2 Concrete Matrix Groups

In this chapter, we mainly study the general linear group GL,, (K) of invertible
nxn-matrices with entries in K = R or C and introduce some of its subgroups.
In particular, we discuss some of the connections between matrix groups and
also introduce certain symmetry groups of geometric structures like bilinear
or sesquilinear forms. In Section 2.3, we introduce also groups of matrices
with entries in the quaternions H.

2.1 The General Linear Group

We start with some notation. We write GL,,(K) for the group of invertible
matrices in M, (K) and note that

GL,(K) = {g € M, (K): (3h € M, (K)) hg = gh = 1}.
Since the invertibility of a matrix can be tested with its determinant,
GL,(K) = {g € M,(K): detg # 0}.

This group is called the general linear group.
On the vector space K", we consider the euclidian norm

||l == V]z1 > + -+ [znl?, 2K,
and on M, (K) the corresponding operator norm
Al := sup{[|Az|: = € K", [lz| < 1}

which turns M, (K) into a Banach space. On every subset S C M, (K), we
shall always consider the subspace topology inherited from M, (K) (otherwise
we shall say so). In this sense, GL,,(K) and all its subgroups carry a natural
topology.

Lemma 2.1.1. The group GL,(K) has the following properties:
(i) GL,(K) is open in M, (K).
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10 2 Concrete Matrix Groups

(i1) The multiplication map m: GL,(K) x GL,,(K) — GL,(K) and the inver-
sion map n: GL,(K) — GL,,(K) are smooth and in particular continu-
ous.

Proof. (i) Since the determinant function

det: M,(K) = K, det(a;;) = Z sgn(0)a1,o(1) * * * Un,o(n)
oc€Sy

is continuous and K* := K\ {0} is open in K, the set GL,,(K) = det ~* (K*)
is open in M, (K).

(ii) For g € GL,(K), we define b;;(g) := det(gmr)mzj k2i- According to
Cramer’s Rule, the inverse of g is given by

—1)ts
(671, = %bij(g)'

The smoothness of the inversion therefore follows from the smoothness of the
determinant (which is a polynomial) and the polynomial functions b;; defined
on M, (K).

For the smoothness of the multiplication map, it suffices to observe that

(ab)ix = aijbjn
j=1

is the (ik)-entry in the product matrix. Since all these entries are quadratic
polynomials in the entries of a and b, the product is a smooth map. a

Definition 2.1.2. A topological group G is a Hausdorff space G, endowed
with a group structure, such that the multiplication map mg: G x G — G
and the inversion map 7: G — G are continuous, when G x G is endowed
with the product topology.

Lemma 2.1.1(ii) says in particular that GL, (K) is a topological group. It
is clear that the continuity of group multiplication and inversion is inherited
by every subgroup G C GL,(K), so that every subgroup G of GL,(K) also
is a topological group.

We write a matrix A = (a;;); j=1,...n also as (a;;) and define

_ - N - T o
AT = (ay), A:=(a;), and A*:=A4 = (aj).
Note that A* = AT is equivalent to A = A, which means that all entries of
A are real. Now we can define the most important classes of matrix groups.

Definition 2.1.3. We introduce the following notation for some important
subgroups of GL,,(K):
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(1) The special linear group: SLy,(K) := {g € GL,(K): detg = 1}.
(2) The orthogonal group: O,(K) :={g € GL,(K): g7 = ¢g~'}.
(3) The special orthogonal group: SO,,(K) := SL,,(K) N O,,(K).
(4) The wunitary group: U,(K) := {g € GL,(K): g* = g~'}. Note that
U,(R) = O,(R), but O0,(C) # U,(C).
(5) The special unitary group: SU, (K) := SL, (K) N U, (K).
One easily verifies that these are indeed subgroups. One simply has to use
that (ab)" =b"a', ab = @b and that
det: GL,(K) — (K*,")
is a group homomorphism.
We write Herm,,(K) := {A € M,,(K): A* = A} for the set of hermitian
matrices. For K = C, this is not a complex vector subspace of M, (K), but it

is always a real subspace. A matrix A € Herm,, (K) is called positive definite
if for each 0 # z € K" we have (Az,z) > 0, where

n
(z,w) = Z 2 W;
j=1

is the natural scalar product on K". We write Pd,,(K) C Herm,, (K) for the
subset of positive definite matrices.

Lemma 2.1.4. The groups
U,(C), SU,(C), O,(R), and SO,(R)
are compact.

Proof. Since all these groups are subsets of M,,(C) = (C"2, by the Heine—Borel
Theorem we only have to show that they are closed and bounded.
Bounded: In view of

SO, (R) € 0,(R) CU,(C) and SU,(C)CU,(C),
it suffices to see that U, (C) is bounded. Let gy,..., g, denote the rows of
the matrix g € M, (C). Then g* = g~! is equivalent to gg* = 1, which
means that gi,..., g, form an orthonormal basis for C" with respect to the
scalar product (z,w) = 377, z;w; which induces the norm [|z]| = \/(z, 2).
Therefore, g € U,,(C) implies ||g;|| = 1 for each j, so that U, (C) is bounded.
Closed: The functions

foh: My (K) = M, (K), f(A):=AA* -1 and h(A):=AAT —1
are continuous. Therefore, the groups
U,(K):= f71(0) and 0O,(K):=h"'(0)

are closed. Likewise SL, (K) = det™*(1) is closed, and therefore the groups
SU,.(C) and SO, (R) are also closed because they are intersections of closed
subsets. O
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2.1.1 The Polar Decomposition

Proposition 2.1.5 (Polar decomposition). The multiplication map
m: Up(K) x Pd,(K) = GL,(K), (u,p)— up

18 @ homeomorphism. In particular, each invertible matriz g can be written
n a unique way as a product g = up of a unitary matriz w and a positive
definite matrix p.

Proof. We know from linear algebra that for each hermitian matrix A there
exists an orthonormal basis vy,...,v, for K™ consisting of eigenvectors of
A, and that all the corresponding eigenvalues Aq,..., A, are real (see [La93,
Thm. XV.6.4]). From that it is obvious that A is positive definite if and only
if A; > 0 holds for each j. For a positive definite matrix A, this has two
important consequences:

(1) A'is invertible, and A~" satisfies A~ v; = A; v;.

(2) There exists a unique positive definite matrix B with B?> = A which
will be denoted v/A: We define B with respect to the basis (vq,...,v,) by
Bv; = \/ijj. Then B? = A is obvious and since all A; are real and the v;
are orthonormal, B is positive definite because

<B<§Z: uivi) : zj:ﬂjvj> = it (Bui,vj) = é 1>/ > 0

,J

for >, pjvj # 0 and real coefficients y;. It remains to verify the uniqueness.
So assume that C is positive definite with C? = A. Then CA = C3 = AC
implies that C preserves all eigenspaces of A, so that we find an orthonormal
basis wq, ..., w, consisting of simultaneous eigenvectors of C' and A (cf. Ex-
ercise 2.1.1). If Cw; = ajw;, we have Aw; = a?wj, which implies that C
acts on the A-eigenspace of A by multiplication with v/, which shows that
C=0B.

