Chapter 2
Eigenmode reciprocity in k-space

2.1 Reciprocity in physical space and in k-space
2.1.1 Overview

Until the mid 1960’s the problem of reciprocity in electromagnetics had been devel-
oping in two separate, and seemingly unrelated directions. As early as 1896 Lorentz
[91] had demonstrated that if two independent current distributions, J; (r) and J»(r),
generated electromagnetic fields, E;(r), Hy(r) and E;(r), Hz(r) respectively, in
free space, then

/ Ei(r) - Ln)d’r = / Ea(r) - 31 (r)d’r @.1)

and this was recognized as an expression of the ‘interchangeability’ of transmitting
and receiving antennas. This, or an equivalent formulation,

V-(E xH,—E,xH|) =0 2.2)

became to be known as the Lorentz reciprocity theorem, and will be discussed in
some detail in Chap. 4. The theorem was used, inter alia, to deduce the properties
of transmitting antennas if their properties as receiving antennas were known.
Eckersley [51], for instance, used the theorem to deduce the radiation pattern of
a transmitting antenna as modified by an imperfectly conducting ground below it,
by solving the simpler problem of its response as a receiving antenna.

Sommerfeld [110] and Dillenbach [47] pointed out that the theorem would
hold in anisotropic media provided that the electric permittivity e, the magnetic
permeability p and the conductivity & were symmetric tensors. Rumsey [106] and
Cohen [40] noted that a modified form of Lorentz reciprocity would hold also for
non-symmetric tensors provided that the second (reciprocal) system of currents and
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fields were taken in a ‘transposed medium’, characterized by the transposed tensors
e’, uT and ¢ 7. Harrington and Villeneuve [63] applied the theorem to gyrotropic
media, such as magnetoplasmas or ferrites, in which the ‘transposed medium’ is
just the original medium with the direction of the external magnetic field reversed.
Kong and Cheng [84] and Kerns [81] extended the result to bianisotropic media (see
Sec. 2.2.2) and introduced the concept of a ‘complementary’ or ‘adjoint’ medium,
which generalizes the earlier concept of the transposed medium.

A parallel, and seemingly unrelated line of development treated what we shall
call ‘reciprocity in (transverse-) k-space’, which in its early form dealt with the
symmetry properties of the scattering matrices in a plane-stratified ionospheric
magnetoplasma. Budden [29] and Barron and Budden [21] found that the 2 x 2
reflection matrix for plane-wave incidence on a plane-stratified magnetoplasma was
the transpose of the reflection matrix for another symmetrically disposed direction
of incidence, which we shall subsequently call the ‘conjugate direction’. (Because
of Snell’s law, the component k, of the propagation vector in the stratification
plane—the ‘transverse’ component—is the same for the incoming plane wave and
for the outgoing, scattered waves.) Pitteway and Jespersen [100] and Heading
[66] found similar results relating the transmission coefficients for upgoing waves
incident on the ionosphere in a given direction, and downgoing waves incident in a
symmetrically disposed, conjugate direction. These results were later generalized by
Suchy and Altman [12, 13, 118, 119] who showed that the 4 x 4 scattering matrices
could be expressed in terms of suitably defined eigenmode amplitudes within the
gyrotropic medium, and not only in terms of linearly polarized base modes in free
space outside of the scattering medium. This result was further extended by Altman
et al. [10] to include bianisotropic media, and it was shown that a wide range
of ‘adjoint’ or ‘complementary’ reciprocal media could be generated by means
of orthogonal transformations (rotation, reflection or inversion) of the transposed
medium.

2.1.2 From physical space to k-space

The two lines of development just described converged from both directions.
A passive antenna is a scattering object, and any dielectric scattering object will re-
radiate by virtue of the currents induced by the external fields incident on it. Lorentz
reciprocity will apply to such scattering objects (see, for instance, Rumsey [106]).
Harrington and Villeneuve [63] showed that if a scattering object, characterized
by constitutive tensors, €, @ and o, be considered as a generalized N terminal-
pair network, with V and I representing column matrices of ‘terminal’ voltages and
currents at the surface of the scatterer, one may define a scattering matrix S through
the relation

VvV =:S1I (2.3)

They showed that if the medium of the object had transposed constitutive tensors
e’, u” and o7, the scattering matrix would be transposed to s’.
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Fig. 2.1 Scattering relations illustrated schematically for object with given or Lorentz-adjoint
medium. In all cases S,p (k! K]) = S/gl;) (—k], —k)

It was the work of Kerns [81], however, that bridged the gap from reciprocity in
real (physical) space to reciprocity in k-space. Let us suppose, with Kerns, that a
scattering object in free space, Fig. 2.1, is contained between two imaginary planes,
7~ and z*. We consider an incoming wave, with an electric wave field E”(z™) or
E™(z) incident on the object from the left or right respectively. We shall adapt
Kerns’ notation to that used by us. The transverse component (transverse to the z-
axis) of the electric field, Ej'”, may be Fourier analysed in the z = 7~ or z = 7t
planes. Any Fourier component having a transverse wave vector

. 2 2\ /2 1/2
k = (ky. k) with [k|= (ko k. ) L ko = w(eoo)
may be decomposed into two ‘modes’, in which the electric fields, E;; and E;,, are

respectively parallel and perpendicular to the plane of incidence. The basis vectors
along these fields will be
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@H =Kk//|k| = €4 and €| =ZX€4 = €49

Fourier analysis of E”(z7) yields the spectral amplitude densities, A (k,,z ), in
transverse-k space, with @ = 1,2 or « = —1, -2 for positive- or negative-going
waves respectively:

. 1 R .
E"(zT) = o / / AE(k,, z7)e, exp[—i(kyx + kyy)|dk,dk, (2.4)

integrated over the entire transverse-k plane, with assumed summation over the
characteristic polarizations ¢ = 1,2 forz =z ,ora = —1,-2 forz = zt. Phase
factors exp(Fik.zT) have been included in the spectral amplitudes Aojf. Underlying
tildes (~) are used in this section to denote quantities that represent densities in
transverse-k space.

The outgoing scattered wave fields E* (z*) may similarly be Fourier analyzed to
yield outgoing amplitude densities, Af (k;, z%). Itis convenient to define normalized

amplitude densities, gf:

af = 1,242 a==+1,42

where

k € k €
a1 = oo/l = o[£ and nsa = lkd fomn = %,/M—Z
Z

are the characteristic wave admittances [81, eqgs. (1.2-5) and (1.2-6)]. Then ‘a |
will represent the spectral densities (in transverse-k space) of the z-component of
the time-averaged energy fluxes across the surfaces z = z* orz = 77

1
(Pﬁ,a)z—E//\gj(k,,ﬁ)\zdkxdky, a==+1,42 for z=z" (2.5)
for incoming waves, and
Prg)= //| (k,,zi)|2dkxdky, a==41,+£2 for z=2zF (2.6)

for outgoing waves, in which, for simplicity, we have ignored the contributions from
evanescent modes [81, egs. (1.4-2) and (1.4-3)].

Outgoing and incoming modal amplitude densities will be related by elements of
a scattering-density matrix S. Symbolically, we may write [81, eq. (1.3—1)]

a2 (K)') / / Sup (K. K;) af (K]) d, dK, 2.7
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which, for back- and forward-scattered waves respectively, becomes

F (K, z // Sup (k7' Ki: 27) ay (kj.2T) dK, dK),

and
a, k” // aﬁ k” k’ 7+, z ) (k’ )dk;dk’y

Now let the medium of the scattering object be replaced by a ‘(Lorentz-) adjoint’
medium. (Just what is meant by this is explained in Sec. 3.4. In the case of a
magnetoplasma, it means the given medium in which the external magnetic field
has been reversed in direction). Suppose also that all outgoing wave vectors k” are
reversed in direction (K" — —Kk”’) so that they become incoming wave fields. Kerns’
(Lorentz-) adjoint scattering theorem [81, eq. (1.5-5)] states that in this case the
outgoing wave fields will be just the incoming wave fields in the original problem
with their wave vectors reversed (k' — —k’). In the case of back-scattering this
means that

Sup (k;/,k;; Z:F) — S(L) ( k// ) 2.8)

and for forward scattering
Sup (K, kj3 25, 27) = S(L)( K, —k/;z7,z%) (2.9)

where S() is the scattering-density matrix for the Lorentz-adjoint medium. These
relations are illustrated schematically in Fig. 2.1.

