
Chapter 2
Linear Wave Phenomena

A few simple examples of the linearised boundary and initial-boundary value prob-
lems formulated in the previous chapter will be solved by the Fourier or Laplace
transform method. Through these simple examples, basic wave phenomena or ter-
minologies in water waves will be introduced. These are phase velocity, dispersion
relation, group velocity, wave fronts, to name a few.

Of particular importance is the asymptotic behaviour of the free surface elevation
for large values of relevant spaces and for time variables. This behaviour can be
best obtained by the method of stationary phase (see Sect. 9.1). In this connection,
the method of characteristics for treating first-order non-linear partial differential
equations for the phase function is employed. Hence a brief summary of the concept
of characteristics is included in Sect. 9.2.

A systematic derivation of oscillatory source singularity functions is presented
for the disturbance below the free surface with and without current in Sects. 2.3
and 2.7.2. In Sect. 2.4 we derive for the steady case the field for a pressure distur-
bance at the free surface and for a point source below the free surface in Sect. 2.7.1.
These source functions are often called Green functions and are used in numerical
codes. One may derive different formulations for the functions as is shown.

2.1 Travelling Plane Waves

2.1.1 Plane Waves

It is easy to obtain travelling plane waves. As in Chap. 1 for small amplitude waves
the linearised problem is defined by (1.32). For simplicity we restrict ourselves to
the situation where U = 0. We consider two cases according to the water depth. We
begin with the infinite depth. In this case the boundary value problem (1.32) consists
of the Laplace equation

ϕxx + ϕyy + ϕzz = 0 (2.1)
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12 2 Linear Wave Phenomena

together with the surface conditions

ϕtt + gϕy = 0 at y = 0 (2.2)

and the condition at infinity

ϕy → 0 as y → −∞. (2.3)

We seek a solution ϕ(x, y, z, t) of (2.1)–(2.3) in the form

ϕ(x, y, z, t) = Aei(αx+βz)+ky+iωt , (2.4)

where α,β, k,ω and A are constants. Clearly (2.3) will be satisfied if k is positive.
Substituting (2.4) into (2.1) and (2.2) we obtain

k = α2 + β2 and − ω2 + gk = 0. (2.5)

Set α = −k cos θ and β = −k sin θ which clearly satisfy the first equation of (2.5)

for any k. The second one gives that k = ω2

g
which is known as the dispersion

relation—a relation between wave number k and frequency ω. Then the potential
function has the form

ϕ(x, y, z, t) = A exp

{
−iω

[
ω

g
(x cos θ + z sin θ) − t

]
+ ω2

g
y

}
, (2.6)

and consequently the water height is given by

η(x, z, t) = − 1

g
ϕt = −A

iω

g
exp

{
−iω

[
ω

g
(x cos θ + z sin θ) − t

]}
(2.7)

through use of (1.33). This formula represents plane waves.
For θ = 0, we have plane waves travelling along the x-axis, independent of the

z-coordinate:

η(x, t) = − iω

g
Ae−i( ω2

g
x−ωt) = A1e−i ω2

g
(x−ct)

, (2.8)

where c = g
ω

is the velocity of the wave (or phase velocity) and A1 = − iω
g

A is the
amplitude of the wave. The real part of (2.8) corresponds to the real values wave
height.

We now consider a wave train consisting of two plane waves in the x-direction
with slightly different frequencies ω and ω + δω. The total wave height may be
written as

η(x, t) = A1 cos(kx − ωt) + A2 cos((k + δk)x − (ω + δω)t

= A(x, t) cos(kx − ωt + θ(x, t))), (2.9)
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where the amplitude function A(x, t) and the phase function θ(x, t) are slowly vary-
ing functions. They can be written as

A(x, t) =
√

A2
1 + A2

2 + 2A1A2 cos(δkx − δωt) and

tan θ(x, t) = A2 sin(δkx − δωt)

A1 + A2 cos(δkx − δωt)
.

(2.10)

The amplitude moves with the velocity δω
δk

. It will be shown in Sect. 2.1.2 that the
wave energy is proportional to the square of the amplitude, hence we may expect
that the energy moves with a velocity

cg = lim
δω→0

δω

δk
= dω

dk
. (2.11)

This velocity cg is called the group velocity.
The corresponding problem for finite water depth can be treated in the same way.

We write

ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt .

Then in this case we have from (2.2) the surface condition

ϕ̂y = ω2

g
ϕ̂ at y = 0, (2.12)

while the condition at infinity (2.3) is replaced by the boundary condition (1.32). In
terms of ϕ̂ we have

ϕ̂y = 0 at y = −h. (2.13)

For travelling waves in the direction of the x-axis, i.e., ϕ̂ = ϕ̂(x, y), a simple ma-
nipulation by the method of separation of variables leads to the solution

ϕ(x, y, t) = A cosh[k(y + h)]e−i(kx−ωt), (2.14)

where the wave number k and the frequency ω are related by the dispersion relation

ω2 = gk tanh(kh). (2.15)

Waves with a different wave number travel with a different phase velocity c which
is defined by

c = ω

k
=

√
g tanh(kh)

k
. (2.16)

Note that for kh small, since tanh(kh) = kh + O((kh)3), we have c = √
gh which

is the case without dispersion. Observe again that if we let h → ∞, we recover
the case of infinite depth, (2.5). The dispersion causes a wave pattern, which at a
certain place x and time t is a superposition of harmonic waves to be distorted at
other places, because the components travel with different velocities. In the case of
dispersion, it is difficult to determine the concept of ‘wave speed’.
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2.1.2 Wave Energy Transport

For the description of plane waves it is sufficient to restrict the considerations to
the one-dimensional case. We represent at t = 0 the water height η(x,0) by the real
integral

η(x) =
∫ ∞

0
C(k) cos(kx)dk +

∫ ∞

0
S(k) sin(kx)dk (2.17)

with

C(k) = 1

π

∫ ∞

0
η(x) cos(kx)dx, and

S(k) = 1

π

∫ ∞

0
η(x) sin(kx)dx.

Since C(k) and S(k) are respectively even and odd functions, setting

A(k) = 1

2
(C(k) + iS(k)), (2.18)

we can rewrite η(x) as a complex integral

η(x) =
∫ ∞

−∞
A(k)e−ikx dk. (2.19)

A simple calculation shows that

η(x) = 2�
∫ ∞

0
A(k)e−ikx dk =

∫ ∞

−∞
A∗(k)eikx dk, (2.20)

where A∗(k) is the complex conjugate of A(k).
For an understanding of the wave dispersion phenomenon, it is necessary to con-

sider the energy propagation in the wave (linearised approximation). If the function
η(x) belongs to L2, i.e.,

∫ ∞
−∞ η(x)2 dx exists, the potential energy is given by

E = 1

2
ρg

∫ ∞

−∞
η(x)2 dx = 1

2

∫ ∞

−∞

(∫ ∞

−∞
A(k)e−ikx dk

)(∫ ∞

−∞
A∗(k′)eik′x dk′

)
dx

from (2.19) and (2.20). The latter integral can now be calculated by making use of
the Fourier inversion theorem and the fact that

∫ ∞
−∞ ei(k′−k)x dx = 2πδ(k′ − k).

