
27D. McKenzie et al. (eds.), The Landscape Ecology of Fire, Ecological Studies 213,
DOI 10.1007/978-94-007-0301-8_2, © Springer Science+Business Media B.V. 2011

2.1 � Introduction

Use of scaling terminology and concepts in ecology evolved rapidly from rare 
occurrences in the early 1980s to a central idea by the early 1990s (Allen and 
Hoekstra 1992; Levin 1992; Peterson and Parker 1998). In landscape ecology, use 
of “scale” frequently connotes explicitly spatial considerations (Dungan et  al. 
2002), notably grain and extent. More generally though, scaling refers to the sys-
tematic change of some biological variable with time, space, mass, or energy. 
Schneider (2001) further specifies ecological scaling sensu Calder (1983) and 
Peters (1983) as “the use of power laws that scale a variable (e.g., respiration) to 
body size, usually according to a nonintegral exponent” while noting that this is one 
of many equally common technical definitions. He further notes that “the concept 
of scale is evolving from verbal expression to quantitative expression” (p. 545), and 
will continue to do so as mathematical theory matures along with quantitative 
methods for extrapolating across scales. In what follows, we operate mainly with 
this quoted definition, noting that other variables can replace “body size”, but we 
also use such expressions as “small scales” and “large scales” somewhat loosely 
where we expect confusion to be minimal. We examine the idea of contagious dis-
turbance, how it influences our cross-scale understanding of landscape processes, 
leading to explicit quantitative relationships we call scaling laws. We look at four 
types of scaling laws in fire regimes and present a detailed example of one type, 
associated with correlated spatial patterns of fire occurrence. We conclude briefly 
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with thoughts on the implications of scaling laws in fire regimes for ecological 
processes and landscape memory.

Landscape ecology differs from ecosystem, community, and population ecology 
in that it must always be spatially explicit (Allen and Hoekstra 1992), thereby 
coupling scaling analysis with spatial metrics. For example, characteristic scales of 
analysis such as the stand, watershed, landscape, and region are associated with both 
dimensional spatial quantities (e.g., perimeter, area, elevational range) and dimen-
sionless ones (e.g., perimeter/area ratio, fractal dimension). Similarly, properties of 
landscapes such as patch size distributions are also associated with spatial metrics. 
The tangible physical dimensions of landscapes obviate the often circuitous methods 
required to define and quantify scales in communities or ecosystems.

2.2 � Scale and Contagious Disturbance

A contagious disturbance is one that spreads across a landscape over time, and 
whose intensity depends explicitly on interactions with the landscape (Peterson 
2002). Some natural hazards (Cello and Malamud 2006), such as wildfires, are 
therefore contagious, whereas others, such as hurricanes, are not, even though 
their propagation may still produce distinctive spatial patterns. By the same 
criterion, biotic processes can be contagious (e.g., disease epidemics, insect 
outbreaks, grazing) or not (e.g., clearcutting). Contagion has two components: 
momentum (also see energy, Chap. 1) and connectivity. Together they create 
the aforementioned interaction between process and landscape. For an infec-
tious disease—the best-known contagious process—a sneeze can provide 
momentum, while the density of nearby people provides connectivity. For fire, 
momentum is provided by fire weather via its effects on fireline intensity and 
heat transfer, whereas connectivity is provided by the spatial pattern and abun-
dance of fuels.

Momentum and connectivity covary in a contagious disturbance process such as 
fire. Increases in momentum generally increase connectivity, and changes in con-
nectivity can be abrupt when the number of patches susceptible to fire reaches a 
percolation threshold (Stauffer and Aharony 1994; Loehle 2004). For example, 
Gwozdz and McKenzie (unpublished data) found that decreasing humidity across 
a mountain watershed (momentum provided by fire weather) can abruptly change 
the connectivity of fuels when the percentage of the landscape susceptible to fire 
spread crosses a percolation threshold.

Interactions between momentum and connectivity may appear to be scale-
dependent in that they yield qualitative changes in the behavior of landscape distur-
bances when viewed at different scales, even though the mechanisms of contagion 
per se do not change across scales. For example, the physical mechanisms of heat 
transfer remain the same across scales, and fire spread does depend on local 
connectivity of fuels, but estimates of connectivity across landscapes are sensitive 
to spatial resolution (Parody and Milne 2004).
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2.3 � Extrapolating Across Scales

Much study has gone into understanding how spatial processes change across 
scales (Levin 1992; Wu 1999; Miller et al. 2004; Habeeb et al. 2005). Scale extrap-
olation is universally seen to be obligatory, because detailed measurements are 
often only available at fine spatial scales (McKenzie et al. 1996), but also difficult. 
Given a set of observations at coarse scales, however, it is important to understand 
the distinction between average behavior of fine-scale processes and the emergent 
behavior (Milne 1998; Levin 2005) of a system. Emergent behavior “appears when 
a number of simple entities (agents) operate in an environment, forming more com-
plex behaviors as a collective”.1 In the first case, the principal difficulty in extrapo-
lation is error propagation, producing biased estimates of the average or expected 
behavior at broad scales because of the cumulative error from summing or averag-
ing many calculations (Rastetter et al. 1992; McKenzie et al. 1996). In the second 
case, the difficulty is more profound, in that one must identify scales in space and 
time at which qualitative changes in behavior occur.

