Quantification of uncertain and variable model
parameters in non-deterministic analysis

Dirk Vandepitte, David Moens

Abstract A multitude of models for non-deterministic structural analysis have been
developed. They are all designed to predict how non-nominal input parameter val-
ues propagate through the different phases of the calculation procedure. A literature
review on a number of publications that present practical examples shows that the
relation between the numerical formalism that describes the uncertain or variable
quantity and the physical reality is not so clear. In almost all cases the authors (have
to) make assumptions on the non-deterministic nature of the physical quantity, es-
pecially for material properties. However, the sensitivity of the structural response
to material parameter changes can be very significant. The authors recommend that
the numerical formalism for model parameters should be well adapted to physically
observed variations.

1 Introduction

Numerical analysis is used throughout in technical analysis and scientific research.
The paper takes structural finite element analysis as a reference. In many cases pre-
cise numerical data on one or more model parameters are not available, either be-
cause the parameter does not have a single value or because its value is not precisely
known. Unless the analyst is satisfied with assumptions to assign certain values
for each of these parameters, a non-deterministic analysis may be viable. However,
some conditions must be met in order for a non-deterministic analysis run to yield
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practically relevant results. The paper discusses these conditions, the types of analy-
sis that are feasible, the requirements on the input data, and the availability of useful
data.

In dynamic analysis the effect of uncertainty and variability depends to a very
significant extent on frequency, with both effects strongly increasing with increas-
ing frequency. Whereas natural frequencies of the first few modes usually do not
change much for moderate changes of input parameter values, this effect is much
more pronounced at medium and high frequencies. This paper considers only the
low frequency regime, where individual local model parameters determine struc-
tural behaviour. They include three types: stiffness, mass and damping. Stiffness
and mass parameters depend mainly on the geometrical lay-out and material selec-
tion of the structure and its components, and boundary conditions also play a role.
Although local damping characteristics of specific materials and treatments may be
important, damping is usually a rather global property of a built-up structure, and
it is often modelled with one or just a few global model parameters. This paper
focusses on local stiffness and mass parameters.

There are two basic categories for non-deterministic analysis: probabilistic anal-
ysis is feasible in case of aleatory uncertainty, and non-probabilistic analysis can
be used in case of epistemic uncertainty. Input data require a specific numerical
formalism, with probability density functions for aleatory uncertainty and interval
or fuzzy numbers for epistemic uncertainty. In addition to these distinct categories,
there are intermediate categories. In a first section, this paper briefly presents a con-
sistent structure for the representation of uncertain data in each of the cases of non-
determinism.

The second section of the paper gives a wide selection of non-deterministic
model data as they are reported in numerical analyses in journal articles and con-
ference papers. Despite the apparent simplicity of data formats, the authors observe
that in almost all cases the analyst makes assumptions on the nature of the non-
determinism of the problem and on the quantification of the uncertain or variable
parameters. The unavailability of validated input data is a circumstance that is often
encountered, but that does not justify inadvertent assumptions. It is observed that
most authors assign the non-deterministic nature of the problem mostly to uncer-
tainty and/or variability of the material characteristics. For this reason, this paper
gives an overview of some sources of material data. It is shown that engineering
material properties may be very sensitive to production-related aspects of structural
components. This phenomenon is very pronounced for composite materials.

2 Numerical representation of parameter uncertainty and
variability

Engineering design is the activity of design and development of technical products.
A technical product is built to fulfil a well specified function under more or less
well prescribed conditions of utilisation. This process consists of a number of anal-
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ysis verifications on a virtual product. A common procedure for design verification
is finite element analysis, a numerical method for the simulation of the effect of
mechanical or thermal loads on a product. As most product parameters are undeter-
mined in the initial phases of design, a range of non-deterministic properties have
to be taken into account. This paper discusses the effects of non-determinism on
engineering analysis using the finite element method (FE).

2.1 Definitions

In literature, the use of the terminology error, uncertainty and variability is not un-
ambiguous. Different researchers apply the same terminology but the meaning at-
tached to these is rather inconsistent. This necessitates a profound clarification of the
terminology for each publication which treats uncertainties. This work does not pro-
pose a new terminology, but applies the terminology proposed by OBERKAMPF [1].
Some additional nuances are, however, necessary in order to enable clear distinction
between probabilistic and non-probabilistic quantities.