This gives

E = 1

2
ρg2π

∫ ∞

−∞
|A(k)|2 dk. (2.21)

Hence from (2.18) we have

E = ρgπ

4

∫ ∞

−∞
{C(k)2 + S(k)2}dk. (2.22)
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If the dispersion relation ω = ω(k) is known (for convenience we extend the defini-
tion of ω(−k) = −ω(k)), then we can compute the water height η at any arbitrary
time t as follows:

η(x, t) =
∫ ∞

−∞
A(k)ei(ωt−kx) dk =

∫ ∞

−∞
A(k)e−i(ωt−kx) dk (2.23)

in terms of the phase velocity c = ω/k. Here it is assumed that the initial conditions
are such that the wave propagates only in the projection of the positive x-axis.

The total potential energy is conserved; the wave only changes the distribution
of the energy along the x-axis. In fact we have

E(t) = 1

2
ρg

∫ ∞

−∞
|η(x, t)|2 dx

= 1

2
ρg

∫ ∞

−∞
dx

(∫ ∞

−∞
A(k)ei(ωt−kx) dk

)(∫ ∞

−∞
A∗(k′)e−i(ω′t−k′x) dk′

)

with ω′ = ω(k′). The latter integral follows from (2.23) and can be calculated simi-
larly according to the Fourier inversion theorem. We find again

E(t) = ρgπ

∫ ∞

−∞
|A(k)|2 dk. (2.24)

Now we are going to find a measure for the velocity of the energy propagation and
calculate to this end the location of the centre of gravity x̄(t) of the first moment of
the energy, which is defined by

x̄(t) =
∫ ∞
−∞ x|η(x, t)|2 dx∫ ∞
−∞ |η(x, t)|2 dx

, (2.25)

provided both integrals exist. Here the denominator has been shown to be a constant
in time and can be calculated easily from (2.24). The numerator, however, requires
some investigation. Equation (2.23) yields

∫ ∞

−∞
x|η(x, t)2|dx

=
∫ ∞

−∞
x dx

∫ ∞

−∞
A(k)ei(ωt−kx) dk

∫ ∞

−∞
A∗(k′)e−i(ω′t−k′x) dk′

= i
∫ ∞

−∞
dx

∫ ∞

−∞
A(k)d

(
ei(ωt−kx)

)∫ ∞

−∞
A∗(k′)e−i(ω′t−k′x) dk′

+ t

∫ ∞

−∞
dx

∫ ∞

−∞
A(k)

dω(k)

dk

∫ ∞

−∞
A∗(k′)ei(ωt−kx)−i(ω′t−k′x) dk dk′

:= J1 + J2.
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Integrating by parts and taking account the fact that A(k) → 0, as k → ±∞ in view
of Bessel’s inequality, we find

J1 = −i
∫ ∞

−∞
dx

∫ ∞

−∞
dA(k)

dk

∫ ∞

−∞
A∗(k′)ei(ωt−kx)−i(ω′t−k′x) dk dk′.

Then by the Fourier inversion formula, we obtain

J1 = −2π i
∫ ∞

−∞
dA(k)

dk
A∗(k)dk;

J2 = 2πt

∫ ∞

−∞
dω(k)

dk
|A(k)|2 dk.

Adding J1 and J2, we have
∫ ∞

−∞
x|η(x, t)2|dx = 2π

{
−i

∫ ∞

−∞
dA(k)

dk
A∗(k)dk + t

∫ ∞

−∞
dω(k)

dk
|A(k)|2 dk

}
.

(2.26)
We define, as a mean value of a quantity ψ(k) in the k-domain,

ψ̄ =
∫ ∞
−∞ ψ(k)|A(k)|2 dk∫ ∞

−∞ |A(k)|2 dk
, (2.27)

and remark that the first term in (2.26) determines the position of x̄(t) for t = 0.
Hence we find

x̄(t) = x̄(0) + t
dω

dk
, (2.28)

i.e. the centre of gravity propagates with a velocity which is equal to the mean
velocity of dω

dk
. Here dω

dk
is called the group velocity; hence the mean value of the

group velocity dω
dk

is a measure for the speed of propagation of the energy.
The significance of this result becomes clear when we consider an amplitude

spectrum A(k), which extends only over a narrow wave number band:

η(x, t) =
∫ k0+ε

k0−ε

A(k)e−i(kx−ω(k)t dk ε > 0. (2.29)

The centre of gravity satisfies

x̄(t; k0, ε) = x̄(0; k0, ε) + tω′(k0, ε), (2.30)

where ω′(k0, ε) is now the mean value of ω′(k) = dω
dk

over the narrow band
[k0 − ε, k0 + ε]. For small values of ε we simply replace ω′(k0, ε) by ω′(k0).

For small values of t , one can make a more accurate analysis of the motion as
follows. Expanding ω(k) in the form

ω(k) = ω(k0) + (k − k0)ω
′(k0) + (k − k0)

2

2
ω̃′′(k),
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and substituting into (2.29), we may write

η(x, t) =
∫ k0+ε

k0−ε

A(k)e−i{(k0x−ω(k0)t)+(k−k0)(x−ω′(k0)t)− (k−k0)2

2 ω̃′′(k)t} dk

= e−i(k0x−ω(k0)t)

∫ k0+ε

k0−ε

A(k)e−i(k−k0)(x−ω′(k0)t) dk + R, (2.31)

where

R = e−i(k0x−ω(k0)t)

∫ k0+ε

k0−ε

A(k)e−i(x−ω′(k0)t)(k−k0)

·
{

exp

[
i(k − k0)

2

2
ω̃′′(k)t

]
− 1

}
dk.

Using the inequality |eiu − 1| ≤ |u|, we find an estimate of the remainder

|R| ≤
∫ k0+ε

k0−ε

|A(k)| (k − k0)
2

2
|ω̃′′(k)t |dk

≤ 1

3

(
max|k−k0|<ε

|A(k)|
)(

max|k−k0|<ε
|ω′′(k)|

)
ε3t,

which shows that for not too large values of t , the first term of (2.30) gives a good
approximation of η. Assuming, for small ε, A(k) to be constant A(k0) over the
interval, we can integrate:

A(k0)e
−i(k0x−ω(k0)t)

∫ k0+ε

k0−ε

e−i(k−k0)(x−ω′(k0)t) dk

= A(k0)e
−ik0(x− ω(k0)

k0
t) 2 sin[(x − ω′(k0)t)ε]

x − ω′(k0)t
.

Fig. 2.1 Wave train
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Hence we have, for small ε and t not too large,

η(x, t) ∼= A(k0)e
−ik0(x− ω(k0)

k0
t) 2 sin[(x − ω′(k0)t)ε]

x − ω′(k0)t
(2.32)

as shown in Fig. 2.1.
This represents a modulated wave; the amplitude moves with the group velocity

ω′(k) (the dotted enveloping curves) while the phase moves with the phase velocity
ω(k0)/k0 (the inscribed solid curves).

2.2 Cylindrical Waves

The boundary value problem for a cylindrical wave, at zero speed, U = 0, is defined
by the same equations in (1.32) for small amplitude waves. For harmonic oscilla-
tions we put

ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt ;
η(x, z, t) = η̂(x, z)eiωt .