Some qualitative models can partition scale axes in tractable ways. For example, 
Simard (1991) developed a classification of processes associated with wildland fire 
and its management that spanned many orders of magnitude on space and time 
axes. This “taxonomy” of wildland fire, though not derived quantitatively from 
data, was enough to build a logical connection to the National Fire Danger Rating 
System (NFDRS––Cohen and Deeming 1985) that was of practical use (Simard 
1991). Nevertheless, the limitations of such models are clear, in that qualitative 
changes in system behavior and key variables are established a priori. In order to 
relate processes quantitatively across scales, whether one is interested in average 
behavior or emergent behavior, a tractable theoretical framework is needed.

Scaling laws are quantitative relationships between or among variables, with one 
axis (usually X) often being either space or time. Many scaling laws are bivariate 
and linear or log-linear, and are developed from statistical models, theoretical mod-
els, or both. Most commonly they are based on frequency distributions or cumula-
tive distributions wherein variables, objects, or events with smaller values occur 
more frequently than those with larger values. The simplest scaling law is a power 
law, for which a histogram in log-log space of the frequency distribution follows a 
straight line (Zipf 1949, as cited in Newman 2005). Following Newman (2005), let 
p(x) dx be the proportion of a variable with values between x and dx. For histo-
grams that are straight lines in log-log space, ln p(x) = –a ln x + c, where a and c are 
constants (Newman 2005). Exponentiating both sides and defining C = exp(c), we 
have the standard power law formulation

	 ( )p x Cx a−= 	 (2.1)

1 Wikipedia contributors, “Emergence,” Wikipedia, the Free Encyclopedia, http://en.wikipedia.
org/wiki/Emergence. Accessed 25 Jan 2010.

http://en.wikipedia.org/wiki/Emergence
http://en.wikipedia.org/wiki/Emergence
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The parameter of interest is the slope a (always negative for frequency 
distributions), whereas C serves as a normalization constant such that p(x) sums 
to 1 (Newman 2005). In the case of a frequency distribution, where Y values in a 
histogram are counts, C can be rescaled in order to compare slopes among distri-
butions. Power-law relationships are often fit statistically by various binning 
methods, with subsequent regression of bin averages on event size, but more 
complicated maximum-likelihood methods may be more robust (White et  al. 
2008; Chap. 3).

Newman (2005) gives 12 examples of quantities in natural, technical, and social 
systems that are thought to follow power laws over at least some part of their range. 
His diverse examples include intensities of wars (Roberts and Turcotte 1998), mag-
nitude of earthquakes (National Geophysical Data Center 2010), citations of scien-
tific papers (Redner 1998), and web hits (Adamic and Huberman 2000). Newman 
(2005) specifically excludes fire size distributions, while admitting that they might 
follow power laws over portions of their ranges. Current opinion is divided among 
those who would globally assign power laws to fire-size distributions (Minnich 
1983; Bak et  al. 1990; Malamud et al. 1998, 2005; Turcotte et  al. 2002; Ricotta 
2003) and those who would attribute them only to portions of distributions or rule 
them out altogether in favor of alternatives (Cumming 2001; Reed and McKelvey 
2002; Clauset et al. 2007; Chap. 3).

2.4 � Scaling Laws and Fire Regimes

Wildfires affect ecosystems across a range of scales in space and time, and controls 
on fire regimes change across scales. The attributes of individual fires are spatially 
and temporally variable, and the concept of fire regimes has evolved to characterize 
aggregate properties such as frequency, severity, seasonality, or area affected per 
unit time. These aggregate properties are often reduced to metrics such as means 
and variances, thereby simplifying much of the complexity of fire by focusing on a 
single scale and obscuring ecologically important cross-scale interactions (Falk 
et al. 2007).

Scaling laws can deconstruct aggregate statistics of fire regimes in two ways: via 
frequency distributions that exhibit scaling laws, or by examining the scale depen-
dence of individual metrics. Fire-size distributions are an example of the first, in that 
frequency distributions of fire sizes often follow power laws over at least portions of 
their ranges (Malamud et al. 1998, 2005; Turcotte et al. 2002; Moritz et al. 2005; 
Millington et al. 2006). Fire frequency, fire hazard, and spatial patterns of fire occur-
rence in fire history data are examples of the second, in that these statistics often 
change systematically and predictably across the spatial scale of measurement 
(Moritz 2003; McKenzie et al. 2006a; Falk et al. 2007; Kellogg et al. 2008). Here we 
briefly discuss both the scaling patterns that have been found within each of these 
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four metrics of fire regimes (size, frequency, hazard, spatial pattern) and the more 
problematic attribution of mechanisms responsible for the scaling patterns.