The term variability covers the variation which is inherent to the modelled phys-
ical system or the environment under consideration. Generally, this is described by
a distributed quantity defined over a range of possible values. The exact value is
known to be within this range, but it will vary from unit to unit or from time to time.
Ideally, objective information on both the range and the likelihood of the quantity
within this range is available. Some literature refers to this variability as aleatory un-
certainty or irreducible uncertainty, referring to the fact that even when all informa-
tion on the particular property is available, the quantity cannot be deterministically
determined.

An uncertainty is a potential deficiency in any phase or activity of the mod-
elling process that is due to lack of knowledge. The word potential stresses that the
deficiency may or may not occur. This definition basically states that uncertainty is
caused by incomplete information resulting from either vagueness, nonspecificity or
dissonance [2]. Vagueness characterises information which is imprecisely defined,
unclear or indistinct. It is typically the result of human opinion on unknown quanti-
ties (“the density of this material is around x”). Nonspecificity refers to the availabil-
ity of a number of different models that describe the same phenomenon. The larger
the number of alternatives, the larger the nonspecificity. Dissonance refers to the
existence of conflicting evidence of the described phenomenon, for instance when
there is evidence that a quantity belongs to disjoint sets. Possibly, limited objective
information is available, for instance when a range of possible values is known. In
most cases, however, information on uncertainties is subjective and based on some
expert opinion. Others in literature refer to this uncertainty as reducible, epistemic
or subjective uncertainty.

An error is defined as a recognisable deficiency in any phase of modelling or
simulation that is not due to lack of knowledge. The fact that the error is recog-
nisable states that it should be identifiable through examination, and as such is not
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caused by lack of knowledge. A further distinction between acknowledged and un-
acknowledged errors is possible. Errors will not be considered further in this paper.

2.2 Discussion and extension of the definitions

The above definitions of uncertainty and variability are fairly straightforward and
comprehensible. However, they are not mutually exclusive, since a variability could
be subject to lack of knowledge when information on its range or likelihood within
the range is missing. This is for instance the case for every design dimension subject
to tolerances, but without further specification of manufacturing process or supplier.
The tolerances represent the bounds on the feasible domain, but there is no infor-
mation on the likelihood of the possible values within these bounds. Consequently,
because there is a lack of knowledge, such a variability is also an uncertainty. It is re-
ferred to here as an uncertain variability. Some vague knowledge may be available
(“the mean value is approximately x”) but also nonspecificity may play an important
role in the uncertainty, for instance in choosing an appropriate model to describe a
random quantity. Opposed to the uncertain variability, a certain variability refers to
a variability the range and likelihood of which are exactly known.

On the other hand, it appears logical to state that every property in a numerical
model corresponding to a physical quantity is a variability, since it will eventually
have a range of possible values and a likelihood inside this range in the physical
model. This argumentation implies that all uncertainties are also variabilities. In
practice however, the majority of model properties are implemented as constant de-
terministic values in the numerical model. Though they are subject to variation, the
influence of their variability on the analysis result is considered to be negligible. Of-
ten, uncertainties refer to a possible lack of knowledge in these deterministic prop-
erties. This type of uncertainty is referred to as invariable uncertainty. The word
invariable in this case does not mean that the property cannot change over different
analyses. According to the definition of uncertainty, it will change when additional
information is gathered that decreases the amount of uncertainty. The invariable un-
certainties typically occur in model properties for model parts that are difficult to
describe numerically, but considered constant in the final physical product (connec-
tions, damping, ...). Other examples are design properties which have negligible
variability but which are not defined exactly in an early design stage. Figure 1 gives
a graphical illustration of the proposed subdivision of the definitions for uncertainty
and variability.

The group of variabilities may be further subdivided into two categories. Inter-
sample variability is the property of a population of nominally identical realisations
of a particular product, with each individual element of the population possibly
exhibiting scatter. Intra-sample variability is a property of one particular realisation
— of which other realisations possibly exist — that exhibits one or more properties
that may change over time, due to temperature differences, ageing, ...
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Fig. 1: Classification of variabilities and uncertainties in numerical modelling

3 Literature review on uncertain model and material data

The authors have conducted a review of journal publications in the field of non-
deterministic analysis in structural dynamics. Only the numerical examples are con-
sidered, with a focus on how the input data are described. Most of the papers that
listed are published in the journal for Computer Methods in Applied Mechanics and
Engineering. Uncertainty mostly applies on material constitutive data, and for this
reason several materials related journals are listed as well.

