
Chapter 2

Single-user MIMO

In this chapter we study the single-user MIMO channel which is used to

model the communication link between a base station and a user. We explore

in more detail the fundamental results that were briefly described in the

previous chapter. We derive the open-loop and closed-loop MIMO channel

capacities and describe techniques for achieving capacity including architec-

tures known as V-BLAST and D-BLAST. We also describe classes of subop-

timal techniques such as linear receivers, space-time coding for transmitting

a single data stream from multiple antennas, and precoding when there is

limited knowledge of CSI at the transmitter.

2.1 Channel model

Figure 2.1 shows the baseband model for a single-user (M,N) MIMO link

with M transmit and N receive antennas. A stream of data bits is com-

municated over the channel. We let d(i) ∈ {+1,−1} represent the data

bit with index i = 0, 1, . . .. The data stream is processed to create a se-

quence of transmitted data symbols. We let s
(t)
m ∈ C denote the complex

baseband signal transmitted from antenna m during period t. For a given

symbol period t, the channel between the mth (m = 1, . . . ,M) transmit an-

tenna and the jth (j = 1, . . . , N) receive antenna is characterized by a scalar

value h
(t)
j,m ∈ C which represents the complex amplitude of the narrowband,

frequency-nonselective channel. Because each receive antenna is exposed to

all transmit antennas, the baseband signal received at antenna j during time

t can be written as a linear combination of the transmitted signals:
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x
(t)
j =

M∑
m=1

h
(t)
j,ms(t)m + n

(t)
j , (2.1)

where n
(t)
j is complex additive noise. By stacking the received signals from

all N antennas in a tall vector, we can write:⎡
⎢⎢⎣
x
(t)
1
...

x
(t)
N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
h
(t)
1,1 · · · h

(t)
1,M

...
. . .

...

h
(t)
N,1 · · · h(t)

N,M

⎤
⎥⎥⎦
⎡
⎢⎢⎣
s
(t)
1
...

s
(t)
M

⎤
⎥⎥⎦+

⎡
⎢⎢⎣
n
(t)
1
...

n
(t)
N

⎤
⎥⎥⎦ (2.2)

which can be written in the more compact form

x(t) = H(t)s(t) + n(t), (2.3)

where x(t) ∈ C
N×1, H(t) ∈ C

N×M , s(t) ∈ C
M×1, and n(t) ∈ C

N×1. For

simplicity, we will typically drop the time index t. The noise vector n

is assumed to be zero-mean, spatially white (ZMSW), circularly symmet-

ric, additive complex Gaussian, with each component having variance σ2:

E(nnH) = σ2IN , where IN is the N × N identity matrix. (When the noise

is spatially colored, i.e., when the covariance of n is not a multiple of the

identity matrix, we can suppose that the receiver whitens the noise first, by

multiplying the received signal vector by the inverse square root of the noise

covariance.) The components of the signal vectors s(t), t = 1, 2, . . . are the en-

coded symbols obtained by processing an information bit stream d(1), d(2), . . .

which we denote by
{
d(i)
}
. The signal vector is modeled as a stationary ran-

dom process with zero mean E(s) = 0M and covariance Q := E(ss)H . The

signal is subject to the power constraint trQ = E(‖s‖2) = P .

The realization H(t) is drawn from a stationary, ergodic random process to

model the fading of the wireless channel. Due to the movement of the trans-

mitter, receiver, and local scatterers, the signal transmitted from antenna m

and received by antenna j experiences multipath fading caused by varying

path lengths to the scatterers. As a result of the central limit theorem, the

complex amplitude of the combined multipath signals can be modeled as a

complex Gaussian random variable. If the spacing between the M transmit

antennas is sufficiently large relative to the channel angle spread (which is

determined by the height of the antennas relative to the height of the local

scatterers), then the M channel coefficients h
(t)
j,1, . . . , h

(t)
j,M for receive antenna

j will be uncorrelated. Likewise, if the spacing between the N receive anten-

nas is sufficiently large, then the N channel coefficients h
(t)
1,m, . . . , h

(t)
N,m for
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transmit antenna m will be uncorrelated. A channel in which the coefficients

of H(t) are uncorrelated (or weakly correlated) is said to be spatially rich.

Typically, we will assume in this book that for a given symbol interval t,

the elements ofH(t) are not only spatially rich but also independent and iden-

tically distributed (i.i.d.) complex Gaussian random variables with zero mean

and unit variance. Because the amplitude of each element has a Rayleigh dis-

tribution, this channel distribution is known as an i.i.d. Rayleigh distribution.

As a result of the channel normalization, the average received signal power

is P , and the signal-to-noise ratio (SNR), defined as the ratio of the received

signal power and noise power, is P/σ2.

With regard to the time evolution of the channel realizations, we define

two types of channel model.

1. Fast-fading: the channel changes fast enough between symbol periods

that each coding block effectively spans the entire distribution of the ran-

dom process (i.e., ergodicity holds).

2. Block-fading: the channel is fixed for the duration of a coding block, but

it changes from one block to another.

In practice, coding block lengths are on the order of a millisecond, so users

with low mobility (stationary or pedestrian users) experience slowly fad-

ing channels consistent with the block-fading model. In this book, we fo-

cus mainly on the block-fading model. Further, we usually assume an i.i.d.

Rayleigh fading model for the channel.

In the rest of this section, we briefly describe more general channel models

that account for propagation environments that are not spatially rich and

therefore induce correlated fading across transmitter and receiver antenna

pairs.

2.1.1 Analytical channel models

Analytical channel models attempt to describe the end-to-end transfer func-

tions between the transmitting and receiving antenna arrays by accounting

for physical propagation and antenna array characteristics [6]. Most analyti-

cal channel models capture the various propagation mechanisms through the

correlations of the random channel coefficients. Below we describe the most

well-known correlation-based analytical MIMO channel models.
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M M Receiver 
processing

Transmitter 
processing

Fig. 2.1 The (M,N) single-user MIMO link. A stream of data bits
{
d(i)

}
is processed

to form a stream of encoded symbol vectors
{
s(t)

}
. The signal is transmitted from M

antennas over the channel H and is received by N antennas. The received signal
{
x(t)

}
is

processed to provide estimates of the data stream bits
{
d̂(i)

}
.

2.1.1.1 Kronecker MIMO channel model

The Kronecker MIMO channel model is probably the best-known correlation-

based model and stems from early efforts in the community [7–11] to find

models which correspond to a given pair of transmission and receiver cor-

relation matrices (denoted for simplicity as RT = E
(
HHH

)
and RR =

E

(
HHH

)
, respectively). It hinges on the assumption that these two corre-

lation matrices are separable. Mathematically, this assumption is expressed

as

RH = RT ⊗RR, (2.4)

where RH is defined as RH = E

(
vec (H) vec (H)

H
)
, where the vec operator

stacks the columns of the operand matrix vertically, and ⊗ denotes the Kro-

necker product between two matrices. It can be shown that, in this case, the

channel matrix can be expressed as

H = R
1/2
R Hi.i.d.R

1/2
T (2.5)

where Hi.i.d. is a N ×M matrix of i.i.d. circularly symmetric complex Gaus-

sian random variables of zero mean and unit variance. The assumption of

separable transmit/receive correlations of course limits the generality of this

model, as it is unable to capture any coupling between direction of departure

and direction of arrival spectra. Examples of simple channel models that are

not captured by the Kronecker channel model are the so-called “keyhole chan-

nel,” as well as the single- and double-bounce models [12] described below.
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However, the Kronecker model has been very popular due to its successful

role in quantifying MIMO capacity of correlated channels as well as to its

modularity, which allows separate transmitter and receiver array optimiza-

tion.

2.1.1.2 Single-bounce analytical MIMO channel model

In this case we assume that the signal transmitted from each transmitter

bounces once off each of a set of (say V ) scatterers before it reaches any re-

ceiver antenna. In this single-bounce case, the MIMO channel can be modeled

as

HSB (N,M, V ) = ΦR (N,V )Hi.i.d. (V, V )ΦH
T (M,V ) , (2.6)

where ΦR and ΦT are matrices that define the electrical path lengths from

the V scatterers and the N , M antenna elements, respectively. In fact, it

turns out that these matrices are the matrix square roots of the correlation

matrices on each side of transmission, i.e.

HSB (N,M, V ) = R
1/2
R (N,N)Hi.i.d. (N,M)R

1/2
T (M,M) . (2.7)

In the above, the first two arguments within the parentheses denote the

matrix dimensions; the third argument, when present, denotes the assumed

number of scatterers. The model in (2.7) has been used successfully to char-

acterize many practical cases where correlation among antenna elements on

each side of the link is present (e.g. due to their proximity or a limited an-

gle spread), despite the fundamental richness of the in-between propagation

environment. In other words, it models local correlation well. It should be

noted of course that when V is smaller than min (M,N), the channel in (2.7)

will suffer severe degradation in its richness, as it will lose rank (notice that

such a phenomenon cannot be captured by the Kronecker model in (2.5)). To

maximize richness, V should be greater than or equal to NM . The middle

ground between min (M,N) and NM provides intermediate levels of richness

(see [12] for some simulated results). It should also be noted that smaller scale

effects, such as those due to mutual coupling, are not captured in this model

(see [13, 14]).
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2.1.1.3 Double-bounce and keyhole MIMO analytical channel

models

In some cases, channel richness is compromised by the fact that some waves

follow common paths, thus limiting the independence between some signals;

as noted in [8, 15], this could be due either to a separation in free space

or to some sort of wave-guiding effect. A model that captures these effects

is the so-called double-bounce model, which is an extension of the single-

bounce model that includes a second ring of scatterers and is described by

the following equation:

HDB (N,M, V ) = ΦR(N,V1)Hi.i.d. (V1, V1)X (V1, V2)ΦT(M,V2)
H
. (2.8)

where V1 and V2 denote the number of scatterers in the first and second

ring, respectively. A special case of the model in (2.8), where the resulting

matrix has only a single nonzero eigenvalue, is the so-called keyhole or pinhole

channel [8, 15].