Suppose now that the incoming wave field in (2 7) is that of a single plane wave
with a transverse propagation vector k,. Then a ¢ becomes a Dirac delta function
(aside from a multiplying factor) in transverse-k space

af (k) = af (k)8 (k] —k,) = az (z7)8 (k] — ki) . (k,)_// (k) dK, dK,

and (2.7) becomes '
QZW (k;/) = Sa.p (k:/, kt) a:él(kt) (2.10)

Finally we let the scattering object be a plane-stratified slab, situated between
the planes z = z~ and z = z*, i.e. all constitutive parameters of the medium are
functions of the z-coordinate only. Because of Snell’s law, the scattering-density
matrix S,s becomes a delta function in k;-space for plane-wave incidence, and
the amplitude densities of both the incident and scattered waves will also be delta
functions in k;-space:

Sap (/' ki) = Sap (k)8 (I — ki) @.11)
@ (k) = a2 (k)8 (k! ~ k) = a3 ()38 (K ~ k) |
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If Sop and g3 (k;’ ) are now substituted into (2.10), and the equation then integrated
over all k!, we obtain '
asm(kt) = Saﬂ (kt)a/lﬁn(kt) (2.12)

The scattering relation (2.7) then reduces to a straightforward matrix relation, with
each incident mode, @ = 1, £2, generating two reflected (back-scattered) and two
transmitted (forward-scattered) modes. With

_al a—g
a, = s a_ =
Ld2 a_p

o [a—(Z‘)} [Ry(ki:z7) T—(kr;z‘,zJ’)} [a+(1‘)}
T lay@] T [ Tetkizt.2) Ro(kizh) a_(z")

= S(k)ai (2.13)

we have

defining thereby the 4-element modal-amplitude column matrices, a;, and a,,,, and
the 2 x 2 reflection and transmission matrices, R+ and T4, which constitute the
scattering matrix S. (The signed subscripts indicate the direction of the incident
mode with respect to the z-axis.)

Kerns’ theorem, (2.8) and (2.9), reduces in this case to

& (L)

Sk) =S (k) (2.14)
F _ pw ¥ T -+
Ri(k;z") = Ri (—k:;z7), Tik;z".20) = T:F (—ki27,27)
with, typically
Rhk;z) = RV (<kiiz0), Tk (kizt.) = TP (~kez,2t)

where Taj/g and R;Eﬂ, with a, B = 1 or 2, denote elements of the 2 x 2 matrices T+
and R4.

This restricted form of Kerns’ scattering theorem will be discussed in Sec. 3.4
in the general context of scattering theorems in plane-stratified media. In Sec. 7.3
Kerns’ scattering theorem will be generalized to the case in which an anisotropic
scattering object is immersed in a homogeneous or plane-stratified anisotropic
medium.

2.1.3 Reciprocity in transverse-k space: a review of the earlier
scattering theorems

The interest in the ionosphere, until the mid-fifties, lay primarily in its ability to
reflect radio waves. Vertical ionospheric sounding had been employed since the
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mid-thirties to determine ionospheric structure and maximum usable frequencies
for radio communication between fixed ground stations. Point-to-point long-wave
and very-long-wave radio links had been tested experimentally to determine diurnal
and seasonal variations, as well as the directional dependence of the ionospheric
reflection coefficients. The first heroic efforts in the early fifties, especially by
Budden and his coworkers [30, 31], to produce full-wave computer programs to
solve the differential equations governing the propagation of radio waves in a plane-
stratified magnetoplasma, were aimed at producing, as their primary output, a set
of reflection coefficients for arbitrary directions of incidence. Various equalities
were then discovered in the numerically computed reflection coefficients for certain
symmetrically disposed directions of incidence. The analytical proof of these
‘reciprocity theorems’ was found only later, after the theorems were already known
from the computer output [21,29].

In 1953 Storey [114] showed both experimentally and theoretically that very-
low-frequency (whistler) waves, guided by the earth’s magnetic field, could pen-
etrate through the ionospheric X = 1 level (where waves of similar polarization
but higher frequency would normally have been reflected — cf. Sec. 1.2) to reach a
magnetically conjugate point in the opposite hemisphere. (The frequency dispersion
of these waves—the higher frequencies arriving before the lower—generated a
whistling sound of falling frequency when the audio-frequency electromagnetic
waves were received by an antenna connected to an audio amplifying system.
Hence the name ‘whistler’.) Storey’s findings were one of the motivating factors in
developing computer programs, such as that due to Pitteway [98], to calculate very-
low-frequency transmission coefficients for propagation through the ionosphere for
plane wave incidence from both below and above the ionosphere. Equalities between
the transmission coefficients of downgoing whistler waves and upgoing ‘penetrating
modes’ were again found in the computer output, for certain symmetrically disposed
planes of incidence, and the analytical proof then followed [100].

Heading [66] undertook a systematic analysis of reciprocity (scattering) relations
in plane-stratified magnetoplasmas, by considering certain general symmetry prop-
erties of Maxwell’s second-order differential equations in such media. Equalities
were again found between elements of the reflection and transmission matrices
for certain pairs of symmetrically related directions of plane-wave incidence. The
scattering matrix elements were defined, as in Budden’s treatment [29], in terms of
linearly polarized base modes in the free space bounding the medium.

At this stage there was still no obvious connection between the results of Kerns
previously discussed, as applied to plane-stratified media, and those of Barron
and Budden, Pitteway and Jespersen, and Heading. Kerns’ scattering theorem
involved an ‘adjoint medium’, which in the case of a magnetoplasma meant a
magnetic-field reversed medium, with wave vectors reversed in direction too. The
work of Budden and others, on the other hand, compared scattering matrix elements
in the same medium, but with different directions of incidence.

The thin-layer scattering-matrix numerical technique developed by Altman and
Cory [3,4] (see Sec. 1.5.3) led, fortuitously, to a generalized form of the scattering
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theorem in plane-stratified media. In this method the elements of the reflection
and transmission matrices were just the quantities which were recursively summed
in the numerical procedure in which thin elementary layers were added stepwise
to the plane-stratified slab. The scattering matrix elements related amplitudes of
eigenmodes emerging from slabs of varying thicknesses, imbedded in the given
statified medium, to the amplitudes of eigenmodes incident on the slab. The
‘amplitude’ of an eigenmode was taken initially to be the (square root of the)
z-component, normal to the stratification, of the time-averaged Poynting flux of
the eigenmode. The computed output yielded the elements of the scattering matrix
S(k;.¢), (2.13), for given values of the transverse wave vector K,, and for given
azimuthal angles, ¢, between the plane of incidence and the magnetic meridian
plane (the plane containing the external magnetic field, b, and the normal to the
stratification, Z). The scattering matrix S(k;, ¢), when the plane of incidence was
at an azimuthal angle ¢, was found to be the transpose of that for a conjugate
orientation in which the azimuthal angle was (7 — ¢),

Sk.¢) =Sk,.7—¢) (2.15)

as long as the medium was lossless. The exact equality broke down as soon as
collisional losses were introduced. On the basis of a procedure due to Budden
and Jull (1964) in their treatment of reciprocity of magnetoionic rays [35], the
complex conjugate wave fields, E* and H*, appearing in the expression for the mean
Poynting flux (see Sec. 2.3.1), were replaced by the computed adjoint wave fields,
E and H. This meant that the complex-conjugate transverse wave polarizations, p*,
appearing in the expression for the mean Poynting flux (see eq. 2.65 in Sec. 2.3.1)
were replaced by the adjoint wave polarizations, p = —p (2.66). (The equality
p* = p = —p holds only for loss-free media). The eigenmode scattering theorem
(2.15), reported by Altman in 1971 [2], was found to be exact, but the analytic proof
was only found much later by Suchy and Altman [12,119].

This chapter deals with some of the properties of the adjoint Maxwell equations,
and their use in the derivation of the eigenmode scattering theorem. In Chap. 3 we
consider the generalization of the theorem to base modes which are not eigenmodes
of the medium, and discuss some of the earlier reciprocity (scattering) theorems in
the light of the generalized theorem.