(2.33)

Then the potential function ϕ̂(x, z, t) satisfies the Laplace equation

ϕ̂xx + ϕ̂yy + ϕ̂zz = 0 (2.34)

and the surface equation

ϕ̂y = ω2

g
ϕ̂ for y = 0. (2.35)

For infinite depth, we have again the condition

φ̂ finite for y → −∞. (2.36)

Since the problem now is axially symmetric, it is natural to make use of cylindrical
coordinates x = r cos θ, z = r sin θ, y = y. Thus (2.34) reads

1

r

∂

∂r

(
r
∂ϕ̂

∂r

)
+ ∂2ϕ̂

∂y2
= 0. (2.37)

We introduce dimensionless coordinates

r̄ = rω2

g
, ȳ = yω2

g
.

The transform leaves the differential equation (2.37) invariant, but the boundary
condition (2.35) becomes

ϕ̂ = ϕ̂ȳ for ȳ = 0. (2.38)
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We solve this problem by the method of separation of variables and assume that

ϕ̂(r̄, ȳ) = eλȳR(r̄),

where R(r̄) is a solution of the ordinary differential equation

1

r̄

d

dr̄

(
r̄

dR

dr̄

)
+ λ2R = 0.

The boundary condition (2.38) gives that λ = 1. Thus we obtain

ϕ̂(r̄, ȳ) = eȳ
{
AH

(1)
0 (r̄) + BH

(2)
0 (r̄)

}
, (2.39)

where H
(i)
0 are Hankel functions of order zero, and A and B are constants to be

determined from the radiation condition as follows.
As is well known, for large values of r̄ we have

H
(1)
0 (r̄) ≈

√
2

πr̄
ei(r̄− π

4 ), and

H
(2)
0 (r̄) ≈

√
2

πr̄
e−i(r̄− π

4 ).

With time dependence eiωt , only the solution

ϕ(r̄, ȳ, t̄ ) = BeȳH
(2)
0 (r̄)eiωt (2.40)

represents outgoing waves. For large values of r̄ it behaves as

ϕ(r̄, ȳ, t̄) ≈ Beȳ

√
2

πr̄
e−i(r̄−ωt− π

4 ),

and the phase is defined by

r̄ − ωt = ω2

g

(
r − g

ω
t

)
,

which gives g
ω

for the phase velocity.
The water height η is given by

η(r̄, t) = − iω

g
BeȳH

(2)
0 (r̄)eiωt (2.41)

from (2.33), (1.33) and (2.40). Here it is understood that either the real or the imagi-
nary part of the right-hand side of (2.41) is to be taken. We usually take the real part.
This is an example of centred outgoing waves. The solution is obviously singular at
r = 0 and ∀∀∀y. In the next Sect. 2.3 we will see that the far field of an harmonic point
singularity has such a far-field behaviour.
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2.3 Harmonic Source Singularity

It is of interest to determine the field disturbance of the free surface due to an har-
monic singularity in a point below or at the free surface. As will be shown in Chap. 3,
many methods to solve the problem of diffraction of waves by an object we make
use of a distribution of singularities at the surface of the object. Here we will de-
termine the field generated by such a singularity. As an example we treat the finite
water depth case. The singularity is written as a Dirac δ-function in the right-hand
side of the Laplace equation

ϕxx + ϕyy + ϕzz = δ(x − x0, y − y0, z − z0)e
iωt . (2.42)

If we introduce ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt , the boundary value problem to be
solved becomes

ϕ̂xx + ϕ̂yy + ϕ̂zz = δ(x − x0, y − y0, z − z0),

ϕ̂y = 0 at y = −h,

ϕ̂y = ω2

g
ϕ̂ at y = 0.

(2.43)

This formulation is not complete. We must add a condition at large horizontal dis-
tance from the source. The solution must fulfil the radiation condition. The distur-
bance for large values of R = √

(x − x0)2 + (z − z0)2 may only consist of outgoing
waves. The solution must have the form

ϕ(x, y, z, t) ≈ A(R,y)e−i(kR−ωt), (2.44)

where the amplitude function tends to zero if R → 0.
There are several ways to solve this problem. We shall employ the method of

Fourier transform to obtain a solution. We introduce the following exponential trans-
form of ϕ̂ with respect to the x and z coordinates

φ(α,y,β) =
∫ ∞

−∞

∫ ∞

−∞
ei(αx+βz)ϕ̂(x, y, z)dx dz. (2.45)

The inverse transform is

ϕ̂(x, y, z) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−i(αx+βz)φ(α, y,β)dα dβ. (2.46)

We introduce the transform in the Laplace equation and the boundary conditions
for ϕ̂ and obtain an ordinary differential equation for φ with appropriate boundary
conditions

φyy − (α2 + β2)φ = ei(αx0+βz0)δ(y − y0),

φy = 0 at y = −h,

φy = ω2

g
φ at y = 0.

(2.47)
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The singularity in the right-hand side of the differential equation can be replaced by
the following conditions for the function φ(α,β, y):

lim
ε→0

(φy(α, y0 + ε,β) − φy(α, y0 − ε,β)) = ei(αx0+βz0),

lim
ε→0

(φ(α, y0 + ε,β) − φ(α,y0 − ε,β)) = 0.
(2.48)

The solution of the problem is written as φ+ for y0 < y ≤ 0 and φ− for
−h < y < y0. A convenient choice of the solution is

φ+ = A cosh(k(y + h)) + B sinh(k(y + h)),

φ− = C cosh(k(y + h)).

Here k is defined as the distance to the origin in the Fourier space which is the
positive root of k2 = α2 + β2. With this choice the bottom condition is fulfilled
automatically. The constants A,B and C are determined by the condition at the free
surface y = 0 together with the conditions at y = y0. After some manipulations we
find the solution for y0 < y ≤ 0,

φ+ = −cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k{k sinh(kh) − ν cosh(kh)} ei(αx0+βz0), (2.49)

and for −h < y < y0,

φ− = −cosh(k(y + h)){ν sinh(ky0) + k cosh(ky0)}
k{k sinh(kh) − ν cosh(kh)} ei(αx0+βz0), (2.50)

where ν = ω2

g
. We now apply the inverse transform given by (2.46) to φ+

ϕ̂+(x, y, z) = −1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−i(α(x−x0)+β(z−z0))

· cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k{k sinh(kh) − ν cosh(kh)} dα dβ. (2.51)

It is convenient to introduce polar coordinates, both in the physical space and the
Fourier space. We introduce

x − x0 = R cos θ, z − z0 = R sin θ (2.52)

and

α = k cosϑ, β = k sinϑ. (2.53)

The solution can then be written as

ϕ̂+(x, y, z) = −1

4π2

∫ 2π

0

∫ ∞

0
e−ikR cos(ϑ−θ)

· cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k sinh(kh) − ν cosh(kh)

dϑ dk. (2.54)
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The integration with respect to ϑ can be carried out by making use of the following
definition of the Bessel function J0:

J0(kR) = 1

2π

∫ 2π

0
e−ikR cos(ϑ−θ) dϑ. (2.55)

Hence, if we follow the same procedure for ϕ̂−, we obtain

ϕ̂+(x, y, z) = −1

2π

∫ ∞

0

cosh(k(y0 + h)){ν sinh(ky) + k cosh(ky)}
k sinh(kh) − ν cosh(kh)

J0(kR)dk,

ϕ̂−(x, y, z) = −1

2π

∫ ∞

0

cosh(k(y + h)){ν sinh(ky0) + k cosh(ky0)}
k sinh(kh) − ν cosh(kh)

J0(kR)dk.