2.1.1.4 The Weichselberger MIMO analytical channel model

This model attempts to relax the separability between transmitter and re-

ceiver correlations by exploiting the eigenvalue decomposition of the corre-

sponding correlation matrices, shown below:

RT = UTΛTU
H
T

RR = URΛRU
H
R

, (2.9)

where UT , UR are unitary and ΛT , ΛR are diagonal matrices. The Weich-

selberger MIMO channel model is given by the following expression:

H = UR (Ω •Hi.i.d.)U
H
T , (2.10)

where Ω is a N × M coupling matrix that determines the average power

coupling between the transmit and receive eigenmodes and • denotes the

Schur-Hadamard product (element-wise multiplication). In fact, the Kro-

necker model is a special case of the Weichselberger model where the coupling

matrix Ω has rank 1. Other classes of random analytical MIMO channel mod-

els include propagation-based versions, such as:
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• The finite scatterer model, which assumes a finite number of scatterers and

models the angles of departure and arrival, scattering coefficient and delay

for each scatterer [16]. This model allows incorporation of both single-

bounce and double-bounce scattering.

• The maximum entropy model [17], which attempts to incorporate proper-

ties of the propagation environment and system parameters via the maxi-

mum entropy principle so as to maximize the model’s match to the a priori

known information about the link.

• The virtual channel model which exploits the so-called “deconstructed”

MIMO channel representation proposed in [18], capturing the “inner”

propagation environment between virtual transmission and reception scat-

terers.

2.1.1.5 The Ricean MIMO channel model

Similarly to the case of scalar channels, when a line of sight (LOS) exists

between the transmitter and receiver, the channel is modeled as the sum of a

random part representing the non-LOS component and a deterministic part

that represents the LOS component. The well-known scalar Ricean channel

can be extended to the MIMO case as follows:

H =
HR +

√
KHD√

1 +K
, (2.11)

where K ≥ 0 is the Rice factor (also called the “K factor”), HD denotes

the LOS deterministic channel matrix and HR denotes the random channel

matrix that can be modeled according to any of the MIMO channel models

presented above.

2.1.2 Physical channel models

In contrast to the analytical channel models, physical channel models focus on

the properties of the physical environment between transmitter and receiver

array. Two classes of physical channel model are briefly described below:

• Ray-tracing models

Ray-tracing (RT) models (see [6, 19]) are widely considered to be among

the most reliable deterministic channel models for wireless communica-
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tions: they rely on the theory of geometrical optics to predict the way the

electromagnetic waves will reach the receiver after they interact with the

environment’s obstacles (which cause reflection, absorption, diffraction,

and so on). The Achilles’ heal of the RT approach is the need to know

in advance the physical obstacles of the propagation environment between

the transmitter and receiver. MIMO extensions of the RT approach have

been proposed in [20,21]. In the MIMO case, the pattern and polarization

of each antenna must be taken into account; however, this can be done in

a modular fashion, making the technique applicable to any known antenna

array configuration.

• Geometry-based stochastic physical models

Contrary to the deterministic nature of the RT approach described above,

which exploits the propagation environment’s geometry in a determin-

istic fashion, geometry-based stochastic physical models (GSCM) model

the scatterer locations in stochastic (random) terms, i.e. via their statis-

tical distributions. Beyond Lee’s original model of deterministic scatterer

locations on a circle around the mobile [22], various random scatterer dis-

tributions (including scatterer clustering) have since been proposed in,

for example, [23–26]. In the single-bounce approach each transmit/receive

path is broken into two sub-paths: transmitter-to-scatterer and scatterer-

to-receiver (described by their direction of departure, direction of arrival,

and path distance); the scatterer itself is modeled typically via the intro-

duction of a random phase shift. Multiple-bounce scattering has also been

proposed in order to address more complicated propagation environments

(see [27–29]). As mentioned above, MIMO versions of these models are

derived by considering the specific configuration and characteristics of the

antenna arrays on each side of the link.

2.1.3 Other extensions

The models mentioned above typically assume narrow-band propagation; in

other words, they are frequency-flat. Several wideband extensions have been

proposed in the literature to capture broadband communication links (see

e.g. references in [6]); these are especially relevant in view of the emerging

LTE/LTE Advanced and WiFi/WiMAX type systems, which typically use

OFDM and operate in bandwidths on the order of several tens of MHz. Also,
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it was assumed that the propagation channel is time-invariant; time-varying

extensions have also been proposed [30, 31]; these are especially relevant in

cases of high user mobility. Mutual coupling between antenna elements (in

particular its role in affecting the channel’s spatial correlation properties) in

the above representative classes of MIMO channel models have been proposed

in [13, 14]. Finally, it should be mentioned that large collaborative efforts

have been undertaken over the last decade or so in order to propose MIMO

channel models that are fit for current and emerging wireless standards. These

include the COST259 [32], COST273 [29], IEEE 802.11n [33], Hiperlan2 [34],

Stanford University Interim (SUI) [26] and IEEE 802.16 [35]. The Spatial

Channel Model described in [36] is used as the basis for standards-related

simulations for 3GPP and 3GPP2.

2.2 Single-user MIMO capacity

In this section, expanding on the brief discussion on SU-MIMO capacity in

Chapter 1, we derive the capacity for the single-user MIMO channel. We

first derive the open-loop and closed-loop MIMO capacity for a fixed channel

realization, and then we study the performance of the capacity averaged over

random channel realizations.

2.2.1 Capacity for fixed channels

To begin with, we will focus on the case where the channel matrix H(t)

in (2.3) equals some fixed matrix H ∈ C
N×M for all t, i.e., the channel

is time-invariant. We will further assume that H is known exactly to both

the transmitter and receiver. After dropping the time index t in (2.3) for

convenience, the input-output relationship of the channel reduces to

x = Hs+ n. (2.12)

The channel input s is subject to an average power constraint of P . The addi-

tive noise vector n has a circularly symmetric complex Gaussian distribution

with zero mean and covariance σ2IN .
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By Shannon’s channel coding theorem [37], the capacity C
(
H, P/σ2

)
of

the above channel, defined as the maximum data rate at which the decoding

error probability at the receiver can be made arbitrarily small with sufficiently

long codewords, is given by the maximum mutual information I(s;x) between

the input s and the output x, over all possible distributions for s that satisfy

the power constraint tr
(
E
[
ssH
]) ≤ P . There is no loss of optimality here

in restricting s to have zero mean, since s− E [s] automatically satisfies the

power constraint if s does, and also yields the same mutual information with

x as s. Now,

I(s;x) = h(x)− h (x | s) (2.13)

= h(x)− h(n), (2.14)

where h(z) denotes the differential entropy of the random vector z, and

h (z | y) the conditional differential entropy of z given y.

The differential entropies can be evaluated using the following important

result about differential entropy (see, e.g., [38] for a proof): If z is any zero-

mean complex random vector with covariance E
[
zzH

]
= Rz, then h(z) ≤

log |πeRz|, with equality holding if and only if z has a circularly symmetric

complex Gaussian distribution.

Thus in (2.14), we have h(n) = log
∣∣πeσ2IN

∣∣. Maximizing I(s;x) therefore

amounts to maximizing h(x). Further, for any zero-mean s with covariance

E
[
ssH
]
= Rs, the channel output x is also zero-mean and has the covariance

σ2IN +HRsH
H . Consequently,

h(x) ≤ log
∣∣πe (σ2IN +HRsH

H
)∣∣ , (2.15)

with equality if and only if x is circularly symmetric complex Gaussian. The

latter condition holds when the input s is itself circularly symmetric com-

plex Gaussian. We can therefore conclude that, among all zero-mean input

distributions with a given covariance Rs, the one that maximizes I(s;x) is

circularly symmetric complex Gaussian. Further, the corresponding mutual

information is

I(s;x) = log
∣∣πe (σ2IN +HRsH

H
)∣∣− log

∣∣πeσ2IN
∣∣ (2.16)

= log

∣∣σ2IN +HRsH
H
∣∣

|σ2IN | (2.17)

= log
∣∣IN +

(
1/σ2

)
HRsH

H
∣∣ . (2.18)
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Therefore the problem of determining the capacity C
(
H, P/σ2

)
of the chan-

nel in (2.12) is reduced to that of finding the input covariance Rs that max-

imizes the RHS of (2.18), subject to the constraint tr (Rs) ≤ P :

C
(
H, P/σ2

)
= max

Rs�0
tr(Rs)≤P

log
∣∣IN +

(
1/σ2

)
HRsH

H
∣∣ . (2.19)

Clearly, in (2.19), any specific choice of the input covariance Rs satisfy-

ing tr (Rs) ≤ P will yield an achievable data rate, i.e., a lower bound on the

channel capacity. One such choice that is often of interest is Rs = (P/M) IM ,

which corresponds to an isotropic input, i.e., sending independent data

streams at the same power from each of the transmit antennas. The corre-

sponding achievable rate, which we will loosely term the “open-loop capacity”

of the channel and denote by COL
(
H, P/σ2

)
, is given by

COL
(
H, P/σ2

)
= log

∣∣∣∣IN +
P

Mσ2
HHH

∣∣∣∣ . (2.20)

In order to motivate the choice of an isotropic input and the concept of

open-loop capacity, one can consider a situation where the transmitter has no

knowledge of the channel matrix H (but the receiver still knows it perfectly).

