
2 Concrete Matrix Groups

In this chapter, we mainly study the general linear group GLn(K) of invertible
n×n-matrices with entries inK = R or C and introduce some of its subgroups.
In particular, we discuss some of the connections between matrix groups and
also introduce certain symmetry groups of geometric structures like bilinear
or sesquilinear forms. In Section 2.3, we introduce also groups of matrices
with entries in the quaternions H.

2.1 The General Linear Group

We start with some notation. We write GLn(K) for the group of invertible
matrices in Mn(K) and note that

GLn(K) =
{
g ∈ Mn(K) :

(
∃h ∈ Mn(K)

)
hg = gh = 1

}
.

Since the invertibility of a matrix can be tested with its determinant,

GLn(K) =
{
g ∈ Mn(K) : det g �= 0

}
.

This group is called the general linear group.
On the vector space K

n, we consider the euclidian norm

‖x‖ :=
√

|x1|2 + · · ·+ |xn|2, x ∈ K
n,

and on Mn(K) the corresponding operator norm

‖A‖ := sup
{
‖Ax‖ : x ∈ K

n, ‖x‖ ≤ 1
}

which turns Mn(K) into a Banach space. On every subset S ⊆ Mn(K), we
shall always consider the subspace topology inherited from Mn(K) (otherwise
we shall say so). In this sense, GLn(K) and all its subgroups carry a natural
topology.

Lemma 2.1.1. The group GLn(K) has the following properties:

(i) GLn(K) is open in Mn(K).
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(ii) The multiplication map m : GLn(K)×GLn(K) → GLn(K) and the inver-
sion map η : GLn(K) → GLn(K) are smooth and in particular continu-
ous.

Proof. (i) Since the determinant function

det : Mn(K) → K, det(aij) =
∑

σ∈Sn

sgn(σ)a1,σ(1) · · · an,σ(n)

is continuous and K
× := K \ {0} is open in K, the set GLn(K) = det−1(K×)

is open in Mn(K).
(ii) For g ∈ GLn(K), we define bij(g) := det(gmk)m �=j,k �=i. According to

Cramer’s Rule, the inverse of g is given by

(
g−1

)
ij
=

(−1)i+j

det g
bij(g).

The smoothness of the inversion therefore follows from the smoothness of the
determinant (which is a polynomial) and the polynomial functions bij defined
on Mn(K).

For the smoothness of the multiplication map, it suffices to observe that

(ab)ik =

n∑

j=1

aijbjk

is the (ik)-entry in the product matrix. Since all these entries are quadratic
polynomials in the entries of a and b, the product is a smooth map. 	


Definition 2.1.2. A topological group G is a Hausdorff space G, endowed
with a group structure, such that the multiplication map mG : G × G → G
and the inversion map η : G → G are continuous, when G × G is endowed
with the product topology.

Lemma 2.1.1(ii) says in particular that GLn(K) is a topological group. It
is clear that the continuity of group multiplication and inversion is inherited
by every subgroup G ⊆ GLn(K), so that every subgroup G of GLn(K) also
is a topological group.

We write a matrix A = (aij)i,j=1,...,n also as (aij) and define

A� := (aji), A := (aij), and A∗ := A
�
= (aji).

Note that A∗ = A� is equivalent to A = A, which means that all entries of
A are real. Now we can define the most important classes of matrix groups.

Definition 2.1.3. We introduce the following notation for some important
subgroups of GLn(K):
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(1) The special linear group: SLn(K) := {g ∈ GLn(K) : det g = 1}.
(2) The orthogonal group: On(K) := {g ∈ GLn(K) : g� = g−1}.
(3) The special orthogonal group: SOn(K) := SLn(K) ∩On(K).
(4) The unitary group: Un(K) := {g ∈ GLn(K) : g∗ = g−1}. Note that

Un(R) = On(R), but On(C) �= Un(C).
(5) The special unitary group: SUn(K) := SLn(K) ∩Un(K).

One easily verifies that these are indeed subgroups. One simply has to use
that (ab)� = b�a�, ab = ab and that

det : GLn(K) → (K×, ·)

is a group homomorphism.
We write Hermn(K) := {A ∈ Mn(K) : A∗ = A} for the set of hermitian

matrices. For K = C, this is not a complex vector subspace of Mn(K), but it
is always a real subspace. A matrix A ∈ Hermn(K) is called positive definite
if for each 0 �= z ∈ K

n we have 〈Az, z〉 > 0, where

〈z, w〉 :=
n∑

j=1

zjwj

is the natural scalar product on K
n. We write Pdn(K) ⊆ Hermn(K) for the

subset of positive definite matrices.

Lemma 2.1.4. The groups

Un(C), SUn(C), On(R), and SOn(R)

are compact.

Proof. Since all these groups are subsets ofMn(C) ∼= C
n2

, by the Heine–Borel
Theorem we only have to show that they are closed and bounded.

Bounded: In view of

SOn(R) ⊆ On(R) ⊆ Un(C) and SUn(C) ⊆ Un(C),

it suffices to see that Un(C) is bounded. Let g1, . . . , gn denote the rows of
the matrix g ∈ Mn(C). Then g∗ = g−1 is equivalent to gg∗ = 1, which
means that g1, . . . , gn form an orthonormal basis for Cn with respect to the
scalar product 〈z, w〉 =

∑n
j=1 zjwj which induces the norm ‖z‖ =

√
〈z, z〉.