3.1 Non-probabilistic models

Non-probabilistic models are used in different conditions, usually when limited data
are available, and when a probabilistic interpretation is not required. The following
examples illustrate when these conditions are met:

concept models are used in early stages of engineering design, when only gen-
eral and approximate information on a design case is available. MOENS et al. [3]
have built a concept model of a truck-trailer combination. The model consists of
discrete mass elements for the major components and systems in the truck, and
individual springs. The truck manufacturer uses simple MatLab models to in-
vestigate vehicle dynamics in an early stage, and the objective of this study was
to predict maximum response levels for different excitations. In a later stage of
product design, MASSA et al. [4] have used a fuzzy description to investigate
different variants of a suspension triangle. The same authors have also used this
approach on an impactor [5].

investigation of the effect of production tolerance is done using interval
analysis, possibly extended with subjective interpretation using fuzzy numbers.
MOENS et al. [6] have investigated the effect of typical plate thickness on the
natural frequencies of the stiffened cylinder of the COROT satellite.
uncertainty of specific model parameters occurs for specific quantities that
are hard to quantify, such as the stiffness of a polymer layer in the windshield
of a vehicle. The effect of uncertain thickness of the polymer layer on natural
frequencies was also taken into account [7]. Another uncertain parameter that
was investigated on the same structure was the curvature of the windshield [8].
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* model parameters with imprecise values may occur when incomplete data are
available. NOOR et al. [9] have calculated the nonlinear response of a stiffened
composite aircraft fuselage panel with a circular cut-out. Young’s modulus and
Poisson ratio are sensitive to the alignment of fibre orientations, and they are
modelled with triangular fuzzy numbers with a 15% support. The flange width
and the web height of the T-stiffener are also considered to be uncertain.

* the imprecise effect of process steps occurs in several production processes.
KHALED et al. [10] have used a fuzzy set approach in conjunction with FE anal-
ysis to predict the residual stress field in the heat affected zone of a welded struc-
ture that undergoes martensitic transformations during the cool-down part of the
weld thermal cycle.

In conclusion, non-probabilistic models are fed with input data that are only subjec-
tively linked to realistic problem data. If the bounds of the interval are well defined,
and if the non-probabilistic analysis procedure does not introduce artificial conser-
vatism, the output is a realistic set of bounds on output quantities.

3.2 Probabilistic models

Probabilistic models are used for several decades already, in a very wide range of
applications. The list below is a selection of applications in structural dynamics and
also in static structural analysis with random stiffness characteristics.

1. LIONNET and LARDEUR [11] have developed a hierarchical model for the ef-
fect of variability on the booming noise in a passenger car. They identified three
different sources of variability: engine vibrations, the dynamic stiffness of the
engine mounts and the transfer function from the vibrating body to the noise
level. Each of these sources is measured independently, and modelled with a
normal distribution. Interior noise level at the driver’s ear shows measured intra-
variability level between 2 and 20 dB depending on the engine speed. The inter-
variability of booming noise was also measured, and it is found to be lower than
the intra-variability one.

2. PELLISSETTI et al. [12] conducted a reliability analysis on vibration levels of the
INTEGRAL satellite. Extensive material data were available. No less than 1319
independent random variables were defined with coefficients of variation ranging
from 4% (for mass density) to 12% (mainly for composite material properties).
Particular emphasis is given to the effect of the uncertainty in the damping on the
reliability of the considered structure. Hence, various levels of the uncertainty in
the damping have been investigated. In all the cases the damping ratios have been
assumed to follow a log-normal distribution and to be mutually independent.

3. SCHUELLER [13] applied Monte Carlo simulation for the reliability analysis of
a 12-storey building subjected to earthquake excitation. 244 random variables
model the stiffness of confined reinforced concrete, and the covariance matrix is
modelled with 80 Karhunen-Log¢ve terms.
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4.

CHUNG et al. [14] developed a stochastic finite element model of Glare, a metal
laminate with a glass fibre reinforced layer in between two aluminum layers. The
properties of the metal layers and the Poisson ratio of the glass prepreg layers
are considered to be deterministic. The elastic modulus of the fibre reinforced
layer is assumed to be a random process, and it is modelled with a Karhunen-
Loeve expansion. The covariance function for the prepreg layers is modelled
with an exponential function with a correlation length which is longer in the
fibre direction than in the transverse directions. The values for the correlation
length are based on assumptions.