2.4.1 � Fire Size Distributions

Power laws have been statistically fit to fire size distributions from simulation mod-
els and empirical data at many scales, from virtual raster landscapes generated by 
the “Forest Fire Model” (Bak et al. 1990) to historical wildfire sizes throughout the 
continental United States (Malamud et al. 2005). Not all scaling relationships found 
in fire-size distributions are power laws. For example, Cumming (2001) found that 
a truncated exponential distribution, which defines an upper bound to fire size, had 
the best fit to data from boreal mixedwood forests in Canada. Reed and McKelvey 
(2002) suggest that the power law serves as an appropriate null model, but that 
additional parameters in a “competing hazards” model improved the fit to empirical 
data at regional scales. Ricotta (2003) suggests that power law exponents can 
change with spatial scale, based on hierarchical fractal properties of landscapes, 
providing a rejoinder to detractors of the power-law paradigm. An excellent review 
of this topic, with discussion, is found in Millington et al. (2006). These authors 
state, and we concur, that the value of discerning power-law behavior, or alterna-
tive, more complex nonlinear functions, would increase greatly if the ecological 
mechanisms driving such behavior could be identified (West et  al. 1997; Brown 
et al. 2002).

Two mechanisms in particular have been proposed to explain power-law 
behavior in fire-size distributions. Self-organized criticality (SOC—Bak et  al. 
1988) refers to an emergent state of natural phenomena whereby a system (be it 
physical, biological, or socioeconomic) evolves to a state of equilibrium charac-
terized by variable event sizes, each of which resets the system in proportion to 
event magnitude. In theory, the frequency distribution of events will approach a 
power law because the recovery time from “resetting” varies with event magnitude. 
SOC has been associated mainly with physical systems, particularly natural hazards 
such as earthquakes and landslides (Cello and Malamud 2006), but its attribution to 
power laws in fire regimes has typically been only at small scales (Malamud et al. 
1998) or inferred from small-scale behavior (Song et al. 2001).

In contrast to SOC, highly optimized tolerance (HOT) emphasizes structured 
internal configurations of systems that involve tradeoffs in robustness (Carlson and 
Doyle 2002; Moritz et al. 2005), rather than the emergent outcomes of stochastic 
though correlated events as in SOC. For example, a HOT model that can be applied 
to wildfires is the probability-loss ratio (PLR) model (Doyle and Carlson 2000; 
Moritz et al. 2005), a probabilistic model of tradeoffs between resources (e.g., some 
ecosystem function in natural systems or efforts to protect timber in managed sys-
tems) and losses (e.g., from fire). Solving the PLR model analytically produces a 
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frequency distribution of expected fire sizes that follows a power law (Moritz et al. 
2005). HOT provides a theoretical framework for examining ecosystem resilience 
in response to fire events (Chap. 3).

2.4.2 � Fire Frequency

The terms fire frequency and fire-return interval (FRI) are part of the currency of 
ecosystem management. Fire frequency is often compared among different geo-
graphic regions and between the current and historical periods. For example, con-
siderable FRI data exist across the western United States (NOAA 2010), which can 
be compared and used to build regional models of fire frequency (McKenzie et al. 
2000). Both comparisons and model-building assume that all FRI data points rep-
resent a composite fire return interval (CFRI)––the average time between fires that 
are observed within a sample area, but the likelihood of detecting a fire event clearly 
increases as the search area is expanded. FRIs are inherently scale-dependent, despite 
sophisticated methods for unbiased estimation of fire-free intervals (Reed and 
Johnson 2004).

Scaling laws in fire frequency thus quantify the relationship between the area 
examined for evidence of fire and the estimated fire return interval. This interval-
area relationship (IA––Falk et al. 2007) appears in low-severity fire regimes pro-
ducing fire-scars on surviving trees, mixed-severity fire regimes where fire 
perimeters are estimated, and raster simulation models that produce a range of fire 
severities and fire sizes (Falk 2004; McKenzie et al. 2006a; Falk et al. 2007). In 
each case, the IA can be fit to a power law, whose slope (exponent) captures other 
aggregate properties of the fire regime (Fig.  2.1). For example, larger mean fire 
sizes produce less negative slopes, because small-area samples are more likely to 
detect large fires than small fires. Simulations suggest that greater variance in fire 
size, given equal means, also produces less negative slopes, for reasons that are 
presently unclear (see Falk et al. 2007 for details).

In theory, then, the intercept in log-log space of the IA relationship reflects the 
mean point fire-return interval (sample area = 0 in the case of a point, or the area of 
the minimum mapping unit otherwise), providing a “location” parameter to the 
scaling law (Falk et al. 2007). Also in theory, the exponents in the IA relationship 
could be derived from the properties of fire-size distributions, possibly means and 
variances alone, although extreme values (rare large fires) make this difficult. This 
connection to fire size is useful because predictive modeling of fire sizes, though 
subject to substantial uncertainty, is less problematic than predicting fire frequency 
(McKenzie et al. 2000; Littell et al. 2009). Further work is necessary, though, to 
connect the IA relationship to estimates of fire sizes, or fire-size distributions.

