Chapter 2
Linear Wave Phenomena

A few simple examples of the linearised boundary and initial-boundary value prob-
lems formulated in the previous chapter will be solved by the Fourier or Laplace
transform method. Through these simple examples, basic wave phenomena or ter-
minologies in water waves will be introduced. These are phase velocity, dispersion
relation, group velocity, wave fronts, to name a few.

Of particular importance is the asymptotic behaviour of the free surface elevation
for large values of relevant spaces and for time variables. This behaviour can be
best obtained by the method of stationary phase (see Sect. 9.1). In this connection,
the method of characteristics for treating first-order non-linear partial differential
equations for the phase function is employed. Hence a brief summary of the concept
of characteristics is included in Sect. 9.2.

A systematic derivation of oscillatory source singularity functions is presented
for the disturbance below the free surface with and without current in Sects. 2.3
and 2.7.2. In Sect. 2.4 we derive for the steady case the field for a pressure distur-
bance at the free surface and for a point source below the free surface in Sect. 2.7.1.
These source functions are often called Green functions and are used in numerical
codes. One may derive different formulations for the functions as is shown.

2.1 Travelling Plane Waves

2.1.1 Plane Waves

It is easy to obtain travelling plane waves. As in Chap. 1 for small amplitude waves
the linearised problem is defined by (1.32). For simplicity we restrict ourselves to
the situation where U = 0. We consider two cases according to the water depth. We
begin with the infinite depth. In this case the boundary value problem (1.32) consists
of the Laplace equation

Oxx + @yy + @22 =0 2.1
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12 2 Linear Wave Phenomena
together with the surface conditions

O +8py =0 aty=0 2.2)
and the condition at infinity

¢y —>0 asy— —oo. (2.3)
We seek a solution ¢(x, y, z, 1) of (2.1)—(2.3) in the form
iox+p2)thytior 2.4)

@(x,y,2,1) = Ae

where «, B, k, w and A are constants. Clearly (2.3) will be satisfied if & is positive.
Substituting (2.4) into (2.1) and (2.2) we obtain

k=a’>+p> and —w?+gk=0. (2.5)

Set « = —kcos6 and B = —ksin@ which clearly satisfy the first equation of (2.5)
for any k. The second one gives that k = ©® \which is known as the dispersion
relation—a relation between wave number k and frequency w. Then the potential

function has the form

w w2
ox,y,z2,t)= Aexp{—iw[—(x cosf + zsinf) — t] + —y}, (2.6)
g g

and consequently the water height is given by
1 iw . | .
n(x,z,t) = ——¢; = —A—expy —iw| —(xcosd + zsinh) — t 2.7
8 8 8

through use of (1.33). This formula represents plane waves.
For 6 = 0, we have plane waves travelling along the x-axis, independent of the
z-coordinate:

i i@ i@ e
n(x, 1) = —2 Ae I HTOD — 4 o1 oD, (2.8)
8
where ¢ = % is the velocity of the wave (or phase velocity) and A} = —%"’A is the
amplitude of the wave. The real part of (2.8) corresponds to the real values wave

height.

We now consider a wave train consisting of two plane waves in the x-direction
with slightly different frequencies @ and @ + dw. The total wave height may be
written as

n(x,t) = Ajcos(kx — wt) + Az cos((k + Sk)x — (w + Sw)t
= A(x,t)cos(kx — wt +0(x,1))), (2.9)
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where the amplitude function A(x, t) and the phase function 6 (x, t) are slowly vary-
ing functions. They can be written as

A(x,1) = A3+ A3 + 24, Ay cos(8kx — Swr) and

Ajsin(§kx — Swt) (2.10)

A + Apcos(8kx — Swt)

tanf(x,t) =

The amplitude moves with the velocity (;_L]? It will be shown in Sect. 2.1.2 that the
wave energy is proportional to the square of the amplitude, hence we may expect

that the energy moves with a velocity

. bw  dw
ce= lim —=—. 2.11)
Sw—0 8k dk

This velocity c; is called the group velocity.
The corresponding problem for finite water depth can be treated in the same way.
We write
o(x,y,2,1) = ¢(x,y, 2.
Then in this case we have from (2.2) the surface condition

2
Gy="¢ aty=0, (2.12)
8
while the condition at infinity (2.3) is replaced by the boundary condition (1.32). In
terms of ¢ we have
¢y=0 aty=—h. (2.13)

For travelling waves in the direction of the x-axis, i.e., § = ¢(x, y), a simple ma-
nipulation by the method of separation of variables leads to the solution

@(x, y, 1) = Acosh[k(y + h)]e 1 kx—eD, (2.14)
where the wave number k and the frequency w are related by the dispersion relation
w? = gk tanh(kh). (2.15)

Waves with a different wave number travel with a different phase velocity ¢ which

is defined by
=2 /gtanih(kh). (2.16)
k k

Note that for ki small, since tanh(kh) = kh + O((kh)?), we have ¢ = \/gh which
is the case without dispersion. Observe again that if we let 1 — oo, we recover
the case of infinite depth, (2.5). The dispersion causes a wave pattern, which at a
certain place x and time 7 is a superposition of harmonic waves to be distorted at
other places, because the components travel with different velocities. In the case of
dispersion, it is difficult to determine the concept of ‘wave speed’.



14 2 Linear Wave Phenomena

2.1.2 Wave Energy Transport

For the description of plane waves it is sufficient to restrict the considerations to
the one-dimensional case. We represent at ¢t = 0 the water height 7 (x, 0) by the real
integral

o0

n(x)= /OO C (k) cos(kx) dk—i—/ S(k) sin(kx) dk (2.17)
0 0

with

Ck) = %/0 n(x)cos(kx)dx, and

1 o0
Sk) = —/ n(x)sin(kx) dx.
T Jo
Since C (k) and S (k) are respectively even and odd functions, setting
1
A(k) = E(C(k) +iS(k)), (2.18)

we can rewrite 1(x) as a complex integral

n(x) = / - A(k)e ™ dk. (2.19)

—00

A simple calculation shows that

[e¢) o
n(x) =290 / Alk)e ** gk = / A*(k)e'*™ dk, (2.20)
0 —00
where A*(k) is the complex conjugate of A (k).
For an understanding of the wave dispersion phenomenon, it is necessary to con-
sider the energy propagation in the wave (linearised approximation). If the function
n(x) belongs to L2, i.e., ffooo n(x)? dx exists, the potential energy is given by

E= %pg/oo n(x)*dx = %/m (foo Akye dk) (/oo A*(Kyelk' dk/) dx

from (2.19) and (2.20). The latter integral can now be calculated by making use of
the Fourier inversion theorem and the fact that ffooo K=y gy =278 (k' — k).
This gives

1 o0
E= —ngn/ |A(k)|* dk. (2.21)
2 —o0
Hence from (2.18) we have
[o)0]
E=28" [ cw)? + sk)?) dk. (2.22)

4 Jw



2.1 Travelling Plane Waves 15

If the dispersion relation w = w (k) is known (for convenience we extend the defini-
tion of w(—k) = —w(k)), then we can compute the water height » at any arbitrary
time ¢ as follows:

o0 ) o0 .
n(x,t) = / Ak)e! @ =k qp — / A(k)e 1@ =k gk (2.23)
—00 —00

in terms of the phase velocity ¢ = w/ k. Here it is assumed that the initial conditions
are such that the wave propagates only in the projection of the positive x-axis.

