
Chapter 2
The Net Energy Balance

In this section we see what the terms in the Navier–Stokes equation contribute to
the production and dissipation of energy in a fluid. Consider a fluid contained in a
volume V whose boundary is the surface S. We prescribe that no material shall cross
S and we thus have the boundary condition that the velocity component normal to
S is zero everywhere on S, i.e.,

u · dS = 0 on S, (2.1)

where dS is a vector normal to the surface and of arbitrary magnitude. If we multiply
(1.1) by ρui we obtain, after integrating both sides over V ,

ρ

∫
V

ui

∂ui

∂t
dV + ρ

∫
V

uiuj

∂ui

∂xj

dV = −
∫

V

ui

∂p

∂xi

dV + νρ

∫
V

ui∇2uidV. (2.2)

Here dV is the element of volume in V , ρ has been treated as constant, and the
solenoidal character of ui will be assumed throughout. We then consider the four
terms of (2.2) separately:

(a) The First Term on the Left-Hand Side:

ρ

∫
V

ui

∂ui

∂t
dV = ρ

2

∫
V

∂(uiui)

∂t
dV = ρ

2

∫
V

∂|u|2
∂t

dV = ∂T
∂t

,

where T is the kinetic energy contained in the volume.
(b) The Non-Linear Term: In (1.1) the term ∂(uiuj )/∂xi arises as the changing

velocity of a mass element arising from its changing position in the velocity
field; it is known as the inertial term. We have,

ρ

∫
V

uiuj

∂ui

∂xj

dV = 1

2
ρ

∫
V

uj

∂(uiuj )

∂xj

dV = 1

2
ρ

∫
V

∂(uj |u|2)
∂xj

dV,
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since uj is solenoidal. Then, by the divergence theorem,

ρ

∫
V

uiuj

∂ui

∂xj

dV = 1

2
ρ

∫
V

div (u|u|2)dV

= 1

2
ρ

∫
S

|u|2u · dS

= 0 by (2.1).

(c) The Pressure Term:
∫

V

ui

∂p

∂xi

dV =
∫

V

∂(pui)

∂xi

dV =
∫

S

pu · dS = 0,

by (2.1).
(d) The Dissipation Term: We have the lemma

ui∇2ui = −|curlu|2 + div (u × curlu),

proved at the end of this section. Then, in view of this identity,

ρν

∫
V

ui∇2uidV = μ

∫
V

[
− |curlu|2 + div (u × curlu)

]
dV

= −μ

∫
V

|curlu|2dV + μ

∫
S

(u × curlu) · dS.

Let ω = curlu. Then, on gathering the various terms of (2.2) we obtain

∂T
∂t

= −μ

∫
V

|ω|2dV + μ

∫
S

(u × curlu) · dS. (2.3)

The first term on the right-hand side is the viscous dissipation of the vorticity, i.e.,
−μ|ω|2 is the rate of dissipation of energy per unit volume. The stationary state
requires ∂T /∂t = 0, and so the energy input must be balanced by

∫
V
(−μ|ω|2)dV .

This implies that the small scale motion predominates in the dissipation, as will
become clear below.

Proof of the Lemma
To show

ui∇2ui = −|curlu|2 + div (u × curlu),

consider

curliu = εijk

∂uk

∂xj

, |curlu|2 = εijkεimnuk,j un,m. (2.4)

But

εijkεimn = δjmδkn − δjnδkm. (2.5)
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Combining (2.4) and (2.5) leads to

|curlu|2 = (δjmδkn − δjnδkm)uk,j un,m

= ui,j ui,j − ui,j uj,i .

Further,

(u × curlu)i = εijkuj εkmnun,m

= (δimδjn − δinδjm)ujun,m = ujuj,i − ujui,j , (2.6)

whence

div (u × curlu) = uj,iuj,i + ujuj,ii − uj,iui,j − ujui,j i .

Now,

ujui,j i = ujui,ij = uj

∂

∂xj

(
∂ui

∂xi

)
= 0,

by (1.2). Then,

div (u × curlu) − |curlu|2 = ui∇2ui,

and the lemma is proved. �

Returning to the example of concentric rotating cylinders, we note that the second
term on the right of (2.3) must be the energy introduced by the cylinders per unit
time and must be balanced by the dissipation term if ∂T /∂t is to be zero. Let i,j ,k

be unit vectors in the r, θ, z directions, respectively. Then, the velocity (at least in
one solution) is given by vr = vz = 0 and vθ = v, where v is given by (1.3). Then

curlu = k

[
1

r

∂(rv)

∂r

]
= 2Ak,

whence

u × curlu = i2Av,

and

(u × curlu) · dS = 2AvdS,

so that
∫

(u × curlu) · dS =
∫ l

0

∫ 2π

0

[
2Av

]R2

R1
rdθdz

= 4πlA

[
R2

(
AR2 + B

R2

)
− R1

(
AR1 + B

R1

)]

= 4πlA2(R2
2 − R2

1).
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Also, since

|curlu|2 =
[

1

r

∂(rv)

∂r

]2

= (2A)2,

∫
V

|curlu|2dV = 4A2
∫

V

dV = 4A2(πlR2
2 − πlR2

1)

= 4πlA2(R2
2 − R2

1),

and ∂T /∂t = 0, which will hold on the average, even when instability occurs.
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