Therefore, g ∈ Un(C) implies ‖gj‖ = 1 for each j, so that Un(C) is bounded.
Closed: The functions

f, h : Mn(K) → Mn(K), f(A) := AA∗ − 1 and h(A) := AA� − 1

are continuous. Therefore, the groups

Un(K) := f−1(0) and On(K) := h−1(0)

are closed. Likewise SLn(K) = det−1(1) is closed, and therefore the groups
SUn(C) and SOn(R) are also closed because they are intersections of closed
subsets. 	
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2.1.1 The Polar Decomposition

Proposition 2.1.5 (Polar decomposition). The multiplication map

m : Un(K)× Pdn(K) → GLn(K), (u, p) �→ up

is a homeomorphism. In particular, each invertible matrix g can be written
in a unique way as a product g = up of a unitary matrix u and a positive
definite matrix p.

Proof. We know from linear algebra that for each hermitian matrix A there
exists an orthonormal basis v1, . . . , vn for K

n consisting of eigenvectors of
A, and that all the corresponding eigenvalues λ1, . . . , λn are real (see [La93,
Thm. XV.6.4]). From that it is obvious that A is positive definite if and only
if λj > 0 holds for each j. For a positive definite matrix A, this has two
important consequences:

(1) A is invertible, and A−1 satisfies A−1vj = λ−1
j vj .

(2) There exists a unique positive definite matrix B with B2 = A which
will be denoted

√
A: We define B with respect to the basis (v1, . . . , vn) by

Bvj =
√
λjvj . Then B2 = A is obvious and since all λj are real and the vj

are orthonormal, B is positive definite because

〈
B

(∑

i

μivi

)
,
∑

j

μjvj

〉
=

∑

i,j

μiμj〈Bvi, vj〉 =
n∑

j=1

|μj |2
√
λj > 0

for
∑

j μjvj �= 0 and real coefficients μj . It remains to verify the uniqueness.

So assume that C is positive definite with C2 = A. Then CA = C3 = AC
implies that C preserves all eigenspaces of A, so that we find an orthonormal
basis w1, . . . , wn consisting of simultaneous eigenvectors of C and A (cf. Ex-
ercise 2.1.1). If Cwj = αjwj , we have Awj = α2

jwj , which implies that C

acts on the λ-eigenspace of A by multiplication with
√
λ, which shows that

C = B.
From (1) we derive that the image of the map m is contained in GLn(K).
m is surjective: Let g ∈ GLn(K). For 0 �= v ∈ K

n we then have

0 < 〈gv, gv〉 = 〈g∗gv, v〉,

showing that g∗g is positive definite. Let p :=
√
g∗g and define u := gp−1.

Then

uu∗ = gp−1p−1g∗ = gp−2g∗ = g(g∗g)−1g∗ = gg−1(g∗)−1g∗ = 1

implies that u ∈ Un(K), and it is clear that m(u, p) = g.
m is injective: If m(u, p) = m(w, q) = g, then g = up = wq implies that

p2 = p∗p = (up)∗up = g∗g = (wq)∗wq = q2,
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so that p and q are positive definite square roots of the same positive definite
matrix g∗g, hence coincide by (2) above. Now p = q, and therefore u =
gp−1 = gq−1 = w.

It remains to show that m is a homeomorphism. Its continuity is obvi-
ous, so that it remains to prove the continuity of the inverse map m−1. Let
gj = ujpj → g = up. We have to show that uj → u and pj → p.
Since Un(K) is compact, the sequence (uj) has a subsequence (ujk) con-
verging to some w ∈ Un(K) by the Bolzano–Weierstraß Theorem. Then
pjk = u−1

jk
gjk → w−1g =: q ∈ Hermn(K) and g = wq. For each v ∈ K

n,
we then have

0 ≤ 〈pjkv, v〉 → 〈qv, v〉,

showing that all eigenvalues of q are ≥ 0. Moreover, q = w−1g is invertible,
and therefore q is positive definite. Now m(u, p) = m(w, q) yields u = w and
p = q. Since each convergent subsequence of (uj) converges to u, the sequence
itself converges to u (Exercise 2.1.9), and therefore pj = u−1

j gj → u−1g = p.
	


We shall see later that the set Pdn(K) is homeomorphic to a vector space
(Proposition 3.3.5), so that, topologically, the group GLn(K) is a product of
the compact group Un(K) and a vector space. Therefore, the “interesting”
part of the topology of GLn(K) is contained in the compact group Un(K).

Remark 2.1.6 (Normal forms of unitary and orthogonal matrices).
We recall some facts from linear algebra:

(a) For each u ∈ Un(C), there exists an orthonormal basis v1, . . . , vn
consisting of eigenvectors of g (see [La93, Thm. XV.6.7]). This means that
the unitary matrix s whose columns are the vectors v1, . . . , vn satisfies

s−1us = diag(λ1, . . . , λn),

where uvj = λjv and |λj | = 1.
The proof of this normal form is based on the existence of an eigenvector

v1 of u, which in turn follows from the existence of a zero of the characteristic
polynomial. Since u is unitary, it preserves the hyperplane v⊥1 of dimension
n − 1. Now one uses induction to obtain an orthonormal basis v2, . . . , vn
consisting of eigenvectors.

(b) For elements of On(R), the situation is more complicated because real
matrices do not always have real eigenvectors.

Let A ∈ Mn(R) and consider it as an element of Mn(C). We assume that
A does not have a real eigenvector. Then there exists an eigenvector z ∈ C

n

corresponding to some eigenvalue λ ∈ C. We write z = x+ iy and λ = a+ ib.
Then

Az = Ax+ iAy = λz = (ax− by) + i(ay + bx).

Comparing real and imaginary part yields
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Ax = ax− by and Ay = ay + bx.