From (1) we derive that the image of the map m is contained in GL,, (K).

m is surjective: Let g € GL,,(K). For 0 # v € K" we then have

0 < (gv,gv) = (g"gv,v),
showing that g*g is positive definite. Let p := /¢*¢g and define u := gp~'.
Then

w =gp'pT gt =gp g  =glg*9) gt =99 (¢") gt =1

implies that u € U, (K), and it is clear that m(u,p) = g.
m is injective: If m(u,p) = m(w, q) = g, then g = up = wq implies that

p® =p*p = (up)*up = g*g = (wq)*wq = ¢*,
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so that p and q are positive definite square roots of the same positive definite
matrix g*g, hence coincide by (2) above. Now p = ¢, and therefore u =
gt =g =w.

It remains to show that m is a homeomorphism. Its continuity is obvi-
ous, so that it remains to prove the continuity of the inverse map m~!. Let
g; = ujp; — g = up. We have to show that u; — u and p; — p.
Since U, (K) is compact, the sequence (u;) has a subsequence (uj, ) con-
verging to some w € U,(K) by the Bolzano—Weierstrafl Theorem. Then
Dj, = u;klgjk — wlg = ¢ € Herm,(K) and g = wq. For each v € K",
we then have

0< <pjkv,11> — {(qu,v),

showing that all eigenvalues of ¢ are > 0. Moreover, ¢ = w™'g is invertible,
and therefore ¢ is positive definite. Now m(u,p) = m(w, q) yields u = w and
p = q. Since each convergent subsequence of (u;) converges to u, the sequence
itself converges to u (Exercise 2.1.9), and therefore p; = uj_lgj —ulg=p.

O

We shall see later that the set Pd,, (K) is homeomorphic to a vector space
(Proposition 3.3.5), so that, topologically, the group GL, (K) is a product of
the compact group U, (K) and a vector space. Therefore, the “interesting”
part of the topology of GL,,(K) is contained in the compact group U, (K).

Remark 2.1.6 (Normal forms of unitary and orthogonal matrices).
We recall some facts from linear algebra:

(a) For each u € U,(C), there exists an orthonormal basis vy,...,v,
consisting of eigenvectors of g (see [La93, Thm. XV.6.7]). This means that
the unitary matrix s whose columns are the vectors vy, ..., v, satisfies

s tus = diag(\1, ..., An),

where uv; = Ajv and |A;| = 1.

The proof of this normal form is based on the existence of an eigenvector
v1 of u, which in turn follows from the existence of a zero of the characteristic
polynomial. Since u is unitary, it preserves the hyperplane vi- of dimension
n — 1. Now one uses induction to obtain an orthonormal basis vs,...,v,
consisting of eigenvectors.

(b) For elements of O, (R), the situation is more complicated because real
matrices do not always have real eigenvectors.

Let A € M,,(R) and consider it as an element of M, (C). We assume that
A does not have a real eigenvector. Then there exists an eigenvector z € C™
corresponding to some eigenvalue A € C. We write z = x + iy and A = a +1ib.
Then

Az = Az + 1Ay = Xz = (ax — by) + i(ay + bx).

Comparing real and imaginary part yields
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Ax =ax —by and Ay=ay+ bx.

Therefore, the two-dimensional subspace generated by x and y in R” is in-
variant under A.

This can be applied to g € O, (R) as follows. The argument above implies
that there exists an invariant subspace Wy C R™ with dim W € {1,2}. Then

Wit = {v eR": (v,W;) = {0}}

is a subspace of dimension n—dim W7 which is also invariant (Exercise 2.1.14),
and we apply induction to see that R™ is a direct sum of g-invariant subspaces
Wi, ..., Wi of dimension < 2. Therefore, the matrix g is conjugate by an
orthogonal matrix s to a block matrix of the form

d = diag(dy, ..., dy),

where d; is the matrix of the restriction of the linear map corresponding to
g to Wj.

To understand the structure of the d;, we have to take a closer look at
the case n < 2. For n = 1 the group O;(R) = {£1} consists of two elements,
and for n = 2 an element r € O2(R) can be written as

a TFb . 2 2
r(b ia) with detr::I:(a er)::izl7

because the second column contains a unit vector orthogonal to the first one.
With a = cosa and b = sin « we get

,— [cOse Fsino
sina *cosa /)’

For det r = —1, we obtain

s _fa b a b\
r_(b a)(b a>_1’

but this implies that r is an orthogonal reflection with the two eigenvalues
+1 (Exercise 2.1.13), hence has two orthogonal eigenvectors.

In view of the preceding discussion, we may therefore assume that the
first m of the matrices d; are of the rotation form

g — (cosay —sina;
J sina; cosay )’

that dy,41,...,ds are —1, and that dyyq,...,d, are 1:
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cosay —sinaog

sin COs (1

COS vy, — Sinayy,
sin ayy, COS Qi

For n = 3, we obtain in particular the normal form

cosae —sina 0
d=[sina cosa 0
0 0 +1

From this normal form we immediately read off that detd = 1 is equivalent
to d describing a rotation around an axis consisting of fixed points (the axis
is Res for the normal form matrix).

Proposition 2.1.7. (a) The group U,(C) is arcwise connected.
(b) The group O,(R) has the two arc components

SO, (R) and O, (R)_ :={g € O,(R): detg=—1}.

Proof. (a) First we consider U, (C). To see that this group is arcwise con-
nected, let u € U, (C). Then there exists an orthonormal basis vy, ..., v, of
eigenvectors of u (Remark 2.1.6(a)). Let A1, ..., A\, denote the corresponding
eigenvalues. Then the unitarity of w implies that |A;| = 1, and we therefore
find 0; € R with \; = %', Now we define a continuous curve

v:10,1] = U, (C), ~(t)v;:= ew]’ivj, ji=1,...,n.

We then have v(0) = 1 and (1) = u. Moreover, each () is unitary because
the basis (v1,...,v,) is orthonormal.

(b) For g € O,(R), we have gg" = 1, and therefore 1 = det(gg') =
(det g)2. This shows that

and both sets are closed in O, (R) because det is continuous. Therefore, O,, (R)
is not connected, and hence not arcwise connected. Suppose we knew that
SO, (R) is arcwise connected and z,y € O,(R)_. Then 1,27 'y € SO, (R)
can be connected by an arc v: [0,1] — SO, (R), and then ¢ — ay(t) defines
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an arc [0,1] — O, (R)_ connecting x to y. So it remains to show that SO, (R)
is arcwise connected.

Let g € SO, (R). In the normal form of ¢ discussed in Remark 2.1.6, the
determinant of each two-dimensional block is 1, so that the determinant is
the product of all —1-eigenvalues. Hence their number is even, and we can
write each consecutive pair as a block

-1 0\ [(cosm —sinm

0 —-1) \sinm cosm /°
This shows that with respect to some orthonormal basis for R™ the linear
map defined by g has a matrix of the form
cosqay —sinog
sin g COS (1

CcoS vy, —Sinay,
sin COS

1
Now we obtain an arc 7: [0,1] = SO, (R) with v(0) = 1 and (1) = g by

costay —sintog
sintaq costaq

costa,, —sinta,,
sin tayy, costay,

O

Corollary 2.1.8. The group GL,(C) is arcwise connected and the group
GL,(R) has two arc-components given by

GL,(R)4 := {g € GL,(R): +detg > 0}.