(2.56)

Until this point the radiation condition is not used. We will see that to define a proper
inverse transform it has to be used. The integrands of the functions ϕ̂+,− each have
a singularity for a real value of the denominator. Hence, the integrals are not well
defined. The equation k sinh(kh) − ν cosh(kh) = 0 has one real root together with
an infinite number of purely imaginary roots. From the theory of Fourier integral we
know that the contour of integration has to pass, in the complex k-plane, above or
below the singularity. The choice is determined by the radiation condition. A way to
determine the correct choice is to introduce a small artificial damping in the fluid. If
we assume the far field to be of the form e−i(kR−ωt) we see that the only choice for
vanishing waves is to introduce a complex wave number of the form k = k̄ − ik̃. The
negative imaginary part of the wave number may be generated by some artificial,
non-physical, damping. This indicates that the singularity on the real axis must be
passed above. Representation (2.56) for ϕ̂ consists of different forms depending on
whether y is larger or smaller than y0. This might be not practical. One may obtain a
single expression if we use some lemmas from the theory of complex functions. We
use the following lemma for analytic functions f (z) and g(z), while the function
f (z) has simple zeros zi in the complex plane. If we define f (z) = z sinh(zh) −
ν cosh(zh) and g(z) = cosh(zp){ν sinh(zq) + z cosh(zq) respectively, then for
|z| → ∞ the function g(z)

f (z)
→ 0 fast enough and we have

g(z)

f (z)
= g(0)

f (0)
+

∑
i

g(zi)γi

(
1

z − zi

+ 1

zi

)
with γi = 1

fz(zi)
, (2.57)

which is an expansion of g(z)
f (z)

in rational fractions of z, see [21], Sect. 7.4.
The integrands of both integrals in the expression for ϕ̂(x, y, z) (2.56) has in-

finitely many simple poles k = ±ki (i = 0,1,2, . . .) in the complex k-plane. We
have

ki sinh(kih) − ν cosh(kih) = 0. (2.58)

The positive real zero is k0, while the positive imaginary roots are ki = iκi (i =
1,2, . . .), see Fig. 2.2.
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Fig. 2.2 The singularities in
the complex k-plane

According to (2.57) we may write

g(k)

k sinh(kh) − ν cosh(kh)
=

∞∑
i=0

g(ki)

(
α+

i

k − ki

+ α−
i

k + ki

)
, (2.59)

where we used the fact that in our case g(k) is antisymmetric and g(0) = 0 and
where αi is defined as

α±
i = ±ki

(ν + k2
i h − ν2h) cosh(kih)

. (2.60)

If we work out the integrands of (2.56) we find one expression for ϕ̂(x, y, z), valid
for −h < y ≤ 0. We obtain

ϕ̂(x, y, z) = −1

2π

∞∑
i=0

k2
i − ν2

ν + k2
i h − ν2h

cosh(ki(y + h)) cosh(ki(y0 + h))

·
∫ ∞

0

(
1

k − ki

− 1

k + ki

)
J0(kR)dk. (2.61)

The integral in the right hand side can, by introducing k = −k∗ in the second part,
be rewritten as

J (ki) = 1

2

∫ ∞

−∞
H

(1)
0 (kR)

k − ki

dk + 1

2

∫ ∞

−∞
H

(2)
0 (kR)

k − ki

dk. (2.62)

Due to the asymptotic behaviour of the Hankel functions we may close the first
integral in the upper half of the complex k plane, while the second one may be
closed in the lower half. In this way the contributions of the contours at |k| → ∞
tend to zero. If the path of integration in (2.62) passes the singularity k = k0 in the
upper plane we obtain the following result for i = 0:

J (k0) = −π iH(2)
0 (k0R), (2.63)
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Fig. 2.3 Line of integration

and for i = 1,2, . . .

J (ki) = π iH(1)
0 (iκiR) = 2K0(κiR), (2.64)

where K0(z) is the modified Bessel function. The contribution of H
(2)
0 (k0R) rep-

resents an outgoing circular wave, while the contribution of each K0(κiR) is expo-
nential decaying for large values of R. This confirms the right choice of the contour
of integration, see Fig. 2.3. We notice that the use of an artificial damping to shift k0
actually is not the only way to find the correct contour of integration. If one chooses
the contour to pass underneath k0 the wavy behaviour is described by H

(1)
0 (k0R),

describing an incoming circular wave field. Waves travelling towards the source
clearly which disobey the radiation condition.

The expression for the total field now becomes

ϕ(x, y, z, t) = eiωt ϕ̂(x, y, z)

with

ϕ̂(x, y, z) = i(k2
0 − ν2)

2(ν + k2
0h − ν2h)

cosh(k0(y + h)) cosh(k0(y0 + h))H
(2)
0 (k0R)

+ 1

π

∞∑
i=1

κ2
i + ν2

ν − κ2
i h − ν2h

cos(κi(y + h)) cos(κi(y0 + h))

× K0(κiR). (2.65)

If we take the real part of (2.65) and multiply it with −4π we have the famous result
of F. John. The different factor originates from the normalisation of the point source.
This formulation can be used to compute the disturbance due to a unit point source
at finite difference from the source. However, the series does not converge close to
the source. This was to be expected, because of the singular, −1

4πr
, behaviour of ϕ̂,

where r = √
(x − x0)2 + (y − y0)2 + z − z0)2 is the distance to the singularity.

We expect to find a useful solution near the singularity if we write it as

ϕ̂(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ(x, y, z), (2.66)

where r̃ = √
(x − x0)2 + (y + 2h + y0)2 + (z − zo)2 is the distance to the mirror

image, with respect to the bottom, of the source point. For ψ(x, y, z) we obtain the
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following problem:

ψxx + ψyy + ψzz = 0,

ψy = 0 at y = −h,

ψy − νψ = 1

4π

{
∂

∂y

(
1

r
+ 1

r̃

)
− ν

(
1

r
+ 1

r̃

)}

:= g(x, z;x0, y0, z0)

at y = 0.

(2.67)

We apply the double Fourier transform to the function ψ ,

�(α,y,β) =
∫ ∞

−∞

∫ ∞

−∞
ei(αx+βz)ψ(x, y, z)dx dz (2.68)

and introduce polar coordinates (2.56) in the Fourier space. The ordinary differential
equation and boundary conditions for � become

�yy − k2� = 0,

�y = 0 at y = −h,

�y − ν� = G(k;x0, y0, z0) at y = 0.

(2.69)

We make use of the known transform of −1
4πr

, the point source for an infinite fluid
where no free surface is present

F

( −1

4πr

)
= −1

2k
ei(αx0+βz0)−k|y−y0|. (2.70)

This formula can be obtained by means of the double Fourier transform to the
Laplace equation, as before, in the case of an infinite fluid. If we apply this for-
mula to g(x, z;x0, y0, z0) we obtain

G(k;x0, y0, z0) = −k + ν

k
e−kh cosh(k(y0 + h))ei(αx0+βz0) (2.71)

and the solution of (2.69) becomes

�(α,y,β) = −k + ν

k
e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − ν cosh(kh)
ei(αx0+βz0). (2.72)

The inverse Fourier transform is defined as

ψ(x, y, z) = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
�(α,y,β)e−i(αx+βz) dα dβ. (2.73)

With the introduction of polar coordinates in the physical (2.52) and Fourier (2.53)
space we obtain with the use of (2.55) the total field

ϕ(x, y, z, t) = eiωt ϕ̂(x, y, z)
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with

ϕ̂(x, y, z) = − 1

4πr
− 1

4πr̃

− 1

2π

∫ ∞

0

(k + ν)e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − ν cosh(kh)
J0(kR)dk.