Therefore, the two-dimensional subspace generated by x and y in R
n is in-

variant under A.
This can be applied to g ∈ On(R) as follows. The argument above implies

that there exists an invariant subspace W1 ⊆ R
n with dimW1 ∈ {1, 2}. Then

W⊥
1 :=

{
v ∈ R

n : 〈v,W1〉 = {0}
}

is a subspace of dimension n−dimW1 which is also invariant (Exercise 2.1.14),
and we apply induction to see that Rn is a direct sum of g-invariant subspaces
W1, . . . ,Wk of dimension ≤ 2. Therefore, the matrix g is conjugate by an
orthogonal matrix s to a block matrix of the form

d = diag(d1, . . . , dk),

where dj is the matrix of the restriction of the linear map corresponding to
g to Wj .

To understand the structure of the dj , we have to take a closer look at
the case n ≤ 2. For n = 1 the group O1(R) = {±1} consists of two elements,
and for n = 2 an element r ∈ O2(R) can be written as

r =

(
a ∓b
b ±a

)
with det r = ±

(
a2 + b2

)
= ±1,

because the second column contains a unit vector orthogonal to the first one.
With a = cosα and b = sinα we get

r =

(
cosα ∓ sinα
sinα ± cosα

)
.

For det r = −1, we obtain

r2 =

(
a b
b −a

)(
a b
b −a

)
= 1,

but this implies that r is an orthogonal reflection with the two eigenvalues
±1 (Exercise 2.1.13), hence has two orthogonal eigenvectors.

In view of the preceding discussion, we may therefore assume that the
first m of the matrices dj are of the rotation form

dj =

(
cosαj − sinαj

sinαj cosαj

)
,

that dm+1, . . . , d� are −1, and that d�+1, . . . , dn are 1:
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm

sinαm cosαm

−1
. . .

−1
1

. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For n = 3, we obtain in particular the normal form

d =

⎛

⎝
cosα − sinα 0
sinα cosα 0
0 0 ±1

⎞

⎠ .

From this normal form we immediately read off that det d = 1 is equivalent
to d describing a rotation around an axis consisting of fixed points (the axis
is Re3 for the normal form matrix).

Proposition 2.1.7. (a) The group Un(C) is arcwise connected.
(b) The group On(R) has the two arc components

SOn(R) and On(R)− :=
{
g ∈ On(R) : det g = −1

}
.

Proof. (a) First we consider Un(C). To see that this group is arcwise con-
nected, let u ∈ Un(C). Then there exists an orthonormal basis v1, . . . , vn of
eigenvectors of u (Remark 2.1.6(a)). Let λ1, . . . , λn denote the corresponding
eigenvalues. Then the unitarity of u implies that |λj | = 1, and we therefore
find θj ∈ R with λj = eθji. Now we define a continuous curve

γ : [0, 1] → Un(C), γ(t)vj := etθjivj , j = 1, . . . , n.

We then have γ(0) = 1 and γ(1) = u. Moreover, each γ(t) is unitary because
the basis (v1, . . . , vn) is orthonormal.

(b) For g ∈ On(R), we have gg� = 1, and therefore 1 = det(gg�) =
(det g)2. This shows that

On(R) = SOn(R) ∪̇On(R)−

and both sets are closed in On(R) because det is continuous. Therefore, On(R)
is not connected, and hence not arcwise connected. Suppose we knew that
SOn(R) is arcwise connected and x, y ∈ On(R)−. Then 1, x−1y ∈ SOn(R)
can be connected by an arc γ : [0, 1] → SOn(R), and then t �→ xγ(t) defines
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an arc [0, 1] → On(R)− connecting x to y. So it remains to show that SOn(R)
is arcwise connected.

Let g ∈ SOn(R). In the normal form of g discussed in Remark 2.1.6, the
determinant of each two-dimensional block is 1, so that the determinant is
the product of all −1-eigenvalues. Hence their number is even, and we can
write each consecutive pair as a block

(
−1 0
0 −1

)
=

(
cosπ − sinπ
sinπ cosπ

)
.

This shows that with respect to some orthonormal basis for R
n the linear

map defined by g has a matrix of the form

g =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cosα1 − sinα1

sinα1 cosα1

. . .

cosαm − sinαm

sinαm cosαm

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Now we obtain an arc γ : [0, 1] → SOn(R) with γ(0) = 1 and γ(1) = g by

γ(t) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos tα1 − sin tα1

sin tα1 cos tα1

. . .

cos tαm − sin tαm

sin tαm cos tαm

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

	

Corollary 2.1.8. The group GLn(C) is arcwise connected and the group
GLn(R) has two arc-components given by

GLn(R)± :=
{
g ∈ GLn(R) : ± det g > 0

}
.

Proof. If X = A×B is a product space, then the arc-components ofX are the
sets of the form C ×D, where C ⊆ A and D ⊆ B are arc-components (easy
Exercise!). The polar decomposition of GLn(K) yields a homeomorphism

GLn(K) ∼= Un(K)× Pdn(K).

Since Pdn(K) is an open convex set, it is arcwise connected (Exercise 2.1.6).
Therefore, the arc-components of GLn(K) are in one-to-one correspondence
with those of Un(K) which have been determined in Proposition 2.1.7. 	
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2.1.2 Normal Subgroups of GLn(K)

We shall frequently need some basic concepts from group theory which we
recall in the following definition.

Definition 2.1.9. Let G be a group with identity element e.
(a) A subgroup N ⊆ G is called normal if gN = Ng holds for all g ∈ G.

We write this as N � G. The normality implies that the quotient set G/N
(the set of all cosets of the subgroup N) inherits a natural group structure
by

gN · hN := ghN

for which eN is the identity element and the quotient map q : G → G/N is a
surjective group homomorphism with kernel N = ker q = q−1(eN).

On the other hand, all kernels of group homomorphisms are normal sub-
groups, so that the normal subgroups are precisely those which are kernels
of group homomorphisms.

It is clear that G and {e} are normal subgroups. We call G simple if
G �= {e} and these are the only normal subgroups.