2.1.4 From transverse-k space back to physical space

The link back from reciprocity in transverse-k space to reciprocity in physical
space was found by Schatzberg and Altman [8, 108]. Their procedure was to
Fourier-analyse currents and fields in transverse-k space, and then to set up the
angular spectrum of plane-wave eigenmodes associated with an element of current,
Ji(k;,7)d7, flowing in an elementary layer of thickness dz’ in the medium. With
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the aid of the scattering matrix S(k;;z,z’) a dyadic Green’s function, G(k,; z,7),
was determined, so that the overall field e; (k;,z) at a level z in the medium was
given by

ek, z) = /G(k,;z,z/)Jl(kf,z')dz/ (2.16)

In a similar fashion a second, independent current distribution, J»(k;, '), generated
a field ey (k;, z).

A mirroring (reflection) transformation of the currents and fields with respect
to the magnetic meridian (b, Z) plane, yielded the ‘conjugate’ currents and fields,
J¢ (kf 7 ) and e¢ (kf, z). Here, k{ has been formed by reversing the sign of k; (this
will later be seen to be an expression of time reversal, which is inherent in the
reciprocity process), and then the y-component, normal to the (b, z) plane, is again
sign-reversed by the reflection transformation to give

ki = ko(sx.s)), ki = ko(—sx,5)) (2.17)
With the aid of the scattering theorem (2.15), which may be written in the form
S(sx.sy) = 8" (=s0.5y) (2.18)

a simple relation was found between the given and conjugate dyadic Green’s func-
tions, G(k;; z, ') and G (k¢; z,Z/), in k; space. An inverse Fourier transfomation in
k;-space led finally to a Lorentz-type reciprocity relation in real space [8, 108]

/el(r)-Jz(r)d3r - /eg(r) ()3 (2.19)

Eq. (2.19) is derived in Chap. 5. It will be noted that this result does not contain
any feature that would indicate that its validity is restricted to plane-stratified
media. In fact it is shown in Chap. 6 that in any medium that has ‘conjugation
symmetry’, the reciprocity relation (2.19) will apply. A medium will be said to
possess ‘conjugation symmetry’ if, after being ‘time reversed’, it can be mapped into
itself by means of an orthogonal transformation. A ‘time-reversed’ magnetoplasma,
for example, is one in which the external magnetic field has been reversed.

2.2 The adjoint wave fields

2.2.1 The need for an auxiliary set of equations adjoint to
Maxwell’s equations

The field equations of physics may generally be written as a system of first-order
partial differential equations or, on elimination of some of the field variables, as
higher-order equations. The Maxwell field, containing both electric and magnetic
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components, may be described by six first-order differential equations with six
possible source terms, components of the electric and equivalent magnetic currents.
The coefficients of the field components in these equations will be determined by
the constitutive relations of the medium considered, as expressed by the constitutive
tensor which relates the field vectors D and B to E and H. Examples of such tensors
and their characteristic symmetries are discussed in Sec. 4.1.

To reveal the basic symmetries of the fields it is useful to make use of an auxiliary
or adjoint set of equations, which will be satisfied by adjoint field variables. These
hypothetical adjoint fields will then exhibit a reciprocity relation with respect to the
fields in the original problem. The adjoint fields will in general be non-physical,
insofar as they satisfy the non-physical adjoint equations, but frequently they can
be related in a simple and direct way to the physical fields in another conjugate
problem, derived from the original by some sort of mapping transfomation (such as
reflection). The reciprocity relation between the given and adjoint problems then
leads to a reciprocity relation between fields (or between currents and fields, if
sources are present) in the two physical configurations of the given and conjugate
problems.

In the case of plane-stratified media both the given Maxwell field and the adjoint
field can in principle be decomposed into characteristic wave fields or eigenmodes.
It will be shown that the given and adjoint eigenmodes are biorthogonal, a
property which provides a simple procedure for decomposing a wave field into its
constituent eigenmodes, and for determining their amplitudes in a manner suitable
for application in a general scattering theorem which will be derived in Sec. 2.5.

2.2.2 Maxwell’s equations in anisotropic, plane-stratified media

The electric and magnetic wave fields in an anisotropic or bianisotropic medium
will be related in general by a 6 x 6 constitutive tensor K:

m - [; ﬂ [llﬂ = Ke (2.20)

We note that the fundamental fields, defined by the Lorentz force on an electric
charge g
F=¢(E+ v xB)

are E and B, whereas D and H are derived fields which contain the additional
contributions of electric polarization and magnetization currents. Nevertheless it
is convenient, for the sake of symmetry of Maxwell’s equations, to represent the
constitutive tensor K in this form. € is the 3 x 3 electric permittivity tensor, and g is
the magnetic permeability tensor which, for media having no magnetic activity (such
as plasmas, with or without an ambient magnetic field) is just the scalar permeability
Mo of free space, p = ;LOI(3), where 1™ represents the 7 X n unit matrix. The 3 x 3
coupling matrices & and 3 in (2.20) are usually zero except for a small class of
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bianisotropic media in which a magnetic field produces electric polarization, and
an electric field magnetizes the medium. (Moving media are bianisotropic since
the electric and magnetic fields are coupled by the Lorentz transformation, and
so too are the magneto-electric or so-called Tellegen media [124] in which the
elementary electric dipoles also have magnetic moment. Bianisotropic media have
been discussed by Post [101], Kong and Cheng [37, 82, 83], van Bladel [127] and
others, and are considered in some detail in Sec. 4.1.).

With time-harmonic exp(i wt) variation of all field quantities, Maxwell’s equa-
tions take the form

[iwK + Dle(r) = —j(r) (2.21)
with D, the differential operator, given by
0 -V x |(3) T
D:= =D 2.22
|:V 19 0 (2:22)

The generalized wave-field and current vectors, e and j, are given by

_|E . [ Je
e:= [H] ji= [Jm} (2.23)

where J. and J, are the electric and equivalent magnetic current densities.
If we split the differential operator D into three cartesian differential operators,
(2.21) becomes

0

. 0 d .
[le + ng + Uyg + UZa—Z:| e(r) = —j(r) (2.24)

U.: = 0 —)A(X|(3) —UTU'— 0 —yX|(3) _UT
T gx19 0 I S [C Y

010
0 -1 0 0
A _103) 00 0
U. LXOI@ ZE' }_ L (2.25)
0—-1 O:
1 0 O: 0
0 0 O:

(Note that U,, Uy, U, and D are all symmetric). Now assume the medium to be
plane stratified with the z-axis normal to the stratification. We denote the projection
of k on the stratification plane by k;,

k= (kx,ky) = ko(sx,sy) (2.26)
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where s, and s, are propagation constants (Snell’s law). Fourier-transforming e(r)
and j(r) in (2.24) in the transverse (stratification) plane, we have typically

k2
e(r) = 4—;2 //e(k;,z) exp[—iko(syx + 5,y)]ds.ds, (2.27)
ek, z) = / / e(r) expliko(scx + s,y)]dx dy (2.28)
Substitution in (2.24), (with K independent of x and y), yields

“dz

j d
iko [cK(z)—stx—syUy—l—U :|e(k,,z)=—j(k,,z)
ko ~d
or, more concisely
. i, d .
iko [C - _Uz_:| e(k;.2) = Le(k;,z) = —j(k/,2) (2.29)
k() dZ

where

C:= [CK _Sxe _SyUy]

and L is the Maxwell operator:

. i d
L = lk() [C - k_OUZd_Zi|

2.2.3 Eigenmodes in the plane-stratified medium

In order to find the eigenmodes of the plane-stratified medium we set the source
term in (2.29) to zero

Le := ik |:C — i d :|e(k,,z) =0 (2.30)

ko dz
and assume local plane-wave solutions

ey (k. z2) = ey (k) exp(—iko ga2) (2.31)
to obtain the eigenmode equation

[C —goU:Jex(k;.2) =0 (2.32)
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Since there are two null rows and columns in U, the equation
detf[C —¢,U,] =0 (2.33)

gives a quartic equation in g, (the Booker quartic (1.109), discussed in Sec. 1.3),
yielding two positive- and two negative-going waves with respect to the z-axis,
corresponding to « = =+1, £2. The eigenvectors e, give the characteristic wave
polarizations (the ratios of the various wave-field components) corresponding to
each eigenvalue ¢,.