(2.74)

If we introduce some artificial damping in the problem we observe that the contour
of integration passes above the real pole in the integrand. This finally leads to the
expression

ϕ̂(x, y, z)

= − 1

4πr
− 1

4πr̃

− 1

2π
−
∫ ∞

0

(k + ν)e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − ν cosh(kh)
J0(kR)dk

+ i

2

(k0 + ν)e−k0h sinh(k0h) cosh(k0(y + h)) cosh(k0(y0 + h))

νh + sinh2(k0h)
J0(k0R),

(2.75)

where −∫ indicates the principal value of the integral. If we are interested in the deep
water case we may obtain an expression for the source potential by using (2.75) for
large values of h. We obtain for the limit h → ∞,

ϕ̂(x, y, z) = − 1

4πr
− 1

4π
−
∫ ∞

0

k + ν

k − ν
ek(y+y0)J0(kR)dk + i

2
νeν(y+y0)J0(νR).

(2.76)
This result may be rewritten as

ϕ̂(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

4π
−
∫ ∞

0

2k

k − ν
ek(y+y0)J0(kR)dk+ i

2
νeν(y+y0)J0(νR),

(2.77)
where r̄ = √

(x − x0)2 + (y + y0)2 + (z − z0)2 is the distance to the mirror point,
with respect to the unperturbed free surface.

The contour of integration may be deformed to obtain different forms of (2.74).
We can rewrite the integral as a contribution of the pole and an integral along the
vertical axis of the complex k-plane. Instead of the way the solution is written in
(2.76) one also may write the solution as the sum −( 1

4πr
+ 1

4πr̄
), where − 1

4πr̄
is the

field of a singularity located at (x0,−y0, z0) in an infinite fluid, and use an integral
expression for this term. There are more choices possible, they are sometimes used
in the literature for different reasons.
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2.4 The Moving Pressure Point

We consider the field generated by a pressure point disturbance at the free surface,
moving in the direction of the positive x-axis. For small amplitude waves the lin-
earised free surface condition is defined by (1.32). We suppose the bottom at infinity,
y = −∞. Hence the bottom condition is replaced by the condition that ϕ remains
finite as y → −∞. We look for a very simple solution in a steady flow, for which
everywhere at y = 0 except at x = z = 0 the pressure vanishes. By introducing the
dimensionless coordinates

x̄ = xg

U2
, ȳ = yg

U2
, z̄ = zg

U2
,

we can formulate the boundary value problem as follows;

ϕx̄x̄ + ϕȳȳ + ϕz̄z̄ = 0,

ϕx̄x̄ + ϕȳ = 0 at ȳ = 0, (x̄, z̄) �= (0,0),

ϕ finite as ȳ → ∞.

(2.78)

We seek solutions of (2.78) by means of a Fourier transform with respect to x̄,

ϕ̂(α, ȳ, z̄) =
∫ ∞

−∞
eiαx̄ϕ(x̄, ȳ, z̄)dx̄ (2.79)

with its inverse transform

ϕ(x̄, ȳ, z̄) = 1

2π

∫ ∞

−∞
e−iαx̄ ϕ̂(α, ȳ, z̄)dᾱ. (2.80)

This leads to the boundary value problem for ϕ̂(α, ȳ, z̄):

ϕ̂ȳȳ + ϕ̂z̄z̄ − α2ϕ̂ = 0,

−α2ϕ̂ + ϕ̂ȳ = 0 at ȳ = 0,

ϕ̂ finite as ȳ → −∞.

(2.81)

A simple solution of (2.81) can be found in the form

ϕ̂ = eα2ȳF (z̄),

where F(z̄) satisfies the equation

(α4 − α2)F + Fz̄z̄ = 0.

Consequently, we take as a possible solution

ϕ(x̄, ȳ, z̄) = A

2π

∫ ∞

−∞
exp

{−iαx̄ + α2ȳ + iα(α2 − 1)
1
2 z̄

}
dα, (2.82)
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for A being a constant. Note that ϕ(x̄, ȳ, z̄) is not defined for x̄ = ȳ = z̄ = 0. From
(1.33) we find the free surface elevation

η(x̄, z̄) = Ai

2πU
lim
ȳ→0

∫ ∞

−∞
(
αeα2ȳ

)
exp

{
i
(−αx̄ + α(α2 − 1)

1
2 z̄

)}
dα (2.83)

which apparently is infinite for x̄ = z̄ = 0.
In order to get a better insight into the shape of the surface we shall evaluate this

expression (2.83) for large values of x̄ and z̄; that is distances to the origin that are
large compared to the reference length U2/g. This evaluation is performed by the
method of stationary phase (see Sect. 9.1).

We note that if we let R = (x̄2 + z̄2)
1
2 , x̄ = R cosϑ and z̄ = R sinϑ , then for each

fixed ϑ , (2.83) can be written in the form

∫ ∞

−∞
g(α) exp(iRf (α))dα,

where

g(α) := Ai

2πU
α and

Rf (α) := −αx̄ + α(α2 − 1)
1
2 z̄.

Hence the stationary points are solutions of the equation

∂

∂α

{−αx̄ + α(α2 − 1)
1
2 z̄

} = 0. (2.84)

(cf. (9.13)).
Let α0 be a solution of (2.84). We obtain therefore the asymptotic form of η(x̄, z̄):

η(x̄, z̄) ∼= Ai

πU
α0

√√√√π iα0(α
2
0 − 1)

3
2

2z̄(2α2
0 − 3)

exp
{
i
(−α0x̄ + α0(α

2
0 − 1)

1
2 z̄

)}
(2.85)

The phase function is of the most importance. If we put

ψ = −α0x̄ + α0(α
2
0 − 1)

1
2 z̄, (2.86)

we obtain from (2.84)

−x̄ + 2α2
0 − 1√

α2
0 − 1

z̄ = 0. (2.87)
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Fig. 2.4 Kelvin pattern

Setting α0 = 1
cos θ

, we obtain from (2.86) and (2.87) the equations

x̄ = −ψ(2 cos θ − cos3 θ) = −1

4
ψ(5 cos θ − cos(3θ)),

z̄ = −ψ cos2 θ sin θ = −1

4
ψ(sin θ + sin(3θ))

(2.88)

for the curves of constant phase ψ , which give the wave pattern. These curves are
all similar with the origin as centre, and have wave cusps at x̄ = z̄ = 0 (or θ = π/2)
and at the points where dx̄

dθ
= dz̄

dθ
= 0. Since

dx̄

dθ
= −ψ sin θ(2 − 3 cos2 θ) and

dz̄

dθ
= −ψ cos θ(3 cos2 θ − 2),

it follows that at the points

x̄ = −ψ
4
√

6

9
, z̄ = −ψ

2
√

3

9

corresponding to cos θ = √
2/3, there are cusps (it is understood that the expres-

sion (2.85) is not valid in the neighbourhood of cusps). A typical curve is shown
in Fig. 2.4. We see that the curve intersects the x̄-axis at the points x̄ = −ψ (corre-
sponding to θ = 0). The cusps lie on a straight line, through the origin, which makes
a fixed angle with the x̄-axis. The pattern obtained this way is called the Kelvin wave
pattern.