(b) The subgroup Z(G) := {g ∈ G : (∀x ∈ G)gx = xg} is called the center
of G. It obviously is a normal subgroup of G. For x ∈ G, the subgroup

ZG(x) := {g ∈ G : gx = xg}

is called its centralizer. Note that Z(G) =
⋂

x∈G ZG(x).
(c) If G1, . . . , Gn are groups, then the product set G := G1×· · ·×Gn has

a natural group structure given by

(g1, . . . , gn)(g
′
1, . . . , g

′
n) := (g1g

′
1, . . . , gng

′
n).

The group G is called the direct product of the groups Gj , j = 1, . . . , n.
We identify Gj with a subgroup of G. Then all subgroups Gj are normal
subgroups and G = G1 · · ·Gn.

In the following, we write R
×
+ := ]0,∞[.

Proposition 2.1.10. (a) Z(GLn(K)) = K
×1.

(b) The multiplication map

ϕ : (R×
+, ·)× SLn(R) → GLn(R)+, (λ, g) �→ λg

is a homeomorphism and a group isomorphism, i.e., an isomorphism of topo-
logical groups.

Proof. (a) It is clear that K
×1 is contained in the center of GLn(K). To

see that each matrix g ∈ Z(GLn(K)) is a multiple of 1, we consider the
elementary matrix Eij := (δij) with the only nonzero entry 1 in position
(i, j). For i �= j, we then have E2

ij = 0, so that (1+Eij)(1−Eij) = 1, which
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implies that Tij := 1 + Eij ∈ GLn(K). From the relation gTij = Tijg we
immediately get gEij = Eijg for i �= j, so that for k, � ∈ {1, . . . , n} we get

gkiδj� = (gEij)k� = (Eijg)k� = δikgj�.

For k = i and � = j, we obtain gii = gjj ; and for k = j = �, we get gji = 0.
Therefore, g = λ1 for some λ ∈ K.

(b) It is obvious that ϕ is a group homomorphism and that ϕ is continuous.
Moreover, the map

ψ : GLn(R)+ → R
×
+ × SLn(R), g �→

(
(det g)

1
n , (det g)−

1
n g

)

is continuous and satisfies ϕ ◦ ψ = id and ψ ◦ ϕ = id. Hence ϕ is a homeo-
morphism. 	


Remark 2.1.11. The subgroups

Z
(
GLn(K)

)
and SLn(K)

are normal subgroups of GLn(K). Moreover, for GLn(R) the subgroup
GLn(R)+ is a proper normal subgroup and the same holds for R×

+1. One can
show that these examples exhaust all normal arcwise connected subgroups of
GLn(K).

2.1.3 Exercises for Section 2.1

Exercise 2.1.1. Let V be a K-vector space and A ∈ End(V ). We write
Vλ(A) := ker(A − λ1) for the eigenspace of A corresponding to the eigen-
value λ and V λ(A) :=

⋃
n∈N

ker(A−λ1)n for the generalized eigenspace of A
corresponding to λ.

(a) If A,B ∈ End(V ) commute, then

BV λ(A) ⊆ V λ(A) and BVλ(A) ⊆ Vλ(A)

holds for each λ ∈ K.
(b) If A ∈ End(V ) is diagonalizable and W ⊆ V is an A-invariant sub-

space, then A|W ∈ End(W ) is diagonalizable.
(c) If A,B ∈ End(V ) commute and both are diagonalizable, then they are

simultaneously diagonalizable, i.e., there exists a basis for V which consists
of eigenvectors of A and B.

(d) If dimV < ∞ and A ⊆ End(V ) is a commuting set of diagonalizable
endomorphisms, then A can be simultaneously diagonalized, i.e., V is a direct
sum of simultaneous eigenspaces of A.

(e) For any function λ : A → V , we write Vλ(A) =
⋂

a∈A Vλ(a)(a) for
the corresponding simultaneous eigenspace. Show that the sum

∑
λ Vλ(A) is

direct.



2.1 The General Linear Group 19

(f) If A ⊆ End(V ) is a finite commuting set of diagonalizable endomor-
phisms, then A can be simultaneously diagonalized.

(g) Find a commuting set of diagonalizable endomorphisms of a vector
space V which cannot be diagonalized simultaneously.

Exercise 2.1.2. Let G be a topological group. Let G0 be the identity com-
ponent , i.e., the connected component of the identity in G. Show that G0 is
a closed normal subgroup of G.

Exercise 2.1.3. SOn(K) is a closed normal subgroup of On(K) of index 2
and, for every g ∈ On(K) with det(g) = −1,

On(K) = SOn(K) ∪ g SOn(K)

is a disjoint decomposition.

Exercise 2.1.4. For each subset M ⊆ Mn(K), the centralizer

ZGLn(K)(M) :=
{
g ∈ GLn(K) : (∀m ∈ M)gm = mg

}

is a closed subgroup of GLn(K).

Exercise 2.1.5. We identify C
n with R

2n by the map z = x + iy �→ (x, y)
and write I(x, y) := (−y, x) for the real linear endomorphism of R2n corre-
sponding to multiplication with i. Then

GLn(C) ∼= ZGL2n(R)

(
{I}

)

yields a realization of GLn(C) as a closed subgroup of GL2n(R).

Exercise 2.1.6. A subset C of a real vector space V is called a convex cone
if C is convex and λC ⊆ C for each λ > 0.

Show that Pdn(K) is an open convex cone in Hermn(K).

Exercise 2.1.7. Show that

γ : (R,+) → GL2(R), t �→
(

cos t sin t
− sin t cos t

)

is a continuous group homomorphism with γ(π) =
(−1 0

0 −1

)
and im γ =

SO2(R).