Proof. If X = Ax B is a product space, then the arc-components of X are the
sets of the form C' x D, where C C A and D C B are arc-components (easy
Exercise!). The polar decomposition of GL, (K) yields a homeomorphism

GL,(K) =2 U, (K) x Pd,(K).
Since Pd, (K) is an open convex set, it is arcwise connected (Exercise 2.1.6).

Therefore, the arc-components of GL,,(K) are in one-to-one correspondence
with those of U, (K) which have been determined in Proposition 2.1.7. O
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2.1.2 Normal Subgroups of GL,, (K)

We shall frequently need some basic concepts from group theory which we
recall in the following definition.

Definition 2.1.9. Let G be a group with identity element e.

(a) A subgroup N C G is called normal if gN = Ng holds for all g € G.
We write this as N <4 G. The normality implies that the quotient set G/N
(the set of all cosets of the subgroup N) inherits a natural group structure
by

gN - hN := ghN

for which eN is the identity element and the quotient map ¢: G — G/N is a
surjective group homomorphism with kernel N = ker g = ¢~ *(eN).

On the other hand, all kernels of group homomorphisms are normal sub-
groups, so that the normal subgroups are precisely those which are kernels
of group homomorphisms.

It is clear that G and {e} are normal subgroups. We call G simple if
G # {e} and these are the only normal subgroups.

(b) The subgroup Z(G) := {g € G: (Va € G)gx = xg} is called the center
of G. It obviously is a normal subgroup of G. For x € (G, the subgroup

Zg(x) ={g € G: gv = zg}

is called its centralizer. Note that Z(G) = (e Za(x).
(¢) If Gy, ...,G, are groups, then the product set G := Gy X - - - x G}, has
a natural group structure given by

(91,2 90)(91 -1 90) == (91915 - - - GnGn,)-

The group G is called the direct product of the groups G;, j = 1,...,n.
We identify G; with a subgroup of G. Then all subgroups G; are normal
subgroups and G = Gy -+ - Gy,

In the following, we write R} :=]0, oo[.

Proposition 2.1.10. (a) Z(GL,(K)) = K*1.
(b) The multiplication map

@: (RY,) x SLy(R) = GL,(R)4, (N, g) = Mg

is a homeomorphism and a group isomorphism, i.e., an isomorphism of topo-
logical groups.

Proof. (a) It is clear that K*1 is contained in the center of GL,(K). To
see that each matrix ¢ € Z(GL,(K)) is a multiple of 1, we consider the
elementary matrix E;; = (J;;) with the only nonzero entry 1 in position
(i,7). For i # j, we then have E}; = 0, so that (14 E;)(1 — E;;) = 1, which
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implies that T;; := 1 + E;; € GL,(K). From the relation ¢T;; = T;;g we
immediately get gF;; = E;;g for ¢ # j, so that for k,¢ € {1,...,n} we get

k0 = (9Eij ) ke = (Eij@)ke = dingje-

For k =i and ¢ = j, we obtain g;; = g;;; and for k = j = £, we get g;; = 0.
Therefore, g = A1 for some \ € K.

(b) It is obvious that ¢ is a group homomorphism and that ¢ is continuous.
Moreover, the map

¥: GL,(R)4 — RY x SL,(R), g ((detg)n,(detg) 7 g)

is continuous and satisfies ¢ o ¢ = id and ¥ o ¢ = id. Hence ¢ is a homeo-
morphism. O

Remark 2.1.11. The subgroups
Z(GLH(K)) and SL,(K)

are normal subgroups of GL,(K). Moreover, for GL,(R) the subgroup
GL,(R) is a proper normal subgroup and the same holds for R 1. One can
show that these examples exhaust all normal arcwise connected subgroups of

GL, (K).

2.1.3 Exercises for Section 2.1

Exercise 2.1.1. Let V be a K-vector space and A € End(V). We write
VA(A) := ker(A — A1) for the eigenspace of A corresponding to the eigen-
value A and VA(A) := o ker(A — A1)" for the generalized eigenspace of A
corresponding to A.

(a) If A, B € End(V) commute, then

BVAA) CV*A) and BV)(A) C V\(A)

holds for each A € K.

(b) If A € End(V) is diagonalizable and W C V is an A-invariant sub-
space, then Aly € End(W) is diagonalizable.

(c) If A, B € End(V') commute and both are diagonalizable, then they are
simultaneously diagonalizable, i.e., there exists a basis for V' which consists
of eigenvectors of A and B.

(d) If dimV < oo and A C End(V) is a commuting set of diagonalizable
endomorphisms, then A can be simultaneously diagonalized, i.e., V' is a direct
sum of simultaneous eigenspaces of A.

(e) For any function A: A — V, we write VA(A) = (N,c4 Vi(a)(a) for
the corresponding simultaneous eigenspace. Show that the sum ), Vi(A) is
direct.
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(f) If A C End(V) is a finite commuting set of diagonalizable endomor-
phisms, then A can be simultaneously diagonalized.

(g) Find a commuting set of diagonalizable endomorphisms of a vector
space V which cannot be diagonalized simultaneously.

Exercise 2.1.2. Let GG be a topological group. Let Gy be the identity com-
ponent, i.e., the connected component of the identity in G. Show that Gy is
a closed normal subgroup of G.

Exercise 2.1.3. SO, (K) is a closed normal subgroup of O, (K) of index 2
and, for every g € O, (K) with det(g) = —1,

0,(K) = S0, (K) U ¢SO, (K)
is a disjoint decomposition.
Exercise 2.1.4. For each subset M C M, (K), the centralizer
Zav, ) (M) = {g € GL,(K) : (Ym € M)gm = mg}
is a closed subgroup of GL,,(K).

Exercise 2.1.5. We identify C" with R?" by the map z = x + iy — (z,y)
and write I(z,y) := (—y,x) for the real linear endomorphism of R?" corre-
sponding to multiplication with 7. Then

GL4(C) = Zgw,,x) ({1})
yields a realization of GL,,(C) as a closed subgroup of GLg,(R).

Exercise 2.1.6. A subset C' of a real vector space V is called a convex cone
if C is convex and N\C C C for each A > 0.
Show that Pd,,(K) is an open convex cone in Herm,, (K).

Exercise 2.1.7. Show that

cost sint
7: (R, +) = GLx(R), te (— sint cos t)
is a continuous group homomorphism with ~(7) = (_01 31) and im vy =

SOs(R).

Exercise 2.1.8. Show that the group O,,(C) is homeomorphic to the topo-
logical product of the subgroup

0,(R) = U,(C)Nn0O,(C) and the set Pd,(C)NO,(C).

Exercise 2.1.9. Let (X,d) be a compact metric space and (z,)nen a se-
quence in X. Show that lim,, .., x, = x is equivalent to the condition that
each convergent subsequence (z,, )ren converges to x.
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Exercise 2.1.10. If A € Herm, (K) satisfies (Av,v) = 0 for each v € K",
then A = 0.