2.5 Wave Fronts

In view of (2.7) and (2.23), we now consider the general representation for the free
surface elevation:

η(x, z, t) =
∫ ∞

−∞
A(k)e−i(kx cos θ+kz sin θ−ωt) dk. (2.89)

In particular, we are interested in the asymptotic behaviour of η for large values of
t . We apply the method of stationary phase, see Sect. 9.1, to (2.89). The method
requires the determination of the value of k for which the phase

�(x, z, k) = −ωt + k(x cos θ + z sin θ)



30 2 Linear Wave Phenomena

= −t

[
k

(
x

t
cos θ + z

t

)
− ω(k)

]
(2.90)

is stationary. (Here we consider � as depending on the three parameters x
t
, z

t
and t .

For each pair of values of x
t

and z
t
, the asymptotic expansion for η is considered for

large t .) This leads to the consideration of solutions of the equations

d�

dk
= 0 or − dω

dk
t + x cos θ + z sin θ = 0. (2.91)

Let k0 be any solution of (2.91). Then the approximate result for large t is

η(x, z, t) = A(k0)

√
2π

t |ω′′(k0)|e−i(k0x cos θ+k0z sin θ−ω(k0)t− π
4 sgnω′′(k0)) (2.92)

provided that d2�(k0)

dk2 �= 0, i.e. ω′′(k0) �= 0.
The lines � = constant are lines of constant phase; these lines are called wave

fronts. We can define a partial differential equation for the wave fronts from the
dispersion relation ω = H(k). In fact, we can express k0 in terms of x, z, t and θ

from (2.92) so that differentiations of (2.91) (with k = k0) with respect to these
variables yield

�x = k0 cos θ + (x cos θ + z sin θ − ω′
0t)

∂k0

∂x
= k0 cos θ,

�z = k0 sin θ + (x cos θ + z sin θ − ω′
0t)

∂k0

∂z
= k0 sin θ,

�t = −ω0 + (x cos θ + z sin θ − ω′
0t)

∂k0

∂t
= −ω0,

(2.93)

with ω0 = H(k0). The first two equations of (2.93) imply that

k2
0 = �2

x + �2
z

with which the third one shows that the dispersion relation ω0 = H(k0) gives a
partial differential equation for the phase function � , the Hamilton-Jacobi equation

�t + H(

√
�2

x + �2
y ) = 0 or

�t + H(

√
p2 + q2) = 0,

(2.94)

where p = �x = k0 cos θ and q = �z = k0 sin θ are the conjugate variables to x

and z, respectively. We have just seen that the wave fronts correspond to level curves
of the Hamilton-Jacobi equation. But in wave phenomena one expects the dual con-
cept of rays to appear also. The rays in the present case are the characteristics of the
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Fig. 2.5 Wave fronts

above Hamilton-Jacobi equation, i.e. the solutions of the system of ODE’s:

dx

dt
= ∂H

∂p
,

dp

dt
= −∂H

∂x
= 0,

dz

dt
= ∂H

∂q
,

dq

dt
= −∂H

∂z
= 0

(2.95)

(see Sect. 9.2 for a brief summary of the concepts of characteristics). From the
(2.95) it is easy to see that in the x, z, t-space, the characteristics are straight lines
for constant t as in (2.91).

2.6 Wave Patterns

In Sect. 2.5, the Hamilton-Jacobi equation (2.94) for the wave fronts was derived
from the equations in a rather complicated way. At first we gave an exact solution
η of the linearised problem (1.32), (1.33) with U = 0, to which we later applied an
asymptotic expansion, which resulted in a first-order partial differential equation.
The result obtained is more or less similar to the characteristic equation for hyper-
bolic equations, although the wave fronts are by no means characteristic surfaces
for the equations, which do not even have real characteristics.

In order to give a direct derivation we first define a wave front on the two-
dimensional x, y-plane as a curve along which a transverse derivative of the so-
lution ϕ of the equation considered is much larger than the tangential derivative.
This means that, introducing new coordinates ξ1 transverse to the wave fronts and
ξ2 along the wave fronts (Fig. 2.5), we must have that ϕξ1 
 ϕξ2 , i.e. there should
exist a constant K 
 1 such that ϕξ1 ≈ Kϕξ2 . Here ξ1 and ξ2 are supposed to be
functions of x and y with derivatives of order unity with respect to K . We introduce
a new coordinate s = Kξ1 such that

ϕs = 1

K
ϕξ1 = O(1). (2.96)

We now illustrate this procedure by considering a simpler equation than the equation
of water waves, the Klein-Gordon equation in dimensionless form

ϕxx − ϕtt − a2ϕ = 0, (2.97)



32 2 Linear Wave Phenomena

where a is a constant. We first derive the Hamilton-Jacobi equations for the phase
function to the methods used in Sect. 2.5 and will refer to it as an indirect method.
For solutions of the form Aei(kx−ωt) we easily find the dispersion relation between
k and ω,

ω =
√

a2 + k2 � H(k) (2.98)

which gives the Hamilton-Jacobi equation from (2.94) with � = J :

Jt + H(Jx) = 0, (2.99)

where Jx = k. The characteristics of (2.99) are solutions of the equations

dx

dt
= ∂H

∂Jx

= k√
a2 + k2

,

dp

dt
= dJx

dt
= −∂H

∂x
= 0,

(2.100)

thus the characteristics are straight lines of the form

x − k√
a2 + k2

t = constant, (2.101)

corresponding to the group velocity dH
dk

= k√
a2+k2

.

Now let us examine the above problem by the direct method. Using (2.96),
a straightforward calculation shows that

ϕxx = K2ϕssξ
2
1x + K(2ϕsξ2ξ1xξ2x + ξ1xxϕs) + ϕξ2ξ2ξ

2
2x + ϕξ2ξ2xx,

ϕtt = K2ϕssξ
2
1t + K(2ϕsξ2ξ1t ξ2t + ξ1t t ϕs) + ϕξ2ξ2ξ

2
2t + ϕξ2ξ2t t .

(2.102)

Substituting into (2.97) gives

K2ϕss(ξ
2
1x − ξ2

1t ) + K{ϕs(ξ1xx − ξ1t t ) + 2ϕsξ2(ξ1xξ2x − ξ1t ξ2t )}
+ ϕξ2ξ2(ξ

2
2x − ξ2

2t ) + ϕξ2(ξ2t − ξ2t t ) − a2ϕ = 0. (2.103)

As K → ∞, we obtain the characteristic equation for (2.97). This is obvious be-
cause a characteristic would be a line along which the second derivative may be
discontinuous. Now, regarding the constant a as a large number with respect to
some reference length and identifying K with a, we have the equation

ϕss(ξ
2
1x − ξ2

1t ) − ϕ = 0, (2.104)

to the first order of approximation. If we want this equation to represent the motion
along the wave fronts, we must put the term (ξ2

1x − ξ2
1t ) equal to a constant which

we choose to be −1, i.e.,

ξ2
1x − ξ2

1t = −1. (2.105)
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Clearly, this gives immediately the Hamilton-Jacobi equation, ξ1t =
√

1 + ξ2
1x ,

which reduces to (2.99) with ξ1 replaced by (−1/a)J .
The same scheme can be applied to the problem of the moving singularity defined

by the time independent form (1.32) and (1.33), i.e.:

ϕxx + ϕyy + ϕzz = 0,

U2ϕxx + gϕy = 0, for y = 0.

In terms of the dimensionless variables x = x
L
, y = y

L
and z = z

L
, we have

ϕxx + ϕyy + ϕzz = 0,

ϕxx + gL

U2
ϕy = 0, for y = 0.