Exercise 2.1.8. Show that the group On(C) is homeomorphic to the topo-
logical product of the subgroup

On(R) ∼= Un(C) ∩On(C) and the set Pdn(C) ∩On(C).

Exercise 2.1.9. Let (X, d) be a compact metric space and (xn)n∈N a se-
quence in X. Show that limn→∞ xn = x is equivalent to the condition that
each convergent subsequence (xnk

)k∈N converges to x.
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Exercise 2.1.10. If A ∈ Hermn(K) satisfies 〈Av, v〉 = 0 for each v ∈ K
n,

then A = 0.

Exercise 2.1.11. Show that for a complex matrix A ∈ Mn(C) the following
are equivalent:

(1) A∗ = A.
(2) 〈Av, v〉 ∈ R for each v ∈ C

n.

Exercise 2.1.12. (a) Show that a matrix A ∈ Mn(K) is hermitian if and
only if there exists an orthonormal basis v1, . . . , vn for Kn and real numbers
λ1, . . . , λn with Avj = λjvj .

(b) Show that a complex matrix A ∈ Mn(C) is unitary if and only if there
exists an orthonormal basis v1, . . . , vn for Kn and λj ∈ C with |λj | = 1 and
Avj = λjvj .

(c) Show that a complex matrix A ∈ Mn(C) is normal, i.e., satisfies
A∗A = AA∗, if and only if there exists an orthonormal basis v1, . . . , vn for
K

n and λj ∈ C with Avj = λjvj .

Exercise 2.1.13. (a) Let V be a vector space and 1 �= A ∈ End(V ) with
A2 = 1 (A is called an involution). Show that

V = ker(A− 1)⊕ ker(A+ 1).

(b) Let V be a vector space and A ∈ End(V ) with A3 = A. Show that

V = ker(A− 1)⊕ ker(A+ 1)⊕ kerA.

(c) Let V be a vector space and A ∈ End(V ) an endomorphism for which
there exists a polynomial p of degree n with n different zeros λ1, . . . , λn ∈ K

and p(A) = 0. Show that A is diagonalizable with eigenvalues λ1, . . . , λn.

Exercise 2.1.14. Let β : V × V → K be a bilinear map and g : V → V with
β(gv, gw) = β(v, w) be a β-isometry. For a subspace E ⊆ V , we write

E⊥ :=
{
v ∈ V : (∀w ∈ E) β(v, w) = 0

}

for its orthogonal space. Show that g(E) = E implies that g(E�) = E�.

Exercise 2.1.15 (Iwasawa decomposition of GLn(R)). Let

T+
n (R) ⊆ GLn(R)

denote the subgroup of upper-triangular matrices with positive diagonal en-
tries. Show that the multiplication map

μ : On(R)× T+
n (R) → GLn(R), (a, b) �→ ab

is a homeomorphism.

Exercise 2.1.16. Let K be a field and n ∈ N. Show that

Z
(
Mn(K)

)
:=

{
z ∈ Mn(K) :

(
∀x ∈ Mn(K)

)
zx = xz

}
= K1.
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2.2 Groups and Geometry

In Definition 2.1.3, we have defined certain matrix groups by concrete condi-
tions on the matrices. Often it is better to think of matrices as linear maps
described with respect to a basis. To do that, we have to adopt a more ab-
stract point of view. Similarly, one can study symmetry groups of bilinear
forms on a vector space V without fixing a certain basis a priori. Actually,
it is much more convenient to choose a basis for which the structure of the
bilinear form is as simple as possible.

2.2.1 Isometry Groups

Definition 2.2.1 (Groups and bilinear forms). (a) (The abstract general
linear group) Let V be a K-vector space. We write GL(V ) for the group of
linear automorphisms of V . This is the group of invertible elements in the
ring End(V ) of all linear endomorphisms of V .

If V is an n-dimensional K-vector space and v1, . . . , vn is a basis for V ,
then the map

Φ : Mn(K) → End(V ), Φ(A)vk :=

n∑

j=1

ajkvj

is a linear isomorphism which describes the passage between linear maps and
matrices. In view of Φ(1) = idV and Φ(AB) = Φ(A)Φ(B), we obtain a group
isomorphism

Φ|GLn(K) : GLn(K) → GL(V ).

(b) Let V be an n-dimensional vector space with basis v1, . . . , vn and
β : V × V → K a bilinear map. Then B = (bjk) := (β(vj , vk))j,k=1,...,n is an
(n × n)-matrix, but this matrix should NOT be interpreted as the matrix
of a linear map. It is the matrix of a bilinear map to K, which is something
different. It describes β in the sense that

β

(∑

j

xjvj ,
∑

k

ykvk

)
=

n∑

j,k=1

xjbjkyk = x�By,

where x�By with column vectors x, y ∈ K
n is viewed as a matrix product

whose result is a (1× 1)-matrix, i.e., an element of K.
We write

Aut(V, β) :=
{
g ∈ GL(V ) : (∀v, w ∈ V )β(gv, gw) = β(v, w)

}

for the isometry group of the bilinear form β. Then it is easy to see that

Φ−1
(
Aut(V, β)

)
=

{
g ∈ GLn(K) : g�Bg = B

}
.
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If β is symmetric, we also write O(V, β) := Aut(V, β); and if β is skew-
symmetric, we write Sp(V, β) := Aut(V, β).

If v1, . . . , vn is an orthonormal basis for β, i.e., B = 1, then

Φ−1
(
Aut(V, β)

)
= On(K)

is the orthogonal group defined in Section 2.1. Note that orthonormal bases
can only exist for symmetric bilinear forms (Why?).

For V = K
2n and the block (2× 2)-matrix

B :=

(
0 1n

−1n 0

)
,

we see that B� = −B, and the group

Sp2n(K) :=
{
g ∈ GL2n(K) : g�Bg = B

}

is called the symplectic group. The corresponding skew-symmetric bilinear
form on K

2n is given by

β(x, y) = x�By =

n∑

i=1

xiyn+i − xn+iyi.