2.2.4 The Lagrange identity and the bilinear concomitant

We now construct the equation adjoint to (2.30) by changing the sign of the
differential operator d/dz and replacing C by its transpose c’ (i.e. replacing K
by K'):

Lé:=iko [CT + Z—UZi} ék;.2) =0 (2.34)
k() dZ

where L is the adjoint Maxwell operator, and €(k;, z) now denotes an adjoint wave
field, satisfying the adjoint Maxwell equations.

We should note at this point that in the case of a cold magnetoplasma per-
meated by an external magnetic field b, the constitutive tensor K = K(b) has the

general form
e 0 @+ 0
[0 Mo|(3):| [ o l” 23

defining, for later use, the susceptibility matrix x; € = e(b)(1.38) is given by

& SU—bbT)—iDbx 1+ PHHT, b :=b/|b|
€0

S, D and P being parameters of the medium, cf. (1.37), (1.40) and (1.39); egf)) is
clearly gyrotropic, i.e. e(—b) = & (b), by virtue of the antisymmetric term b x I,
and so too are K(b) (2.35) and C(b) (2.29),
K(-b) =K' (), C(-b)=C" () (2.36)
The given and adjoint operators L and L will obey the Lagrange identity

¢'Le—e’Le=V-P (2.37)

where the vector P is called the bilinear concomitant [94, Sec. 7.5]. In our case,
(2.34), the differential operator is just the z-component of V, and remembering
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that €’ Ce is a scalar which is equal to its transpose, and therefore eliminated on
subtraction in (2.37), we find

de de d
2Ty 48 oy 48| @ opar
[e UZdZ +e Uzdz} 7 [e"U.e]

which, with Le = Le = 0, (2.30) and (2.34), gives

diz [€"Ue]=0 (2.38)

Hence the (z-component of the) bilinear concomitant vector is a constant
e¢'U.e = P. = const (2.39)

an important result that we shall require later.

If we were to consider an arbitrary source-free medium, i.e. not necessarily
plane-stratified, governed by (2.21) with j(r) = 0, we would write the formally
adjoint equation as before [46, p. 234-236] by replacing K by its transpose K”, and
the differential operator D (2.22) by its negative transpose —D”. If therefore the
Maxwell system, (2.21) or (2.24) with j(r) = 0, is given by

0

Le := [iwK + Dle(r) = |:in + Uxi +U,—
ox ady

+ Uzij| e(r) =0 (2.40)
0z

the formally adjoint equation, with D’ = D, (2.22), will be

d d

fce ok _Dem — ok —u. 2 2
Le:=[iwK" — D" ]e(r) [le U"ax Uyay

- UZQ} &(r) =0 (2.41)
0z

Application of the Lagrange identity, (2.37), then yields the result
V-P=0, P=ExH+ExH (2.42)

and the expression e’ U.e appearing in (2.39) is seen to be the z-component of the
Poynting-like product in (2.42). This bilinear concomitant vector P was introduced
by Budden and Jull [35] in their study of reciprocity of ray paths in magnetoionic
media, and a variant of it was used by Pitteway and Jespersen [100] to derive their
reciprocity theorem discussed in Sec. 3.2.4.

It should be remarked that the above prescription (K — K', D — —D") for
forming the adjoint system is not unique, and any other prescription that will satisfy
a Lagrange identity like (2.37) is equally valid. The particular form chosen by us,
yields a bilinear concomitant vector P (2.42) which reduces to the time-averaged
Poynting vector in loss-free media (see Sec. 2.3.1), and is particularly useful in
the applications discussed in this and the next chapters. Other prescriptions may be
formulated by certain orthogonal transformations of the adjoint Maxwell system.
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They have been used by Kong and Cheng [84] and by Kerns [81], and are useful
in analysing Lorentz-type reciprocity when the waves which are compared travel
in opposite directions (i.e. when the wave vectors are reversed in k-space, or the
roles of receiving and transmitting antennas are interchanged in real space). Such
transformed adjoint systems are introduced in Sec. 3.4, and discussed in some detail
in Chaps. 4 and 6.

2.2.5 Biorthogonality of the given and adjoint eigenmodes

We now derive another important result that links the given and adjoint eigenvectors.
Assuming local plane-wave solutions to the adjoint equation (2.34) of the form

eg(k;,z) = eg(k;) exp(iko gp 2) (2.43)
we obtain the adjoint eigenmode equation
[C" —GsVU.] &s(k;,2) =0 (2.44)
The eigenvalues are determined by
det [C" —GU.] =0 (2.45)

which is seen to give the same quartic equation in ¢ as (2.33). Hence the given and
adjoint eigenvalues are identical

C?ﬁ = qﬂ (2.46)

This implies that the given and adjoint modal refractive indices are also equal

ng(sx.Sy,qg) = ng(sc, sy, qp) (2.47)

Note however that gg and ¢gg appear in the plane-wave representations (2.31) and
(2.43) with opposite signs, but since both representations have the same exp(i w?)
time dependence, this means that the given and adjoint waves propagate in opposite
directions with respect to the z-axis (but of course in the same transverse direction,
since k, = k).

Again applying the Lagrange identity (2.37) to the eigenmode equations (2.32)
and (2.44), and remembering that gg = g4, we find that

(4p — qo)€5U e =0 (2.48)

which gives the well known biorthogonality relation [18,53,105] between the given
and adjoint eigenmodes

e;U. e, = const Sup = Sup Pra (2.49)
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with the aid of (2.39). If the eigenmodes are suitably normalized this relation may
be written .
e U. & = 8up sgn(), a,f==+1,+2 (2.50)

To discuss the nature of the normalization, it will be necessary to define the
amplitude of an eigenmode, and this will be crucial to the scattering theorems which
will be derived later, in which ingoing and outgoing eigenmode amplitudes will be
related.

2.3 The amplitude of an eigenmode

2.3.1 Amplitude in a loss-free medium

In discussing the propagation of a characteristic (eigen-) mode in a plane-stratified
medium in which there are no collisional losses, it is useful to define the modal
amplitude as the square root of the z-component (normal to the stratification) of the
time-averaged Poynting vector (see, for instance, [100, 126]). If the medium varies
slowly, so that there are no losses due to reflection or to mode coupling, it will be
shown that the amplitude is conserved, i.e. it will remain constant even though the
parameters of the medium vary in the direction normal to the stratification.
The time-averaged Poynting vector (S) is given by

(S)=ExH* + E* xH 2.51)

aside from a factor 1/4 which we have absorbed into (S), and its z-component is
given by
(S;) =¢€"U.e (2.52)

Now the complex-conjugate wave field e* obeys an equation given by the
complex conjugate of (2.30)

" i d . - T l_ i * _
[C + k_OUZd_Z} e (k,,z) - [C + kO Uzdz} (J (k,,z) — 0 (253)

since the dielectric tensor € in C is hermitian. [The hermiticity of &, or of K, can
be shown to stem from the requirement of energy conservation (see for instance
[1, p. 9] or [113, p. 65]) and conversely, as in the present discussion, will be shown
to lead to energy conservation].

Similarly, the complex-conjugate eigenwave field for a progressive plane wave
(qq real) becomes, from (2.32)

[C* — g U.]e* = [C" — ¢,U.le* =0 (2.54)
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Thus the complex-conjugate wave fields in loss-free media obey the adjoint
Maxwell equations, and eqs. (2.38) and (2.39) will apply here too, with

€¢*U.e = P, = const (2.55)
Comparison with (2.52) gives
(S;) = P, = const (2.56)

so that in loss-free media the (z-component of the) bilinear concomitant is seen to
be just the (z- component of the) mean Poynting vector, as already noted by Budden
and Jull [35] and others [12,118,119], which expresses conservation of mean energy
flux. Analogy with (2.49) also gives the biorthogonality of the given and complex-
conjugate eigenmodes in loss-free media

é; Uzeﬁ = (Saﬁ Pz,a (2.57)

We could now define a modal amplitude (or at least its modulus) by equating its
square to the modal energy flux

&:U.ep = sgn(a)dup aq | (2.58)

and then define normalized modal wave fields, €, or €3, by dividing the given fields
by the modulus of the amplitudes:

ey = |ao| €y e; = |aa|éz

thereby letting the normalized wave fields carry the phase information of the given
fields. Such a procedure is manifestly unsatisfactory, in that a normalized wave field
would not be uniquely defined at a given level, and it is preferable to let the complex
amplitude carry the phase information by letting it have the same phase as one of
the components of e, say e, or e (depending on the coordinate system in which
the components of e, are expressed). We then have

€y = gy e =a,e, (2.59)

In either case a normalized modal wave field is that which generates unit energy flux
normal to the stratification:

(€2)" U.és = sgn(@)dep (2.60)

Now an arbitrary wave field e(k;) can be expressed as a linear superposition of
the eigenmodes of the medium

ek) = Y  auéu(k) 2.61)

a==%1,+2
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where, by virtue of (2.60),
ag = (é;)T U, e sgn(a), al = (&) U e*sgn(a) (2.62)
and hence, with e = e(k,),
(S;) =e*U.e=afa1 +asar—aa_y —a’a,

=Y lau|* sgn(e) (2.63)

We have thus expressed the energy flux normal to the stratification of an arbitrary
wave field as the algebraic sum of the energy fluxes of the component eigenmodes.