The isotropy of the additive noise n then suggests that the transmitter should

employ an isotropic input, hedging against its ignorance of the channel by

signaling with equal power in M orthogonal directions. More rigorous justi-

fications can be given for the optimality of an isotropic input in the context

of an ergodic channel model with spatially white noise [38].

2.2.1.1 Optimal input covariance

We will now sketch the derivation of the optimal input covariance Rs in

(2.19). The key idea here is to show that the MIMO channel can be decom-

posed into several single-input single-output (SISO) channels that operate

in parallel without interfering with each other, and must share the total

available transmit power of P . The optimal power allocation between these

SISO channels can then be obtained by a procedure commonly referred to

as “waterfilling” (the reason for the name will soon become clear). While

the derivation is of secondary importance for this book, we will provide this

rough proof because it reveals the important concept of spatial modes.
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The decomposition of the MIMO channel into non-interfering SISO chan-

nels is based on the singular value decomposition (SVD) of the N×M channel

matrix H. This decomposition allows us to express H as

H = UΣVH , (2.21)

where U and V are N × N and M × M unitary matrices, respectively (so

UUH = UHU = IN , VVH = VHV = IM ) and Σ is an N × M diagonal

matrix. Each element of diag (Σ) is a singular value of H, i.e., the positive

square root of an eigenvalue of either HHH (if N ≤ M) or HHH (if N ≥ M).

Moreover, the columns of U are eigenvectors of HHH , and the columns of V

are eigenvectors of HHH.

Using (2.21) in (2.12), we get

x =
(
UΣVH

)
s+ n ⇒ UHx =

(
UHU

)
Σ
(
VHs

)
+UHn ⇒ x′ = Σs′ + n′,

(2.22)

where x′ = UHx, s′ = VHs, and n′ = UHn. Note that n′ has the same

distribution as n, since it is obtained by a unitary linear transformation of a

zero-mean circularly symmetric complex Gaussian vector whose covariance is

a multiple of the identity matrix. So the components of n′ are all independent,
circularly symmetric, complex Gaussian random variables of mean 0 and

variance σ2. Note also that the signal terms of (2.22) are uncoupled, due to

the diagonal structure of Σ.

Let us assume now that rank(H) = r (where r ≤ min(M,N)). The matrix

Σ will then have r positive diagonal elements, which we will denote by λi, i =

1, . . . , r. These are the singular values of H, and λ2
i , i = 1, . . . , r are the

eigenvalues of HHH . We will assume further that λ1 ≥ λ2 ≥ · · · ≥ λr. So

(2.22) can equivalently be written as:

x′
i = λis

′
i + n′

i, i = 1, . . . , r. (2.23)

(If r < N there are also N−r equations of the type x′
i = n′

i, i = r+1, . . . , N ,

which contain no input signal information, and can therefore be neglected.)

Note that (2.23) describes an ensemble of r parallel, non-interfering SISO

channels, with gains λ1, λ2, . . . , λr and noise variance σ2. As a result, we can

depict the equivalent signal model as shown in Figure 2.2.

Assuming now that the transmitter allocates power Pi = E |s′i|2 to the ith

channel in (2.23), the SNR on the ith SISO channel is ρi = λ2
iPi/σ

2, and

the rate achievable over it is Ri = log2 (1 + ρi). The overall rate achieved
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MM MM

MM M

Fig. 2.2 Decomposition of the MIMO channel into r constituent SISO channels, where r

is the rank of H.

is
∑

i Ri, i.e., the sum of the rates over the individual SISO channels. The

capacity of the MIMO channel is then obtained by maximizing the overall

rate over all power allocations, subject to the total transmit power constraint:

CCL(H, P/σ2) = max
P1,P2,...,Pr∑

i Pi=P

r∑
i=1

log2

(
1 +

Piλ
2
i

σ2

)
. (2.24)

The objective function in (2.24) is concave in the variables Pi and can be

maximized using Lagrangian methods (see [38]), yielding the following solu-

tion:

POpt
i =

(
μ− σ2

λ2
i

)+

,with μ chosen such that
r∑

i=1

POpt
i = P . (2.25)

Here (a)
+
= max (a, 0). The capacity of the channel is then given by [38]

CCL(H, P/σ2) =

r∑
i=1

[
log2

(
λ2
iμ

σ2

)]+
. (2.26)

The covariance matrix of the transmitted signal s is given by:

Rs = V [diag (P1, · · · , PM )]VH . (2.27)
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The optimal power allocation between the eigenmodes of the channel, given

in (2.25), can be computed by a procedure known as “waterfilling” [37]. Water

is poured in a two-dimensional container whose base consists of r steps, where

the “height” of each step is σ2/λ2
j . If we let μ in (2.25) be the water level, the

optimal power allocated to the jth eigenmode POpt
j is the difference between

the water level and the height of the jth step (provided the water level is

higher than that step), where μ is set so the total allocated power is P .

Figure 2.3 illustrates the waterfilling algorithm for a MIMO channel with

three eigenmodes: λ1 > λ2 > λ3. If SNR is very low, the water level, as indi-

cated by the horizontal dotted line, covers only the first step. This indicates

that all the power P is allocated to the dominant eigenmode (POpt
1 = P )

and no power is allocated to the others (POpt
2 = POpt

3 = 0). As the SNR

increases, the other eigenmodes will be activated. For very high SNR, all

three modes are activated, and the difference in height between the steps is

insignificant compared to the water level. In this case, the power is allocated

approximately equally among the three eigenmodes: POpt
1 ≈ POpt

2 ≈ POpt
3 .

2.2.2 Performance gains

Having established the capacity of open- and closed-loop MIMO channels, we

now discuss the performance gains of MIMO relative to conventional single-

antenna techniques. In this section, we study in more detail the performance

gains mentioned briefly in Chapter 1, namely that the MIMO gains in the

low-SNR regime come about through antenna combining, and that the gains

in the high-SNR regime come from spatial multiplexing. We also consider

the capacity gains as the number of transmit and receive antennas increases

without bound.

Under a block-fading channel model, the channel realization is random

from block to block, and the capacity for each realization is a random variable.

A useful performance measure is the average capacity obtained by taking the

expectation of the capacity with respect to the distribution of H. The average

open-loop and closed-loop capacities are defined respectively as

C̄OL(M,N,P/σ2) := EHCOL(H, P/σ2) (2.28)

C̄CL(M,N,P/σ2) := EHCCL(H, P/σ2). (2.29)
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Fig. 2.3 The waterfilling algorithm determines the optimal allocation of power among

parallel Gaussian channels that result from the decomposition of a MIMO channel. The

channel has three eigenmodes, and the power allocation is shown for low, medium, and

high values of SNR (P/σ2).

(In the context of fast fading channels, the average open-loop capacity as

defined here can also be interpreted as the “ergodic capacity” of the chan-

nel [39].) We will typically assume an i.i.d. Rayleigh distribution for the

components of H.

2.2.2.1 Low SNR

In the low-SNR regime where P approaches zero, the open-loop capacity for

a fixed channel H with rank r ≤ min(M,N) can be approximated as

COL(H, P/σ2) = log2 det

(
IN +

P

Mσ2
HHH

)
(2.30)
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= log2

r∏
i=1

(
1 +

P

Mσ2
λ2
i (H)

)
(2.31)

≈ log2

(
1 +

r∑
i=1

P

Mσ2
λ2
i (H)

)
(2.32)

= log2

[
1 +

P

Mσ2
tr
(
HHH

)]
(2.33)

≈ P

Mσ2
tr
(
HHH

)
log2 e, (2.34)

where λ2
i (H) are the eigenvalues of HHH (and λi(H) are the singular values

of H). Equation (2.32) follows from the dominance of the linear terms for P

approaching zero, and (2.34) follows from the approximation

log2(1 + x) ≈ x log2 e (2.35)

for x approaching zero. Therefore the average open-loop capacity for i.i.d.