The total potential energy is conserved; the wave only changes the distribution
of the energy along the x-axis. In fact we have

E(t) = 7P8 [n(x, 1) dx
-0

1 oo o0 . o0 .y ,
— _pg/ dx (/ A(k)el((z)t—k)() dk) (/ A*(k/)e—l(w t—k'x) dk/>
2 —0o0 —00 —0o0

with @’ = w(k’). The latter integral follows from (2.23) and can be calculated simi-
larly according to the Fourier inversion theorem. We find again

E(1) = pgm /OO |A(k)|? dk. (2.24)

Now we are going to find a measure for the velocity of the energy propagation and
calculate to this end the location of the centre of gravity x(t) of the first moment of
the energy, which is defined by

Lo xIn(x, )] dx

= R

(2.25)

provided both integrals exist. Here the denominator has been shown to be a constant
in time and can be calculated easily from (2.24). The numerator, however, requires
some investigation. Equation (2.23) yields

foox|n<x,r>2|dx

—00

= / xdx / A(k)e' @) gk / A*(K)e 1 @1=Kx) gp/

— / d)C/ A(k)d i(wt— kx))/ A* (k) —i(w't— k/x)dk/
+1 / dx / A(k)—dw(k) AF ()l @ —R0=i1=KD) g gp!

= _N+ .
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Integrating by parts and taking account the fact that A(k) — 0, as k — $o00 in view
of Bessel’s inequality, we find

jl — _l/oo dx/oo w /OO A*(k/)ei(wlka)fi(a),l‘fk/x) dkdk/
—00 —o dk —00

Then by the Fourier inversion formula, we obtain
i =—2ni/ Ak )A*(k)dk
o dk

jz_zn/ &|A(k)| dk.

Adding ¢ and _7>, we have

/ooxm(x t)2|dx=2n{—i/ dA® 4« (k)dk+t/ J|A(k)| dk}
. ’ T o dk
(2.26)

We define, as a mean value of a quantity ¥ (k) in the k-domain,
Sl v AR * dk
2o 1 AGK) 2 dk

v = : 2.27)
and remark that the first term in (2.26) determines the position of x(¢) for = 0.
Hence we find

_(t)—'(O)—f-td—w (2.28)
x(t)=x &’ .

i.e. the centre of gravity propagates with a velocity which is equal to the mean
velocity of ((11—“’ Here ‘(11—‘1;’ is called the group velocity; hence the mean value of the

group velocity 42 ar 1s ameasure for the speed of propagation of the energy.
The significance of this result becomes clear when we consider an amplitude
spectrum A(k), which extends only over a narrow wave number band:

ko+e .
n(x, 1) = / A(k)e ikx—o®r gp ¢ 5 0. (2.29)

ko—e
The centre of gravity satisfies

% (t; ko, &) = £(0; ko, €) + ta (ko, €), (2.30)

where «’(kg, &) is now the mean value of w'(k) = d—“) over the narrow band

[ko — €, ko + €]. For small values of ¢ we simply replace o' (ko, €) by o' (ko).
For small values of 7, one can make a more accurate analysis of the motion as
follows. Expanding w (k) in the form

(k - k0)2 (I)//
2

w (k) = w (ko) + (k — ko)’ (ko) + k),
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and substituting into (2.29), we may write

ko+e ) , (k=kp)* -,/
nx, 1) = / A(k)e i kox—o ko +k—ko) (v=o/ (ko)) = ==0=0" h)r) g
ko—e
) ko+e .
— o~ iltkox—w (ko)) / A(k)efl(kfk(’)(xfw,(k‘))’) dk + R, (2.31)
ko—e

where

ko+e
R = e—itkor—o(ko)) / Ak)ye—i—e/ o) k—ko)
ko—e

AR Ry
: {exp[wcb”(k)t] — l}dk.

Using the inequality le — 1| < |u|, we find an estimate of the remainder

ko+e (k_kO)Z »
IR| s/ w1 16 el ak

ko—e

1
<= Ak "(k)l)et,
= 3 (1@ (1o )

which shows that for not too large values of 7, the first term of (2.30) gives a good
approximation of 1. Assuming, for small &, A(k) to be constant A(kp) over the
interval, we can integrate:

ko+

A(ko)efi(koxfw(ko)t) / € efi(kfko)(xfw/(ko)f) dk

ko—e

7ik0(x7w](%0) 1 2sin[(x — &' (ko)1)e]

= A(ko)e

x — ' (ko)t

Fig. 2.1 Wave train
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Hence we have, for small ¢ and ¢ not too large,

—iko(x— 20 r) 2 sinf(x — o' (ko)t)€]
x — o' (ko)t

n(x, 1) = Acko)e (2.32)
as shown in Fig. 2.1.

This represents a modulated wave; the amplitude moves with the group velocity
o' (ky (the dotted enveloping curves) while the phase moves with the phase velocity
w (ko) / ko (the inscribed solid curves).