Results analogous to those derived in this section (modal orthogonality in loss-
free media and separation of overall energy flux into contributions of the component
eigenmodes) have been given by Marcuse [92, Sec. 8.5] in his discussion of optical
fibres and dielectric waveguides having cylindrical symmetry. There the form of the
modes is dictated by the geometry of the problem (i.e. by the boundary conditions)
and by a radiation condition at infinity, but the formalism is somewhat similar. In
Sec. 2.6 we discuss the problem of curved stratified media in some detail.

Suppose we wish to determine the z-component of the energy flux associated
with an eigenmode in a loss-free magnetoplasma. One method (not necessarily the
simplest) would be to determine the eigenmode components (the wave polariza-
tions) in the (&, 7, ¢) coordinate system (1.77), in which the (-axis is along the
wave-normal direction and the £-axis is in the plane spanned by the wave normal
and the external magnetic field, cf. (1.82)—(1.85) in Sec. 1.2,

E:= (E:, E,, E;) = (1, p, 0) E;
(2.64)
H:= (H, H,, Hy) = Yo(—p. 1, O)nE;

where p is purely imaginary and o purely real, as may be seen from (1.81) in Sec. 1.2
with S, P, D and n? all real. Yy = 1/ Zy := (g0/ 110)"/? is the free-space admittance.
The mean Poynting vector becomes

(S) = Yo{—(0 +0™), —(p*0 + pa™), 2(1 + pp*)}nE; E;
=2Yo{—0. 0, 1 — p*}nE; E¢ (2.65)

and the z-component of (S), as well as the components of e, if required, are
then determined by a coordinate transformation from the (&, 7, () to the (x, y,z)
system (1.80).
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2.3.2 Amplitude of an eigenmode in the general case

Normalization of the wave fields

For lossy media the constitutive tensors are no longer hermitian, and the orthogo-
nality of eigenmodes with respect to the complex-conjugate modes is thereby lost,
together with the manifest advantage of being able to express modal amplitudes via
the complex-conjugate wave fields.

The adjoint wave fields, however, retain their biorthogonality with respect
to the given fields (2.49), and we may use this property in the definition of
modal amplitudes which will be valid for lossy media too. The constant bilinear
concomitant P, = &’ U.e (2.39) evidently no longer represents the z-component
of the mean Poynting vector if absorption is present, since the energy flux would
attenuate in the direction of propagation of the wave. The point is that the amplitude
of an eigenmode, a,, is no longer equal in magnitude to the amplitude, a,, of the
adjoint eigenmode since the constancy of the Poynting cross product (2.49) implies
that as e, attenuates, e, will grow correspondingly.

To obtain the adjoint eigenmode components it is convenient to express field
quantities in the (&, n, {) system, as in (2.64). In a magnetoplasma, as pointed out in
Sec. 2.2.4, the adjoint medium is obtained by reversing the direction of the external
magnetic field b, so that the transverse wave polarization p := E,/E¢ (1.84) in this
system is reversed in sign, while the longitudinal polarization o := E;/E¢ (1.85)is
unchanged, cf. (1.78),

Pa = —Pa: Oy = Oy (2.66)
(the corresponding relations for the complex-conjugate polarizations
Po = —Pa Oy = Ou
are valid only in loss-free media). Hence, if the modal field
e, = (Ee, £, Er; He, Hy, Hy)o
has the form
Ey = (1, po, 0u) Eut, Hy = Yo(—pa. 1, 0)ng Eqt (2.67)
the adjoint field will be

Eo = (1. —pa. 0a) Eot. H, = Yo(pa, 1, 0ty Eqe (2.68)
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and we may form the bilinear concomitant vector P from the Poynting-like product
P, = E, x H, + E, x H,

=2Y) (—04. 0, 1 — pa®) g Eug Eat (2.69)

which is formally identical to (2.65), except that both o and p?> may now be complex.
The z-component may now be obtained by a coordinate transformation (1.80) to the
(x, y, 2) system

Py =€ U.eq =2Yo (=04, 0, 1 — po°), 1o Eot Eut (2.70)

This is a convenient representation to use for normalizing eigenmodes. If we
choose

Bt = Eus = {2Yonasgn(@)(—a. 0. 1 — p2).}"2 2.71)

we can define the normalized eigenfields through (2.67) and (2.68)

éa = (la Pas Ous _Yonapaa Yona, O)EaE

R - (2.72)
e, = (ls —Pa» O Yongpa, Yone, O)Eaé
which yield immediately the required biorthogonality normalization
2 T A
(ea) U.és = Sopsen() (2.73)

Eigenmode amplitudes

We now relate a modal wave field to a normalized field via the modal amplitude, as
in the previous section,

€y = Uoby, B0 = Guby (2.74)

so that (2.49) becomes
égUZeﬁ = sgn()0upldala (2.75)

Now an arbitrary wave field e(k, ), as well as its adjoint, can be expressed in terms
of the eigenmodes

ek) = Y  aaly(k), ék)= Y ases(k) (2.76)

a==%1,+2 a==%1,+2
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whence

AN\T
ay = (éa) U, esgn(a), a, = el U, esgn(a) (2.77)

by virtue of (2.73) and (2.76).
Finally we have the generalized Poynting flux density (2.39)

P.=[ExH+ExH], =¢ U

=aia) + axay —a—1a— — d—a—

= Z‘_’a ay sgn(o) = const (2.78)
o

expressed as the sum of the generalized flux densities of the eigenmodes, by analogy
with (2.63).

We remark in conclusion that the procedure adopted here for determining an
eigenmode amplitude in an absorbing medium may seem somewhat cumbersome,
but it is straightforward and easily incorporated into a computer program for
calculating wave fields in plane-stratified media. In most cases of practical interest
the aim of such calculations is to determine fields or scattering coefficients outside
the absorbing regions, where the squares of the modal amplitudes reduce simply to
the z-components (normal to the stratification) of the Poynting flux of each mode.
For our purposes, however, the important result is that modal amplitudes can in
principle be defined in absorbing (and hence in all) media which, in conjunction
with modal biorthogonality, permits the decomposition of generalized energy flux
into the sum of the contributions of each of the eigenmodes.

2.4 The conjugate wave fields

2.4.1 The physical content of the conjugate problem

In our review in Sec. 2.1 we noted that earlier scattering (reciprocity) theorems
for plane-stratified magnetoplasmas related the ingoing and outgoing amplitudes of
waves incident from two different directions — the given and conjugate directions.
If the transverse components (i.e. in the plane of the statification) of the incident
wave vector are k; = ko(sy, sy), those of the conjugate wave vector are defined to
be ki = ko(—sy,s,) see Fig. 2.2. To characterize the relation between the given
and conjugate wave vectors geometrically, Barron and Budden [21], Pitteway and
Jespersen [100] and others, when discussing incidence on the earth’s ionosphere
from below, have pointed out that the planes of incidence in the two cases are
‘symmetrically disposed about the vertical East—West plane, at right angles to
the magnetic meridian plane’, i.e. if the plane of incidence in the one case is at
an azimuthal angle ¢ with respect to the meridian plane, the conjugate plane of
incidence is at an angle (7 — ¢).
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Conjugate

k. =ko(sy, SyaQa) kg:ko('sxrsy’QB)
k-=Ko(sy,Sy, qg) KE = ko (-Sx,Sy -dq)
a=lor2 , B=-lor-2

Fig. 2.2 Given and conjugate eigenmodes. The z-axis is normal to the stratification, and the
external magnetic field lies in the (x, z) plane (the magnetic meridian plane)

This characterization, although perfectly true, concealed the physical nature of
the symmetry. With the hindsight provided by a number of later papers, [9,11, 108],
we note that the given and conjugate planes of incidence are reflections with respect
to the magnetic meridian plane. But this is only part of the story.