(c) A symmetric bilinear form β on V is called nondegenerate if β(v, V ) =
{0} implies v = 0. For K = C, every nondegenerate symmetric bilinear form
β possesses an orthonormal basis (this builds on the existence of square roots
of nonzero complex numbers; see Exercise 2.2.1), so that for every such form
β we get

O(V, β) ∼= On(C).

For K = R, the situation is more complicated, since negative real numbers
do not have a square root in R. There might not be an orthonormal basis,
but if β is nondegenerate, there always exists an orthogonal basis v1, . . . , vn
and p ∈ {1, . . . , n} such that β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = −1
for j = p+1, . . . , n. Let q := n− p and Ip,q denote the corresponding matrix

Ip,q =

(
1p 0
0 −1q

)
∈ Mp+q(R).

Then O(V, β) is isomorphic to the group

Op,q(R) :=
{
g ∈ GLn(R) : g

�Ip,qg = Ip,q
}
,

where On,0(R) = On(R).
(d) Let V be an n-dimensional complex vector space and β : V × V → C

a sesquilinear form, i.e., β is linear in the first and antilinear in the second
argument. Then we also choose a basis v1, . . . , vn in V and define B = (bjk) :=
(β(vj , vk))j,k=1,...,n, but now we obtain
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β

(∑

j

xjvj ,
∑

k

ykvk

)
=

n∑

j,k=1

xjbjkyk = x�By.

We write

U(V, β) :=
{
g ∈ GL(V ) : (∀v, w ∈ V )β(gv, gw) = β(v, w)

}

for the corresponding unitary group and find

Φ−1
(
U(V, β)

)
=

{
g ∈ GLn(C) : g

�Bg = B
}
.

If v1, . . . , vn is an orthonormal basis for β, i.e., B = 1, then

Φ−1
(
U(V, β)

)
= Un(C) =

{
g ∈ GLn(C) : g

∗ = g−1
}

is the unitary group over C. We call β hermitian if it is sesquilinear and
satisfies β(y, x) = β(x, y). In this case, one has to face the same problems
as for symmetric forms on real vector spaces, but there always exists an
orthogonal basis v1, . . . , vn and p ∈ {1, . . . , n} with β(vj , vj) = 1 for j =
1, . . . , p and β(vj , vj) = −1 for j = p+ 1, . . . , n. With q := n− p and

Ip,q :=

(
1p 0
0 −1q

)
∈ Mn(C),

we then define the indefinite unitary groups by

Up,q(C) :=
{
g ∈ GLn(C) : g

�Ip,qg = Ip,q
}
.

Since Ip,q has real entries,

Up,q(C) =
{
g ∈ GLn(C) : g

∗Ip,qg = Ip,q
}
,

where Un,0(C) = Un(C).

Definition 2.2.2. (a) Let V be a vector space. We consider the affine group
Aff(V ) of all maps V → V of the form

ϕv,g(x) = gx+ v, g ∈ GL(V ), v ∈ V.

We write elements ϕv,g of Aff(V ) simply as pairs (v, g). Then the composition
in Aff(V ) is given by

(v, g)(w, h) = (v + gw, gh),

(0,1) is the identity, and inversion is given by

(v, g)−1 =
(
−g−1v, g−1

)
.

For V = K
n, we put Affn(K) := Aff(Kn). Then the map
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Φ : Affn(K) → GLn+1(K), Φ(v, g) =

(
[g] v
0 1

)

is an injective group homomorphism, where [g] denotes the matrix of the
linear map with respect to the canonical basis for Kn.

(b) (The euclidian isometry group) Let V = R
n and consider the euclidian

metric d(x, y) := ‖x− y‖2 on R
n. We define

Ison(R) :=
{
g ∈ Aff

(
R

n
)
: (∀x, y ∈ V ) d(gv, gw) = d(v, w)

}
.

This is the group of affine isometries of the euclidian n-space. Actually one
can show that every isometry of a normed space (V, ‖ · ‖) is an affine map
(Exercise 2.2.5). This implies that

Ison(R) =
{
g : Rn → R

n :
(
∀x, y ∈ R

n
)
d(gv, gw) = d(v, w)

}
.

2.2.2 Semidirect Products

We have seen in Definition 2.1.9 how to form direct products of groups. If
G = G1 ×G2 is a direct product of the groups G1 and G2, then we identify
G1 and G2 with the corresponding subgroups of G1 × G2, i.e., we identify
g1 ∈ G1 with (g1, e) and g2 ∈ G2 with (e, g2). Then G1 and G2 are normal
subgroups of G and the product map

m : G1 ×G2 → G, (g1, g2) �→ g1g2 = (g1, g2)

is a group isomorphism, i.e., each element g ∈ G has a unique decomposition
g = g1g2 with g1 ∈ G1 and g2 ∈ G2.

The affine group Aff(V ) has a structure which is similar. The translation
group V ∼= {(v,1) : v ∈ V } and the linear group GL(V ) ∼= {0} × GL(V ) are
subgroups, and each element (v, g) has a unique representation as a product
(v,1)(0, g), but in this case GL(V ) is not a normal subgroup, whereas V
is normal. The following lemma introduces a concept that is important to
understand the structure of groups which have similar decompositions.

In the following, we write Aut(G) for the set of automorphisms of the
group G and note that this set is a group under composition of maps. In
particular, the inverse of a group automorphism is an automorphism.