Rayleigh channels at low SNR is:

C̄OL(M,N,P/σ2) ≈ P

Mσ2
E
[
tr(HH)H

]
log2 e (2.36)

=
P

Mσ2
E

[
M∑

m=1

N∑
n=1

|hn,m|2
]
log2 e (2.37)

= N
P

σ2
log2 e, (2.38)

where (2.38) follows from E

[∑M
m=1

∑N
n=1 |hn,m|2

]
= MN for i.i.d. Rayleigh

channels. Hence at low SNR, the average open-loop capacity scales linearly

with the number of receive antennas N :

lim
P/σ2→0

C̄(OL)(M,N,P/σ2)

P/σ2
= N log2 e. (2.39)

In the low-SNR regime, multiple transmit antennas do not improve the ca-

pacity, and the capacity of any (M,N) channel with M ≥ 1 is asymptotically

equivalent.

For the closed-loop capacity, waterfilling at asymptotically low SNR puts

all the power P into the single best eigenmode. (With i.i.d. Rayleigh channels,

the singular values will be unique with probability 1.) The average capacity

is therefore
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C̄(CL)(M,N,P/σ2) = E

[
max∑
Pi≤P

r∑
i=1

log2

(
1 +

Pi

σ2
λ2
i (H)

)]
(2.40)

≈ E

[
max∑
Pi≤P

r∑
i=1

Pi

σ2
λ2
i (H)

]
log2 e (2.41)

≈ P

σ2
E
(
λ2
max(H)

)
log2 e, (2.42)

where (2.41) follows from (2.35), and λ2
max(H) is the maximum eigenvalue

value of HHH . Hence

lim
P/σ2→0

C̄(CL)(M,N,P/σ2)

P/σ2
= E

(
λ2
max(H)

)
log2 e. (2.43)

Because E
(
λ2
max(H)

) ≥ max(M,N) for i.i.d. Rayleigh channels, closed-loop

MIMO capacity at low SNR benefits from combining at either the transmitter

or receiver.

2.2.2.2 High SNR

From (2.20), the average capacity for i.i.d. Rayleigh channels in the limit of

high SNR can be written as:

C̄(OL)(M,N,P/σ2) = E

⎡
⎣min(M,N)∑

i=1

log2

(
1 +

P

Mσ2
λ2
i (H)

)⎤⎦

≈ min(M,N) log2

(
P

Mσ2

)
+

min(M,N)∑
i=1

E
(
log2 λ

2
i (H)

)
, (2.44)

where (2.44) derives from the following approximation for large x:

log2(1 + x) ≈ log2(x). (2.45)

Because E
(
log2 λ

2
i (H)

)
> −∞ for all i, it follows that

lim
P/σ2→∞

C̄OL(M,N,P/σ2)

log2 P/σ
2

= min(M,N). (2.46)

Therefore open-loop MIMO achieves a multiplexing gain of min(M,N) at

high SNR.

For the closed-loop capacity at asymptotically high SNR, waterfilling puts

equal power in each of the min(M,N) eigenmodes. Therefore the average
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capacity is

C̄(CL)(M,N,P/σ2) = E

⎡
⎣ max∑

Pi≤P

min(M,N)∑
i=1

log2

(
1 +

Pi

σ2
λ2
i (H)

)⎤⎦

= E

⎡
⎣min(M,N)∑

i=1

log2

(
1 +

P/σ2

min(M,N)
λ2
i (H)

)⎤⎦

≈ min(M,N) log2

(
P/σ2

min(M,N)

)
+

min(M,N)∑
i=1

E
(
log2 λ

2
i (H)

)
, (2.47)

where (2.47) follows from (2.45). Hence

lim
P/σ2→∞

C̄CL(M,N,P/σ2)

log2 P/σ
2

= min(M,N), (2.48)

and closed-loop MIMO achieves the same multiplexing gain as open-loop

MIMO (2.46) despite the advantage of CSIT. For both open- and closed-loop

MIMO, the multiplexing gain at high SNR requires multiple antennas at both

the transmitter and receiver.

2.2.2.3 Large number of antennas

When M and N go to infinity with the ratio M/N converging to α, and

the SNR remains fixed at P , the open-loop capacity per transmit antenna

converges almost surely to a constant [40]:

lim
M,N→∞
M/N→α

C̄OL(M,N,P/σ2)

M
= log

[
1 + S

(
α,

P/σ2

α

)]
+

1

P/σ2
S

(
α,

P/σ2

α

)

− 1

α
+

1

α
log

[
1 + P/σ2 − P/σ2

α
+ S

(
α,

P/σ2

α

)]
, (2.49)

where

S(α, ρ) =
1

2

[
ρ− ρα− 1 +

√
(ρ− ρα− 1)

2
+ 4ρ

]
.

Thus the capacity grows linearly with the number of antennas. The quantity

S(α, ρ) can be interpreted as the asymptotic SINR at the output of a linear

MMSE receiver for the signal from each of the M transmit antennas.

For the open-loop (M, 1) MISO channel with i.i.d. Rayleigh distribution,

the transmit power is distributed among the M antennas, and the average
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capacity is given by

C̄OL(M, 1, P/σ2) = E

[
log2

(
1 +

P

Mσ2
Z,

)]
, (2.50)

where Z is a chi-square random variable with 2M degrees of freedom. Asymp-

totically, as M → ∞, the open-loop MISO capacity converges as a result of

the law of large numbers:

lim
M→∞

C̄OL(M, 1, P/σ2) = log2
(
1 + P/σ2

)
. (2.51)

Therefore the result of transmit diversity (diversity is the only phenomenon

taking place in multi-antenna transmission with single-antenna reception) is

to remove the effect of fading when enough transmit antennas are available.

2.2.3 Performance comparisons

The CDF of the open-loop (4,1) MISO and (1,4) SIMO capacities are shown

in Figure 2.4 for i.i.d. Rayleigh channel realizations with SNR P/σ2 = 10.

The circles indicate the average capacities. For MISO channels, the average

capacity increases as M increases, and the CDF becomes steeper, indicating

there is less variation in the capacity as a result of diversity gain.

On the other hand, receiver combining for the SIMO channel results in

both diversity gain and combining gain. Increasing the number of receive

antennas results in a steeper CDF due to diversity and a shift with respect

to the open-loop MISO curve due to combining gains. The performance of

a (1, N) SIMO channel is equivalent to that of a (N, 1) closed-loop MISO

channel.

Figure 2.5 shows the average capacity of various link configurations versus

SNR. The (4, 1) OL MISO capacity yields a small improvement over the SISO

performance. The (4, 1) CL, and (1, 4) performance is better as a result of

coherent transmitter or combining gain, but the slope of the capacity curve

with respect to log2 P/σ
2 is the same as SISO’s. At high SNR, the open-loop

and closed-loop MIMO techniques achieve a multiplexing gain of 4, indicated

by the slope of the capacity. For asymptotically high SNR, the open-loop and

closed-loop capacities are equivalent, and there is already negligible difference

for SNRs greater than 20 dB. For MIMO, every doubling (3 dB increase) in
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SNR results in 4 bps/Hz of additional capacity. For SIMO or MISO, every

doubling results in only 1 bps/Hz of additional capacity.

Figure 2.6 shows the average capacity of the same link configurations for

a lower range of SNRs. At very low SNRs, the optimal transmission strategy

benefits from diversity and combining but not from multiplexing. Compared

to (1, 4) SIMO, additional transmit antennas under (4, 4) OL MIMO do not

provide any benefit. Using knowledge of the channel at the transmitter, (4, 4)

CL MIMO achieves additional capacity by steering power in the direction of

the channel’s dominant eigenmode. To better visualize the relative gains due

to multiple antennas compared to SISO, Figure 2.7 shows the ratios of the

MIMO, SIMO, and MISO average capacities versus the SISO average capacity

as a function of SNR. For (4, 4) OL MIMO, the ratio is 4 for both low and

high SNRs but dips below 4 in between.

For CL MIMO, the number of transmitted streams as determined by wa-

terfilling depends on the SNR. Figure 2.8 shows the average number of trans-

mitted streams (average number of eigenmodes with nonzero power) for dif-

ferent antenna configurations as a function of SNR. For SNRs below -15 dB,

capacity is achieved by transmitting a single stream for all cases. As the SNR

increases, the probability of transmitting multiple streams increases. For (2,2)

and (4,4) multiplexing the maximum number of streams min(M,N) occurs

with probability 1 for SNRs of at least 30 dB. For (2,4), full multiplexing

with probability 1 occurs for SNRs of at least 10 dB.

Figure 2.9 shows the average capacity versus the number of antennas M

for (M,M) MIMO and (1,M) SIMO. Because the MIMO capacity is roughly

M log2(P/σ
2) for high SNR, the slope of the curve versus M depends on the

SNR.

2.3 Transceiver techniques

The previous section describes the theoretical capacity of MIMO links but

only hints at the transceiver (transmitter and receiver) structure required to

achieve those rates. In this section we discuss transceiver implementation for

achieving open- and closed-loop capacity and a number of relevant suboptimal

techniques, including linear receivers and space-time coding.
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Fig. 2.4 CDF of capacity for SISO, open-loop MISO and SIMO channels for i.i.d. Rayleigh

channels. The MISO channel increases reliability by providing diversity gain. The SIMO

channel provides both diversity and combining gain.