Exercise 2.1.11. Show that for a complex matrix A € M,,(C) the following
are equivalent:
(1) A* = A.
(2) (Av,v) € R for each v € C™.
Exercise 2.1.12. (a) Show that a matrix A € M, (K) is hermitian if and
only if there exists an orthonormal basis v, ..., v, for K" and real numbers
)\1, ey )\n with Avj = /\jvj.

(b) Show that a complex matrix A € M, (C) is unitary if and only if there

exists an orthonormal basis v1,...,v, for K" and \; € C with |[A;| =1 and
A'Uj = )\j’l}j.

(c) Show that a complex matrix A € M, (C) is normal, i.e., satisfies
A*A = AA*, if and only if there exists an orthonormal basis vy, ..., v, for

K" and A; € C with Av; = A\jv;.

Exercise 2.1.13. (a) Let V be a vector space and 1 # A € End(V) with
A% =1 (A is called an involution). Show that

V =ker(A—1) @ ker(A+1).
(b) Let V be a vector space and A € End(V) with A% = A. Show that
V =ker(A—1)@ker(A+1) @ ker A.

(c) Let V be a vector space and A € End(V') an endomorphism for which
there exists a polynomial p of degree n with n different zeros A1,..., A\, € K
and p(A) = 0. Show that A is diagonalizable with eigenvalues \1,..., \,.

Exercise 2.1.14. Let 5: V x V — K be a bilinear map and g : V" — V with
B(gv, gw) = B(v,w) be a S-isometry. For a subspace E C V| we write

E+:={veV: (Vwe E) f(v,w) =0}
for its orthogonal space. Show that g(E) = E implies that g(ET) = ET.
Exercise 2.1.15 (Iwasawa decomposition of GL,(R)). Let
T (R) C GL, (R)

denote the subgroup of upper-triangular matrices with positive diagonal en-
tries. Show that the multiplication map

p: 0,(R) x T.F(R) — GL,(R), (a,b) ~ ab
is a homeomorphism.
Exercise 2.1.16. Let K be a field and n € N. Show that
Z(Mn(K)) = {z € Mp(K): (Vo € M,(K))zz =2z} =KL



2.2 Groups and Geometry 21

2.2 Groups and Geometry

In Definition 2.1.3, we have defined certain matrix groups by concrete condi-
tions on the matrices. Often it is better to think of matrices as linear maps
described with respect to a basis. To do that, we have to adopt a more ab-
stract point of view. Similarly, one can study symmetry groups of bilinear
forms on a vector space V without fixing a certain basis a priori. Actually,
it is much more convenient to choose a basis for which the structure of the
bilinear form is as simple as possible.

2.2.1 Isometry Groups

Definition 2.2.1 (Groups and bilinear forms). (a) (The abstract general
linear group) Let V' be a K-vector space. We write GL(V) for the group of
linear automorphisms of V. This is the group of invertible elements in the
ring End(V') of all linear endomorphisms of V.

If V is an n-dimensional K-vector space and vq,...,v, is a basis for V,
then the map

@: M, (K) = End(V), &(A)vy = ajv;
j=1

is a linear isomorphism which describes the passage between linear maps and
matrices. In view of ¢(1) = idy and $(AB) = $(A)P(B), we obtain a group
isomorphism

¢|GLn(K): GLn(K) — GL(V)

(b) Let V' be an n-dimensional vector space with basis vy,...,v, and
B:V xV — K a bilinear map. Then B = (b;) := (8(v;,vk))jk=1,...,
(n x n)-matrix, but this matrix should NOT be interpreted as the matrix
of a linear map. It is the matrix of a bilinear map to K, which is something
different. It describes  in the sense that

ﬂ(zxjvjazykvk) = Z ijbjkyk = 1‘TBy7
J k

j,k=1

where 2" By with column vectors z,y € K" is viewed as a matrix product
whose result is a (1 x 1)-matrix, i.e., an element of K.
We write

Aut(V,B) == {g € GL(V): (Vo,w € V) B(gv, gw) = B(v,w)}
for the isometry group of the bilinear form (. Then it is easy to see that

&' (Aut(V,8)) = {g € GL.(K): ¢' Bg = B}.
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If B is symmetric, we also write O(V, ) := Aut(V,5); and if 5 is skew-
symmetric, we write Sp(V, ) := Aut(V, 5).
If v1,...,v, is an orthonormal basis for 3, i.e., B = 1, then

o~ (Aut(V, B)) = 0,(K)

is the orthogonal group defined in Section 2.1. Note that orthonormal bases
can only exist for symmetric bilinear forms (Why?).
For V = K?" and the block (2 x 2)-matrix

o 1,
5= (9 %)

we see that BT = —B, and the group
Spa, (K) == {g € GL2,,(K): g' Bg = B}

is called the symplectic group. The corresponding skew-symmetric bilinear
form on K?" is given by

n
B(z,y) = By = Z TiYn+i — Tn+ilYi-
i=1

(c) A symmetric bilinear form 3 on V is called nondegenerate if f(v, V) =
{0} implies v = 0. For K = C, every nondegenerate symmetric bilinear form
B possesses an orthonormal basis (this builds on the existence of square roots
of nonzero complex numbers; see Exercise 2.2.1), so that for every such form
B we get

O(V, B) = 0,(C).

For K = R, the situation is more complicated, since negative real numbers
do not have a square root in R. There might not be an orthonormal basis,

but if 5 is nondegenerate, there always exists an orthogonal basis vy,...,v,
and p € {1,...,n} such that S(v;,v;) =1for j=1,...,pand B(vj,v;) = —1
forj=p+1,...,n. Let ¢ := n —p and I, ; denote the corresponding matrix

1 0
Ly— <Op _1q> € My, (R).
Then O(V, ) is isomorphic to the group
Opq(R) := {g € GL,(R): g Ipq9 = Ip,q}v

where O, o(R) = O, (R).

(d) Let V be an n-dimensional complex vector space and 5: V x V — C
a sesquilinear form, i.e., § is linear in the first and antilinear in the second
argument. Then we also choose a basis v1, ..., v, in V and define B = (bjx) :=
(B(vj,vk))jk=1,....n, but now we obtain
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B(Z V5, Z ykvk) = Z bk = :z:TBy.
J k j,k=1
We write
U(V,B) == {g € GL(V): (Vv,w € V) B(gv, gw) = B(v,w)}
for the corresponding unitary group and find
&1 (U(V, ) = {g € GL.(C): g' Bg = B}.
If vq,...,v, is an orthonormal basis for 3, i.e., B = 1, then
o~ (U(V,8)) = Un(C) = {g € GLu(C): g" = g7}

is the unitary group over C. We call 8 hermitian if it is sesquilinear and
satisfies 5(y,x) = B(z,y). In this case, one has to face the same problems
as for symmetric forms on real vector spaces, but there always exists an
orthogonal basis vi,...,v, and p € {1,...,n} with 8(v;,v;) = 1 for j =
1,...,pand B(vj,v;) = —1for j=p+1,...,n. With ¢ :=n —p and

Ipq = (10p _(L) € M,(C),
we then define the indefinite unitary groups by
Upq(C) :={g € GL.(C): ¢" I, g7 = Ipq}.
Since I,, ; has real entries,
Upo(C) = {9 € GLu(C): g7 Iq9 = Ipq}
where U, o(C) = U, (C).