. SARKAR and GHANEM [15] have integrated a number of frequency-domain

dynamic analysis procedures of randomly disordered structural systems in the
medium frequency range into the stochastic finite element method with an ap-
plication to the analysis of the dynamics of a coupled uncertain rod assembly
subjected to an external excitation. Young’s modulus of each rod is assumed to
be an independent and homogeneous Gaussian random field with a coefficient of
variation equal to 5%. The autocovariance function of the process is chosen to be
of the form R(x,y) = e~ l/b , where b is the correlation length, assumed to be
equal to half of the length of each rod.

AGARWAL and ALURU [16] propose a stochastic framework to handle uncertain
coupled electromechanical interaction, arising from variations in material proper-
ties and geometrical parameters such as gap between the microstructures, appli-
cable to the static analysis of electrostatic MicroElectroMechanical Systems. The
stochastic mechanical analysis quantifies the uncertainty associated with the de-
formation of MEM structures due to the variations in material properties and/or
applied traction, and the stochastic electrostatic analysis quantifies the uncer-
tainty in the electrostatic pressure due to variations in geometrical parameters
or uncertain deformation of the conductors. The Young’s modulus is assumed to
be a uniformly distributed random variable with a mean value of 169MPa and a
coefficient of variation of no less than 20%.

. FALSONE and FERRO [17] present a procedure that gives the exact relationship

between the response and the random variables representing the structural un-
certainties in structures that are built up of beam-like components, under the as-
sumption that a point-discretisation method is used for the representation of the
uncertain random field. An uncertain Young’s modulus is considered for each fi-
nite element, with “high” correlation (COV equal to 70%) for adjacent elements
and “low” correlation (COV equal to 40%) for other cases

STEFANOU and PAPADRAKAKIS [18] present a stochastic formulation of the
triangular composite facet shell element for the case of combined uncertain ma-
terial (Young’s modulus, Poisson’s ratio) and geometric (thickness) properties.
These properties are assumed to be described by uncorrelated two-dimensional
homogeneous stochastic fields. The spatial variability in Young’s modulus and
thickness of the shells is described by two uncorrelated homogeneous stochastic
fields with coefficient of variation equal to 10%. The same assumption is made
for the stochastic fields describing the random variation of Young’s modulus and
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Poisson’s ratio. A prescribed form for the power spectral density function that
characterises the two stochastic fields in both cases is assumed.

Only the first two publications [11] and [12] give a reference to data that are based
on measurements or on thorough analysis. The authors of the other papers content
themselves with assumptions on the nature and the quantification of stochasticity.
Quite different levels are assumed for the coefficients of variation (ranging from 4%
to 30%). Sometimes the coefficients of variation are different for different proper-
ties, and sometimes they are not. Sometimes a correlation between different proper-
ties is assumed, and sometimes properties are independent. The models for spatial
variation are very diverse, with different assumptions for correlation length.

For uncertain variabilities, a representation by a single random quantity is gen-
erally not sufficient. Engineering scientist FREUDENTHAL [19] stated in 1961 that
“...ignorance of the cause of variation does not make such variation random.”. By
this, he means that when crucial information on a variability is missing, it is not good
practice to model it as a probabilistic quantity represented by a single random PDF.
On the contrary, in this case it is mandatory to apply a number of different proba-
bilistic models to examine the effect of the chosen PDF on the result. For instance,
when the range of the variability is known but the information on the likelihood is
missing, all possible PDFs over the range should be taken into consideration in the
analysis. The analyst will generally select only a few probabilistic models which he
considers consistent with the limited available information or most appropriate to
obtain as much knowledge as possible on the result. Another important criterion in
the selection of the type of distribution is the nature of the distribution function it-
self and its relation to the phenomena that it represents. The risk function is a useful
indicator in this respect.

One conclusion is firm however, all authors apply variability on material char-
acteristics, mostly on stiffness parameters. Material models are the most uncertain
parameters in variability analysis (not taking into account damping).

3.3 Material data

With the observation that material parameters are the main source for non-determin-
ism in probabilistic models, the literature study is extended to materials data.