If we take the original (given) problem and perform a reflection mapping, R,
with respect to some arbitrary plane, then all proper (polar) vectors, such as the
position vector r, the electric field E(r) or the electric current density J(r), undergo
‘geometric mirroring’, in the sense that physical arrows would be imaged by a
mirror. All axial (pseudo-) vectors, on the other hand, such as the wave field H(r),
the external magnetic field b or the equivalent magnetic current density Jum(r)
undergo mirroring too, but in addition, are reversed in direction. Such mappings
will be considered in detail in Chap. 6. It is well known (and will be demonstrated
in Sec. 6.2) that Maxwell’s equations are invariant under such orthogonal mappings.

We now perform a time-reversal transformation, 7', on the reflected problem.
The operation 7 can be visualized by imagining the original process to have been
recorded on a movie film, and then observed when the film is run backwards.
Maxwell’s equations are invariant under time reversal, as will be demonstrated in
Chap. 7, and it will be shown in particular that quantities such as H, B, J. and S
(the Poynting vector) are odd (i.e. change sign) under time reversal, whereas E, D
and J,, are even. For our purposes this means that the combined action of R (with
respect to the magnetic meridian plane) and 7 leaves the original external magnetic
field b unchanged, i.e.

TRb=R7Tb=Db

and the mapped eigenmodes (i.e. reflected and time-reversed) will remain eigen-
modes of the (unchanged) mapped medium.

Absorption losses in the medium require special attention. These will be
expressed in the constitutive tensor K through an imaginary term i v, where v is
the effective collision frequency. Time reversal, as will be shown in Sec. 7.2, has the
effect of changing the sign of the collision term, or to be more precise, converts the



2.4 The conjugate wave fields 69

constitutive tensor into its complex conjugate, thereby changing the sign not only of
v, but of b which appears also as an imaginary term, /b, in gyrotropic media. The
effect of time reversal will then be to transform the eigenvalue ¢, in the plane-wave
representation, exp(—iko ¢, z) into its negative complex conjugate,

Tqy = _q;

so that a damped plane wave, propagating in the positive z-direction, would be
transformed into a growing plane wave propagating in the negative z-direction.
However, insofar as we wish to describe physical processes in a physical absorbing
medium after applying our reflection-time-reversal transformation, we shall not
transform the collision frequency. Under this restricted time reversal the wave
eigenvectors k, will reverse their directions

ka(sx, Syy qa) — k—a(_s.ﬁm _Sya _Qa)

(but not g4 — —q;, which would yield growing waves), and the signs of the
magnetic wave-field components will also be changed, leading to a reversal in
direction of the Poynting vector.

This, then, is the rationale of the mathematical procedure (in itself quite rigorous)
which will now be used to generate the ‘conjugate eigenmodes’ by a reflection-time-
reversal transformation.

2.4.2 The conjugating transformation

The restricted time-reversal procedure

We start off by exhibiting explicitly the components, s, and s, of k; (2.26) in the
eigenmode equation (2.32), as well as the dependence of K, and consequently of e,,
on the external magnetic field b,

[cIC(b) — 5, Uy —s5,U, — g U] ey(b;sy, 5,) =0 (2.79)

We reverse the direction of b, so that the adjoint eigenmode equation, (2.44) in
conjunction with (2.36), is satisfied by the field €, (s, sy), adjoint to e, (b; s, s))

L(—b)e, = L€, := iko[cK(—b) —s5.U, —5,U, — g U] & (sy. 5,) =0 (2.80)

where we have used the result (2.46), g, = ¢4, and it will be remembered that €,
has the plane-wave ansatz exp(ikoq,z) (2.43).

We note that (2.80) is also satisfied by the Maxwell field e, (—b; sy, 5,),i.e. by a
physical wave field in the magnetic-field reversed medium, that has exactly the same
wave polarization as the adjoint mode, but of course a different z-dependence. This



70 2 Eigenmode reciprocity in k-space

polarization, and specifically the relation between the E and H fields, prescribes the
direction of the Poynting flux, which will be consistent with the direction imposed
by the sign of Im(q,) in the Maxwell eigenmode e,(—b; sy, s,), but inconsistent
with the direction of propagation of the (unphysical) adjoint eigenmode.

Next we apply the Poynting-vector reversing operator |

_ (3) __ _
| = I(6) = [IO _?(3)} T (2.81)

[the direction of the Poynting vector of the wave field le is opposite to that of the
field e] to (2.80):

1[cK(=b) — s,U, — syU, —q.U;] lle, (=b; sy, 5y) =0 (2.82)
in which, for clarity, €, (sx, 5,) has been replaced by e, (—b; s, s, ). Noting that
WUil=-U  (=xy.2).

[see (2.25)], and o
IKI =K

when K is of the form given by (2.35), we get
[cK(=b) + 5.U, + 5,U; + goU.] Teg(—b:sy.s5,) =0 (2.83)

This completes the (restricted) time-reversal transformation of the Maxwell system
(2.79), and we now proceed to reflect the system with respect to the magnetic-
meridian plane.

Reflection of wave fields

In general a (polar-) vector field, such as E(r), will be mapped by reflection with
respect to the magnetic meridian plane, y = 0, into E'(r’) = RE(r), where

1 0 O
E'(r') = q,E(r), v =q,r, q,:=(0 -1 0 (2.84)
0 0 1

On the other hand an axial-vector field such as H(r) is, in addition, reversed in sign
on reflection, so that the overall reflected electromagnetic field Re(r) = €'(r') is
given by

e (') = Q,e(r) = |:(:)y _?] :| |:I]?I((11:)):| ;P =qpr (2.85)
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We apply the reflection matrix Q, = Qy_1 to (2.83)
Q,[cK(-b) —s.U, —s5,U, —q, U] Q, {Q,les(~b;s,,5,)} =0 (2.86)
and note that
Q,U.Q, =U,, Q,uU,Q, =-U,, Q,U.Q, =U, (2.87)

Furthermore, if the magnetic field b is parallel to the y = 0 plane, then K, given by
(2.35), with & given by (1.45),

. o S —Cbh> iDb. —Ch,b,
K= |:0 |(3):| , €&=¢& —iDbZ S lDbx (288)
Ho —Chyb, —iDb, S—ChH?
is magnetic-field reversed by Q,:
Q,K®Q, = K(-b) (2.89)

Hence (2.86) becomes

[cK®) + 5,U, —5,U, +¢,U.] Q, le,(—b:s,.s,)
= [C(b; —sy.5y) —q<,U;] €, =0 (2.90)

with the notation of (2.29), and we have thereby formally identified the transformed
(time-reversed, reflected) wave field as the conjugate eigenmode:

G =de =Gdu. € 4bi—sp.5) = Q, leg(—bisy,sy) 2.91)
with g, = ¢, taken from (2.46). In terms of the adjoint eigenmode this gives
e, (—=sv,5,) =Q, iea(sx,sy) = Q;éa(sx,sy) (2.92)

where the diagonal matrix Qi is given by

1 0
¢ - 0
R 0 1

with

Q =Q, =[Q"
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Since the adjoint operation is involutary, i.e. € = e, (2.92) may be written as
e, = Qj,eu (2.94)

determining the adjoint of a mode in the conjugate system. We note that the
conjugating matrix Qj, imposes ‘geometrical mirroring’ on both polar and axial
vectors, i.e. it does not reverse the sign of the reflected (axial-vector) wave fields.
This leads to a reversal of the direction of the z-component of the Poynting vector,
so that upgoing waves are transformed into downgoing.