2.3.1 Linear receivers

Let us consider the received signal (2.3) for the (M,N) MIMO channel where

the data stream from the mth transmit antenna is highlighted:

x = hmsm +
∑
j 	=m

hjsj + n, (2.52)

where hm is the mth column of the channel matrix H. We assume that the

power of the mth stream is Pm := E

[
|sm|2

]
and that the noise vector n is

ZMSW Gaussian with covariance σ2IM .

We are interested in the class of linear receivers which computes a decision

statistic rm for the mth data stream by correlating the received signal x with

an appropriately chosen vector wm:

rm = wH
mx (2.53)

= (wH
mhm)sm +

∑
j 	=m

(wH
mhj)sj +wH

mn. (2.54)
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Fig. 2.5 Average capacity versus SNR for i.i.d. Rayleigh channels. At high SNR, (4,4)

OL and CL MIMO provide a multiplexing gain of 4.
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Fig. 2.9 Average capacity versus number of antennas M for i.i.d. Rayleigh channels. The

slope of the MIMO capacity depends on the SNR.

The output signal-to-noise ratio (SNR), defined as the ratio of the receiver

output power of the desired stream to the receiver output power of the ther-

mal noise, is given by

E
[|wH

mhmsm|2]
E [|wH

mn]
=

|wH
mhm|2Pm

||wm||2σ2
. (2.55)

In contrast to the SNR of the received signal P/σ2 defined in Section 2.1,

we emphasize that the output SNR (2.55) is defined at the output of the

receiver processing. The output signal-to-interference-plus-noise ratio (SINR)

is defined as the ratio of the receiver output power of the desired stream to

the sum of the receiver output power of the thermal noise and interference

from the other streams. Because the thermal noise and data streams are

uncorrelated, the SINR is given by:

E

[∣∣wH
mhmsm

∣∣2]
E

[∣∣∣wH
m

(∑
j 	=m hjsj + n

)∣∣∣2] =

∣∣wH
mhm

∣∣2 Pm∑
j 	=m |wH

mhj |2 Pj + ‖wm‖2 σ2
. (2.56)
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We consider two linear receivers: the matched filter (MF) receiver and the

minimum mean-squared error (MMSE) receiver. The MF is defined as the

correlator matched to the desired stream’s channel:

wm = hm. (2.57)

Because the noise vector is Gaussian, this receiver maximizes the output

SNR [41], but it is oblivious to the interference from the other data streams.

It requires knowledge of the desired stream’s channel but no knowledge of

the other streams’. From (2.55), the output SNR is ‖hm‖2 Pm/σ2, and the

output SINR is

ΓMF,m =
‖hm‖4 Pm

‖hm‖2 σ2 +
∑

j 	=m |h∗
mhj |2 Pj

. (2.58)

The MF receiver is also known as the maximal ratio combiner (MRC) because

it weights and combines the received signal components to maximize the

output SNR.

The MMSE receiver is a more sophisticated linear receiver that accounts

for the presence of interference by minimizing the mean-squared error be-

tween the receiver output and the desired data stream sm:

wm = argmin
w

E

[∣∣wHx− sm
∣∣2]

= argmin
w

wH
(
HPHH + σ2IN

)
w − 2wHhmPm + Pm

=
(
HPHH + σ2IN

)−1

hmPm,

where P := diag(P1, . . . , PM ) is the diagonal matrix of powers. Using the

matrix inversion lemma [42] for invertible A:

(
A+ bbH

)−1

= A−1 − A−1bbHA−1

1 + +bHA−1b
, (2.59)

and defining X :=
∑

j 	=m hjh
H
j Pj + σ2IN , we can write the MMSE receiver

as

wm =
(
HPHH + σ2IN

)−1

hmPm

=
(
X+ hmhH

mPm

)−1
hmPm

= X−1hmPm − X−1hmhH
mX−1hmP 2

m

1 + hH
mX−1hmPm
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=
X−1hmPm

1 + hH
mX−1hmPm

. (2.60)

Using (2.56) and (2.60), the SINR of the mth stream at the MMSE receiver

output is

ΓMMSE,m =
wH

mhmPmhH
mwm

wH
mXwm

=
Pm

σ2
hH
m

⎛
⎝IN +

∑
j 	=m

Pj

σ2
hjh

H
j

⎞
⎠−1

hm. (2.61)

The MMSE receiver is the linear receiver which maximizes the SINR [43],

and in this sense, it is often said to be the optimal linear receiver. We note

that the MMSE receiver for a particular data stream can also be obtained

by whitening the total noise plus interference affecting that stream, and then

computing the matched filter for the equivalent channel after whitening.

As given in (2.60), the MMSE receiver requires knowledge of all chan-

nels. This requirement is reasonable for many situations where pilot signals

are transmitted from each of the antennas. (See Section 2.7 for a discussion

on acquiring channel estimates.) If the channel estimates are unreliable or

unavailable, blind receivers techniques could be used [44].

Now suppose that M and N both go to infinity and M/N → α. In this

large-system limit, it can be shown that [43]

ΓMF,m → P/σ2

α(1 + P/σ2)
(2.62)

and

ΓMMSE,m → 1

2

⎡
⎣( P

σ2α
− P

σ2
− 1

)
+

√(
P

σ2α
− P

σ2
− 1

)2

+
4P

σ2α

⎤
⎦ . (2.63)

Figure 2.10 shows the mean SINR (averaged over transmit antennas as well

as i.i.d. Rayleigh channel realizations) versus average SNR P/σ2 for both

the MF and MMSE linear receivers. In each case, the solid lines show the

results for M = 4 and N = 4 (as in (2.58) and (2.61)), while the dashed

lines show the asymptotic results for α = 1 (as in (2.62) and (2.63)). It can

be observed that, in contrast to the interference-aware MMSE receiver, the

SINR attainable with the interference-oblivious MF receiver saturates as the

SNR is increased, indicating that it is interference-limited. (In fact, it can be
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Fig. 2.10 Mean SINR per transmit antenna for MF and MMSE receivers. The asymptotic

results assume that M and N both go to infinity with M/N → 1.

shown [39] that the linear MMSE receiver attains the optimal multiplexing

gain of min(M,N), i.e., the rate achievable with it as a function of SNR

exhibits the same slope at high SNR as the capacity of the MIMO channel.)

The trends exhibited by the asymptotic cases are already apparent for a link

with relatively few antennas.

2.3.2 MMSE-SIC

The performance of the MMSE receiver could be improved by following it

with a nonlinear successive interference cancellation (SIC) stage, shown in

Figure 2.11. Suppose that we detect the data symbol s1 from the first antenna.

Its SINR is ΓMMSE,1, given by (2.61). Assuming s1 is detected correctly and

assuming the receiver has ideal knowledge of h1, it can be cancelled from the

received signal x, yielding:

x− h1s1 =

M∑
j=2

hjsj + n. (2.64)



62 2 Single-user MIMO

MMSE, symbol 1
w.r.t. interf. 2, 3

Cancel symbol 1 MMSE, symbol 2
w.r.t. interf 3

Cancel symbol 2 MF, symbol 3

Fig. 2.11 MMSE-SIC detector for M = 3 symbols. Symbols are detected and cancelled

in order, yielding estimates ŝ1, ŝ2, ŝ3.

Given (2.64), data symbol s2 can be detected using an MMSE receiver. Be-

cause there is no contribution from s1 in (2.64), its SINR is:

Γ2 =
P2

σ2
hH
2

⎛
⎝ M∑

j=3

IN +
Pj

σ2
hjh

H
j

⎞
⎠−1

h2.

If we successively detect the data symbols in order s3, s4, . . . ,M and cancel

their contributions, the mth stream (m = 1, . . . ,M − 1) experiences inter-

ference from streams m+ 1,m+ 2, . . . ,M . The SINR for the mth stream is

therefore

Γm =
Pm

σ2
hH
m

⎛
⎝ M∑

j=m+1

IN +
Pj

σ2
hjh

H
j

⎞
⎠−1

hm. (2.65)

The Mth stream is detected in the presence of only Gaussian noise. Using a

matched filter, its SNR is

ΓM =
PM

σ2
‖hM‖2 . (2.66)

In the discussion of the MMSE-SIC detector (and the MF and MMSE

detectors), we have focused on the detection of the data symbols sm without

any regard to channel encoding. In general, these data symbols are the output

of a channel encoder, and we show in the next section how the MMSE-SIC

detector in conjunction with a channel decoder can be used to achieve the

open-loop MIMO capacity.
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2.3.3 V-BLAST

The open-loop capacity for a fixed (M,N) MIMO link can be achieved using

the vertical BLAST (V-BLAST) architecture, which uses an MMSE-SIC re-

ceiver structure where the interference cancellation is performed with respect

to the decoded data streams. In the MIMO literature, the term “V-BLAST”

is used to describe a variety of transceiver architectures and can be applied to

block- or fast-fading channels. However, we use the term to refer specifically

to the transmitter architecture shown in Figure 2.12 where the information

data stream is multiplexed into M lower-rate streams that are independently

encoded. This transmit architecture is sometimes referred to as per-antenna

rate control (PARC) because the rate of each antenna’s data stream is ad-

justed based on the channel realization H.

From (2.3), the encoded transmitted signal vector for symbol time t is

denoted as s(t), and we let
{
s(t)
}

denote the stream of vectors associated

with a coding block. Similarly we let
{
x(t)
}
denote the corresponding block of

received signals. We assume that the channel is stationary for the duration of

the coding block and that each stream has power Pm = P/M , m = 1, . . . ,M .