The mechanical properties of most common structural materials, especially met-
als and unreinforced polymers, are relatively well known. However, the range of
materials is very wide, and properties may differ with precise chemical composition,
with thermal treatment and they may even be different with different manufacturers.
In addition, material properties have some scatter. However, over all physical and
mechanical properties that a material exhibits, mass and stiffness usually are fairly
close to their nominal values, unlike strength, which depends strongly on chemical
composition and heat treatment. Thickness of the unworked piece also plays a role
in material strength, with strength decreasing with increasing thickness.
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Non-determinism in the properties of a specific material is a case of variability.
Real materials are characterised in experimental measurements. The size of the set
of measurements that are taken in identical conditions determines if a probability
density function can be established with sufficient accuracy. If a sufficient number
of individual measurements are available, the variability can be considered certain.

3.3.1 Metals and polymer materials databases

The first source for metals and polymer materials data is a materials database. The
MIL-handbook [20], which is now published on the web, and other web based
databases such as matweb [21] and efunda [22] contain a large number of records
for many material variants, even from different manufacturers. They usually spec-
ify nominal values, sometimes complemented with an indication of the probability
distribution.

These databases do not give any indication on the spatial scatter within a test
coupon. The test procedure implies that stiffness values are averaged numbers of
the length of the sensor that is used, whereas strength is based on a local value in
the section of fracture. Experimental data on spatial scatter are not available.

3.3.2 Composites properties

An important class of materials that will continue to gain importance is composites.
The advantage of these materials is their excellent ratio of mechanical properties
over mass density, which is a crucial asset especially in the transportation industry.
These materials also offer wide opportunities for tailored solutions. The designer
has many degrees of freedom, including the selection of raw materials for both the
matrix and the fibre reinforcement, the architecture of the fibre reinforcement (uni-
directional fibres, woven fabrics, knitted fabrics, braided fabrics, non-crimp fabrics,
..., each with its own variants), the fibre volume fraction, the number of layers and
the orientation of layers. For the analyst, this large set of design degrees of freedom
translates into a wide range of model parameters, and inevitably also a wide range of
uncertain or imprecise material data. Figure 2 illustrates some of these effects. The
left hand side of the figure shows the variation of the elastic orthotropic stiffness
constants for different orientations of a uniaxially reinforced glass fibre composite
lamina with respect to the applied uniaxial tensile load. E1; is the modulus in the
longitudinal direction along the fibre orientation, and E|, is the modulus in the load-
ing direction that has an angle 6 with respect to the fibre direction. The graph shows
a significant decrease of stiffness with increasing misalignment of the fibre. The
right hand side of the figure is valid for a cross-ply (0°-90°) carbon-epoxy system.
The graph shows the variation of the Young’s modulus for different alignments of
the the fibre orientations with respect to the loading direction. The graphs show that
the equivalent material stiffness depends strongly on the fibre placement. An impre-
cise placement of the fibre inevitably leads to a change of stiffness with respect to
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Fig. 2: Dependency of in-plane material parameters on the orientation 0 of the major
fibre axis to the loading direction; left: variation of the elastic constants of a contin-
uous E-glass fibre lamina [23]; right: variation of the tensile Young’s modulus for a
cross-ply carbon-epoxy composite [24]

the nominal values. The left hand side of the graph also shows that the orthotropic
elastic constants are inter-related.

Another geometrical parameter that determines the homogenised stiffness char-
acteristics of a textile composite material is the so-called crimp factor. It is a measure
of the waviness of the yarn through the thickness of the panel. A general tendency is
that the equivalent modulus of a textile composite increases with decreasing crimp.

3.3.3 Multi-scale models for spatial variation of material properties

Recent research has brought forward significant advances in models that describe
different aspects of material non-homogeneity. Extensive research efforts are cur-
rently ongoing to develop a multi-scale modelling procedure at successive scales.
Depending on the type of material, the micro-scale describes properties with a refer-
ence length in the order of 107® — 10~* m, the meso-scale describes properties with
a reference length in the order of 10~ — 10~2 m, and entire component structural
behaviour is described on the macro-scale, with reference lengths in the order of
1072 — 10° m and above. The step from a lower level to a higher level is made using
homogenisation procedures, that assign overall properties at a higher scale based on
lower scale data. So far, these models are mainly deterministic. When these models
will be well established, they present an excellent opportunity to introduce variabil-
ity at the appropriate level, and to predict the propagation of their effect to a higher
level, and ultimately to the entire component. CHARMPIS and SCHUELLER [25]
have already made proposals to materials researchers to develop these models. Ex-
periments will however always be required to validate these models.