Definition 2.2.2. (a) Let V be a vector space. We consider the affine group
Aff(V) of all maps V' — V of the form

Pug(x) =gz +v, geGLV),veV.

We write elements ¢, 4 of Aff(V') simply as pairs (v, g). Then the composition
in Aff(V) is given by

(v, 9)(w, h) = (v + gw, gh),
(0,1) is the identity, and inversion is given by
(079)71 = (797107971)'

For V = K", we put Aff,,(K) := Aff(K™). Then the map
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is an injective group homomorphism, where [g] denotes the matrix of the
linear map with respect to the canonical basis for K™.

(b) (The euclidian isometry group) Let V' = R™ and consider the euclidian
metric d(z,y) := ||z — y[|2 on R". We define

Iso,(R) := {g € Aff(R"): (Vo,y € V) d(gv, gw) = d(v,w)}.

This is the group of affine isometries of the euclidian n-space. Actually one
can show that every isometry of a normed space (V.| - ||) is an affine map
(Exercise 2.2.5). This implies that

Iso,(R) = {g: R" — R™: (Vm,y € R") d(gv, gw) = d(v,w)}.

2.2.2 Semidirect Products

We have seen in Definition 2.1.9 how to form direct products of groups. If
G = G1 x Gy is a direct product of the groups G; and Gs, then we identify
G171 and G5 with the corresponding subgroups of G7 x Gs, i.e., we identify
g1 € G1 with (g1,e) and g2 € G5 with (e, g2). Then G; and G5 are normal
subgroups of G and the product map

m: G1 x Ga = G, (91,92) = 9192 = (91, 92)

is a group isomorphism, i.e., each element g € G has a unique decomposition
g = g192 with g1 € G and g5 € Gs.

The affine group Aff(V') has a structure which is similar. The translation
group V 2 {(v,1): v € V} and the linear group GL(V) = {0} x GL(V) are
subgroups, and each element (v, g) has a unique representation as a product
(v,1)(0,g), but in this case GL(V) is not a normal subgroup, whereas V'
is normal. The following lemma introduces a concept that is important to
understand the structure of groups which have similar decompositions.

In the following, we write Aut(G) for the set of automorphisms of the
group G and note that this set is a group under composition of maps. In
particular, the inverse of a group automorphism is an automorphism.

Lemma 2.2.3. (a) Let N and H be groups, write Aut(N) for the group of
all automorphisms of N, and suppose that 6: H — Aut(N) is a group homo-
morphism. Then we define a multiplication on N x H by

(n,h)(n/ W) := (nd(h)(n), hh). (2.1)

This multiplication turns N x H into a group denoted by N x5 H, where
N = N x {e} is a normal subgroup, H = {e} x H is a subgroup, and each
element g € N x5 H has a unique representation as g =nh, n € N, h € H.
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(b) If, conversely, G is a group, N < G a normal subgroup and H C G
a subgroup with the property that the multiplication map m: N x H — G is
bijective, i.e., NH = G and N N H = {e}, then

§: H — Aut(N), 6(h)(n) :=hnh™" (2.2)
is a group homomorphism, and the map
m: NxsH— G, (n,h)—nh
is a group isomorphism.

Proof. (a) We have to verify the associativity of the multiplication and the
existence of an inverse. The associativity follows from

((n,h)(n’,h’))( 1" h//)

— (nd(h)(n'), h’)(n’,h” — (nd(h)(n")S(hh")(n"), W' h")

— (nd(R)(n")8(h) (5(h")(n")), hkh'B") = (nd(h) (n'S(R')(n")), k' h")
= (n,h)(n'6(K')(n"), ' h”) (n, h)((n/, 1)) (n", h")).

With (2.1) we immediately get the formula for the inverse
(n, ) = (5(h~") (™), b ). (23)
(b) Since
8(hiha)(n) = hihan(hiha) ™t = hy(hanhy YAy = 6(h1)d(ha)(n),

the map 0: H — Aut(V) is a group homomorphism. Moreover, the multipli-
cation map m satisfies

m(n, h)ym(n',h') = nhn'h = (nhn/ k= )K= m((n, h)(n', 1)),
hence is a group homomorphism. It is bijective by assumption. a

Definition 2.2.4. The group N x5 H constructed in Lemma 2.2.3 from the
data (N, H, ) is called the semidirect product of N and H with respect to 4.
If it is clear from the context what § is, then we simply write N x H instead
of N As H.

If § is trivial, i.e., §(h) = idy for each h € H, then N x5 H &
N x H is a direct product. In this sense, semidirect products generalize direct
products. Below we shall see several concrete examples of groups which can
most naturally be described as semidirect products of known groups.

One major point in studying semidirect products is that for any normal
subgroup N < @G, we think of the groups N and G/N as building blocks of
the group G. For each semidirect product G = N x H, we have G/N = H,
so that the two building blocks N and G/N = H are the same, although the
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groups might be quite different, for instance, Aff(V) and V x GL(V) are
very different groups: In the latter group, N = V x {1} is a central subgroup,
and in the former group it is not. On the other hand, there are situations
where G cannot be built from N and H := G/N as a semidirect product.
This works if and only if there exists a group homomorphism o: G/N — G
with o(gN) € gN for each g € G. An example where such a homomorphism
does not exist is

G=C4:={Z€CXIZ4=1} and NZ:CQI:{ZECXIZ2:1}§]G.

In this case, G % N x H for any group H because then H =2 G/N = (3, so
that the fact that G is abelian would lead to G = C5 x C5, contradicting the
existence of elements of order 4 in G.

Example 2.2.5. (a) We know already the following examples of semidirect
products from Definition 2.2.2: The affine group Aff(V') of a vector space is
isomorphic to the semidirect product

Af(V) =V xs GL(V), d(g)(v) = gv.
Similarly, we have
Aff, (R) 2 R" x5 GL,(R), 4(g)(v) = gv.

We furthermore have the subgroup Iso,(R) which, in view of

On(R) = {g € GL,(R): (Vz € R")|lgz| = ||z}
(cf. Exercise 2.2.6), satisfies

Iso,(R) 2 R™ x O, (R).
The group of euclidian motions of R™ is the subgroup
Mot,,(R) := R"™ x SO,,(R)

of those isometries preserving orientation.
(b) For each group G, we can form the semidirect product group

G x5 Aut(G),  6(p)(9) = ¢(9)-

Example 2.2.6 (The concrete Galilei! group). We consider the vector
space
M:=R*=R*xR

I Galileo Galilei (1564-1642), was an Italian mathematician and philosopher. He
held professorships in Pisa and Padua, later he worked at the court in Florence.
The Galilei group is the symmetry group of nonrelativistic kinematics in three
dimensions.
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as the space of pairs (q,t) describing events in a four-dimensional (nonrela-
tivistic) spacetime. Here ¢ stands for the spatial coordinate of the event and
t for the (absolute) time of the event. The set M is called Galilei spacetime.
There are three types of symmetries of this spacetime:

(1) The special Galilei transformations:

GvIRSXR_)RSXR’ (q,t)._>(q—|—vt,t):($ 11)) <(Z>

describing movements with constant velocity v.
(2) Rotations:

R*xR = R* xR, (q,t)— (Aq,t), A€ SO03(R),
(3) Space translations
T, R*xR = R3xR, (q,t)— (qg+uv,t),
and time translations
Tg:R¥xR—-R3xR, (q,t) = (¢,t+B).