Applying an MMSE detector to the received signal vectors
{
x(t)
}
, the output

SINR is (2.61):

Γ1 =
P

Mσ2
hH
1

⎛
⎝IN +

M∑
j=2

P

Mσ2
hjh

H
j

⎞
⎠−1

h1. (2.67)

If the data stream for the first antenna
{
s
(t)
1

}
is encoded using a capacity-

achieving code corresponding to rate log2(1 + Γ1), then it can be decoded

without error. Using ideal knowledge of h1, its contribution to the received

signal
{
x(t)
}
can be cancelled. In general, if the mth data stream is encoded

with rate log2(1 + Γm), where from (2.65),

Γm =
P

Mσ2
hH
m

⎛
⎝IN +

M∑
j=m+1

P

Mσ2
hjh

H
j

⎞
⎠−1

hm, (2.68)

then it can be decoded and cancelled from the received signal so that data

streams m + 1,m + 2, . . . ,M do not experience interference from it. Using

(2.68) and the matrix identities [42]
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det(A)

det(B)
= det(B−1A) and

det(I+AB) = det(I+BA),

the rate achievable by stream m can be written as

log2(1 + Γm) = log2

⎡
⎢⎣1 + P

Mσ2
hH
m

⎛
⎝IN +

M∑
j=m+1

P

Mσ2
hjh

H
j

⎞
⎠−1

hm

⎤
⎥⎦

= log2 det

⎡
⎢⎣IN +

P

Mσ2

⎛
⎝IN +

M∑
j=m+1

P

Mσ2
hjh

H
j

⎞
⎠−1

hmhH
m

⎤
⎥⎦

= log2

det
(
IN +

∑M
j=m

P
Mσ2hjh

H
j

)
det
(
IN +

∑M
j=m+1

P
Mσ2hjhH

j

) . (2.69)

If we add the achievable rates for all M streams, then from (2.69), all the

terms are cancelled except for the numerator of the rate for stream 1. The

achievable sum rate is therefore

M∑
m=1

log2(1 + Γm) = log2 det

⎛
⎝IN +

M∑
j=1

P

Mσ2
hjh

H
j

⎞
⎠

= log2 det

(
IN +

P

Mσ2
HHH

)
. (2.70)

Noting the equivalence between (2.70) and (2.20), we conclude that the PARC

strategy with an MMSE-SIC receiver achieves the open-loop MIMO capacity

for block-fading channels.

For a fast-fading channel with i.i.d. Rayleigh distribution, using the statis-

tics of H, we can set the rate of stream m to be

Rm = EH [log2 (1 + Γm)] , (2.71)

where Γm is from (2.68). Then, from (2.70), the achievable sum rate is

M∑
m=1

[EH log2(1 + Γm)] = EH

[
log2 det

(
IN +

P

Mσ2
HHH

)]
. (2.72)

Therefore the V-BLAST architecture also achieves the ergodic capacity for

fast-fading channels. We emphasize that for a block-fading channel, the rates
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Stream 1: 
Coding,

modulation

Stream 2: 
Coding,

modulation

Stream 3: 
Coding,

modulation

MMSE-
SIC

De-
mux

MMSE, stream 1
w.r.t. interf. 2, 3

Cancel stream 1 MMSE, stream 2
w.r.t. interf 3

Cancel stream 2 MF, stream 3

Mux

decode, stream 3

decode, stream 2

decode, stream 1

Fig. 2.12 Transceiver for achieving OL-MIMO capacity using the V-BLAST transmit

architecture and an MMSE-SIC receiver.

are set as a function of the realization H, while for a fast-fading channel, the

rates are based on the statistics of H.

Even though we have assumed that the data streams are decoded and

cancelled in order from m = 1 to M , we note that the sum rate computed via

(2.70) is independent of the order. Therefore, the OL MIMO capacity can be

achieved for any ordering, as long as each antenna’s stream is encoded with

the appropriate rate as determined by the particular ordering.

The optimality of V-BLAST and PARC with MMSE-SIC was shown in [45]

and is based on the sum-rate optimality of the MMSE-SIC for the multiple

access channel [46]. This topic will be revisited in Chapter 3. While the

PARC strategy assumes equal power on each stream, the throughput can be

increased by optimizing the power distribution among the streams [45] using

knowledge of H at the transmitter.
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2.3.4 D-BLAST

In contrast to V-BLAST, where data streams for each antenna are encoded

independently, Diagonal BLAST (D-BLAST) is an alternative technique for

achieving the open-loop capacity that transmits the symbols for each coding

block from all M antennas. Figure 2.13 shows the D-BLAST transceiver

architecture. The information stream is encoded as U blocks of ML symbols.

In the context of D-BLAST, each coding block is known as a layer. Layer

u = 1, . . . , U consists of two subblocks of L symbols:
{
b
(u)
1

}
and

{
b
(u)
2

}
. The

blocks are transmitted in a staggered fashion so that L symbols
{
b
(u)
2

}
are

transmitted from antenna 2, followed by L symbols
{
b
(u)
1

}
transmitted from

antenna 1. The layer u transmission on antenna 1 occurs at the same time as

the layer u+1 transmission on antenna 2. During the first L symbol periods,

symbols
{
b
(1)
2

}
are transmitted from antenna 2, and nothing is transmitted

from antenna 1. During the last L symbol periods,
{
b
(U)
1

}
are transmitted

from antenna 1, and nothing is transmitted from antenna 2.

M
Layer u: 
Coding,

modulation

Mux and
Modulo-M

shift

h

h

time

MMSE-
SIC

De-
mux

Fig. 2.13 The D-BLAST transmitter cyclicly shifts the association of each stream with

all M antennas. The modulo-M shift is illustrated for M = 2 antennas and U layers.

To decode layer 1, symbols
{
b
(1)
2

}
are detected using a matched filter in

the presence of thermal noise. The output SNR is
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Γ2 =
P

2σ2
|h2|2. (2.73)

The symbols
{
b
(1)
1

}
are detected using an MMSE receiver in the presence of

interference from antenna 2 from symbols
{
b
(2)
2

}
. The output SINR is

Γ1 =
P

2σ2
hH
1

(
IN +

P

2σ2
h2h

H
2

)−1

h1. (2.74)

If the 2L symbols of layer 1 are encoded using a compound code at a rate

R < log2(1 + Γ1) + log2(1 + Γ2), then these symbols can be reliably decoded

and canceled from the received signal stream.

The decoding of layer u follows the same procedure. Symbols
{
b
(u)
2

}
are

detected using a matched filter because symbols from the previous layer trans-

mitted on antenna 1 have been cancelled. Then symbols
{
b
(u)
1

}
are detected

using an MMSE in the presence of interference from
{
b
(u+1)
2

}
. If U layers

are transmitted, the achievable rate is

U

U + 1
[log2(1 + Γ1) + log2(1 + Γ2)] , (2.75)

where the fraction is due to the empty frames during the first and last layers.

This overhead vanishes as U increases.

The procedure described for the M = 2 antenna case can be generalized

for more antennas, so that the symbols for a single layer are staggered over

ML symbol periods and transmitted over all M antennas. The symbols from

antenna m = 1, ...,M are detected in the presence of interference from anten-

nas m+1, . . . ,M . The SINR achieved for detecting symbols from antenna m

is (2.68), and the overall achievable rate (for large U) is the open-loop MIMO

capacity (2.70).

In practice, because the transmitter does not have knowledge of the chan-

nel, it does not know at what rate to encode the information. The receiver

could estimate the channel H, determine the channel capacity, and feed

back this information to the transmitter. The D-BLAST encoder needs to

know only the MIMO capacity whereas the V-BLAST encoder needs to know

the achievable rates of each stream. D-BLAST would therefore require less

feedback. However, due to the difficulty in implementing efficient compound

codes, the V-BLAST architecture is more commonly implemented.
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2.3.5 Closed-loop MIMO

If the channel H is known at the transmitter, one can achieve capacity by

transmitting on the eigenmodes of the channel, as discussed in Section 2.2.1.1.

The corresponding transceiver structure is shown in Figure 2.14. The infor-

mation bit stream is first multiplexed into min(M,N) lower-rate streams,

and the streams are encoded independently according to the rates deter-

mined by waterfilling. Given the SVD of the MIMO channel H = UΛVH ,

the min(M,N) streams are precoded using the first min(M,N) columns of

the M × M unitary matrix V. At the receiver, the N × N linear transfor-

mation UH is applied, and the elements of the first min(M,N) rows are

demodulated and decoded. The information bits for the min(M,N) streams

are demultiplexed to create an estimate for the original bit stream.

For the special case of the (M, 1) MISO channel, the data stream is pre-

coded with the unit-normalized complex conjugate of the channel vector

h ∈ C
1×M : (v = hH/ ‖h‖). This weighting is sometimes known as maxi-

mal ratio transmission (MRT), and it is the dual of MRC receiver for the

(1, N) SIMO channel.

