which is often the case when considering rotorcraft vehicles.

Notice that the size of the unknown parameter vector z is unrelated to the time
step size used for marching the equations of motion within shooting arcs; hence,
one may use very fine temporal discretizations without impacting the overall prob-
lem size, which in fact enables the solution of problems with a higher degree of
complexity than in the direct transcription case [13].

In the direct multiple shooting case, the cost J of (7a) is discretized in terms of
z as given by (11) and evaluated using the segment time histories xm

i ; this yields
the discrete cost K of (8a). Next, the gluing conditions (12) are used to express the
set of NLP equality constraints appearing in (8b). All other problem constraints and
bounds, (7d), are expressed in terms of the NLP variables z and become the NLP
inequality constraints of (8b).

For complex multibody systems denoted both by slow and fast solution com-
ponents, we have observed that the satisfaction of the multiple shooting gluing
constraints can be particularly difficult and usually ends up dominating the prob-
lem. Once again a rotorcraft multibody model provides for an excellent illustration
of such difficulties. In fact, models have flight mechanics states which describe the
gross rigid body motion of the vehicle through the position, orientation, linear and
angular velocities of a body-attached (or floating, in the case of a flexible fuselage)
frame of reference, as well as fast scales which are typically related to the rotor
degrees of freedom, and include rigid and flexible blade states and aerodynamic
states.

Often, a naive implementation of multiple shooting fails to achieve convergence
for such complex multi-scale models. This is not surprising, since the rotor generates
most of the aerodynamic forces acting on the vehicle and even small variations
in its states may imply large variations in the resulting forces, which hinders the
satisfaction of the gluing constraints.

We have found that these problems can be alleviated by using multi-time scale
arguments [14]. In fact, the rotor states (both structural and aerodynamic) are sig-
nificantly faster than the flight mechanics ones. Thus, since the multiple shooting
treatment of these fast states is the main cause of the two aforementioned issues, i.e.
raise in computational cost and difficulty in satisfying gluing constraints, one can
think of treating slow and fast scales using different methods.

More specifically, a multiple shooting approach is used for the slow states. This
is crucial, since with single shooting small changes early in the trajectory can pro-
duce dramatic effects at the end of it [4]; clearly, the problem is exacerbated when
analyzing unstable systems. Hence, the multiple shooting treatment of slow scales
avoids the blow up of the solution.
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Fig. 2 Hybrid single–multiple shooting approach

On the contrary, fast scales are treated using a single shooting approach, as
depicted in Fig. 2. This does not compromise the robustness of the procedure, since
fast scales will not diverge if slow ones do not; hence, the stabilizing effect produced
by the multiple shooting treatment of slow scales is felt also at the level of the fast
ones.

With such a hybrid single–multiple shooting approach, the size of the resulting
NLP problem is substantially reduced and so is the total computational cost. Fur-
thermore, there are no gluing constraints to be enforced for the fast rotor states, since
only the slow states need to be glued together at the shooting interfaces. This has
the effect of greatly increasing the robustness of the procedure, and the convergence
speed.

5 Applications and Results

In this section we consider the solution of maneuver optimal control problems of
practical interest. We analyze the ADS-33 Lateral Reposition Mission Task Element
(MTE) [3] for handling qualities assessment, as well as a Category-A fly-away [2].
Goal of these two examples is a first preliminary assessment of the effects of the
inclusion of the simplified pilot model described earlier on in this work with respect
to the computed limit performance.

The helicopter model, implemented using the rotorcraft multibody FLIGHTLAB
code [1], represents a generic medium-size multi-engine four-bladed utility vehicle
in the 9 ton class.

5.1 Lateral Reposition MTE

The ADS-33E-PRF specification [3] for military rotorcraft defines a series of MTEs
which provide a basis for an overall assessment of the vehicle ability to perform
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certain critical tasks, and result in an assigned level of handling qualities according
to the Cooper–Harper rating scale. Each MTE is related to a maneuver that shall
be accomplished considering specific constraints, as described in [3]. In fact, it is
possible to formulate each MTE as a constrained optimal control problem [12].
Hence, with a software implementation of the procedures discussed in this work, it
is possible to readily compile a library of MTEs of interest in order to predict the
handling qualities characteristics of a specific rotorcraft.

We analyze here the Lateral Reposition MTE, considering both the stand-alone
vehicle model and the coupled pilot-vehicle system.

According to the Lateral Reposition MTE [3], the helicopter, initially in hover,
is supposed to translate laterally for 400 ft and then recover the initial hover con-
figuration. The maneuver must be flown in ground effect since the initial and final
positions are characterized by an altitude of 35 ft (the rotor diameter is 30 ft); al-
titude variations must be within ˙10 ft. Referring to Fig. 3, the maximum allowed
displacement in the longitudinal direction is ˙10 ft, while the maximum heading
misalignment is ˙10 deg with respect to the initial direction. The maneuver must
be completed within 18 s.