All these maps are affine maps on R*. The subgroup I" C Aff4(R) gener-
ated by the maps in (1), (2) and (3) is called the proper (orthochrone) Galilei
group. The full Galilei group Iext is obtained if we add the time reversion
T(q,t) := (¢, —t) and the space reflection S(g,t) := (—q,t). Both are not
contained in I.

Roughly stated, Galilei’s relativity principle states that the basic physi-
cal laws of closed systems are invariant under transformations of the proper
Galilei group (see [Sch95], Section I1.2, for more information on this per-
spective). It means that I" is the natural symmetry group of nonrelativistic
mechanics.

To describe the structure of the group I', we first observe that by (3) it
contains the subgroup Iy = (R*, +) of all spacetime translations. The maps
under (1) and (2) are linear maps on R*. They generate the group

Iy = {(v,A): A €SO;3(R),v € R*},

where we write (v, A) for the affine map given by (q,t) — (Aqg + vt,t). The
composition of two such maps is given by

(v, A).((v',A").(q,t)) = (A(A'q +V't) + vt, t) = (AA g + (AV + o)t t),
so that the product in Iy is
(v, A)(v', A") = (v + AV’ AA").

We conclude that
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I, = R3 x SO3(R)

is isomorphic to the group Mots(R) of motions of euclidian space. We thus
obtain the description

I~ R* x (R? x SO3(R)) = R* x Mot3(R),

where Mot3(R) acts on R* by (v, A).(q,t) := (Aq + vt,t), which corresponds
to the natural embedding Aff3(R) — GL4(R) discussed in Example 2.2.2.
For the extended Galilei group, one easily obtains

Lot 2T ) {S,T,5T, 1} = "' x (Cy x C3)

because the group {S, T, ST, 1} generated by S and T is a four element group
intersecting the normal subgroup I trivially. Therefore, the description as a
semidirect product follows from the second part of Lemma 2.2.3.

Example 2.2.7 (The concrete Poincaré group). In the preceding ex-
ample, we have viewed four-dimensional spacetime as a product of space R3
with time R. This picture changes if one wants to incorporate special rela-
tivity. Here the underlying spacetime is Minkowski space, which is M = R*,
endowed with the Lorentz form

B(z,y) == z1y1 + Tay2 + T3Y3 — TaYa.

The group
L:=03,1(R) = O(R*,3)

is called the Lorentz group. This is the symmetry group of relativistic (clas-
sical) mechanics.
The Lorentz group has several important subgroups:

Ly :=S031(R):=LNSLy(R) and L'":={g€ L: gy >1}.

The condition g44 > 1 comes from the observation that for e, = (0,0,0,1)"
we have

—1 = Bles, e4) = B(ges, gea) = gis + 934 + 954 — Yau»

so that g7, > 1. Therefore, either gis > 1 or gy < —1. To understand
geometrically why LT is a subgroup, we consider the quadratic form

q(2) = B(w,x) = i + 23 + 25 — ]

on R*. Since ¢ is invariant under L, the action of the group L on R* preserves
the double cone

C:={ze R*: g(x) < 0} ={ze RY: |zy] > H(azl,zg,xg)H}.
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Let
Cy:={zxelC: £z, >0} = {x eRY: +a4> H(ml,xg,xg)u}.

Then C = C4 UC_ with Cy N C_ = {0} and the sets Cy are both con-
vex cones, as follows easily from the convexity of the norm function on R3
(Exercise). Each element g € L preserves the set C'\ {0} which has the two
arc-components C \ {0}. The continuity of the map g: C'\ {0} — C\ {0}
now implies that we have two possibilities. Either ¢C, = C4 or ¢C = C_.
In the first case, g44 > 1 and in the latter case g4q4 < —1.

In the physics literature, one sometimes finds SO3 ; (R) as the notation for
Ll := Ly N LT, which is inconsistent with the standard notation for matrix
groups.

The (proper) Poincaré group is the corresponding affine group

— T
P:=R'x L.

This group is the identity component of the inhomogeneous Lorentz group
R* x L. Some people use the name Poincaré group only for the universal
covering group P of P which is isomorphic to R* x SLy(C), as we shall see
below in Example 9.5.16(3).

The topological structure of the Poincaré- and Lorentz group will become
more transparent when we have refined information on the polar decomposi-
tion obtained from the exponential function (Example 4.3.4). Then we shall
see that the Lorentz group L has four arc-components

rh, 4, L', and L',
where
Li:={g€L:detg==41}, L‘¥:={gecL:gy<-1}

and
LY :=LienL", LL:=LinL%

2.2.3 Exercises for Section 2.2

Exercise 2.2.1. (a) Let 8 be a symmetric bilinear form on a finite-di-
mensional complex vector space V. Show that there exists an orthogonal
basis v1,...,v, with B(vj,v;) = 1 for j = 1,...,p and B(vj,v;) = 0 for
J>p.

(b) Show that each invertible symmetric matrix B € GL,(C) can be
written as B = AAT for some A € GL,(C).

Exercise 2.2.2. Let 3 be a symmetric bilinear form on a finite-dimensional
real vector space V. Show that there exists an orthogonal basis v1,...,Vptq
with B(vj,v;) =1for j =1,...,p, B(vj,v;) = —1lforj=p+1,...,p+gq,
and B(vj,v;) =0for j > p+gq.
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Exercise 2.2.3. Let 3 be a skew-symmetric bilinear form on a finite-dimen-
sional vector space V which is nondegenerate in the sense that 5(v, V) = {0}
implies v = 0. Show that there exists a basis vy, ..., vy, wi,...,w, of V with

,B(Ui,wj) = 6ij and ﬁ(vi,vj) = B(wi,wj) = 0
Exercise 2.2.4 (Metric characterization of midpoints). Let (X, || - ||)
be a normed space and z,y € X distinct points. Let
Tty
7

My={z€X:|z—a|=lz—-yll=3lz—yll} and m:=
For a subset A C X, we define its diameter
§(A) :=sup{|la —b] : a,b € A}.
Show that:

(1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar
product), then My = {m} is a one-element set.

(2) llz = ml < 3(Mo) < Lz — y| for = € Mo.

(3) For n € N, we define inductively:

M, :={p€ M,_1: (V2 € My_1) ||z —p|| < 36(M,_1)}.