Another metric of fire frequency, the fire cycle, or natural fire rotation, refers, 
on a particular landscape, to the time it takes to burn an area equal to that landscape. 
The fire cycle is presumably independent of spatial scale if the sample landscape is 
much larger than the largest fire recorded within it (Agee 1993), but calculating it 
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depends on accurate estimates of the sizes of every fire in the sample. This is a difficult 
task in historical low-severity fire regimes, in which most fire-frequency work has 
been done (Hessl et al. 2007; Chap. 7). Furthermore, Reed (2006) showed that the 
mathematical equivalence between the fire cycle and the mean point FRI only holds 
if all fires are the same size, limiting the usefulness of the fire cycle as a metric of 
fire frequency.

2.4.3 � Fire Hazard

Fire hazard in fire-history research quantifies the instantaneous probability of fire, 
and is derivable from distribution functions of the exponential family (e.g., negative 
exponential and Weibull) associated with the fire cycle (stand-replacing fire—
Johnson and Gutsell 1994) and the distribution of fire-free intervals (fire-scar 
records—McKenzie et al. 2006a). The hazard function may be constant over time, 
reflecting a memory-free system in which current events do not depend on past 
events, and producing exponential age class distributions of patches in stand-
replacing fire regimes (Johnson and Gutsell 1994). In contrast, an increasing hazard 
of fire over time (or decreasing, but this is rarely seen in fire regimes) reflects a 
causative factor, i.e. the growth of vegetation and buildup of fuel that facilitates fire 
spread. This increasing hazard is represented mathematically by a shape parameter 
in the Weibull distribution that is significantly greater than 1 (if this parameter is 1 
the distribution reduces to the negative exponential––Evans et  al. 2000). Moritz 
(2003) observes, however, that the ecological significance of the shape parameter 

Fig.  2.1  Interval-area (IA) relationships (power laws) in log-log space for two watersheds in 
eastern Washington. WMPI = Weibull median probability interval. The more negative slope in 
Swauk Creek is a result of smaller fire sizes and more frequent fire occurrence than in Quartzite. 
Quartzite displays a minor but noticeable (concave down) departure from linearity (Redrawn and 
rescaled from McKenzie et al. (2006a))
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covaries with the scale parameter, representing, with fire, the mean fire-free interval. 
For long fire-free intervals, shape parameters £ 2 represent fire hazard that increases 
negligibly over time (Moritz 2003).

When the hazard function changes with spatial scale, it reflects changing con-
trols on fire occurrence. McKenzie et al. (2006a) and Moritz (2003) identified pat-
terns in hazard functions that were associated with the relative strength of transient 
controls on fire occurrence and fire spread. In low-severity fire regimes in dry for-
ests of eastern Washington state, USA, McKenzie et al. (2006a) sampled composite 
fire records at different spatial scales to examine the scale dependence of fire fre-
quency and fire hazard. At small sampling scales, hazard functions were signifi-
cantly greater than 1 (increasing hazard over time), particularly in watersheds with 
complex topography, but declined monotonically with increasing sampling scale 
(Fig. 2.2). McKenzie et al. (2006a) suggest that fire hazard on eastern Washington 
landscapes increases over time at spatial scales associated with a characteristic size 
of historical fires, reflecting the effects of fuel buildup within burned areas.

In high-severity fire regimes of shrublands in southern California, USA, Moritz 
(2003) found no scale dependence in the hazard function except for one landscape 
whose location and topography protected it from extreme fire weather (Fig. 2.3). 
Fire hazard increased in response to the increasing flammability of fuels over time. 
Over most of the region, however, fuel age-classes burned with equal likelihood, 
because almost all large fires occurred during extreme fire weather, providing suf-
ficient inertia to overcome the patchiness of fuels and rendering the hazard function 
essentially constant. In both these examples, then, scaling laws in fire hazard were 

Fig  2.2  The Weibull shape parameter decreases with scale of sampling in two watersheds in 
eastern Washington. WMPI = Weibull median probability interval. Horizontal line marks the value 
(1.6) at the 95% upper confidence bound for testing whether the parameter is different from 
1.0—meaning no increasing hazard over time. Fires were larger and less frequent in Quartzite than 
in Swauk Creek, so a shape parameter significantly greater than 1.0 may still be negligible eco-
logically, because shape and scale parameters co-vary (Moritz 2003 and Fig. 2.3) (Redrawn from 
McKenzie et al. (2006a))
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apparent only when controls were “bottom-up” (Kellogg et al. 2008, Chaps. 1 and 3), 
i.e., produced by interactions between fine-scale process (the buildup of fuels over 
time) and landscape pattern (topography and the spatial variability in fuel loadings), 
and where extreme fire weather was uncommon.

2.4.4 � Correlated Spatial Patterns

We emphasized earlier that a key property of landscape fire is contagion. The rela-
tive connectivity of landscapes with respect to fire spread and the momentum pro-
vided by fire intensity and fire weather jointly affect the probability that two 
locations will experience the same fire event. If this probability attenuates system-
atically with distance, it can in theory be represented by a scaling law related to 
contagion.