2.2 Cylindrical Waves

The boundary value problem for a cylindrical wave, at zero speed, U = 0, is defined
by the same equations in (1.32) for small amplitude waves. For harmonic oscilla-
tions we put

iwt .

o(x,y,z,1) =@x,y, e,

) (2.33)
n(x, z,1) =(x, 2)e'".
Then the potential function ¢(x, z, t) satisfies the Laplace equation
@xx + (ﬁyy + @zz =0 (2-34)
and the surface equation
.o,
¢y=—¢ fory=0. (2.35)
8
For infinite depth, we have again the condition
é finite  for y — —oo0. (2.36)

Since the problem now is axially symmetric, it is natural to make use of cylindrical
coordinates x =rcos6f,z =rsinf, y = y. Thus (2.34) reads

193/ 8¢ 929
——(r== — =0. 2.37
r8r<r8r)+8y2 237
We introduce dimensionless coordinates
_ ra? _ ya)2
F=—), y=—
8 8

The transform leaves the differential equation (2.37) invariant, but the boundary
condition (2.35) becomes

A

¢=¢; fory=0. (2.38)
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We solve this problem by the method of separation of variables and assume that
9. 3) = R(),

where R(7) is a solution of the ordinary differential equation

1d/_dR )
——|r— ) +A"R=0.
rdr\ dr

The boundary condition (2.38) gives that A = 1. Thus we obtain
N N @ = @ 5
¢, y)=e"{AH;"’ (F) + BH,” (")}, (2.39)

where H(gi) are Hankel functions of order zero, and A and B are constants to be
determined from the radiation condition as follows.
As is well known, for large values of 7 we have

2 -z
H" () ~ /=%, and

Tr

2 _sim
HP () ~ | 710D,

mr

With time dependence ', only the solution
o(F,5,1) = Be' H)? ()’ (2.40)

represents outgoing waves. For large values of r it behaves as

- s |2 i P
(7, 3,1) ~ Be¥, [ —e 077D,
mr

and the phase is defined by

which gives £ for the phase velocity.
The water height 7 is given by

N 1) = —— BeY P (et (2.41)
g

from (2.33), (1.33) and (2.40). Here it is understood that either the real or the imagi-
nary part of the right-hand side of (2.41) is to be taken. We usually take the real part.
This is an example of centred outgoing waves. The solution is obviously singular at
r =0 and Vy. In the next Sect. 2.3 we will see that the far field of an harmonic point
singularity has such a far-field behaviour.
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2.3 Harmonic Source Singularity

It is of interest to determine the field disturbance of the free surface due to an har-
monic singularity in a point below or at the free surface. As will be shown in Chap. 3,
many methods to solve the problem of diffraction of waves by an object we make
use of a distribution of singularities at the surface of the object. Here we will de-
termine the field generated by such a singularity. As an example we treat the finite
water depth case. The singularity is written as a Dirac §-function in the right-hand
side of the Laplace equation

Prx + Pyy + @z = 8(x — x0, ¥y — Y0, 2 — z0)el". (2.42)

If we introduce ¢(x,y,z,t) = ¢(x, v, z)ei‘”’ , the boundary value problem to be
solved becomes

Pxx + Pyy + @z =8(x — X0, ¥y — Y0, 2 — 20)»

9, =0 ty=—h,
g"y ay (2.43)
2
. W,
gp)r:_(p aty:O.
g

This formulation is not complete. We must add a condition at large horizontal dis-
tance from the source. The solution must fulfil the radiation condition. The distur-
bance for large values of R = \/ (x — x0)% + (z — z0)? may only consist of outgoing
waves. The solution must have the form

9(x,y,2,1) & A(R, y)e kR=wD, (2.44)

where the amplitude function tends to zero if R — 0.

There are several ways to solve this problem. We shall employ the method of
Fourier transform to obtain a solution. We introduce the following exponential trans-
form of ¢ with respect to the x and z coordinates

o0 o0
d(a,y, B) = f / @ PG (x, y, z)dx dz. (2.45)
—00 J =X
The inverse transform is
1 o] 0 .
P(x,y,2) = o / / e 1@ B g (o, y, B) da dB. (2.46)
—00 J —O0

We introduce the transform in the Laplace equation and the boundary conditions
for ¢ and obtain an ordinary differential equation for ¢ with appropriate boundary
conditions

Gyy = (@ + p2)p = @5 (y — y),
¢y =0 aty=—h,

2
10)

¢py=—¢ aty=0.
8

(2.47)
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The singularity in the right-hand side of the differential equation can be replaced by
the following conditions for the function ¢ («, 8, y):

lin})(d’y (@, yo + &, B) — by (a, yo — &, B)) = @0 tF0),
e—

. (2.48)
812%(05(0!, yo+e&, B)— ¢ yo—e B))=0.

The solution of the problem is written as ¢ for yg < y <0 and ¢~ for
—h < y < yp. A convenient choice of the solution is

¢ = Acosh(k(y + h)) + Bsinh(k(y + h)),
¢~ = Ccosh(k(y + h)).

Here k is defined as the distance to the origin in the Fourier space which is the
positive root of k> = o> + B2. With this choice the bottom condition is fulfilled
automatically. The constants A, B and C are determined by the condition at the free
surface y = 0 together with the conditions at y = yy. After some manipulations we
find the solution for yg < y <0,

¢+ _cosh(k(yo + h)){vsinh(ky) + kcosh(ky)}ei(aonrﬁzo)

= . (2.49)
k{k sinh(kh) — v cosh(kh)}
and for —h < y < yp,
o= _cosh(k(y + h)){vsinh(kyg) + kcosh(kyo)}ei(ax0+ﬁzo) (2.50)
k{k sinh(kh) — v cosh(kh)} ’ ’
where v = ’“?2. We now apply the inverse transform given by (2.46) to ¢™
A -1 00 poo
0= f / e—i(@(—x0)+Bz—20)
7= J—00J—00
_cosh(k(yo + h)){vsinh(ky) + k cosh(ky)} dadf. (251)

k{k sinh(kh) — v cosh(kh)}

It is convenient to introduce polar coordinates, both in the physical space and the
Fourier space. We introduce

X —xo= Rcos®, 7z —20= Rsin6 (2.52)
and
o =kcosv, B =ksin?. (2.53)

The solution can then be written as

+ -1 e ik R cos(—0)
~ X, Y, - e*l cos(t—
P (x,y,2) 172 /0 /O

cosh(k(yg + h)){v sinh(ky) + k cosh(ky)}
' k sinh(kh) — v cosh(kh)

Ao dk.  (2.54)



22 2 Linear Wave Phenomena

The integration with respect to ¢ can be carried out by making use of the following
definition of the Bessel function Jy:

1 2 .
Jo(kR) = o fo g kRcos@=0) g9 (2.55)

Hence, if we follow the same procedure for ¢, we obtain

ot _ —_1 /'oo cosh(k(yo + h)){v sinh(ky) + k cosh(ky)}
Ty =0 k sinh(kh) — v cosh(kh) Jo(kR) d’(;’ 5
—1 [°° cosh(k(y + h)){vsinh(kyg) + k cosh(kyg)} )
¢y D)= f k sinh(kh) — v cosh(kh) Jo(kR) dk.