(2.106)

Here L denotes a proper reference length.
We are only interested in the wave pattern, hence in the lines of constant phase

of η (which from (1.33) amounts to the same as for ϕx at y = 0). We further remark
that from the nature of (2.106) we know that the wave is only appreciable at the
upper layer of the water. Hence we introduce the coordinates ξ1 and ξ2 in the x, z-
plane, where the lines ξ1 = constant represent wave fronts, the derivative ϕξ1 is large
with respect to ϕξ2 but the derivative ϕy must be of the same order of magnitude as
ϕξ1 . Therefore, we introduce a coordinate s = Kξ1 and a coordinate Y = Ky in
terms of which we have

ϕxx = K2ϕssξ
2
1x + K(2ϕsξ2ξ1xξ2x + ξ1xxϕs) + ϕξ2ξ2ξ

2
2x + ϕξ2ξ2xx,

ϕzz = K2ϕssξ
2
1z + K(2ϕsξ2ξ1zξ2z + ξ1zzϕs) + ϕξ2ξ2ξ

2
2z + ϕξ2ξ2zz,

and

ϕyy = K2ϕYY .

From (2.106), we have then

K2ϕss(ξ
2
1x + ξ2

1z) + K2ϕYY + O(K) = 0, (2.107)

together with the surface condition

K2ϕssξ
2
1x + K

(
gL

U2

)
ϕY + O(K) = 0, for Y = 0. (2.108)

This yields the first approximation

ϕss(ξ
2
1x + ξ2

1z) + ϕYY = 0,

ϕssξ
2
1x + ϕY = 0, for Y = 0,

(2.109)

where we identify K with gL

U2 .
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Since ξ2
1x + ξ2

1z and ξ2
1x are slowly varying variables, we introduce constants,

α and β defined by

α2 = ξ2
1x + ξ2

1z, and β = ξ2
1x.

This leads to the problem

α2ϕss + ϕYY = 0,

βϕss + ϕY = 0, for Y = 0,

which has a solution

ϕ = eis+.αY .

This solution which goes to zero as Y → ∞ (α > 0) can satisfy the surface condition
only if

α = β

or

ξ2
1x + ξ2

1z = ξ4
1x. (2.110)

It should be emphasised that these considerations are only valid to an order of mag-
nitude of 1/K . The present approach is a variation of the ray method in geometrical
optics. Higher-order approximations can be derived in a similar manner.

The characteristic equations of the first-order partial differential equation (2.110)
take the form

ẋ = 4p3 − 2p, ṗ = 0,

ż = −2q, q̇ = 0,

ξ̇1 = (4p4 − 2p2 − 2q2),

with p = ξ1x and q = ξ1z, where the dot · notation denotes differentiation to some
parameter, say, τ . Hence p and q are constants and we have the parametric equations
for the rays,

x = 2p(2p2 − 1)τ,

z = −2qτ,

ξ1 = (4p4 − 2p2 − 2q2)τ.

(2.111)

From (2.110) we have

q = −p

√
p2 − 1. (2.112)

To eliminate τ from (2.111) by making use of (2.112), we finally obtain

x = ξ1
(2p2 − 1)

p3
, z = ξ1

√
p2 − 1

p3
,
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which reduces to (2.88) if we set p = − 1
cos θ

. This shows that the curves ξ1 = con-
stant are indeed the curves of constant phase.

2.7 Singularity in a Steady Current

2.7.1 Steady Singularity

As in the case of an oscillatory point source in still water it is useful to have the
solution of a steady moving point source, or a point source in a steady current,
available. For finite water depth the formulation becomes

ϕxx + ϕyy + ϕzz = δ(x − x0, y − y0, z − z0),

ϕy = 0 at y = −h,

υϕxx + ϕy = 0 at y = 0,

(2.113)

where we introduced the notation υ = U2

g
. To obtain a physically valid solution

we have to add a far-field condition, comparable with the radiation condition in
the oscillatory case. Here the requirement becomes that in front of the disturbance
no wavy pattern is observed. In the downstream region a wavy disturbance may be
present. In the deep water case it is similar to the disturbance of the moving pressure
point. It is also noticed that a solution of (2.113) can not be unique, because we
always may add an arbitrary constant. We make use of this fact later. We follow the
same procedure as described before (2.66) to solve (2.113),

ϕ(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ(x, y, z), (2.114)

where r̃ denotes the distance to reflected, with respect to the bottom, source point.
For ψ(x, y, z) we obtain the formulation

ψxx + ψyy + ψzz = 0,

ψy = 0 at y = −h,

ψy + υψxx = 1

4π

{
∂

∂y

(
1

r
+ 1

r̃

)
+ υ

∂2

∂x2

(
1

r
+ 1

r̃

)}

:= r(x, z;x0, y0, z0)

at y = 0.

(2.115)

If we apply the double Fourier transform to the function ψ ,

�(α,y,β) =
∫ ∞

−∞

∫ ∞

−∞
ei(αx+βz)ψ(x, y, z)dx dz, (2.116)
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we obtain the following ordinary differential equation and boundary conditions
for �:

�yy − (α2 + β2)� = 0,

�y = 0 at y = −h,

�y − υα2� = R(α,β;x0, y0, z0) at y = 0.

(2.117)

Application of (2.70) leads to the following expression for R(α,β;x0, y0, z0),

R(α,β;x0, y0, z0) = −k + υα2

k
e−kh cosh(k(y0 + h))ei(αx0+βz0), (2.118)

where k = √
α2 + β2. The solution of (2.117) becomes

�(α,y,β) = −k + υα2

k
e−kh cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − υα2 cosh(kh)
ei(αx0+βz0). (2.119)

The inverse transform (2.73) of �(α,y,β) becomes

ψ(x, y, z) = −1

4π2

∫ ∞

−∞

∫ ∞

−∞
e−kh cosh(k(y + h)) cosh(k(y0 + h))

· k + υα2

k

e−i(α(x−x0)+β(z−z0))

k sinh(kh) − υα2 cosh(kh)
dα dβ (2.120)

and after the introduction of polar coordinates in the Fourier plane (2.52), (2.53)

ψ(x, y, z) = −1

4π2

∫ ∞

0

∫ 2π

0
e−kh cosh(k(y + h)) cosh(k(y0 + h))

· (1 + kυ cos2 ϑ)e−ik((x−x0) cosϑ+(z−z0) sinϑ)

sinh(kh) − kυ cos2 ϑ cosh(kh)
dk dϑ. (2.121)

The integral is singular at k = 0. Therefor we make use of the fact that we may add
a constant, with respect to x, y and z to the solution of (2.113). Hence a solution of
(2.113) may be written as

ϕ(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ̃(x, y, z) (2.122)

with

ψ̃(x, y, z) = −1

4π2

∫ ∞

0
dk

∫ 2π

0
dϑ

e−kh

sinh(kh) − kυ cos2 ϑ cosh(kh)

· {cosh(k(y + h)) cosh(k(y0 + h))(1 + kυ cos2 ϑ)

· e−ik((x−x0) cosϑ+(z−z0) sinϑ) − 1
}
. (2.123)
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This solution does not fulfil the condition that upstream (x → −∞) no wavy dis-
turbance may be present. To obey this condition a path of integration along the
singularity on the real k-axis has to be chosen. Depending on the sign of cosϑ the
choice will be different.