The conjugate modal amplitudes

We now apply (2.92) and (2.94) to relate the normalized eigenvectors and their
adjoints in the given and conjugate problems:

& = Q. & = Qe (2.95)

and use them, with the aid of (2.77), to determine the amplitudes of a conjugate
eigenmode ag, and its adjoint a,:

al = (€)" U. ¢ sgn(e) = [Qe-,]" U. [Q;&] sgn(«)
—&T'U, e sgn(e) (2.96)

since

QIU.Q° = -U.

and hence, with —sgn(«) = sgn(—«), we find

4 = ay, @ = a_g (2.97)

« =

2.4.3 Resumé

Before proceeding let us retrace some of the relevant steps we have taken till
now in this chapter. We considered a solution to Maxwell’s equations in a plane-
stratified medium, consisting of a set of eigenmodes having a common value of
k;, the projection of the propagation vector k on the stratification plane, which is
transverse to the z-axis. We constructed mathematically a set of adjoint eigenmodes,
biorthogonal to the original set, and used the biorthogonality condition to define
amplitudes of the given and adjoint eigenmodes at any level, z. Next, we performed
a conjugating transformation (reflection and time reversal) of these eigenmodes to
obtain a set of conjugate eigenmodes which was shown to be a solution of Maxwell’s
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equations (or the adjoint equations) in the conjugate problem, in which the plane
of incidence is a mirror image with respect to the magnetic meridian plane of
the original plane of incidence. Finally, a simple relation was found between the
eigenmode amplitudes in the given and conjugate problems, which will be required
in the next section to derive the scattering theorem.

The reader may well ask why we are using this somewhat elaborate conjugating
transformation, when we could have reached the same end result by a more
direct transformation which maps K, (sx,s,) into ki (—s,,s,), as will indeed be
demonstrated in Sec. 3.2.5. The reason is that the method described is much more
general in its scope than that used in the special case of planar stratification, and will
be applied in later chapters to problems possessing quite general spatial symmetries.

2.5 The eigenmode scattering theorem

2.5.1 The scattering matrix

The motivation for most numerical or analytic calculations of wave propagation
through a plane-stratified medium, is to derive eventually the reflection, transmis-
sion and intermode coupling coefficients for plane-wave incidence from either end.
These coefficients are conveniently grouped into the scattering matrix S.

Let €4(z), @ = %1, &2, represent one of the 6-component normalized eigenvec-
tors, defined in Sec. 2.3.2, at a level z, for positive- or negative-going characteristic
waves propagating in a plane-stratified medium, with equal prescribed values of the
transverse wave vector k; = ko(sy,sy); &1 is the corresponding normalized adjoint
eigenmode. The overall wave fields, e(z) and e(z), at any level may be decomposed
into the respective eigenvectors e, or their adjoints €,, as in (2.76) and (2.78)

e= ) ast,. €& =) dat (2.98)
where

ay = égUZe sgn(a) a, = &' U, esgn(a) (2.99)

It will be convenient to replace the summation representation in (2.98) by matrix
notation:

=

e=Eia; +E_a_=Ea, e=Ea (2.100)

where
Ei=[6r1 6], E=[ELE_]=[¢ &e e,

at) a T
atr = , a= =layara_i a ;]
atn a_

with adjoint quantities similarly defined.

(2.101)
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Fig. 2.3 Incoming and

outgoing eigenmodes related a( h\\ 2 /:h (z')

by the scattering matrix -

S 7) Qin 2 Qout = SQip

o+(z)/'—_—<*a-( z)

Now consider the wave amplitudes a(z) and a(Z) at two levels, z and 7/, with
7 > z. In terms of the wave amplitudes a1 at z and 7/, we write in condensed

notation
ap, = |:a+(Z)j| s Aour = |:a_ (Z) j| (2.102)

a—(7) at ()
(see Fig. 2.3), and define the scattering matrix S = S(s, 5,;z,2), and its adjoint
S = S(sy,sy:2.2), by means of

Aour = Sahﬁ &(mt = g&m (2103)

Written out in full, in terms of the 2 x 2 reflection and transmission matrices, Rt
and T 4, this becomes

a-@]_[Ri@  T-@)][a+@
|:a+(zl)j|_|:T+(z’,z) R_(7) j||:a_(z’)j| (2.104)

2.5.2 Derivation of the eigenmode scattering theorem

Relation between given and adjoint scattering matrices

Our derivation is based on the constancy of the bilinear concomitant vector, (2.39)
and (2.78),

P.=¢'U.e= Zdaaasgn(a) = const (2.105)
@
Applying this result to the modal amplitudes at 7’ and z, we have
a! ()atr(?) —a’ (F)a-(7) =a' (2das(2) —a’ (2)a-(z)
and, regrouping
al(?) ar(@)+a’ (R a-(x) =a’ (2) ar(x) +a’(7) a_(7) (2.106)

so that, with (2.102)

~T
Aoyt

Aour = ‘_ll'z;,ain (2107)
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Application of (2.103) yields

_raTl _

al'S" Sa, =al a;,

and finally
S's=1¥9—=-s§" (2.108)

. ar _
sinceS" =S~

Relation between adjoint, conjugate and given scattering matrices

When the eigenmodes in Fig. 2.3 undergo a conjugating transformation, the in-
coming and outgoing amplitudes are correspondingly transformed, (2.97), to yield

¢ _
ay = [afl} = [‘fﬂ =asz (2.109)
s as2
a (2) ﬁ_(Z)i| _
a;, = + = |- = Aoy, al = a, 2.110
o ] i ] T R
and since, by (2.103) B
aout = S‘_lin
this transforms to
a;, = Sa;, = (5)'d, @.111)

by definition of S°. Hence, with S~ =S from (2.108), we get

¢ _[RL T]_[Ry T4 _&
S _[Ti R‘j_['i'_ R_}_S (2.112)

This is the eigenmode scattering theorem [12, 119], expressing ‘reciprocity in k-
space’, that we set out to prove. The reciprocity relations

R, =Ry, T, =T+ (2.113)

are illustrated in Fig. 2.4.

A word as to notation. The elements of the matrix Ry (or analogously T1)
will be written as R, R, R¥E and R3, the + sign indicating the direction of
incidence with respect to the z-axis. It will sometimes be convenient, however,
when the modal species or polarization is specifically characterized, e.g. parallel
(|]) or perpendicular (L) to the plane of incidence, right- or left-circular (r or £), to
adopt and extend Budden’s [32] notation, so that || R} represents the conversion
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Given: ky=ko(sy,sy)

2 Eigenmode reciprocity in k-space

Conjugate: kS = ko(-sy,sy)

Z Z
AN
! ~~ 1
\'>“\321
X A--. -~ Z &
T.(z2',2) = T (z,2z")
To=(Tq)%,  Ti=(T5)°
4 y4

R,(z) = RS(z)

+ +.C
Ry =(Ry)”

1= (R3)°

Fig. 2.4 Reciprocity in k-space in a plane-stratified magnetoplasma. The z-axis is normal to the
stratification, and the external magnetic field lies in the magnetic-meridian (x, z) plane

coefficient from a positive-going perpendicularly polarized incident mode to a
reflected (converted) negative-going parallel-polarized mode. Similarly, (7,” means
negative-going right circular to negative-going left circular.

2.6 Curved stratified media

2.6.1 Curvilinear coordinates

In all previous sections the spatial variation of the media under consideration was
taken to be in one cartesian coordinate only, i.e. the media were assumed to be plane
stratified. This allowed the full use of Fourier transformations in the two coordinates,
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x and y, transverse to the normal z-direction of the stratification. This restriction
to plane stratification is usually sufficient when a curved stratified medium can be
approximated by a plane stratified one in the region of propagation. But the question

remains whether the scattering theorems, S g (2.108)and S° = S” (2.112),
hold also in curved stratified media. This problem has been addressed by Suchy and
Altman [120]. Replacing the generalized Poynting flux densities, P, (2.70) and
P, (2.78), by the corresponding Poynting fluxes, which are the integrals of P,, and
P, over (parts of) the curved stratification surfaces, the scattering theorems (2.108),
and consequently (2.112), can be generalized to curved statified media.

To prove this statement we have to apply the Lagrange identity twice, first to
a system of partial differential equations for the two coordinates # and v in the
stratification surfaces, and then to a system of partial differential equations for u, v
and w, where the w-coordinate is directed along the normal to these surfaces, thus
generalizing (2.30).