The cumulative effect of these probabilities over time can be seen clearly as the 
similarity between two locations of the time series of years recording fire. In low-
severity fire regimes, this similarity is measured between two recorder trees (point 
fire records) or area samples (composite fire records). Kellogg et al. (2008) com-
piled these time series for every recorder tree in each of seven watersheds in 
Washington state, USA. They used a classical ecological distance measure, the 
Jaccard distance (closely related to the Sørensen’s distance [see below]––Legendre 

Fig. 2.3  Hazard function scale and shape parameters sampled at different scales in high-severity 
fire regimes in shrublands of southern California. The single point in the upper right represents 
one sample at the finest spatial scale that was protected from extreme fire weather and shows 
significantly increasing hazard over time. The positive covariance of the two parameters widens 
confidence intervals on significance tests of the shape parameter’s difference from 1.0, sensu 
McKenzie et al. (2006a) and Moritz (2003), such that even values » 2.0 may not indicate increas-
ing fire hazard with time (Redrawn from Moritz (2003))
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and Legendre 1998), to compare pairs of recorder trees at different geographic 
distances, generating scatterplots analogous to empirical variograms (hereafter SD 
variograms). Spherical variogram models, and power-law functions, were fit to 
these aggregate data for each watershed (McKenzie et  al. 2006b; Kellogg et  al. 
2008; and the example below). Both types of models had better explanatory power 
in more topographically complex watersheds.

2.4.5 � Mechanisms

Power laws abound in nature and society, but to date explicit mechanisms that 
produce them, and the parameters associated with their variability, have been dif-
ficult to identify. Purely stochastic processes can produce power laws (Reed 2001; 
Brown et al. 2002; Solow 2005), as can general dimensional relationships among 
variables, the most familiar being Euclidean geometric scaling (Brown et  al. 
2002). Brown et al. (2002) suggest that when scaling exponents in power laws 
(a in Eq. 2.1) take on a limited or unexpected range of values they are more likely 
to have arisen from underlying mechanisms. Examples of this are in organismic 
biology, where the fractal structure of networks and exchange surfaces clearly 
leads to allometric relationships (West et al. 1997, 1999, 2002) and in ecosystems 
in which there are strong feedbacks between biotic and hydrologic processes 
(Scanlon et al. 2007; Sole 2007).

How might we identify the mechanisms behind scaling laws in fire regimes? We 
propose two general criteria, based on our overview above, as hypotheses to be 
tested. Criterion #1 suggests how mechanisms produce scaling laws, whereas crite-
rion #2 provides necessary conditions for scaling laws in fire regimes to be linked 
to driving mechanisms.

Fig. 2.4  Scaling laws in fire regimes are expected when bottom-up controls predominate and they 
interact strongly with landscape elements. For the contagious process of fire, fine-scale mecha-
nisms provide momentum and topography and spatial pattern of fuels control connectivity (see 
text for discussion of contagion). In contrast, top-down controls (climate) increase fire size and 
therefore fire synchrony on landscapes where they are dominant, e.g., with gentle topography or 
continuous fuels. This favors irregular frequency distributions and lessens the scale dependence of 
fire frequency, hazard functions, and spatial patterns
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	1.	 Bottom-up controls are in effect: Drawing on O’Neill et al. (1986), we propose 
a hierarchical view of fire regimes that focuses interest on landscape scales 
(Fig. 2.4). Mechanisms at a finer scale below drive fire propagation, and interac-
tions between process (fire spread) and pattern (topography and fuels) generate 
complex spatial patterns. When landscape spatial complexity is sufficient, fire 
spread and fuel consumption produce the spatial patterns that are reflected in 
the IA relationship, the hazard function, and the SD variogram. Conversely to 
one paradigm of complexity theory that posits that simple generating rules can 
produce complex observable behavior, we therefore see that relatively simple 
aggregate properties of natural phenomena––scaling laws––are the result of 
complex interactions among driving mechanisms.

	2.	 Contagion provides a linkage among observations: We submit that if events 
(fires) are separated by more distance in space or time than some limit of conta-
gion, observed scaling laws cannot be reasonably linked to a driving mechanism. 
Mechanism requires “entanglement” (as in the quantum-mechanical sense). For 
example, both SOC and HOT, mentioned above, require that events within a 
domain influence each other, whether one event resets system properties in 
proportion to its magnitude (SOC) or multiple events interact as they propagate 
through a system (HOT). The range limit of contagion clearly changes as a func-
tion of variation in fine-scale drivers. As we said earlier (see also Chap. 1), 
increasing energy (momentum) effectively increases connectivity, e.g., when 
extreme fire weather overcomes barriers to fire spread that are associated with 
landscape heterogeneity (Turner and Romme 1994).

Criterion #2 does not preclude some mechanism for power-law behavior across 
continental-to-global scales; it just limits the hierarchical interpretation in criterion 
#1 to spatial scales at which contagion occurs. Other explanations for power laws 
in nature and society do exist, however, including the purely mathematical (Reed 
2001; Solow 2005).