One possible formulation of this MTE is to consider the following minimum time
cost function (13):

J D T C 1

T

Z T

0

Pu � W Pu dt: (13)

The first term enforces the minimum time condition, while W D diag.wPu/ is a di-
agonal matrix of tunable weighting factors which penalize the control rates.

It is also necessary to constrain the vehicle trajectory so as to express the MTE
path requirements described above. With this formulation of the problem the time
constraint is not explicitly enforced, but verified a posteriori. In other words, one
tunes the weight parameters W in the merit function (13), this way controlling the
aggressiveness of the maneuver. Then, once a solution has been computed, one ver-
ifies whether the maneuver was rapid enough and effectively completed within the
maximum allotted time. Obviously there are limitations in the maneuver aggres-
siveness related to the vehicle capabilities and its flight envelope constraints. In this
case the trajectory constraints are imposed directly through bounds on the position
variables and heading angle:

j .t/j � 10 deg; (14a)

jx.t/j � 10 ft; (14b)

j�z.t/j � 10 ft; (14c)

0 � y.t/ � 400 ft: (14d)

We solved this problem initially without considering a pilot model; once the
“pilot-off” solution had been evaluated, we used it as the initial guess for the evalu-
ation of the “pilot-on” case. The following values for the pilot actuator model were
used [29]: � D 0:2 s, !NM D 10 rad/s, �NM D cos.�=4/.
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Fig. 3 Lateral Reposition MTE: snapshots
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Fig. 4 Lateral Reposition MTE: X, Y, Z positions, and heading angle (from top to bottom, left to
right)

Figure 3 shows some snapshots of the helicopter during the maneuver. Figure 4
gives the time histories of the constrained path variables, for both the pilot-off (solid
lines) and the pilot-on cases (dash-dotted lines). Figure 5 shows the control time
history; in the pilot-on case, both the computed pilot model inputs (vector u in (5))
and the plant inputs (vector uf in (5)) are shown in the figure.
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Fig. 5 Lateral Reposition MTE: collective, pedal, lateral and longitudinal cyclic (from top to
bottom, left to right)

The pilot-in-the-loop effects do not appear to generate significant differences
with respect to the stand-alone vehicle model for both the trajectory and the control
inputs. The maneuver duration is in both cases less than the 18 s prescribed by the
normative, with a slightly longer total time for the pilot-on case. Both trajectory and
controls do not not appear to have been significantly affected by the neuromuscu-
lar lag.

5.2 Category-A Fly-Away

The effect of pilot actuation are investigated also for the case of a fly-away maneuver
under Category A certification requirements [2]. A meaningful simulation policy for
such a maneuver consists in the minimization of the altitude loss, according to the
cost

J D H.T /C 1

T

Z T

0

Pu � W Pu dt; (15)
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The initial condition is a hover. A latency period of 1:2 s after the engine failure
is taken into account, during which the pilot realizes the situation and there is no
control activity. The power loss is modeled as

Pav.t/ D PH C .POEI � PH /K
C.t/C PH K�.t/; (16a)

KC.t/ D sca.t � t0/.1 � e�t=�C

/; (16b)

K�.t/ D sca.t � t0/e
�.t�t0/=��

; (16c)

where t0 is the instant of engine failure, PH is the hover power, POEI D 1750 HP
is the one engine inoperative maximum take-off power available, while �C D 2=9 s
and �� D 1=9 s are suitable time constants. An inequality constraint in the maneu-
ver optimal control problem (7d) is used for ensuring that the power generated by
the engine is at all times less than the available one, as expressed by (16a). The final
conditions are

W.Tf / D 0m/s; (17a)

p.Tf / D q.Tf / D r.Tf / D 0 deg/s; (17b)

˝.Tf / � 90%: (17c)

All simulations were conducted outside of ground effect. This single-phase formula-
tion of the problem considers only the first part of the maneuver, i.e. from the engine
loss to the moment the lowest point in the trajectory is reached. A multi-phase
formulation of the same problem covering also the climb part of the Category-A
maneuver was considered in [8–10].