Multi-scale models also have the advantage that spatial variation of homogenised
properties can be described based on lower scale characteristics. This presents op-
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portunities for realistic quantification of random fields, for which experimental data
are currently missing.

Some initial efforts to establish stochastic models for specific purposes have al-
ready been taken in other applications. As an example, the spatial distribution of
crystal orientations affects plastic behaviour [26]. Other types of non-homogeneous
materials, such as metal foam are also described using stochastic models [27].

3.4 Other model properties

In addition to material properties and geometrical dimensions and shapes, other FE
model characteristics exhibit some kind of uncertainty or variability as well.

A delicate property is the boundary condition with which a structure is attached to
the environment. Only one reference has been identified that addresses ncertainty on
boundary conditions for buckling analysis of cylindrical shells with random bound-
ary geometric imperfections [28]. FE models typically use either pinned of fixed
conditions. In a pinned connection displacements are prescribed and rotations are
free, and in a fixed connection both displacements and rotations are fixed. These
conditions correspond to an infinitely stiff connection, which can never be realised
in practice. The stiffness of the connection may be very small or very large, but it is
always finite. The non-determinism has definitely a character of uncertainty, and an
interval number or a fuzzy number seems to be the best representation.

Damping is another unknown quantity. Physically realistic models for damping
are not available, and it may even be hard to characterise damping from experiments.
An interval number is again the most appropriate model.

3.5 Alternative approaches: non-parametric model concept and
info-gap theory

An alternative strategy is the non-parametric modelling concept, that was originally
introduced by SOIZE in 2000 [29]. Rather than modelling the variability on each in-
dividual parameter, the generalised matrices of a mean reduced matrix model of the
structure are replaced by random matrices whose probability model is constructed
with the maximum entropy principle [30]. This is a promising unified approach that
brings together uncertainty and probability. PELLISSETTI et al. [12] have applied
this concept in the reliability analysis of a satellite structure subjected to harmonic
base excitation in the low frequency range with respect to the exceedance of critical
frequency response thresholds. The results indicate that for low levels of uncertainty
in the damping, the non-parametric model provides conservative predictions about
the exceedance probabilities. For high levels of damping uncertainty the opposite is
the case.
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The same research group has set up a procedure for the experimental identifica-
tion and the validation of a non-parametric probabilistic approach allowing model
uncertainties and data uncertainties to be taken into account in the numerical model
developed to predict low- and medium-frequency dynamics of structures [31]. The
analysis is performed for a composite sandwich panel representing a complex dy-
namical system which is sufficiently simple to be completely described and which
exhibits not only data uncertainties, but above all model uncertainties. In a more re-
cent paper [32] the same author has extended this approach to structural vibrations
and vibro-acoustics.

Another alternative approach is info-gap theory, introduced by BEN-HAIM.
PIERCE et al. present a case study [33].

3.6 Summary of observations

* Probabilistic methods provide more information than non-probabilistic methods;
however, both families are highly complementary.

¢ The number of publications on probabilistic methods exceeds the non-probabilis-
tic ones.

* Almost all publications refer to aleatory uncertainty in material parameters, but
there are very few references to uncertainty on other important FE model pa-
rameters that are not precisely known, such as boundary conditions, although FE
results are highly sensitive to them.

* Very few publications refer to validated data, and most authors who publish in
the leading scientific journal content themselves with assumptions on the non-
deterministic nature of the model parameters.

* Very different values are assumed for the coefficients of variation on material pa-
rameters such as Young’s modulus: from 4% to even 30% for isotropic materials.

» Literature does not provide any evidence on values for spatial scatter; correlation
length is based on assumptions, apparently related to the length of the component
correlation between model parameters is not taken into account.

4 Conclusions

Researchers follow diverse strategies when they introduce non-determinism in their
engineering analysis, and the type of data that are available does not necessarily
match with the objectives of the analysis. The availability of data determines the
type of non-deterministic analysis that can be executed without unintentional mis-
representation of data and inadvertent introduction of unvalidated assumptions. In-
versely, a specific type of analysis can only be executed when the model data are
available in a suitable format. The appropriate data format depends on the phase of
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development of the structure that is considered and on the type of parameter that
is modelled: material data, geometrical data, loads data, boundary conditions and
spatial distribution of model parameters.

The authors perceive a need for a coordinated effort by the scientific research
community to collect reliable data on different types of model parameters in an
appropriate format for non-deterministic analysis and to make available these data
to their fellow researchers and to the engineering community.
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