2.5 � Example: Power Laws and Spatial Patterns  
in Low-Severity Fire Regimes

We now turn to an example, briefly alluded to above, from low-severity fire regimes 
of eastern Washington state, USA (Everett et  al. 2000; Hessl et  al. 2004, 2007; 
McKenzie et  al. 2006a; Kellogg et  al. 2008; Kennedy and McKenzie 2010). 
Detailed fire-history data were collected in seven watersheds east of the Cascade 
crest, along a southwest–northeast gradient (Fig. 2.5). In contrast to most fire his-
tory studies, exact locations of all recorder trees were identified, creating an 
unprecedented opportunity for fine-scale spatial analysis (McKenzie et al. 2006a; 
Hessl et al. 2007; Kellogg et al. 2008). For a detailed description of the data and 
methods, see Everett et al. (2000) or Hessl et al. (2004).

http://Chap. 1
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Fig. 2.5  Fire history study sites, east of the crest of the Cascade Mountains, Washington, USA. 
(a) Watershed locations. (b) Inserts that display hill shaded topography with dots representing the 
locations of recorder trees
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Kellogg et  al. (2008) fit the aforementioned empirical SD variograms to 
spherical models, in keeping with standard practice in geostatistics (Rossi et al. 
1992), which uses variograms chiefly for spatial interpolation. Interpolation is 
generally only feasible with spherical, exponential, or Gaussian variogram mod-
els, due to certain mathematical conveniences (Isaaks and Srivastava 1989), but 
the spherical model in particular is a rather cumbersome artifact, with two sepa-
rate equations applying to observations within or beyond the range (Kellogg et al. 
2008). McKenzie et  al. (2006b) examined the same empirical variograms in 
double logarithmic space and found that for some watersheds, the variograms 
seemed linear or nearly so, both graphically and when fit with linear regression. 
This suggested that power laws govern the correlated spatial pattern of fire histo-
ries. The observed pattern in these variograms was consistent across varying 
distance lags used to construct the variogram. We seek to test the hypothesis in 
criterion #1 (above) by trying to replicate the power-law behavior by controlling 
fine-scale processes (bottom-up control), using a neutral landscape model (Gardner 
and Urban 2007).

2.5.1 � Neutral Model for Fire History

McKenzie et al. (2006a) developed a simple neutral fire history model to simulate 
recorder trees on landscapes that are scarred by fires of different sizes and frequen-
cies. The purpose of the neutral model is to separate intrinsic stochastic processes 
from the effects of climate, fuel loadings, topography and management. We have 
enhanced the model to spread fires probabilistically on raster landscapes (Kennedy 
and McKenzie 2010; Fig. 2.6). The raster model produces 200-year fire histories on 
a neutral landscape, with homogenous topography and fuels. The raster landscape 
is initialized with a spatial point pattern of recorder trees; this pattern is simulated 
as a Poisson pattern of complete spatial randomness (CSR—Diggle 2003). A mean 
fire return interval (m

fri
) is specified for the whole “landscape”, yielding a random 

number of fires (n
fire

), drawn from a negative exponential distribution, within the 
200-year fire history. For each fire, a random fire size is drawn from a gamma prob-
ability distribution (Evans et al. 2000) with the scale and shape parameters adjusted 
to produce a specified mean fire size (m

size
). For each fire in the fire history, an igni-

tion point (pixel) is randomly assigned and the fire is spread until it reaches the 
randomly drawn fire size (i.e., area), or until all tests for fire spread fail in a given 
iteration. When a pixel is burned, each of the four immediate neighbors that are not 
yet burned is tested for fire spread against the spread probability (p

burn
). After the 

neighbors are tested for fire spread, the burned pixel can no longer spread fire.
In a given fire, if a pixel is burned, then all trees located in that pixel are tested 

independently for scarring in the same time step. This is a simple probability test, 
with a specified scar probability (p

scar
) that is uniform across all trees. This neutral 

model was produced in particular to evaluate whether the pattern in the observed 
SD variogram could be replicated by a simple stochastic model of fire spread, and 
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to explain what differentiates variograms that appear linear in log-log space from 
those that do not. In order to satisfy the second goal, we considered whether the 
value of Sørensen’s distance between two trees could be predicted by features of 
the neutral model.

2.5.2 � Prediction of Sørensen’s Distance

The Sørensen’s distance can be analytically derived from conditional probabilities 
associated with fire spread and the scarring of recorder trees. Within the context 
of this neutral model, and under several assumptions verified by simulation, 
Kennedy and McKenzie (2010) found that the Sørensen’s distance (SD) for a pair 
of trees a given distance apart is predicted by two features of the neutral model. 
The first is the probability a tree in a burned pixel is scarred (p

scar
, which is spa-

tially independent), which in the neutral model is constant across all recorder trees 
in the simulated landscape. The second model feature is the probability that two trees 

Fig. 2.6  Fire spread for (a) p
burn

 = 0.75 and (c) p
burn

 =0.50. A complete spatial randomness (CSR) 
process generates recorder trees (points), with trees scarred by associated fire (black-filled points 
in b and d). A higher p

burn
 yields a more regular fire shape, although the difference in fire shape is 

difficult to discern visually in the scar pattern
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are both in a burned pixel in a given fire year (but not necessarily the same burned 
pixel). Specifically, for the pair of trees A and B, we calculate the probability that 
tree B is in a burned pixel (B

fire
) given that tree A is in a burned pixel (P(B

fire
|A

fire
)). 