Until this point the radiation condition is not used. We will see that to define a proper
inverse transform it has to be used. The integrands of the functions 1>~ each have
a singularity for a real value of the denominator. Hence, the integrals are not well
defined. The equation k sinh(kh) — v cosh(kh) = 0 has one real root together with
an infinite number of purely imaginary roots. From the theory of Fourier integral we
know that the contour of integration has to pass, in the complex k-plane, above or
below the singularity. The choice is determined by the radiation condition. A way to
determine the correct choice is to introduce a small artificial damping in the fluid. If
we assume the far field to be of the form e 7{*®=® e see that the only choice for
vanishing waves is to introduce a complex wave number of the form k = k — ik. The
negative imaginary part of the wave number may be generated by some artificial,
non-physical, damping. This indicates that the singularity on the real axis must be
passed above. Representation (2.56) for ¢ consists of different forms depending on
whether y is larger or smaller than yg. This might be not practical. One may obtain a
single expression if we use some lemmas from the theory of complex functions. We
use the following lemma for analytic functions f(z) and g(z), while the function
f(z) has simple zeros z; in the complex plane. If we define f(z) = zsinh(zh) —
vcosh(zh) and g(z) = cosh(zp){vsinh(zg) + zcosh(zq) respectively, then for
|z| = oo the function f(( )) — 0 fast enough and we have

f@ [

8@ _ 8O o —
= +Xi:g(zl)%<z_l % fo(@i)

1 1
+ —) with y; = ——, (2.57)

which is an expansion of ff((Z)) in rational fractions of z, see [21], Sect. 7.4.

The integrands of both integrals in the expression for ¢(x, y, z) (2.56) has in-
finitely many simple poles k = +k; (i =0,1,2,...) in the complex k-plane. We
have

k; sinh(k; ) — v cosh(k;h) = 0. (2.58)

The positive real zero is kg, while the positive imaginary roots are k; = ik; (i =
2,...), see Fig. 2.2.
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Fig. 2.2 The singularities in
the complex k-plane
1x
Ny
s
P
> Lok ——
&
According to (2.57) we may write
g(k) . o o
= ki , 2.59
k sinh(kh) — v cosh(kh) ;g( Nk Tk (2.59)

where we used the fact that in our case g(k) is antisymmetric and g(0) = 0 and
where «; is defined as

o = .
" (v+k?h —v2h)cosh(k;h)

(2.60)

If we work out the integrands of (2.56) we find one expression for ¢(x, y, z), valid
for —h <y <0. We obtain

B k2 — 2
o(x,y,7) = — —t cosh(k;(y + h)) cosh(k; (yo + h
9(x..2) 2ﬂ§v+ki2h_v2h (ki (y + h)) cosh(ki (yo + h)

o 1 1
~/0 <k—k,' — k+kl~>JO(kR)dk' (2.61)

The integral in the right hand side can, by introducing kK = —k* in the second part,
be rewritten as
1 /00 H{" (kR) 1 foo H® (kR) .

dk + =

ki) == N k. 2.62
S k) 2) o k—ki 2) o k—ki (2.62)

Due to the asymptotic behaviour of the Hankel functions we may close the first
integral in the upper half of the complex k plane, while the second one may be
closed in the lower half. In this way the contributions of the contours at |k| — oo
tend to zero. If the path of integration in (2.62) passes the singularity k = k¢ in the
upper plane we obtain the following result for i = 0:

7 (ko) = —miH? (koR), (2.63)
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\ ~

‘ ko

Fig. 2.3 Line of integration

andfori=1,2,...
7 (ki) = miH" (i R) = 2Ko(ki R), (2.64)

where K(z) is the modified Bessel function. The contribution of Héz) (koR) rep-
resents an outgoing circular wave, while the contribution of each Ky (k; R) is expo-
nential decaying for large values of R. This confirms the right choice of the contour
of integration, see Fig. 2.3. We notice that the use of an artificial damping to shift kg
actually is not the only way to find the correct contour of integration. If one chooses
the contour to pass underneath ko the wavy behaviour is described by Hél)(koR),
describing an incoming circular wave field. Waves travelling towards the source
clearly which disobey the radiation condition.
The expression for the total field now becomes

iwt

p(x,y,2,1) =" @(x,y,2)

with
ik —v?)

0 "7 cosh(ko(y + h)) cosh(ko(yo + 1) H® (ko R
20+ K2h —v?h) (ko(y +h)) (ko(yo +h))Hy™ (ko R)

P(x,y,2) =

/c +v 2
+= Z - o8 (v + 1) cos(ii (v + 1)
VvV — IC

x Ko(ki R). (2.65)

If we take the real part of (2.65) and multiply it with —47 we have the famous result
of F. John. The different factor originates from the normalisation of the point source.
This formulation can be used to compute the disturbance due to a unit point source
at finite difference from the source. However, the series does not converge close to

the source. This was to be expected, because of the singular, — 4m, behaviour of ¢,

where r = /(x — x0)2 + (y — y0)? + z — 20)? is the distance to the singularity.
We expect to find a useful solution near the singularity if we write it as

« 1 1
ox,y,0)=————+Y(x,y,2), (2.66)
dnwr  4nmr

where 7 = /(x — x0)2 + (y + 2h + y0)2 + (z — 2,)? is the distance to the mirror
image, with respect to the bottom, of the source point. For v (x, y, z) we obtain the
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following problem:

Yax + 1ﬁyy + ‘ﬁzz =0,
Yy =0 aty = —h,

" " 1[0 1+1 1+1 (2.67)
VY =— 31—tz )—V|—-+=
Y 4w oy \r F ror aty=0.

= g(x, z; X0, Y0, 20)

We apply the double Fourier transform to the function v,

0 oo
Y(a,y,B) = / / @ Py (x, y, z)dx dz (2.68)
—00 J—00

and introduce polar coordinates (2.56) in the Fourier space. The ordinary differential
equation and boundary conditions for ¥ become

\Ilyy - kz“p = 01
W, —vW = G(k; x0, y0.20) aty=0.