Lemma 2.2.3. (a) Let N and H be groups, write Aut(N) for the group of
all automorphisms of N , and suppose that δ : H → Aut(N) is a group homo-
morphism. Then we define a multiplication on N ×H by

(n, h)(n′, h′) :=
(
nδ(h)(n′), hh′). (2.1)

This multiplication turns N × H into a group denoted by N �δ H, where
N ∼= N × {e} is a normal subgroup, H ∼= {e} × H is a subgroup, and each
element g ∈ N �δ H has a unique representation as g = nh, n ∈ N , h ∈ H.
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(b) If, conversely, G is a group, N � G a normal subgroup and H ⊆ G
a subgroup with the property that the multiplication map m : N ×H → G is
bijective, i.e., NH = G and N ∩H = {e}, then

δ : H → Aut(N), δ(h)(n) := hnh−1 (2.2)

is a group homomorphism, and the map

m : N �δ H → G, (n, h) �→ nh

is a group isomorphism.

Proof. (a) We have to verify the associativity of the multiplication and the
existence of an inverse. The associativity follows from

(
(n, h)(n′, h′)

)
(n′′, h′′)

=
(
nδ(h)(n′), hh′)(n′′, h′′) =

(
nδ(h)(n′)δ(hh′)(n′′), hh′h′′)

=
(
nδ(h)(n′)δ(h)

(
δ(h′)(n′′)

)
, hh′h′′) =

(
nδ(h)

(
n′δ(h′)(n′′)

)
, hh′h′′)

= (n, h)
(
n′δ(h′)(n′′), h′h′′) = (n, h)

(
(n′, h′)(n′′, h′′)

)
.

With (2.1) we immediately get the formula for the inverse

(n, h)−1 =
(
δ
(
h−1

)(
n−1

)
, h−1

)
. (2.3)

(b) Since

δ(h1h2)(n) = h1h2n(h1h2)
−1 = h1

(
h2nh

−1
2

)
h−1
1 = δ(h1)δ(h2)(n),

the map δ : H → Aut(N) is a group homomorphism. Moreover, the multipli-
cation map m satisfies

m(n, h)m(n′, h′) = nhn′h′ = (nhn′h−1)hh′ = m
(
(n, h)(n′, h′)

)
,

hence is a group homomorphism. It is bijective by assumption. 	


Definition 2.2.4. The group N �δ H constructed in Lemma 2.2.3 from the
data (N,H, δ) is called the semidirect product of N and H with respect to δ.
If it is clear from the context what δ is, then we simply write N �H instead
of N �δ H.

If δ is trivial, i.e., δ(h) = idN for each h ∈ H, then N �δ H ∼=
N×H is a direct product. In this sense, semidirect products generalize direct
products. Below we shall see several concrete examples of groups which can
most naturally be described as semidirect products of known groups.

One major point in studying semidirect products is that for any normal
subgroup N � G, we think of the groups N and G/N as building blocks of
the group G. For each semidirect product G = N �H, we have G/N ∼= H,
so that the two building blocks N and G/N ∼= H are the same, although the
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groups might be quite different, for instance, Aff(V ) and V × GL(V ) are
very different groups: In the latter group, N = V ×{1} is a central subgroup,
and in the former group it is not. On the other hand, there are situations
where G cannot be built from N and H := G/N as a semidirect product.
This works if and only if there exists a group homomorphism σ : G/N → G
with σ(gN) ∈ gN for each g ∈ G. An example where such a homomorphism
does not exist is

G = C4 :=
{
z ∈ C

× : z4 = 1
}

and N := C2 :=
{
z ∈ C

× : z2 = 1
}

� G.

In this case, G �∼= N �H for any group H because then H ∼= G/N ∼= C2, so
that the fact that G is abelian would lead to G ∼= C2 ×C2, contradicting the
existence of elements of order 4 in G.

Example 2.2.5. (a) We know already the following examples of semidirect
products from Definition 2.2.2: The affine group Aff(V ) of a vector space is
isomorphic to the semidirect product

Aff(V ) ∼= V �δ GL(V ), δ(g)(v) = gv.

Similarly, we have

Affn(R) ∼= R
n
�δ GLn(R), δ(g)(v) = gv.

We furthermore have the subgroup Ison(R) which, in view of

On(R) =
{
g ∈ GLn(R) :

(
∀x ∈ R

n
)
‖gx‖ = ‖x‖

}

(cf. Exercise 2.2.6), satisfies

Ison(R) ∼= R
n
�On(R).

The group of euclidian motions of Rn is the subgroup

Motn(R) := R
n
� SOn(R)

of those isometries preserving orientation.
(b) For each group G, we can form the semidirect product group

G�δ Aut(G), δ(ϕ)(g) = ϕ(g).

Example 2.2.6 (The concrete Galilei1 group). We consider the vector
space

M := R
4 ∼= R

3 × R

1 Galileo Galilei (1564–1642), was an Italian mathematician and philosopher. He
held professorships in Pisa and Padua, later he worked at the court in Florence.
The Galilei group is the symmetry group of nonrelativistic kinematics in three
dimensions.
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as the space of pairs (q, t) describing events in a four-dimensional (nonrela-
tivistic) spacetime. Here q stands for the spatial coordinate of the event and
t for the (absolute) time of the event. The set M is called Galilei spacetime.
There are three types of symmetries of this spacetime:

(1) The special Galilei transformations:

Gv : R
3 × R → R

3 × R, (q, t) �→ (q + vt, t) =

(
1 v
0 1

)(
q
t

)

describing movements with constant velocity v.
(2) Rotations:

R
3 × R → R

3 × R, (q, t) �→ (Aq, t), A ∈ SO3(R),

(3) Space translations

Tv : R
3 × R → R

3 × R, (q, t) �→ (q + v, t),

and time translations

Tβ : R
3 × R → R

3 × R, (q, t) �→ (q, t+ β).