Then, for each n € N:
(a) M, is a convex set.
(b) M, is invariant under the point reflection s,,(a) := 2m — a in m.
(¢c) me M,.
(d) 6(M) < 56(Myp—).
(4) Mo Mo = {m},

Exercise 2.2.5 (Isometries of normed spaces are affine maps). Let
(X, - ]l) be a normed space endowed with the metric d(z,y) = ||l — y||.
Show that each isometry ¢: (X,d) — (X,d) is an affine map by using the
following steps:

(1) It suffices to assume that ¢(0) = 0 and to show that this implies that ¢
is a linear map.
(2) p(3*) = 5(o(x) + @(y)) for z,y € X.
(3) ¢ is continuous.
(4) p(Ax) = Ap(x) for A € 22 C R.
() p(z +y) = p(x) + ¢(y) for z,y € X.
(6) p(Ax) = Ap(z) for X € R.
Exercise 2.2.6. Let 5: V x V — V be a symmetric bilinear form on the
vector space V and
V=V, v pv,0)

the corresponding quadratic form. Then for ¢ € End(V) the following are
equivalent:
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(1) (Vv € V) q(p(v)) = q(v).
(2) (Vo,w € V) Bp(v), p(w)) = B(v, w).

Exercise 2.2.7. We consider R* = R3 x R, where the elements of R* are
considered as spacetime events (q,t), ¢ € R?, t € R. On R*, we have the
linear (time) functional

AR 5 R, (z,t) — t
and we endow ker A = R? with the euclidian scalar product

Blz,y) == z1y1 + T2y + 23Y3.
Show that
H = {g € GL4(R): gker A Cker A, glker a € Og(R)} ~ R3 x (Og(R) X RX)
and
G:={gcH: Aog= A} =R3 x 03(R).

In this sense, the linear part of the Galilei group (extended by the space
reflection S) is isomorphic to the symmetry group of the triple (R%, 3, A),
where A represents a universal time function and (§ is the scalar product
on ker A. In the relativistic picture (Example 2.2.7), the time function is
combined with the scalar product in the Lorentz form.

Exercise 2.2.8. On the four-dimensional real vector space V := Hermy(C),
we consider the symmetric bilinear form /3 given by

B(A, B) :=tr(AB) — tr Atr B.

Show that:

(1) The corresponding quadratic form is given by ¢(A) = [(4,4) =
—2det A.
(2) Show that (V,3) =2 R*! by finding a basis E1, ..., B4 of Hermy(C) with

q(ar By + -+ asEy) :a% +a§ +a§ fai.

(3) For g € GL2(C) and A € Hermy(C), the matrix gAg* is hermitian and
satisfies

q(gAg*) = | det(g)[*q(A).

(4) For g € SLa(C), we define a linear map p(g) € GL(Herma(C)) by
p(g)(A) := gAg*. Then we obtain a homomorphism

p: SL2(C) — O(V, B) = O31(R).

(5) Show that ker p = {£1}.
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Exercise 2.2.9. Let 5: V x V — K be a bilinear form.

(1) Show that there exist a unique symmetric bilinear form S, and a
unique skew-symmetric bilinear form S_ with 8 = 8, + 5_.

(2) Aut(V, B) = O(V, 31) N Sp(V, 5.

Exercise 2.2.10. (a) Let G be a group, N C G a normal subgroup and
q: G — G/N,g— gN the quotient homomorphism. Show that:
(1) If G 2 N x5 H for a subgroup H, then H = G/N.
(2) There exists a subgroup H C G with G & N x4 H if and only if there
exists a group homomorphism o: G/N — G with go o = idg/n-
(b) Show that
GL,(K) = SL, (K) x5 K*

for a suitable homomorphism ¢: K* — Aut(SL,, (K)).
Exercise 2.2.11. Show that O, ;(C) = O,44(C) for p,q € No, p+ ¢ > 0.

Exercise 2.2.12. Let (V, ) be a euclidian vector space, i.e., a real vector
space endowed with a positive definite symmetric bilinear form 5. An element
o € O(V,p) is called an orthogonal reflection if 02 = 1 and ker(c — 1) is
a hyperplane. Show that for any finite-dimensional euclidian vector space
(V, ), the orthogonal group O(V, 3) is generated by reflections.

Exercise 2.2.13. (i) Show that, if n is odd, each g € SO, (R) has the eigen-
value 1.
(ii) Show that each g € O, (R)_ has the eigenvalue —1.

Exercise 2.2.14. Let V be a K-vector space. An element ¢ € GL(V) is called
a transvection if dimg(im (¢ —idy)) = 1 and im (¢ — idy) C ker(¢ — idy ).
Show that:

(i) For each transvection ¢, there exist a v, € V and a o, € V* such that
©(v) = v — ay(v)v, and a,(v,) = 0.

(ii) For each transvection ¢, there exist a v, € V and a o, € V* such that
p(v) =v — ay,(v)v, and ay,(v,) = 0.

(ii) If dim V' < oo, then det(p) = 1 for each transvection ¢.

(iii) If ¢ € GL(V) commutes with all transvections, then every element of V'
is an eigenvector of v, so that ¢ € K> idy .

(iv) Z(GL(V)) = K*1.

(v) IfdimV = n < oo, then Z(SL(V)) = I'l, where I" := {z € K*: 2" = 1}.

Exercise 2.2.15. Let V be a finite-dimensional K-vector space for K = R or
C and $ be a skew symmetric bilinear form on V. Show that:

(i) A transvection p(v) = v — ay,(v)v, preserves f if and only if
(Vo,weV):  ap(v)Bvg, w) = ay(w)B(ve,v).

If, in addition, g is nondegenerate, we call ¢ a symplectic transvection.
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(ii) If B is nondegenerate and 1 € GL(V) commutes with all symplectic
transvections, then every vector in V' is an eigenvector of 1.

Exercise 2.2.16. Let V be a finite-dimensional K-vector space for K =R or
C and B be a non-degenerate symmetric bilinear form on V. An involution
v € O(V, B) is called an orthogonal reflection if dimg (im(¢ —idy)) = 1. Show
that:

(i) For each orthogonal reflection ¢, there exists a non-isotropic v, € V' such

that p(v) =v —2 Blovg)
B(ve,v4)
(ii) If vp € GL(V') commutes with all orthogonal reflections, then every non-
isotropic vector for g is an eigenvector of 1, and this implies that ¢ €
K* idy.
(iv) Z(O(V, 8)) = {+1}.

2.3 Quaternionic Matrix Groups

It is an important conceptual step to extend the real number field R to
the field C of complex numbers. There are numerous motivations for this
extension. The most obvious one is that not every algebraic equation with
real coefficients has a solution in R, and that C is algebraically closed in
the sense that every nonconstant polynomial, even with complex coefficients,
has zeros in C. This is the celebrated Fundamental Theorem of Algebra.
For analysis, the main point in passing from R to C is that the theory of
holomorphic functions permits us to understand many functions showing up
in real analysis from a more natural viewpoint, which leads to a thorough
understanding of singularities and of integrals which can be computed with
the calculus of residues.

It is therefore a natural question whether there exists an extension FF of the
field C which would similarly enrich analysis and algebra if we pass from C
to F. It is an important algebraic result that there exists no finite-dimensional
field extension of R other than C (cf. Exercise 2.3.4). This is most naturally
obtained in Galois theory, i.e., the theory of extending fields by adding zeros
of polynomials. It is closely related to the fact that every real polynomial is
a product of linear factors and factors of degree 2. Fortunately, this does not
mean that one has to give up, but that one has to sacrifice one of the axioms
of a field to obtain something new.