We make use of the known transform of %, the point source for an infinite fluid
where no free surface is present

—1 -1 . .
9(475—,’) — ﬁel(aonrﬂZo)*kly*yol. (2.70)

This formula can be obtained by means of the double Fourier transform to the
Laplace equation, as before, in the case of an infinite fluid. If we apply this for-
mula to g(x, z; xo, Yo, Z0) We obtain

Y ekt cosh(k(yo + h))el @0 +Fz0) 2.71)

G (k; x0, 0, 20) = — k

and the solution of (2.69) becomes

k+v _;;, cosh(k(y + h)) cosh(k(yo + h)) ciexo+B20)

Y(a,y,B)=— - 2.72
@5, 8) K C k sinh(kh) — v cosh(kh) 2.72)
The inverse Fourier transform is defined as
1 00 OO )
vara= s [ weype e s e
—00 J—00

With the introduction of polar coordinates in the physical (2.52) and Fourier (2.53)
space we obtain with the use of (2.55) the total field

iwt

px,y,z,t)=e“"P(x,y,2)
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with
o( ) : :
X, y,)=—— — ——
P,z dnr 4wy
R (S v)e kh c.:osh(k(y + h)) cosh(k(yp + h)) JokR) dk.
27 Jo k sinh(kh) — v cosh(kh)
(2.74)

If we introduce some artificial damping in the problem we observe that the contour
of integration passes above the real pole in the integrand. This finally leads to the
expression

P(x,y,2)
. 1 1
drnr  4mF

1 ][ * (k + v)e " cosh(k(y + h)) cosh(k(yo + h)) Jo(kR) dk
0

Rz k sinh(kh) — v cosh(kh)

N i (ko + v)e %" sinh(koh) cosh(ko(y + h)) cosh(ko(yo + h))

Jo(koR),
2 vh + sinh2(koh) otkoR)

(2.75)

where + indicates the principal value of the integral. If we are interested in the deep
water case we may obtain an expression for the source potential by using (2.75) for
large values of 4. We obtain for the limit 7 — oo,

1 1 [k , i
Px,y,0)=—— — — ﬂe’“«‘ﬂ())Jo(kR) dk + =ve’ 00 (yR).
dar 4w ) g k—v 2
(2.76)

This result may be rewritten as

R 1 1 L[ 2k ity i 0
ox,y,)=—"—+——— ——e T Jy(kR) dk + —ve" YT Jo(VR),
dar 4y 4m) o k—v 2
(2.77)

where 7 = v/(x — x0)2 + (¥ + y0)2 + (z — 20)? is the distance to the mirror point,
with respect to the unperturbed free surface.

The contour of integration may be deformed to obtain different forms of (2.74).
We can rewrite the integral as a contribution of the pole and an integral along the
vertical axis of the complex k-plane. Instead of the way the solution is written in
(2.76) one also may write the solution as the sum —(471T—r + #), where —# is the
field of a singularity located at (xg, —yo, zo) in an infinite fluid, and use an integral
expression for this term. There are more choices possible, they are sometimes used
in the literature for different reasons.
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2.4 The Moving Pressure Point

We consider the field generated by a pressure point disturbance at the free surface,
moving in the direction of the positive x-axis. For small amplitude waves the lin-
earised free surface condition is defined by (1.32). We suppose the bottom at infinity,
y = —oo. Hence the bottom condition is replaced by the condition that ¢ remains
finite as y — —oo. We look for a very simple solution in a steady flow, for which
everywhere at y = 0 except at x = z = 0 the pressure vanishes. By introducing the
dimensionless coordinates

xg vg

m’

z8

X = y= sz,

we can formulate the boundary value problem as follows;

Yzx + @55 + @z =0,
iz to; =0 aty=0,(x,z)#(0,0), (2.78)

@ finite as y — o0.

We seek solutions of (2.78) by means of a Fourier transform with respect to x,

Oo . -
@, y,72) =/ e“Yo(x,§,7)dx (2.79)

—00

with its inverse transform

1 [ . .
px,y,2)= Py / e '“*9(a, y,2) da. (2.80)
—00

This leads to the boundary value problem for ¢(«, y, 2):
P55 + gz —a?9 =0,
—a?@+¢5=0 aty=0, (2.81)

¢ finite as y — —oo.
A simple solution of (2.81) can be found in the form
p=eTF @),
where F'(z) satisfies the equation
(a* —a®)F + F:: =0.
Consequently, we take as a possible solution

- A o° - 2- . 2 1_
(p(x,y,z):z— exp{—lozx—i—ot vy +ic(a —1)2z}dot, (2.82)
T J—00
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for A being a constant. Note that ¢(x, y, z) is not defined for x = y =z = 0. From
(1.33) we find the free surface elevation

n(x,z)= Al lim /OO ((xe"‘z)—’) exp{i(—ow? + oz(oz2 - 1)%2)}da (2.83)
’ 2nU y—0 ’

—0o0
which apparently is infinite for x =z =0.

In order to get a better insight into the shape of the surface we shall evaluate this
expression (2.83) for large values of x and z; that is distances to the origin that are
large compared to the reference length U2 /g. This evaluation is performed by the
method of stationary phase (see Sect. 9.1).

We note that if we let R = (2 + 22)% ,X = Rcos v and z = R sin ¥, then for each
fixed ¥, (2.83) can be written in the form

[ g(a)exp(iRf(@)) da,
where
g(a) = %a and
Rf(@) := —ai + a(@®—1)27.

Hence the stationary points are solutions of the equation

%{—ai—i—a(az— 12z} =0. (2.84)

(cf. (9.13)).
Let g be a solution of (2.84). We obtain therefore the asymptotic form of n(x, 7):

. 2 3
mwiag(ay —1)2

1 = 1_
27202 - 3) expli(—ao¥ +ao(eg — D7)} (2.89)

(*,2) = A
X, = —U
s 2 U 0

The phase function is of the most importance. If we put

1
¥ = —aok 4+ aplag — 1)?27, (2.86)

we obtain from (2.84)

202 — 1
07

,/oz(%—l

=0. (2.87)

—%+
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Fig. 2.4 Kelvin pattern

Z
—y X
Setting ap = ﬁ, we obtain from (2.86) and (2.87) the equations
1
x=—%(2cosf — cos’ 0) = —Zw(S cos6 — cos(39)),
(2.88)

1
z=—y cos?0sind = —Zl/f(siné? + sin(30))

for the curves of constant phase i, which give the wave pattern. These curves are
all similar with the origin as centre, and have wave cusps at x =z =0 (or 6 =7 /2)
and at the points where ?1_5 = g—g =0. Since

dx dz
* —¥sinf(2 — 3cos29) and £ =—1Ycosf(3 cos?f — 2),

de
it follows that at the points

_ e 2V3

X=—v— ==V
corresponding to cosf = /2/3, there are cusps (it is understood that the expres-
sion (2.85) is not valid in the neighbourhood of cusps). A typical curve is shown
in Fig. 2.4. We see that the curve intersects the x-axis at the points x = — (corre-
sponding to 8 = 0). The cusps lie on a straight line, through the origin, which makes
a fixed angle with the x-axis. The pattern obtained this way is called the Kelvin wave
pattern.