The standard procedure is to fly this emergency maneuver in the longitudinal
plane of the helicopter. In fact, simulations of this maneuver are often conducted
with a two-dimensional helicopter model. However, using a three-dimensional
model, one may observe that the solution converges to a three-dimensional maneu-
ver with significant yaw and roll (see Fig. 6). The three-dimensional (3D) optimal
maneuver altitude loss �H 3D

min D 15:77m improves on the two-dimensional (2D)

Fig. 6 Category A, fly-away: optimal two-dimensional (left) and three-dimensional (right) trajec-
tories, pilot-off case
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Fig. 7 Category A, fly-away: altitude loss comparison (left) and inertial velocities (right), pilot-off
case
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Fig. 8 Category A, fly-away: helicopter attitude, pilot-off case

optimal altitude loss �H 2D
min D 16:72m of about one meter (Fig. 7 at left), as con-

firmed by the opinion of test pilots. This gain can be explained by observing Fig. 8.
In the 3D maneuver, both the roll and yaw angles increase and reach their respective
maxima approximatively halfway throughout the maneuver. This attitude allows for
some reduction in the vertical velocity (Fig. 7 at right), which explains the decreased
altitude loss. Clearly, the control activity on the pedal and lateral cyclic is higher for
the 3D maneuver than for the 2D one.

These two simulations were repeated including the pilot model. To simplify con-
vergence, we used a bootstrapping procedure. The first guess was initialized to the
solution computed without pilot model. Next, the control time histories of the guess
solution were used for evaluating the pilot model dynamic constraints, thus obtain-
ing initial estimates of the pilot state time histories. The stand-alone vehicle solution
augmented with the pilot state time histories was then used as initial guess for the
pilot-in-the-loop optimization.

For the coupled pilot-vehicle problem, the resulting optimal maneuvers do not
change significantly in terms of control input profiles with respect to pilot-off sim-
ulations, but the altitude loss increases for both the 2D and 3D cases (see Fig. 9).
In the 2D maneuver the altitude loss is � OH 2D

min D 18:56m with a difference of
1:84m (10:38%) with respect to the pilot-off case, while in the 3D case we obtain
� OH 3D

min D 17:62m with a difference of 1:85m (11:73%). This is not simply due to
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Fig. 9 Category A maneuver, fly-away: altitude loss comparison (left: 2D; right: 3D)
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Fig. 10 Category A maneuver, fly-away: inertial velocities (left: 2D; right: 3D)

the fact that all time histories are delayed. The principal reason appears to be the
delay in the pilot first reaction to the engine loss, which gives a higher maximum
vertical velocity value, as shown in Fig. 10.

In conclusion, the introduction of a pilot model seems to have a non negligi-
ble effect on the performance estimation, which would seem to motivate further
refinements in the simplified pilot model considered in this preliminary study. Fur-
thermore, it appears that a 3D maneuver gives better performance (less altitude loss),
than the usual 2D one. However, the 3D maneuver is harder to fly since it requires
good coordination skills. Moreover, the pronounced sideslipping might make it dif-
ficult for the pilot to hold the visual references.

6 Concluding Remarks

In this work we have formulated a trajectory optimization approach to maneuver
modeling in rotorcraft flight mechanics, including pilot-in-the-loop effects and fast
dynamic solution components.

The formulation can accommodate the pilot control behavior as part of the def-
inition of the cost function (and in this sense falls within the category of optimal
control pilot models), as well as the command actuation and sensorial perception
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aspects. In this work, the command actuation was rendered using global equiva-
lent models through the use of a simple delay in series with a second order filter.
Although a more sophisticated model, as for example a biomechanical multibody
model, could be readily implemented in the formulation without conceptual diffi-
culties, the present implementation is probably sufficient for capturing the relevant
command actuation effects on the flight mechanics characteristics of the response.
The sensorial perception component of the model was not considered here, mainly
for the lack of sufficiently reliable data for the tuning of the required Kalman-based
observers; this aspect of the problem is currently under investigation, and will be re-
ported in a forthcoming publication. It is reasonable to speculate that the inclusion of
the perception system model will determine further degradation of the performance,
although the actual quantification of this aspect remains to be seen.

Based on the current state of this study, the following conclusions may be drawn:

� The performance degradation due to pilot-in-the-loop effects depends on the
particular maneuver considered. In particular, it appears that for the Lateral Repo-
sition MTE the pilot model induces negligible differences, while the Category-A
rejected take-off shows a more pronounced effect with an increased altitude loss.
Other maneuvers will be considered in the continuation of the present study.

� The inclusion of a pilot model in the optimal control formulation does not imply
substantial difficulties, since the coupled pilot-vehicle system is formally identi-
cal to a generic vehicle model expressed in non-linear state space form.

� The current version of the pilot model has only a modest impact on the com-
putational cost of the optimization, so that the code retains its ability to conduct
complete maneuver simulations in the order of minutes on standard desktop com-
puters.

� As for all optimization problems, better performance and robustness of the pro-
cedures relies also on good initial guesses of the solution, which in this case also
requires initial estimates of the internal pilot states. This was achieved here using
a bootstrapping procedure, based on an initial solution computed without pilot
model, followed by the initialization of the pilot states obtained with the com-
puted pilot-off control inputs. This procedure proved to be easy to implement
and very effective.
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