We call a unital (associative) algebra A a skew field or a division algebra
if every nonzero element a € A* is invertible, i.e., A = A* U {0}. Now
the question is: Are there any division algebras which are finite-dimensional
real vector spaces, apart from R and C. Here the answer is yes: there is
the four-dimensional division algebra H of quaternions, and this is the only
finite-dimensional real noncommutative division algebra.
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The easiest way to define the quaternions is to take

H:= { (g ;) € My(C): a,be (C}.

Lemma 2.3.1. H is a real subalgebra of Ms(C) which is a division algebra.

Proof. 1t is clear that H is a real vector subspace of M3(C). For the product
of elements of H, we obtain

a —b\ (¢ —d\ _(ac—bd —ad—bc cH
b a)\d ¢) \bc+ad —bd+ac
This implies that H is a real subalgebra of Ms(C).
We further have

det (Z ‘a") = |a|® + |b]?, (2.4)

so that every nonzero element of H is invertible in M5(C), and its inverse

() o (%)) o)

is again contained in H. O

A convenient basis for H is given by

i 0 0 -1 0 —
o R L T T G

Then the multiplication in H is completely determined by the relations
P=J*=K*=-1 and [J=-JI=K.

Here C = R1 + RI as real vector spaces, but H is not a complex algebra
because the multiplication in H is not a complex bilinear map.
Since H is a division algebra, its group of units is H* = H\ {0}, and (2.4)
implies that
H* = HN GL2(C).

On H, we consider the euclidian norm given by

|z| := Vdet z, ’ (Z __b> ‘ =+/|a|® + |b]2.

a
From the multiplicativity of the determinant, we immediately derive that

ley| = |z| - ly] for =,y e H. (2.6)
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It follows in particular that S := {z € H: |z| = 1} is a subgroup of H. In
terms of complex matrices, we have S = SU,(C).

Many results about vector spaces and matrices over fields generalize to
matrices over division rings. If the division ring is noncommutative, however,
one has to be careful on which side one wants to let the ring act. We want
to recover the usual identification of linear maps with matrices acting from
the left on column vectors such that the composition of maps corresponds to
matrix multiplication. To this end, one has to consider the column vectors
with entries in H as a right H-module via componentwise multiplication.
See Exercises 2.3.1 and 2.3.2 for the basics of quaternionic linear algebra
(a systematic treatment of linear algebra on division rings can be found in
[Bou70], Chapter II).

In contrast to bases, linear maps and representing matrices, determinants
do not have a straightforward generalization to linear algebra over division
rings. Thus we cannot characterize the quaternionic general linear group
GL, (H) of invertible elements in the ring M, (H) of n x n-matrices with
entries in H via an H-valued determinant.

Proposition 2.3.2. View M, (H) as a real subalgebra of Ms,,(C) writing each
entry of A € M, (H) as a complex 2 X 2-matriz. Then

GL,(H) = {A € M, (H) : detc(A) # 0},
where detc: Mo, (C) — C is the ordinary determinant.

Proof. Tt suffices to show that M, (H) N GLs,(C) C GL,(H). So pick A €
M, (H) which is invertible in Ma,(C). Then the left multiplication A4 by
A on M, (H) is injective, hence bijective. Thus we have A~! = A\;'(1) €
M, (H). O

It follows from Proposition 2.3.2 that GL,, (H) is a (closed) subgroup of
GL3,,(C). Moreover, it allows us to define the quaternionic special linear group

SL,,(H) := GL,,(H) N SLs, (C).
Observe that H as a subset of M2(C) can be characterized as

H={Ac My(C):AJ = JA},

where J = (_01 (1)) is the matrix used to build the symplectic group Sp,(K)

in Definition 2.2.1. Thus GL,,(H), viewed as a subgroup of GLs,(C) is given
by
GL,(H) = {A € GL2,(C) : AJ,, = J, A},

where J,, is the block diagonal matrix in Ms,, (C) having J as diagonal entries.

It turns out that inside GL,,(H) one can define analogs of unitary groups
which are closely related to the symplectic groups. We note first that we can
write the norm on H as
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2] = Vara,

where x* = al — bl — ¢J — dK for x = al 4+ bl + ¢J + dK. We extend this
conjugation to matrices with entries in H setting

*

* * *
T1ir L1z 0 Tim L1 To1 ot T

* * *
T21 T22 o Tom Lo Tz 1 Typo

* * *
Tnl Tn2 7 Tam Tin Lon °° Tpm

Note that with respect to the embedding M,, (H) — Ms,,(C) this involution
agrees with the standard involution A — A* = ZT on My, (C). Now

H" xH" - H, (v,w)—v"w

defines a quaternionic inner product on H" and v — |v| := v/v*v is a euclidian
norm on the real vector space H" = R4,

Definition 2.3.3. For p + ¢ = n € N view the matrix [, , from Defini-
tion 2.2.1 as an element of M, (H) and define quaternionic unitary groups
via

U, o(H) :={g € GL,(H) : ¢* 1,09 = L4}
If p or ¢ is zero, then we simply write U, (H).
Proposition 2.3.4. Viewed as a subset of GLa, (C), the quaternionic unitary
group U, o(H), is given by

UP#] (H) = U2p,2q ((C) N Sp ((Can 6) ’

where B: C?" x C?" — C is the skew-symmetric bilinear form given by the
matriz J,| 1o, 24. The group Sp(C*", B) is conjugate to Sp,(C) in GLa,(C).
In particular, U, (H) is isomorphic to a compact subgroup of Sps,, (C).

Proof. Let g € U, o(H) be viewed as an element of GL5,,(C). Then we have
9*Isp249 = Iop oy and GJ,, = Jpg. Therefore, J, g* = g" J and

gTJJI%,?qg = ']nT12p72q- O

2.3.1 Exercises for Section 2.3

For the first two exercises, recall that a right module M over a (noncom-
mutative) ring R is an abelian group M together with a map M x R —
M, (m,r) — mr such that r — (m — mr) defines a ring homomorphism
R — End(M).

Exercise 2.3.1. Let V be a right H-module. Show that
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(i) V is free, i.e., it admits an H-basis.

(ii) If V is finitely generated as an H-module, then it admits a finite H-basis.
In this case, all H-bases have the same number of elements. This number
is called the dimension of V over H and denoted by dimy (V).

Exercise 2.3.2. Let V and W be two right H-modules with H-bases v1, ..., vm
and wy, ..., w,. Given an H-linear map ¢: V — W, write

o(v;) =Y wiax;
k=1

with ay; € H. Show that
(1) If o(v) = w with v = 3" | v,2, and W = Y7 w,ys, then

1 a1 aiz -+ Qim T
Y2 21 Q22 -+ A2m T2
Yn an1 Aap2 *°  Amn Tm

(ii) The map ¢ — (ax;) is a bijection between the set of H-linear maps
p: V. — W and matrices A € M, (H) intertwining the composition of
maps with the ordinary matrix multiplication (whenever composition
makes sense).

Exercise 2.3.3. Show that the group U, (H) is compact and connected.
Exercise 2.3.4. Show that each finite-dimensional complex division algebra
is one-dimensional.

2.3.2 Notes on Chapter 2

The material covered in this chapter is standard and only touches the sur-
faces of what is known about the structure of matrix groups. For much more
detailed presentations, see [GW09] or [Gr01].
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