2.5 Wave Fronts

In view of (2.7) and (2.23), we now consider the general representation for the free
surface elevation:

nCr 2. £) = /OO A(k)e—i(kxcosé+kzsin9—wt) dk. (2.89)
—00

In particular, we are interested in the asymptotic behaviour of 5 for large values of
t. We apply the method of stationary phase, see Sect. 9.1, to (2.89). The method
requires the determination of the value of k for which the phase

W(x,z,k) =—wt + k(xcosf + zsinf)
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= —z[k(? cosf + ;) — a)(k)} (2.90)

is stationary. (Here we consider W as depending on the three parameters 7, ¢ and ¢.
For each pair of values of 7 and ¢, the asymptotic expansion for 7 is considered for
large ¢.) This leads to the consideration of solutions of the equations

dw

d
E:O or —£t+xcos0+zsin0=0. (2.91)

Let ko be any solution of (2.91). Then the approximate result for large ¢ is

n(x,z,t) = A(ko) %e—i(l{ox 08 0+koz sinf—w (ko)1 — F sgne” (ko)) (2.92)
V W KQ

provided that ©¥%0) -2 0, j.e. " (ko) # 0.

The lines W = constant are lines of constant phase; these lines are called wave
fronts. We can define a partial differential equation for the wave fronts from the
dispersion relation w = H (k). In fact, we can express ko in terms of x, z, ¢ and 0
from (2.92) so that differentiations of (2.91) (with k = ko) with respect to these
variables yield

ak,

W, =kocos8 + (xcosO + zsinf — a)(/)t)a—o = kg cos 0,

X
. . , . 0ko .

W, =kosin6 + (x cosd + zsinf —a)Ot)a— = kg sin6, (2.93)

Z
. , . 0ko
U, = —wo + (x cosf + zsinf — a’ot)ﬁ = —wo,
with wg = H (ko). The first two equations of (2.93) imply that
kg = W2+ w2

with which the third one shows that the dispersion relation wyg = H (ko) gives a
partial differential equation for the phase function W, the Hamilton-Jacobi equation

W+ H(JW2+ W) =0 or

Y, 4+ H(/p?+4¢* =0,

(2.94)

where p = W, = kgcosf and g = W, = kgsinf are the conjugate variables to x
and z, respectively. We have just seen that the wave fronts correspond to level curves
of the Hamilton-Jacobi equation. But in wave phenomena one expects the dual con-
cept of rays to appear also. The rays in the present case are the characteristics of the
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Fig. 2.5 Wave fronts y

&,=constant

& =constant

above Hamilton-Jacobi equation, i.e. the solutions of the system of ODE’s:

dx 0H dp  0H
e ap’ d— ax 7
(2.95)
dz 0H dg  0H —0
dt — dq’ d 9z

(see Sect. 9.2 for a brief summary of the concepts of characteristics). From the
(2.95) it is easy to see that in the x, z, f-space, the characteristics are straight lines
for constant ¢ as in (2.91).

2.6 Wave Patterns

In Sect. 2.5, the Hamilton-Jacobi equation (2.94) for the wave fronts was derived
from the equations in a rather complicated way. At first we gave an exact solution
n of the linearised problem (1.32), (1.33) with U = 0, to which we later applied an
asymptotic expansion, which resulted in a first-order partial differential equation.
The result obtained is more or less similar to the characteristic equation for hyper-
bolic equations, although the wave fronts are by no means characteristic surfaces
for the equations, which do not even have real characteristics.

In order to give a direct derivation we first define a wave front on the two-
dimensional x, y-plane as a curve along which a transverse derivative of the so-
lution ¢ of the equation considered is much larger than the tangential derivative.
This means that, introducing new coordinates & transverse to the wave fronts and
&> along the wave fronts (Fig. 2.5), we must have that ¢g, > ¢s,, i.e. there should
exist a constant K >> 1 such that ¢z, ~ K¢g,. Here &1 and &; are supposed to be
functions of x and y with derivatives of order unity with respect to K. We introduce
a new coordinate s = K& such that

1
@s = — 95 = O0(1). (2.96)
K
We now illustrate this procedure by considering a simpler equation than the equation
of water waves, the Klein-Gordon equation in dimensionless form

Pex — i —a’p =0, (2.97)
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where a is a constant. We first derive the Hamilton-Jacobi equations for the phase
function to the methods used in Sect. 2.5 and will refer to it as an indirect method.
For solutions of the form Ae!®*~®") we easily find the dispersion relation between

k and w,
w=va+k*=H(k) (2.98)
which gives the Hamilton-Jacobi equation from (2.94) with W = J:

Jo+ H(J,) =0, (2.99)

where J, = k. The characteristics of (2.99) are solutions of the equations

dx 0H k
dt 9k Ja2+ k2
v vartk (2.100)
dp dJy  0H 0
d dt ax
thus the characteristics are straight lines of the form
k
X — ———1 = constant, (2.101)

a’ +k?

k
A a?+k? ’

Now let us examine the above problem by the direct method. Using (2.96),
a straightforward calculation shows that

corresponding to the group velocity % =

Pxx = Kz(/’ss%‘%x + K(Zwsézglxééx + Exxps) + §0$2$2€22x + ¢$2€2xm

0 = K205sE8 + K Qs 182 + E1000s) + 0ir6r 83, + PrE01t- (2102
Substituting into (2.97) gives
K20u (B — &8 + K{ps Grxx — E1t) + 2056, (Brcbox — 11620}
+ @, (65, — &3,) + 05, (B — E2y) — a9 =0. (2.103)

As K — oo, we obtain the characteristic equation for (2.97). This is obvious be-
cause a characteristic would be a line along which the second derivative may be
discontinuous. Now, regarding the constant a as a large number with respect to
some reference length and identifying K with a, we have the equation

055 (€L —EL) — 9 =0, (2.104)

to the first order of approximation. If we want this equation to represent the motion
along the wave fronts, we must put the term (& 12x —¢& 12t) equal to a constant which
we choose to be —1, i.e.,

£l — &L =—1 (2.105)
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Clearly, this gives immediately the Hamilton-Jacobi equation, &1, = /1 —i—élzx,

which reduces to (2.99) with & replaced by (—1/a)J.
The same scheme can be applied to the problem of the moving singularity defined
by the time independent form (1.32) and (1.33), i.e.

xx +@yy + @ =0,
Ul + gy =0, fory=0.

In terms of the dimensionless variables x = % y=

<

and 7 = % we have

5% + o3y + oz =0,
gL 3 (2.106)
(pﬁ+m<py20, for y =0.

Here L denotes a proper reference length.

