
Preface

There are good theoretical reasons to consider seriously the possibility that gravity
is not described precisely by Einstein’s General Relativity but rather by some al-
ternative theory. First, attempts to renormalize General Relativity in the 1960s and
1970s showed clearly that counterterms must be introduced which alter the theory
significantly and make its field equations of fourth order instead of second. From the
physical point of view, this fact implies that extra degrees of freedom, in addition
to the usual spin two graviton, need to be introduced. Unfortunately, the corrected
theory is not free of ghosts, which makes it non-unitary. The corrections introduced
by renormalization are quadratic in the algebraic invariants of the curvature tensor
and were successfully employed in R2-inflation in the early universe. By retaining
only corrections quadratic in the Ricci scalar R or, by extension, corrections which
are general non-linear functions ofR (and no longer motivated by renormalization),
one obtains the so-called class of f .R/ theories of gravity.

Second, when one tries to approach gravity (and the other interactions) from the
high energy side and then obtain low-energy physics, one does not recover Einstein’s
theory. Adopting, at least as a temporary model, string theory as a full theory of
quantum gravity which also unifies the known interactions, one can take a low-
energy limit which, again, does not reproduce General Relativity but gives instead
a Brans-Dicke theory. Scalar-tensor theories of gravity have been known for a long
time and were developed following initial suggestions by Dirac, Jordan, Fierz, and
Thiery, culminating in the 1961 paper by Brans and Dicke introducing what is now
known as Brans-Dicke theory. The original motivations for Brans-Dicke theory were
rooted in the need to implement Mach’s principle, which is not fully incorporated
in General Relativity, in a relativistic theory of gravity. After Brans-Dicke theory
(the prototype of scalar-tensor theories of gravity) was born, research on Mach’s
principle went its own way and, without doubt, the interest of modern physicists
in scalar-tensor gravity arises more from string theories than from Mach’s princi-
ple. Dilaton fields and their non-minimal couplings to the spacetime curvature are
unavoidable features of string theories, shared with scalar-tensor gravity.

It seems, therefore, that first loop corrections or attempts to fully quantize grav-
ity necessarily introduce significant deviations from General Relativity and extra
degrees of freedom. The recent thermodynamics of spacetime approach to emer-
gent gravity pictures General Relativity as a thermodynamical state of equilibrium
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among a wider spectrum of gravity theories and it only makes sense that, if extra
degrees of freedom are allowed in addition to the standard spin two graviton of
General Relativity, deviations from this equilibrium state will correspond to the ex-
citation of these extra degrees of freedom and to deviations from Einstein’s theory.
From the theoretical point of view, going beyond General Relativity is a necessity
and exploring the wider landscape of theories becomes a cultural need.

From the experimental point of view, General Relativity has been tested directly
in the Solar System in its weak-field, slow motion approximation. Binary pulsars,
most notably the Hulse-Taylor system PSR 1913C 16, allow for indirect tests out-
side the Solar System, in the same regime. However, strong gravity tests are still
missing and gravity is tested very poorly at the scale of galaxies and clusters, wit-
nessing the fact that even Newtonian gravity is doubted at galactic scales, which
has led to the introduction of MOND and TeVeS theories to replace galactic dark
matter. Cosmology cannot be advocated as a precise test of General Relativity at
large scales: in fact, almost all theories of gravity admit the Friedmann-Lemaitre-
Robertson-Walker line element as a solution of their field equations, with perfect
fluids or other reasonable matter sources. Indeed, it is from cosmology that comes
the indication that gravity may not be described exactly by General Relativity. The
1998 discovery that the present expansion of the universe appears to be accelerated,
made using the luminosity distance versus redshift relation of type Ia supernovae,
has left cosmologists scrambling for an explanation. In order to explain the cosmic
acceleration within the context of General Relativity, one needs to introduce the
mysterious dark energy, which is very exotic (its pressure P and energy density �
must satisfy P ' ��), diluted, comprises approximately 75% of the energy content
of the universe, and is not detected in the laboratory. Dark energy seems very much
an ad hoc solution of the problem of the present acceleration of the universe and,
understandably, alternatives have been looked for. Attempts to explain away dark en-
ergy using the backreaction of inhomogeneities on the dynamics of the background
universe have been, so far, unconvincing. In 2002, the idea was advanced by one of
us, soon followed by other authors, that perhaps we are observing the first deviations
from General Relativity on the largest scales. f .R/ theories of gravity (although not
of the quadratic form obtained by renormalization) were resurrected in an attempt
to explain this phenomenon. Curiously, f .R/ gravity admits a scalar-tensor repre-
sentation. Since these first attempts, the literature on f .R/ and scalar-tensor gravity
and their applications to cosmology has flourished, and scalar fields or f .R/ modi-
fications of gravity are now even proposed as alternatives to dark matter. This book
attempts to organize the available knowledge about these classes of theories and the
vast literature into a coherent view. The book is not meant to be a comprehensive
review of half a century of literature, including its recent explosion: it is conceived
more as an advanced introduction to this expanding area of research.

It would be premature and unjustified to claim that gravity is described by any of
the theories described in this book. However, even if none of these extended theories
of gravity ultimately proves to be correct, they are simple enough to solve many
problems while still allowing us to peek into the vast landscape of theories beyond
Einstein gravity and to understand many ways in which gravity can be enlarged with
respect to Einstein’s conception.
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Notations and conventions: the following notations and conventions are used in
this book. The metric signature is � C CC in four spacetime dimensions. Units
are used in which the speed of light c and the reduced Planck constant „ assume
the value unity. G is Newton’s constant, the Planck mass is mpl D G�1=2, while
� � 8�G. Greek indices assume the values 0, 1, 2, 3 and Latin indices assume
the spatial values 1, 2, 3. A comma denotes ordinary differentiation, ra is the
covariant derivative operator, and g denotes the determinant of the metric tensor
g�� , while ��� is the Minkowski metric, which takes the form diag.�1; 1; 1; 1/
in Cartesian coordinates in four dimensions. "˛ˇ�� is the totally antisymmetric
Levi-Civita tensor. Round and square brackets around indices denote symmetriza-
tion and antisymmetrization, respectively, which include division by the number of
permutations of the indices, for example:
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and R � g˛ˇR˛ˇ is the Ricci curvature. � � g˛ˇr˛rˇ is d’Alembert’s operator.
A tilde usually denotes quantities defined in the Einstein frame and the subscript 0
identifies quantities evaluated at the present instant of time in the history of the
universe.
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