We notice that for cosϑ > 0 and x − x0 > 0 we may close the integral with
respect to k in the fourth quadrant of the complex k-plane. For cos2 ϑ < h

υ
we find

a simple pole on the real k-axis. This means that to obtain a wavy contribution this
singularity on the real axis must be inside the contour. We obtain a contribution of
the pole plus an integral along the negative imaginary axis. This integral represents
an exponentially decaying contribution. If however x − x0 < 0 we close the integral
in the first quadrant and we obtain a contribution of an integral along the positive
imaginary axis only.

Next we consider cosϑ < 0 and x − x0 > 0 and we may close the integral in the
first quadrant of the complex k-plane. We obtain a contribution of the singularity on
the real axis if we chose the pole inside the contour. Again the integral along the
imaginary axis is exponentially decaying. If x − x0 < 0 we may close the contour
in the fourth quadrant. This gives rise to a decaying contribution only.

We may reformulate the integral part of the solution by splitting up the integration
with respect to ϑ into four parts of length π/2 and to combine the integral. In this
way we obtain

ψ̃(x, y, z) = − 1

π2

∫ ∞

0
dk

∫ π
2

0
dϑ

e−kh

sinh(kh) − kυ cos2 ϑ cosh(kh)

{
cosh(k(y + h))

· cosh(k(y0 + h))(1 + kυ cos2 ϑ) cos((x − x0)

· cosϑ) cos((z − z0) sinϑ) − 1
}
. (2.124)

In the Handbook of Physics [19], Wehausen gives further details of this expression.
To obtain an expression for the deep water case we let h → ∞ in expression

(2.123) and obtain.

ϕ(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

2π2

∫ ∞

0
dk

∫ π

0
dϑ

1

1 − kυ cos2 ϑ

· ek((y+y0)−i(x−x0) cosϑ) cos(k(z − z0) sinϑ) (2.125)

where we used (2.70) to obtain the contribution of a singularity at the point
(x0,−y0, z0), hence r̄ is defined as

√
(x − x0)2 + (y + y0)2 + (z − z0)2. The con-

tour in the k-plane has to be chosen as before. For cosϑ > 0 the contour passes the
singularity in the upper plane, while for cosϑ < 0 the contour passes the singularity
in the lower plane. The contribution of the pole gives a far-field pattern comparable
with the moving pressure point wave field described in Sect. 2.4.
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2.7.2 Oscillating Singularity

The boundary value problem for the disturbance of a steady flow is described
in (1.32). We consider a harmonic point source and assume that the potential func-
tion can be written as

φ(x, y, z, t) = eiωt φ̂(x, y, z).

The boundary value problem for the disturbance of a point source in (x0, y0, z0)
becomes

ϕxx + ϕyy + ϕzz = δ(x − x0, y − y0, z − z0)e
iωt . (2.126)

If we introduce ϕ(x, y, z, t) = ϕ̂(x, y, z)eiωt , the boundary value problem to be
solved becomes

ϕ̂xx + ϕ̂yy + ϕ̂zz = δ(x − x0, y − y0, z − z0),

ϕ̂y = 0 at y = −h,

υφ̂xx + 2iτ ϕ̂x − νϕ̂ + ϕ̂y = 0 at y = 0,

(2.127)

where we introduced the parameters ν = ω2/g, υ = U2/g,and τ = (ωU)/g; notice
that τ 2 = νυ .

ϕ̂(x, y, z) = − 1

4πr
− 1

4πr̃
+ ψ(x, y, z). (2.128)

Introduction of the double Fourier transform leads to the following ordinary differ-
ential equation for the transform of ψ ,

�yy − (α2 + β2)� = 0,

�y = 0 at y = −h,

�y − (υα2 + 2τα + ν)� = S(α,β;x0, y0, z0) at y = 0.

(2.129)

Application of (2.70) leads to the following expression for S(α,β;x0, y0, z0),

S(α,β;x0, y0, z0) = −k + υα2 + 2τα + ν

k
e−kh cosh(k(y0 + h))ei(αx0+βz0),

(2.130)
where k = √

α2 + β2. The solution of (2.129) becomes

�(α,y,β) = −k + υα2 + 2τα + ν

k
e−kh

· cosh(k(y + h)) cosh(k(y0 + h))

k sinh(kh) − (υα2 + 2τα + ν) cosh(kh)
ei(αx0+βz0). (2.131)

The inverse transform of �(α,y,β) gives the solution of (2.127). The choice of the
path of integration will be elucidated in the deep water case. Hence we consider the



2.7 Singularity in a Steady Current 39

limit h → ∞. We rewrite expression (2.131) in the form

�(α,y,β) =
(

1

2
− L (k,α)

)
ek(y+y0)ei(αx0+βz0)

k
. (2.132)

The function L (k,α) becomes, in polar coordinates in the Fourier plane,

lim
h→∞L (k, θ) = k

k − (υα2 + 2τα + ν)
= gk

gk − (ω + kU cos θ)2
. (2.133)

Finally we obtain an expression for ϕ̂(x, y, z) where we still have to choose the
proper path of integration in the complex k-plane

ϕ(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

2π2

∫ ∞

0

∫ π

0

gk

gk − (ω + kU cos θ)2

· ek((y+y0)−i(x−x0) cosϑ) cos(k(z − z0) sinϑ)dk dϑ. (2.134)

We will investigate the zeros of the denominator. The quadratic equation has two
zeros,

gk± = 1 − 2τ cosϑ ± √
1 − 4τ cosϑ

2τ 2 cos2 ϑ
ω2. (2.135)

First of all we notice that, for values of ϑ for which we have

1 − 4τ cosϑ < 0, (2.136)

we find no singularities of the integrand along the real k-axis. Hence for τ > 1/4 we
find a ϑ interval where the k-integral is regular for 0 ≤ ϑ < γ with cosγ = 1/(4τ).
For τ < 1/4 we have γ = 0. Next, to determine the contour of integration when two
poles lie on the positive real axis we have to consider the condition in the far field.
It is easy to show that for ϑ > γ both roots of the quadratic equation are situated on
the positive real axis of the complex k-plane. It is convenient to consider the poles
for small values of U and ω successively. In both cases τ becomes small, so we
consider the two poles for τ → 0. We find

lim
τ→0

k− = ω2

g
and lim

τ→0
k+ = g

U2 cos2 ϑ
. (2.137)

In the oscillatory case without current we have seen that the contour passes the pole
in the first quadrant of the complex k-plane, for all values of ϑ . Actually we could
carry out the ϑ integral in that case. Hence, we conclude that this is also the case for
the singularity in k−.

In the case of a steady source in a current we have seen that we have to con-
sider the sign of cosϑ because in the downstream direction the far field shows a
wavy character. Hence for cosϑ > 0 the contour of integration passes k+ in the first
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Fig. 2.6 Lines of integration

quadrant, while for cosϑ < 0 the contour passes k+ in the fourth quadrant of the
complex k-plane (see Fig. 2.6). Finally the solution can be written as

ϕ(x, y, z) = − 1

4πr
+ 1

4πr̄
− 1

2π2

{∫ ∞

0

∫ γ

0
+

∫
C1

∫ π
2

γ

+
∫

C2

∫ π

π
2

}

· gkek((y+y0)−i(x−x0) cosϑ)

gk − (ω + kU cos θ)2
cos(k(z − z0) sinϑ)dk dϑ. (2.138)
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