We are only interested in the wave pattern, hence in the lines of constant phase
of 1 (which from (1.33) amounts to the same as for g5 at y = 0). We further remark
that from the nature of (2.106) we know that the wave is only appreciable at the
upper layer of the water. Hence we introduce the coordinates &1 and & in the x, z-
plane, where the lines £ = constant represent wave fronts, the derivative ¢, is large
with respect to @, but the derivative ¢y must be of the same order of magnitude as
@z, . Therefore, we introduce a coordinate s = K& and a coordinate ¥ = Ky in
terms of which we have

orx = K205 + K Qose, E1x8or + Erxxs) + 066,53 + 06, Sov
vz = K2ukiz + K Qoupyfiztoz + Ermes) + 0ae b2 + vp oz,
and
o3y = K pyy.
From (2.106), we have then
K¢y (51 + 1) + K oyy +0(K) =0, (2.107)
together with the surface condition

L
K282 + K <%>(py +0O(K)=0, forY=0. (2.108)

This yields the first approximation

Q55 (Bl +EL) + vy =0,

5 (2.109)
¢sséiz + oy =0, forY =0,

where we identify K with %—Lz.
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Since 512; + 5122 and 512} are slowly varying variables, we introduce constants,
a and B defined by

a2=53;+€123, and ,32.5;:12}.

This leads to the problem

az(pss +oyy = 0,
Byss +oy =0, forY =0,

which has a solution
¢ = eis-haY
This solution which goes to zero as Y — oo (@ > 0) can satisfy the surface condition
only if
a=p
or

Er+EL =6 (2.110)

It should be emphasised that these considerations are only valid to an order of mag-
nitude of 1/K. The present approach is a variation of the ray method in geometrical
optics. Higher-order approximations can be derived in a similar manner.

The characteristic equations of the first-order partial differential equation (2.110)
take the form

f=4p3—2p, p=0,
7=-2q, Gg=0,
£ = (4p* —2p* —2¢?),

with p = &5 and g = &z, where the dot - notation denotes differentiation to some
parameter, say, 7. Hence p and g are constants and we have the parametric equations
for the rays,

X =2pQ2p* - D1,
7=—2gr, 2.111)

£ *—2p? —2¢7)t.

|
=
=

From (2.110) we have

qg=—pyp*—1. (2.112)

To eliminate t from (2.111) by making use of (2.112), we finally obtain

_ . @p*-D N
X=§1T, Z=§1T,
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which reduces to (2.88) if we set p = —ﬁ. This shows that the curves & = con-

stant are indeed the curves of constant phase.

2.7 Singularity in a Steady Current

2.7.1 Steady Singularity

As in the case of an oscillatory point source in still water it is useful to have the
solution of a steady moving point source, or a point source in a steady current,
available. For finite water depth the formulation becomes

@xx + @yy + @7z =8(x — X0,y — Y0,2 — 20),
¢y =0 aty=—h, (2.113)
U@xx +(,0y=0 aty =0,

where we introduced the notation v = 2. To obtain a physically valid solution
we have to add a far-field condition, comparable with the radiation condition in
the oscillatory case. Here the requirement becomes that in front of the disturbance
no wavy pattern is observed. In the downstream region a wavy disturbance may be
present. In the deep water case it is similar to the disturbance of the moving pressure
point. It is also noticed that a solution of (2.113) can not be unique, because we
always may add an arbitrary constant. We make use of this fact later. We follow the
same procedure as described before (2.66) to solve (2.113),

1 1
(p(-xayvz)z____'-'_'_wcxay’z)a (2114)
dnwr  4nmr

where 7 denotes the distance to reflected, with respect to the bottom, source point.
For ¢ (x, y, z) we obtain the formulation

Yux + 1pyy + Y= 0,
Yy =0 at y=-—h,

et = 1 5 1+1 N 92 1+1 (2.115)
y v xx—47_[ ay r 7 Uax2 r r aty=0.
:=r(x, z; X0, Y0, 20)

If we apply the double Fourier transform to the function ¥,

00 OO
Y(a,y,p) =/ / e @By (x, y, 2)dx dz, (2.116)
-0 J —O0
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we obtain the following ordinary differential equation and boundary conditions
for W:

Wy — (@ + gHY =0,
v, =0 aty=—h, (2.117)
W, —va?W = R(a, B; X0, y0,20) aty=0.

Application of (2.70) leads to the following expression for R(«, 8; xo, Y0, 20),

k + va?

p e X cosh(k (yo + h))e!@othz0), (2.118)

R(a, B; x0, Y0, 20) = —

where k = /a2 + 2. The solution of (2.117) becomes

ktva® g coshk(y + 1) coshk(o 1)) iars o)

U(a,y,B)=— , 2.119
G k k sinh(kh) — va? cosh(kh) (2.119)
The inverse transform (2.73) of W (e, y, B) becomes
-1 00 00
Y, y.2) = — / / e cosh(k(y + h)) cosh(k(yo + h))
4= J 00 J—o00
k 2 —i(a(x—x0)+p(z—20))
Atver e «dp (2.120)

d
k  ksinh(kh) — va? cosh(kh)
and after the introduction of polar coordinates in the Fourier plane (2.52), (2.53)

-1 oo p2mw
Yy = s /O /O e cosh(k(y + h)) cosh(k(yo + 1))

(l + kv C052 z9)e—ik((x—)c0) cos ¥ +(z—2z0) sin )
' sinh(kh) — kv cos? & cosh(kh)

dkdy. (2.121)

The integral is singular at k = 0. Therefor we make use of the fact that we may add
a constant, with respect to x, y and z to the solution of (2.113). Hence a solution of
(2.113) may be written as

1 1 ~
px,y,0)=—7———=+Y(x,y,2) (2.122)
dwr  4mr
with

e—kh

B -1 [ee) 2
,V,2) = —= dk do —
v y.2) 472 /0 /(; sinh(kh) — kv cos? ©® cosh(kh)

. {cosh(k(y + h)) cosh(k(yo + h))(1 + kv cos? %)

X e—ik((x—xo) cos U +(z—2z0) sin ) _ 1} (2123)
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This solution does not fulfil the condition that upstream (x — —00) no wavy dis-
turbance may be present. To obey this condition a path of integration along the
singularity on the real k-axis has to be chosen. Depending on the sign of cos ¢ the
choice will be different.

We notice that for cos¥ > 0 and x — xo > 0 we may close the integral with
respect to k in the fourth quadrant of the complex k-plane. For cos? ¢ < % we find
a simple pole on the real k-axis. This means that to obtain a wavy contribution this
singularity on the real axis must be inside the contour. We obtain a contribution of
the pole plus an integral along the negative imaginary axis. This integral represents
an exponentially decaying contribution. If however x — xg < 0 we close the integral
in the first quadrant and we obtain a contribution of an integral along the positive
imaginary axis only.