MM M

Stream 1: 
Coding,

modulation

Stream   : 
Coding,

modulation

Stream   : 
Coding,

modulation

M
Mux

Stream 1: 
Coding,

modulation
De-
mux

Fig. 2.14 Capacity-achieving transceiver for CL MIMO based on the SVD of H. The

power allocated to each stream is determined by waterfilling.

2.3.6 Space-time coding

If the channel is known at the transmitter, the SVD-based strategy described

in Section 2.3.5 achieves the closed-loop capacity for any (M,N) link. If the

channel is not known at the transmitter, the strategies for achieving open-
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loop capacity described in Section 2.3.5 apply only when M ≤ N . Space-time

coding is a class of techniques for achieving diversity gains in MISO channels

when the channel state information is not known at the transmitter [47] [48].

Multiple receive antennas could be used to achieve combining and additional

diversity gains. We will outline the basic principles of space-time block codes

(STBCs), which are illustrative and representative of what space-time coding

can achieve in MISO channels. The space-time block-coding transmission

architecture is shown in Figure 2.15.

M

Space-time 
block codingCoding,

modulation

Fig. 2.15 In a space-time block-coding transmission architecture, the coded symbols
{
b(t)

}
are mapped to the transmitted symbol vector using, for example, (7.2)

.

In this architecture, a data stream is encoded using an outer channel en-

coder, and a space-time block encoder maps a block of Q encoded symbols

b1, . . . , bQ onto theM antennas over L symbol periods. This mapping is repre-

sented by an M×L matrix S, where the (m, l)th element of S (m = 1, . . . ,M ,

l = 1, . . . , L) is the symbol transmitted from antenna m during symbol pe-

riod l. In general, each element of S is a linear combination of b1, . . . , bQ

and of the respective complex conjugates of these symbols b∗1, . . . , b
∗
Q. The

parameters L and R := Q/L are known respectively as the code delay and

code rate of space-time block code S. Typically, the mapping parameters are

chosen so that L ≥ M and R ≤ 1. The performance of a space-time code

can be measured by its diversity order which we define as the magnitude of

the slope of the average symbol error rate at the receiver versus SNR (in a

log-log scale).

For an (M, 1) channel, the optimal (maximum) diversity order is M and

can be achieved if SSH is proportional to the identity matrix IM [49]. It is

also desirable for a code to be full rate (i.e., R = 1 and Q = L) and delay

optimal (i.e., L = M) so that the code is time efficient. A space-time block
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code is ideal if it is full rate and delay optimal (so that L = M = Q) and if

it achieves maximum diversity order.

For the case of M = 2 transmit antennas, a very popular and remarkably

efficient space-time block code (the one that really defined the class of space-

time block codes) is the Alamouti space-time block code [50]. Given a sequence

of encoded symbols
{
b(t)
}
(t = 0, 1, . . .), each pair of symbols on successive

time intervals b(2j) and b(2j+1) (j = 0, 1, . . .) is transmitted over the two

antennas on intervals 2j and 2j + 1 as follows:

s(2j) =

[
b(2j)

b(2j+1)

]
and s(2j+1) =

[
−b∗(2j+1)

b∗(2j)

]
.

This code is ideal because it achieves maximum diversity order M = 2 with

L = M = Q = 2. Moreover, it quite remarkably achieves the open-loop ca-

pacity for the (2,1) MISO channel for any SNR if an outer capacity-achieving

scalar code is used [51] [52]. It also achieves the optimal diversity/ multiplex-

ing tradeoff (see e.g. [53]). For a (2, N) channel with N > 1, the Alamouti

STBC with maximal ratio combining in general does not achieve the capac-

ity. Not surprisingly, due to its remarkable properties, the Alamouti code has

been used in several wireless standards.

To date, no ideal space-time block codes have been found for M > 2.

However, quasi-orthogonal STBCs have also been proposed that approach

the open-loop capacity in the (4,1) case [54] [55]. While generalizations of the

quasi-orthogonal concept (and other space-time coding techniques) to arbi-

trary numbers of antennas have been suggested [56], it should be emphasized

that the marginal diversity gains for open-loop MISO techniques diminish

as the number of antennas increases. This fact, coupled with the additional

overhead required to the channels, reduces the incentive for using too many

(M > 4) antennas for space-time coding.

Besides STBCs, other classes of space-time codes include space-time trellis

codes [47], linear dispersion codes [57], layered turbo codes [58], and lattice

space-time codes [59].

2.3.7 Codebook precoding

If CSIT is ideally known, precoding with waterfilling achieves the closed-loop

MIMO capacity. In many practical cases, it is not possible to obtain reliable
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CSIT (see Section 4.4). Isotropic transmission is suboptimal, and as we saw

in Section 2.2.3, the performance gap between OL-MIMO and CL-MIMO is

significant at lower SNRs.

Another suboptimal alternative is to use precoding matrices that are cho-

sen from a finite discrete set known as a codebook. (The precoding matrices are

sometimes known as codewords, but they are not to be confused with the code-

words associated with channel encoding.) The codebook is known by both the

transmitter and receiver. Under codebook precoding, typically the receiver

estimates the channel H and sends information back to the transmitter to

indicate its preferred codeword. Using B feedback bits, the receiver can index

up to 2B codewords in the codebook. A block diagram is shown in Figure

2.16, where the codebook B consists of 2B precoding matrices G1, . . . ,G2B .

This precoding technique is sometimes known as limited feedback precoding.

bits

Fig. 2.16 Block diagram for codebook precoding. The user estimates the channel H and

feeds back B bits to indicate its perfered precoding vector. The codebook B consists of 2B

codeword matrices and is known by the transmitter and the user.

In general, the transmitter can send up to min(M,N) data streams. If we

let J ≤ min(M,N) denote the number of streams, and u ∈ C
J be the vector

of data symbols, then the precoding matrix G ∈ B is size M × J , and the

transmitted signal is given by s = Gu. From 2.3, the received signal is

x = HGu+ n. (2.76)

When J = 1 and the input covariance has rank 1, precoding is often known

as beamforming.

If the MIMO channel is changing sufficiently slowly, the mobile feedback

could be aggregated over multiple feedback intervals so that the aggregated

bits index a larger codebook. In general, a larger codebook implies more

accurate knowledge of the MIMO channel at the transmitter, resulting in im-
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proved throughput. By aggregating the feedback bits over multiple intervals,

the codewords can be arranged in a hierarchical tree structure so that the

feedback on a given interval is an index of codewords that are the “children

nodes” of a codeword indexed by previous feedback [60]. Temporal correlation

of the channel can also be exploited by adapting codebooks over time [61] or

by tracking the eigenmodes of the channel [62] [63] [64].

2.3.7.1 Single-antenna receiver, N = 1

Let us consider the problem of designing a codebook B for the case of a

single-antenna receiver N = 1. In this case, the codebook consists of 2B

beamforming vectors: B = {g1, . . . ,g2B}, with gb ∈ C
M×1. Assuming that

the channel h ∈ C
1×M can be estimated ideally, the user chooses the code-

word in B which maximizes its rate:

max
g∈B

log2

(
1 + |hg|2 P

σ2

)
= argmax

g∈B
|hg|. (2.77)

If the channel realizations are drawn from a finite, discrete distribution of 2B

M -dimensional vectors, one would design the codebook to consist of these

vectors. The rate-maximizing codeword would be the (normalized) channel

vector which corresponds to the maximal ratio transmitter (MRT). Assuming

the channels could be estimated without error and the B feedback bits from

each user could be received without error, the transmitter would achieve

ideal CSIT. In practice, because the channel realizations are drawn from

a continuous distribution, the codewords should be designed to optimally

span the distribution, as determined by the channel correlation and desired

performance metric.

At one extreme, the antennas are spatially uncorrelated, and the MISO

channel coefficients each have an i.i.d. Rayleigh distribution. In this case the

normalized realization h/||h|| is distributed uniformly on an M -dimensional

unit hypersphere. The optimal rate maximizing strategy is to distribute the

2B codewords as uniformly as possible on the surface of the hypersphere [65].

This problem is known as the Grassmannian line packing problem: design the

codebook B to maximize the minimum distance between any two codewords√
1−max

i 	=j
|gH

i gj |2. (2.78)
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At the other extreme, the antennas are totally correlated, for example in a

line-of-sight channel with zero angle spread. Figure 2.17 shows a linear array

with M elements lying on the x-axis with uniform spacing d and a user with

direction θ with respect to the x-axis. Let us consider the channel response h

measured by a user lying in the general direction θ ∈ [0◦, 360◦). If the channel
coefficient of the first element is h1 = α exp(jγ), then the coefficient at the

mth element(m = 1, ...,M) is

hm(θ) = α exp

(
2πjd

λ
(m− 1) cos θ + jγ

)
, (2.79)

where λ is the carrier wavelength. We can use MRT to create a beamforming

vector g(θ∗) in the direction θ∗ by matching the phase of the beamforming

weight gm(θ∗) to the phase of the channel coefficient hm(θ∗), modulo the

phase offset γ. With d = λ/2, the resulting MRT beamforming vector is

g(θ∗) =
1√
M

⎡
⎢⎢⎢⎢⎣

1

exp (πj cos θ∗)
...

exp (πj(M − 1) cos θ∗)

⎤
⎥⎥⎥⎥⎦ . (2.80)

Using this beamforming vector, the SNR of a user lying in the direction θ is

|hH(θ)g(θ∗)|2P/σ2. (2.81)

The MRT beamforming vector creates a directional beam (pointing in the

direction θ∗) in the sense that the transmitted signal is co-phased to maximize

the SNR of a user lying direction θ = θ∗. Figure 2.18 shows the MRT beam

response for a linear array with M = 4 elements and a desired direction

θ∗ = 105◦. (The elements themselves are directional and pointing in the

direction θ = 90◦, as described in Section 6.4.3. Otherwise, there would also

be a response peak in the direction θ∗ +180◦.) Codewords could be designed

to form directional beams spanning a desired range. For example, if users

lie in a 120-degree sector θ ∈ [30◦, 150◦], we could choose to span this range

using four MRT beams with directions {45◦, 75◦, 105◦, 135◦}. A user could

determine its best codeword from (2.77) and indicate its preference with only

B = 2 bits.