Since we cannot employ the transverse Fourier transforms, (2.27) and (2.28), we
decompose the differential operator

0 0 ad
Vi=g'— v — Y — 2.114
gy te - +g ( )
into a tangential part
d d
V,=g'— v— 2.115
TR TR s
and a normal part
ad
VvV, =g"— (2.116)
aw

with the reciprocal set g*, gV, g" of base vectors, obeying
gg =3
The base vectors g,, g,, g, span the arc length element
dr = g,du + g,dv + g,.dw

[115, Sec. 1.14]. With the corresponding decomposition of the symmetric differen-
tial operator D = D’ (2.22), viz

D=D, +D, (2.117)

into a tangential and a normal part

L 0 -V, xI]_ Qr L 0 —V,xI| _ Ar
D,._[VIXI . }_D,, DW._[wal . }—DW (2.118)
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with | = |(3), Maxwell’s equations (2.21) and (2.22) become

iwK +D,, + D,]e = —j (2.119)

2.6.2 The biorthogonality relation

To establish a set of eigenmodes in the curved stratified medium, we proceed in
a manner analogous to that in Sec. 2.2.3, equating the source term j to zero and
keeping the normal coordinate w constant [53, Sec. 8.2a]. Then all six (covariant)
components E, ... H, of the generalized wave-field vector e:= (E, H) (2.23)
have the same harmonic factor exp(—ixw), where k is the separation constant.
Application of V,, := g d/dw (2.116) leads to

D,e = —ikU,e with U, := [gwox | 8 OX '} =u! (2.120)

and to the eigenvalue equation
L.ey = [wK —ik,U,, + Dle, =0 (2.121)

instead of (2.32), which applied to plane-stratified media.
The corresponding adjoint eigenvalue equation reads, with U,, = U£ (2.120)
and D, = D! (2.118),

Lyéy = [inT — iU, — D,] & =0 (2.122)

The operators L, and L, may now be combined to form the Lagrange identity
ejLoe, —elLyes = D, : e&f — iy — kp)es U, e (2.123)

in which, for compactness, we have used the scalar ‘double-dot product’ introduced
by Gibbs [58, Sec. 117]; see also [94, p.57]:

D: eéT = Z D,;,-(ejéi) = Z(éiD,jej + €; Dj,’é,’)

i,j i,j

with D; = Dj; representing any symmetric differential operator. In (2.123), with
D — D, (2.118), e, := (Ey,H,) (2.23) and eg := (Eg, Hp), the first term on the
right-hand side is just the tangential divergence of the bilinear concomitant vector
Pyg, viz.
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D, : eaég = égD, €y + egD, s
=Es-V,xHy +Hg -V, xEy + E, -V, xHg + H, - V, x Eg
=V, (B xHg + Eg xHy) =: V, - Py (2.124)
The second term on the right-hand side of (2.123) contains its (contravariant) normal

component: _ _
e;U, e, = g" - (By x Hy + Eg x Hy) = P (2.125)

With Lye, = 0(2.121) and I_.ﬁéﬂ = 0(2.122), the Lagrange identity (2.123) gives
Vi Pyg =i(ky — Eﬁ)P(L% (2.126)

To derive a biorthogonality relation for the eigenvectors e, and the adjoint
eigenvectors €, we apply Gauss’ divergence theorem in two dimensions

/ V, PypdS = 959 - Pupds (2.127)

to a (finite part of a) stratification surface. (In the integral on the right, the boundary
curve on the surface is encompassed in a right-hand sense about the normal g". The
unit normal vector v lies on the surface and points in an outward direction with
respect to the boundary curve.)

With the boundary conditions [53, eqs. 8.2.4c and 1.1.23b], (see also Secs. 4.3
and 6.3 in this book),

PxE,=ZH, VxE;=-Z"Hg (2.128)

the contour integral vanishes, and the integrated Lagrange identity (2.126), which
becomes a Green’s theorem, yields

(ko — ip) / g" PopdS =0 (2.129)

As a further requirement for the derivation of a biorthogonality relation, we
exclude modal concomitant vectors P, := E, x H, + E, x H, (2.124) that lie
on a stratification surface, i.e. we require that

P i=g" Py #0 (2.130)

For loss-free media with € = e* (2.124), and therefore P’ = (S)) (2.56), this
condition excludes surface-wave modes whose (time-averaged) Poynting vectors
(S«) are tangential to the stratification surfaces.
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Under the condition (2.130) we can derive from Green’s theorem (2.129) first,
the identity
Ky = Kq (2.131)

of the adjoint and the given eigenmodes k,, and «,, and second, the biorthogonality
relation

/ €, U, e, dS = 8up / PY dS (2.132)

(Similar reasoning has been employed by Felsen and Marcuvitz [53, p. 53] with the
time ¢ in place of the normal coordinate w.)

2.6.3 The generalized Poynting flux

We have obtained the simple harmonic w-dependence e, ~ exp(—ik,w) of the
modal eigenvectors by keeping the normal coordinate w constant in the Maxwell
system (2.119). An analogous dependence, exp{—i (k,u + k,v)}, on the surface
coordinates u and v is only possible if all coefficients of the (covariant) components
E, ... H, in the Maxwell system (2.119) do not depend on u and v. Since

L[, 0B, OB, (3E, OE,
2 B0 " TR T

V:xE =

and |
gw xH = _(gvHu - gqu)
NG

with the Jacobian

VE =g xg g = (g"xg" g

[115, Secs. 1.14 and 1.15], this requires that the Jacobian be independent of # and v.
The only coordinate systems satisfying this requirement are those with cartesian
coordinates in which g = 1, and (circular) cylindrical coordinates p, ¢, z in which

u=¢, v=z w=p, Jg=p

[56, egs. 19 and 21]. For these two cases the application of V, = g"d/du + g"d/dv
(2.115) leads to
Die=[i kU, +ik,U,le (2.133)

with

U, = [gu(:( | ‘g:)X '] U, := [g“ox | ‘g:)X '} (2.134)
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and to an algebraic eigenvalue problem
oK —ik,U, —ik,U, —ix,U,] e, =0 (2.135)

Withu = x, v =y, w =z, k, = kosx, kv = kosy, ko = koqqa, We recover
the eigenvalue equation (2.32) for plane-stratified media. Now the reasoning in
Secs. 2.2.3t0 2.5.2 can be applied without the integration over a (finite) stratification
surface as in Sec. 2.6.2, but this holds only for media whose stratification surfaces
are either planes or (circular) cylinders.
For media with other stratification surfaces we go back to Maxwell’s equations
(2.21) without sources
Le:=[iwK+ Dle=0 (2.136)

The adjoint equation is B
Le:=[ioK" —Dle =0 (2.137)

and the Lagrange identity, by analogy with (2.123) and (2.124), reads
¢'Le—e'Le=D:ee/ =V-P (2.138)
with the bilinear concomitant vector
P=ExH+ExH (2.139)

For Le = 0 and Lé = 0, the left-hand side of (2.138) vanishes. To the right-hand
side we apply Gauss’ divergence theorem (in three dimensions)

/V.Pd3r = ¢P~ds (2.140)

with the surface elements dS directed outwards. The integration volume is bounded
by two stratification surfaces, and between them by walls for which the boundary
conditions (2.128) hold. The latter leave us with the contributions of the bounding
stratification surfaces:

/éTUw edS = / P®dS = const (2.141)

where (2.125) has been used. This is the generalization of the result (2.39) for plane
stratified media.

2.6.4 Scattering theorems

For the generalization of the scattering theorem (2.108) we introduce modal
amplitudes, a, and a,, as in (2.74)

€y = Uy€y € = y€, (2.142)
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but with €, and éa now normalized so that, cf. (2.132),
/ €5 U, & dS = 8op sgn () (2.143)

Putting this and the decompositions
e=Yab, &= as (2.144)
o B

into (2.141), we obtain
Zﬁaaa sgn (o) = const (2.145)
o

which is the same result as in (2.78) and (2.105) for plane-stratified media. This
was the basis for the derivation of the scattering theorems (2.108) and (2.112) in
Secs. 2.5.1 and 2.5.2, which need not be changed for the generalization to curved
stratified media.
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