Next we consider cos ¥ < 0 and x — xo > 0 and we may close the integral in the
first quadrant of the complex k-plane. We obtain a contribution of the singularity on
the real axis if we chose the pole inside the contour. Again the integral along the
imaginary axis is exponentially decaying. If x — xop < 0 we may close the contour
in the fourth quadrant. This gives rise to a decaying contribution only.

We may reformulate the integral part of the solution by splitting up the integration
with respect to ¥ into four parts of length /2 and to combine the integral. In this
way we obtain

B 1 00 % C_kh
' Vs = ——5 dk dl? N h k h
v y.2) 712/0 /0 smh(kh)—kuc0s2z900sh(kh){cos k(y + 1))

- cosh(k(yo + h))(1 + kv cos® ©) cos((x — xg)

-cos ¥) cos((z — z) sin®) — 1}. (2.124)

In the Handbook of Physics [19], Wehausen gives further details of this expression.
To obtain an expression for the deep water case we let & — 0o in expression
(2.123) and obtain.

( ) ! + ! ! /‘00 dk/n du¢ !
X, Y, =7 o - A 9 P Y
gL Y.z dnr 4w 272 ) 0 1 —kvcos?®

. ek((r+y0)—ilx—x0) cos ) cos(k(z — zp) sin ) (2.125)

where we used (2.70) to obtain the contribution of a singularity at the point
(X0, —Y0. 20), hence 7 is defined as v/(x — x0)2 + (¥ + y0)2 + (z — z0)2. The con-
tour in the k-plane has to be chosen as before. For cos ¢ > 0 the contour passes the
singularity in the upper plane, while for cos ¢ < 0 the contour passes the singularity
in the lower plane. The contribution of the pole gives a far-field pattern comparable
with the moving pressure point wave field described in Sect. 2.4.
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2.7.2 Oscillating Singularity

The boundary value problem for the disturbance of a steady flow is described
in (1.32). We consider a harmonic point source and assume that the potential func-
tion can be written as

P(x,y,2,1) = d(x,y,2).

The boundary value problem for the disturbance of a point source in (xg, Yo, z0)
becomes

Oxx T Qyy + @z = 8(x —x0,y — 0,2 — Z())Ciwt. (2.126)
If we introduce ¢(x, y,z, 1) = @(x, y, 2)el?’, the boundary value problem to be
solved becomes
Prx + Pyy + Pz = 8(x — X0,y — Y0, 2 — 20,
@y =0 aty=—h, (2.127)
Uy +2itgy —vP + @y =0 aty=0,

where we introduced the parameters v = w?/g, v = U?/g,and T = (wU)/g; notice
that 72 = vv.

N 1 1
ox,y,)=————=+Y(x,y,2). (2.128)
dmnr  4mr

Introduction of the double Fourier transform leads to the following ordinary differ-
ential equation for the transform of v,

Wy, — (@2 + pHW =0,
v, =0 aty=—nh, (2.129)
v, —(v(x2+2roc+v)lll=S(<x,,3;xo,y0,z()) aty=0.

Application of (2.70) leads to the following expression for S(«, B; X0, Y0, 20),

k+va?+2ta+v

. e~ cosh(k(yo + h))el@ 0 +F0),

(2.130)

S(a, B; x0, Y0, 20) = —

where k = /a2 + 2. The solution of (2.129) becomes

k+va?+2ta+v —kh
. e
cosh(k(y + h)) cosh(k(yo + h))
" ksinh(kh) — (a2 + 2ta + v) cosh(kh)

‘I’(‘Yﬁy’ﬁ):_

gl@oth)  (2131)

The inverse transform of W («, y, B) gives the solution of (2.127). The choice of the
path of integration will be elucidated in the deep water case. Hence we consider the
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limit 7 — oo. We rewrite expression (2.131) in the form

ek(y+yo) gil@xo+pBz0)

V(e y, B) = (% — Z(k, a)) . (2.132)

k
The function .Z (k, &) becomes, in polar coordinates in the Fourier plane,

k . gk
k— (va?+2ta+v) gk— (w+kUcosf)?’

lim Zk,0)= (2.133)
h—o00

Finally we obtain an expression for ¢(x, y,z) where we still have to choose the
proper path of integration in the complex k-plane

oy m g L] /Oofn sk
X, Y, =7 o - A 9
prr Yz drr  4mir 2n? )y Jo gk — (w+ kU cosf)?

-l Oy =i=20) c0s D) cog k(7 — 7o) sin®) dk d9.  (2.134)

We will investigate the zeros of the denominator. The quadratic equation has two
Zeros,

+_ 1—2tcosv + 1—4rcosz9w2

k 2.135
& 272cos?2 ¥ ( )
First of all we notice that, for values of ¥ for which we have
1 —4tcost? <0, (2.136)

we find no singularities of the integrand along the real k-axis. Hence for 7 > 1/4 we
find a ¥ interval where the k-integral is regular for 0 <9 < y with cosy = 1/(4r1).
For 7 < 1/4 we have y = 0. Next, to determine the contour of integration when two
poles lie on the positive real axis we have to consider the condition in the far field.
It is easy to show that for > y both roots of the quadratic equation are situated on
the positive real axis of the complex k-plane. It is convenient to consider the poles
for small values of U and o successively. In both cases t becomes small, so we
consider the two poles for t — 0. We find

. &P N g
IimkT=— and Ilmki"=-—-—+—.
=0 g =0 UZ2cos2 ¥

(2.137)
In the oscillatory case without current we have seen that the contour passes the pole
in the first quadrant of the complex k-plane, for all values of . Actually we could
carry out the ¥ integral in that case. Hence, we conclude that this is also the case for
the singularity in k.

In the case of a steady source in a current we have seen that we have to con-
sider the sign of cos ¥ because in the downstream direction the far field shows a
wavy character. Hence for cos© > 0 the contour of integration passes k™ in the first
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Fig. 2.6 Lines of integration

quadrant, while for cos® < 0 the contour passes k™ in the fourth quadrant of the
complex k-plane (see Fig. 2.6). Finally the solution can be written as

1 1 L[ [® [ 3 i
(p(x,y,Z)——m‘i‘m—m/O /0+/:€1./y +/%2é

gkek((y+yo)fi(xfx0)cos ¥)
" gk — (w + kU cos )2

cos(k(z — zp)sinv)dkdd.  (2.138)
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