For the stochastic model we consider the expected value of SD, and we found that 
it is predicted by (Kennedy and McKenzie 2010)

	 ( ) ( )*
1 |fire fire scarE SD P B A p= − 	 (2.2)

The probability the second tree is in a burned pixel given the first is in a burned 
pixel is not constant across pairs of trees, as it depends on the distance between the 
two trees, the fire size, and fire shape (Fig. 2.7).

As the distance between two trees approaches 0, then the conditional probability 
the second is in the fire given that the first is (P(B

fire
|A

fire
)) approaches 1, and Eq. 2.2 

reduces to

	
( ) 1 scarE SD p= −

	
(2.3)

Fig.  2.7  Verification of the derivation of E(SD) via simulation and nonlinear regression.  
(a) P(B

fire
|A

fire
) with distance (d) predicted by 3-parameter model (neutral model m

size
 =0.15 = 1500 

pixels). (b) The fit to P(B
fire

|A
fire

)   { }0 1 2
, ,b b b , with the p

scar
 set in the simulation (=0.5), used to predict 

E(SD) and compared to calculated SD variogram from the same simulation (i.e., Eq. 2.5). It fits 
well. (c) The relationship of P(B

fire
|A

fire
) with distance changes with mean fire size (m

size
) and fire 

shape as modified by the burn probability (p
burn

); (d) these differences are also shown in changes 
to the shape of the SD variogram
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Therefore, one can estimate the p
scar

 from an empirical SD variogram by the 
mean SD at the smallest distance bin. Simulations confirmed that the value of p

scar
 

would be ³ the mean value at the smallest distance bin.
We used a least-squares nonlinear regression algorithm in the R statistical pro-

gram (nls; R Foundation 2003) to fit simulated P(B
fire

|A
fire

) against distance (up to 
half the maximum distance between simulated recorder trees––the same criterion 
used to evaluate SD), for three candidate functions (Kennedy and McKenzie 2010). 
The best fit with respect to an information–theoretic criterion (AIC) was found with 
a three-parameter function:

	 ( ) 2
0 1| b

fire fireP B A b b d= − 	 (2.4)

and, therefore,

	 ( ) ( )2
0 11 b

scarE SD p b b d= − − 	 (2.5)

The coefficients {b
0
, b

1
, b

2
} thereby characterize the change in P(B

fire
|A

fire
) with dis-

tance, and consequently the change in SD with distance. The estimates of b
0
, b

1
 and 

b
2
 in the neutral model change with increasing fire size, in a manner that depends on 

the shape of the fire (Fig. 2.7). Fire shape is closely associated with p
burn

, with lower 
values of p

burn
 producing more irregular and complex shapes (Fig. 2.6). As the fire 

becomes larger and more regular, then the relationship between P(B
fire

|A
fire

) 
approaches a straight line with intercept b

0
 and slope − b

1
, i.e., b

2
 gets closer to 1 

(Fig. 2.7c; Table 2.1), and the slope (b
1
) becomes less negative. In contrast, for irregu-

larly shaped fires characteristic of p
burn

 = 0.5, the decline of P(B
fire

|A
fire

) remains non-
linear with estimates of b

2
 well below 1 across a range of values for m

size
 (Fig. 2.7c).

Note also that when b
0
 = 1/p

scar
, a power law describes the SD variogram, because 

we have:

	 ( ) 2
1 ,b

scarE SD p b d= 	 (2.6)

which is the power-law relationship presented in Eq. 2.1.
Recall that the relationship P(B

fire
|A

fire
) is independent of p

scar
, and values of 

{b
0
, b

1
, b

2
} change with p

burn
 and m

size
. It is therefore possible to calibrate the values 

Table 2.1  Parameter estimates for neutral model results with varying m
size

 (0.07, 0.20) 
and p

burn
 (0.5, 0.75), and for the observed variograms (Twentymile, Swauk). Note that the 

coefficients b
1
 are all negative, also indicated, for clarity, by the minus sign in Eq. 3.4

b
0

b
1

b
2

m
size

 0.07 p
burn

 0.50 1.430 −0.1990 0.235
p

burn
 0.75 1.240 −0.0247 0.469

m
size

 0.20 p
burn

 0.50 1.060 −0.0437 0.351
p

burn
 0.75 1.030 −0.0010 0.805

Twentymile p
scar

 0.704 0.979 −0.0008 0.788
Swauk p

scar
 0.689 1.492 −0.2270 0.195
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of m
size

, p
burn

 and p
scar

 to make b
0
*p

scar
 arbitrarily close to 1, and thus manipulate 

simulated results to produce a power-law relationship in the SD variogram. In the 
neutral model this is a consequence of the mathematical relationships that we 
have found, yet the exercise of calibrating the parameters reveals under what 
conditions, as represented by m

size
, p

burn
 and p

scar
, power laws should be expected. 