More general design techniques known as robust minimum variance beam-

forming can be used to design beamforming vectors for arbitrary antenna

array configurations that are robust enough to withstand mismatch between
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Element 
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…
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…
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Fig. 2.17 An M -element linear array with inter-element spacing d. The direction of the

user is θ, and a beam is pointed in the direction θ∗ = 105◦.
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Fig. 2.18 The directional response as a function of the user direction θ for a MRT beam-

forming vector (2.80) pointing in the direction θ∗ = 105◦.
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measured and actual channel state information h(θ) [66]. The design of equal-

gain beamformers with limited feedback [67] is also relevant for antenna ar-

rays where the amplitudes of the channel coefficients are highly correlated.

For intermediate situations where the spatial channels are neither fully

correlated nor totally uncorrelated, systematic codebook designs have been

proposed in [68]. Codebooks can also be designed implicitly using a train-

ing sequence of channel realizations drawn from a given spatial correlation

function. This technique, based on the Lloyd-Max algorithm [69], is effective

for creating specifically tailored codebooks for arbitrary spatial correlations.

The training sequence {Hj}NTS
j=1 is of size NTS , and its elements Hj are real-

izations of MIMO channels drawn from a given spatial correlation function.

If we let μ(Hj ,gi) be a performance metric for a given channel realization

and codebook vector, the algorithm iteratively maximizes the average per-

formance metric

max
B

1

NTS

2B∑
i=1

∑
Hj∈Ri

μ(Hj ,gi), (2.82)

where Ri is the partitioned region of the training sequence associated with

codeword gi. The size of the training sequence needs to scale at least linearly

with the number of desired codewords to achieve good performance [69],

hence the complexity of codebook design scales at least exponentially with

the number of feedback bits B. However, because the codebook generation

can be performed offline as long as the correlations are known beforehand, the

complexity of the algorithm is not an issue. We also note that the algorithm

converges to a maximum that is not guaranteed to be global. Nevertheless, it

provides a practical way for codebook design even when the statistics of the

source are not known or difficult to characterize.

2.3.7.2 Multi-antenna receiver, N > 1

If the receiver has multiple antennas (N > 1), the beamforming techniques

discussed for the case of single-antenna receivers could be used, and the re-

ceived signal could be coherently combined across the N antennas. For i.i.d.

Rayleigh channels with M > 1 and N > 1, the Grassmannian solution has

been shown to maximize the beamforming rate [70] [71] [72].

In order to exploit the potential of spatial multiplexing, precoding matrices

with rank J > 1 (and J ≤ min(M,N)) could be used. It is common to

use multidimensional eigenbeamforming, where the columns of the precoding
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matrix G ∈ C
M×J are orthogonal such that GHG is a diagonal matrix. In

doing so, the J streams are transmitted on mutually orthogonal subspaces, as

is the case when precoding to achieve closed-loop MIMO capacity. We assume

the symbols of the data vector u ∈ C
J are independent and normalized such

that E
(
uuH

)
= IJ . Because the transmit power is trE

(
GuuHGH

)
= P ,

we have that GHG = diag(P1, . . . , PJ), where Pj (j = 1, ..., J) is the power

allocated to stream j, and
∑J

j=1 Pj = P .

Compared to transmitting with equal power on each stream, non-uniform

power allocation requires more feedback and may not result in significant

performance gains, especially if the channel is spatially uncorrelated. As de-

scribed in Chapter 7, spatial multiplexing in 3GPP standards is achieved

using codebook-based precoding with equal power on each stream.

A special case of multidimensional eigenbeamforming is to use antenna

subset selection, where the columns of the precoder G are uniquely drawn

from the columns of the M×M identity matrix and appropriately normalized

[73]. In doing so, J ≤ min(M,N) streams are uniquely associated with a

subset of J transmit antennas. The case of J = M corresponds to the V-

BLAST transmission.

2.4 Practical considerations

2.4.1 CSI estimation

In deriving the MIMO capacity and capacity-achieving techniques, we have

assumed that the CSI is known perfectly at the receiver and, when necessary

for closed-loop MIMO, at the transmitter. In practice, estimates of the CSI

at the receiver can be obtained from training signals (also known as pilot or

reference signals) sent over time or frequency resources that are orthogonal to

the data signals’ resources. ForM transmit antennas, the optimal training set

consists of M mutually orthogonal signals, one assigned for each antenna and

with equal power [74]. The reliability of the CSI estimates and the resulting

rate performance depend on the fraction of resources devoted to the training

signals and the rate of channel variation. As the channel varies more rapidly,

additional training resources are required to achieve the same reliability in the

channel estimates. (Reference signals are described in more detail in Section

4.4.)
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To achieve closed-loop MIMO capacity, the CSI at the transmitter is as-

sumed to be known ideally. If the CSIT is unreliable (see Section 4.4 for

acquiring CSIT), the performance will be degraded. In high SNR channels,

isotropic transmission should be used as an alternative because it requires no

CSIT. In low SNR channels, precoding with limited feedback could be used

to provide performance that is more robust to unreliable CSIT.

2.4.2 Spatial richness

The numerical results in this chapter assume that the MIMO channel coeffi-

cients are i.i.d. Rayleigh. As mentioned in Section 2.1, the spatial correlation

between antennas depends on their spacing relative to the height of the sur-

rounding scatterers. For a base station antenna that is high above the clutter

(for example in rural or suburban deployments), a common rule of thumb is

that spatial decorrelation could be achieved if the separation is at least 10

wavelengths [75]. On the other hand, if the base antenna is surrounded by

scatterers of the same height (for example in rooftop urban deployments),

decorrelation could be achieved with separation of only a few wavelengths.

Decorrelation between pairs of base station antenna elements can also be

achieved using cross-polarized antennas (Section 5.5.1). Mobile terminals are

typically assumed to be surrounded by scatterers, and half-wavelength sepa-

ration is considered sufficient for decorrelation [76].

Full multiplexing gain can be achieved over a SU-MIMO channel if the

antenna array elements at both the transmitter and receiver are uncorrelated.

As the antennas at either the transmitter or receiver become more correlated,

the average capacity of the channel decreases. If the antennas at either end

become fully correlated, then the channel cannot support multiplexing, and

the multiplexing gain is 1. General characterizations of the capacity as a

function of antenna correlation are given in [77].

2.5 Summary

Multiple-antenna techniques can be used to improve the throughput and

reliability of wireless communication. In this chapter, we discussed the single-
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user (M,N) MIMO link where the transmitter is equipped with M antennas

and the receiver is equipped with N antennas.

• The open-loop and closed-loop capacity measure the maximum rate of

arbitrarily reliable communication for the case where the channel state

information (CSI) is respectively known and not known at the transmitter.

CSI at the receiver is always assumed.

• The MIMO capacity in a spatially rich channel scales linearly with the

number of antennas. At high SNRs, a multiplexing gain of min(M,N) is

achieved by transmitting multiple streams simultaneously from multiple

antennas. At low SNRs, a power gain of N is achieved through receiver

combining. CSIT for closed-loop MIMO allows more efficient power distri-

bution, resulting in a higher capacity.

• Closed-loop MIMO capacity can be achieved using linear precoding and

linear combining at the transmitter and receiver, respectively, where the

transformations are based on the singular-value decomposition of the chan-

nel matrix H. Waterfilling is used to determine the optimal power alloca-

tion for each of the streams.

• Open-loop MIMO capacity for an (M,N) link (with M ≤ N) can be

achieved using isotropic transmission and an MMSE-SIC receiver. The V-

BLAST transmit architecture achieves capacity by sending independent

streams with appropriate rate assignment on each antenna. The D-BLAST

transmit architecture achieves capacity by cyclically shifting the associa-

tion of streams with transmit antennas.

• Space-time coding provides diversity gain for open-loop MISO channels.

The Alamouti space-time block code achieves the capacity of a (2,1) MISO

channel, but otherwise space-time coding cannot achieve the capacity of

general MIMO antenna configurations. Space-time coding does not provide

multiplexing gain and therefore provides only modest throughput gains as

a result of diversity.

• In FDD systems where CSI at the transmitter is not readily available,

feedback from the receiver can be used to index a fixed set of precoding

matrices, providing suboptimal performance compared to the closed-loop

MIMO capacity.
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