These can then be compared to the patterns observed in real landscapes, and 
indicate the ecological conditions under which power laws are produced.

The challenge, then, is to evaluate the relevance of the neutral model results for 
real landscapes insofar as the derived mathematical relationships are able to predict 
the patterns observed. We fit Eqs. 2.3, 2.5, and 2.6 to the SD variograms of real 
landscapes on a gradient of topographic complexity; first we estimate p

scar
 as the 

mean SD at the smallest distance bin in the observed SD variogram, then we fit 
Eq. 2.5 to the variogram in order to estimate the coefficients {b

0
, b

1
, b

2
}. Here we 

compare the two watersheds from Kellogg et al. (2008) that are at opposite ends of 
this topographic gradient: Twentymile (least complex) and Swauk Creek (most 
complex). Coefficient estimates are in Table 2.1, and Fig. 2.8 shows the contrasting 
fits of the SD variograms from Twentymile and Swauk Creek in log-log space. 

Fig. 2.8  Observed SD variograms for the least (Twentymile; a,b) and most (Swauk; c,d) topo-
graphically complex sites. Swauk increases more rapidly at smaller distances, and reaches a higher 
value. The Swauk fit is almost indistinguishable from the power-law prediction, with a small 
separation at the lowest distance bins
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Clearly the relationship for Swauk Creek follows a power law (b
0
 * p

scar
 = 1.492 * 

0.689 = 1.028 » 1; Eq. 2.6), whereas Twentymile does not (0.7 * 0.979 = 0.685).
These results suggest preliminary support for the hypothesis associated with 

Criterion #1 (above): Topographic complexity provides a bottom-up control on the 
spatial patterns of low-severity fire, producing relatively small fires and irregular 
fire shapes (SD increases more rapidly with distance, and reaches a higher peak, in 
Swauk Creek than Twentymile; Fig. 2.7). Neutral model runs with p

burn
 = 0.5 (irreg-

ular fire shapes; Fig. 2.6a) and relatively small mean fire sizes produced coefficient 
estimates similar to Swauk ({b

0
, b

1
, b

2
}; Table 2.1) and SD variograms that fol-

lowed power laws with p
scar

 near that estimated for Swauk. In contrast, neutral 
model runs with p

burn
 = 0.75 (regular fire shapes; Fig. 2.6c) and larger mean fire 

sizes produced coefficient estimates and SD variograms similar to those from 
Twentymile (Table 2.1).

What do we gain, then, by deconstructing these scaling laws via simulation; e.g., 
can we back-engineer a meaningful, preferably quantitative, description of fire 
regime properties that is relevant for landscape ecology and fire management? 
Certain combinations of the probability of scarring, the probability that a cell burns 
given that a neighboring cell has burned, and the mean fire size produce power-law 
behavior in an aggregate measure––the SD variogram––that represents the spatial 
autocorrelation structure of fire occurrence. For example, a low probability of scar-
ring suggests variable fire severity at fine scales. A moderate likelihood of a cell’s 
burning given that its neighbor has burned (i.e., p

burn
 = 0.5) suggest fine-scale con-

trols on fire spread (topography and spatial heterogeneity of fuels). Mixed-severity 
fires subject to fine-scale landscape controls over time (decades to centuries) 
engender complex patterns that nonetheless produce simple mathematical struc-
tures (power laws). Further simulation modeling such as we describe here should 
illuminate what additional structures and scaling relationships can arise from the 
universe of complex interactions between the contagious process of fire and land-
scape controls.

2.6 � Conclusions and Implications

Scaling laws in fire regimes are one aggregate representation of landscape controls 
on fire. Cross-scale patterns can reflect landscape memory (Peterson 2002). For 
example, fire-size distributions on landscapes small enough for fires to interact hold 
a memory of previous fires (Malamud et al. 1998; Collins et al. 2009), as do shape 
parameters of the hazard function on landscapes in which fuel buildup is necessary 
to sustain fire spread (Moritz 2003; McKenzie et al. 2006a). Scaling laws in our SD 
variograms hold a memory of all historical fires registered by recorder trees. We 
have conjectured above that scaling laws arise when bottom-up controls are in 
effect, but an additional possibility is that scaling relationships may be non-stationary 
over time, reflecting changes or anomalies in top-down controls, specifically 
climate (Falk et al. 2007). Mean fire size, fire frequency, and fire severity change 
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with changes in climate and land use (Hessl et al. 2004; Hessburg and Agee 2005; 
Littell et al. 2009). A rapidly changing climate may at least change the parameters 
of scaling relationships, such as exponents in power laws derived from frequency 
distributions, and at most make them disappear altogether. Such behavior could 
indicate that a fire-prone landscape had crossed an important threshold (Pascual 
and Guichard 2005), with implications for ecosystem dynamics and management.
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