All these maps are affine maps on R
4. The subgroup Γ ⊆ Aff4(R) gener-

ated by the maps in (1), (2) and (3) is called the proper (orthochrone) Galilei
group. The full Galilei group Γext is obtained if we add the time reversion
T (q, t) := (q,−t) and the space reflection S(q, t) := (−q, t). Both are not
contained in Γ .

Roughly stated, Galilei’s relativity principle states that the basic physi-
cal laws of closed systems are invariant under transformations of the proper
Galilei group (see [Sch95], Section II.2, for more information on this per-
spective). It means that Γ is the natural symmetry group of nonrelativistic
mechanics.

To describe the structure of the group Γ , we first observe that by (3) it
contains the subgroup Γt

∼= (R4,+) of all spacetime translations. The maps
under (1) and (2) are linear maps on R

4. They generate the group

Γ� :=
{
(v,A) : A ∈ SO3(R), v ∈ R

3
}
,

where we write (v,A) for the affine map given by (q, t) �→ (Aq + vt, t). The
composition of two such maps is given by

(v,A).
(
(v′, A′).(q, t)

)
=

(
A(A′q + v′t) + vt, t

)
=

(
AA′q + (Av′ + v)t, t

)
,

so that the product in Γ� is

(v,A)(v′, A′) = (v +Av′, AA′).

We conclude that



28 2 Concrete Matrix Groups

Γ�
∼= R

3
� SO3(R)

is isomorphic to the group Mot3(R) of motions of euclidian space. We thus
obtain the description

Γ ∼= R
4
�

(
R

3
� SO3(R)

) ∼= R
4
�Mot3(R),

where Mot3(R) acts on R
4 by (v,A).(q, t) := (Aq + vt, t), which corresponds

to the natural embedding Aff3(R) → GL4(R) discussed in Example 2.2.2.
For the extended Galilei group, one easily obtains

Γext
∼= Γ � {S, T, ST,1} ∼= Γ � (C2 × C2)

because the group {S, T, ST,1} generated by S and T is a four element group
intersecting the normal subgroup Γ trivially. Therefore, the description as a
semidirect product follows from the second part of Lemma 2.2.3.

Example 2.2.7 (The concrete Poincaré group). In the preceding ex-
ample, we have viewed four-dimensional spacetime as a product of space R

3

with time R. This picture changes if one wants to incorporate special rela-
tivity. Here the underlying spacetime is Minkowski space, which is M = R

4,
endowed with the Lorentz form

β(x, y) := x1y1 + x2y2 + x3y3 − x4y4.

The group
L := O3,1(R) ∼= O

(
R

4, β
)

is called the Lorentz group. This is the symmetry group of relativistic (clas-
sical) mechanics.

The Lorentz group has several important subgroups:

L+ := SO3,1(R) := L ∩ SL4(R) and L↑ := {g ∈ L : g44 ≥ 1}.

The condition g44 ≥ 1 comes from the observation that for e4 = (0, 0, 0, 1)�

we have

−1 = β(e4, e4) = β(ge4, ge4) = g214 + g224 + g234 − g244,

so that g244 ≥ 1. Therefore, either g44 ≥ 1 or g44 ≤ −1. To understand
geometrically why L↑ is a subgroup, we consider the quadratic form

q(x) := β(x, x) = x2
1 + x2

2 + x2
3 − x2

4

on R
4. Since q is invariant under L, the action of the group L on R

4 preserves
the double cone

C :=
{
x ∈ R

4 : q(x) ≤ 0
}
=

{
x ∈ R

4 : |x4| ≥
∥
∥(x1, x2, x3)

∥
∥}.
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Let

C± := {x ∈ C : ± x4 ≥ 0} =
{
x ∈ R

4 : ± x4 ≥
∥
∥(x1, x2, x3)

∥
∥}.

Then C = C+ ∪ C− with C+ ∩ C− = {0} and the sets C± are both con-
vex cones, as follows easily from the convexity of the norm function on R

3

(Exercise). Each element g ∈ L preserves the set C \ {0} which has the two
arc-components C± \ {0}. The continuity of the map g : C \ {0} → C \ {0}
now implies that we have two possibilities. Either gC+ = C+ or gC+ = C−.
In the first case, g44 ≥ 1 and in the latter case g44 ≤ −1.

In the physics literature, one sometimes finds SO3,1(R) as the notation for

L↑
+ := L+ ∩ L↑, which is inconsistent with the standard notation for matrix

groups.
The (proper) Poincaré group is the corresponding affine group

P := R
4
� L↑

+.

This group is the identity component of the inhomogeneous Lorentz group
R

4
� L. Some people use the name Poincaré group only for the universal

covering group P̃ of P which is isomorphic to R
4
� SL2(C), as we shall see

below in Example 9.5.16(3).
The topological structure of the Poincaré- and Lorentz group will become

more transparent when we have refined information on the polar decomposi-
tion obtained from the exponential function (Example 4.3.4). Then we shall
see that the Lorentz group L has four arc-components

L↑
+, L↓

+, L↑
−, and L↓

−,

where

L± := {g ∈ L : det g = ±1}, L↓ := {g ∈ L : g44 ≤ −1}

and
L↑
± := L± ∩ L↑, L↓

± := L± ∩ L↓.

2.2.3 Exercises for Section 2.2

Exercise 2.2.1. (a) Let β be a symmetric bilinear form on a finite-di-
mensional complex vector space V . Show that there exists an orthogonal
basis v1, . . . , vn with β(vj , vj) = 1 for j = 1, . . . , p and β(vj , vj) = 0 for
j > p.

(b) Show that each invertible symmetric matrix B ∈ GLn(C) can be
written as B = AA� for some A ∈ GLn(C).

Exercise 2.2.2. Let β be a symmetric bilinear form on a finite-dimensional
real vector space V . Show that there exists an orthogonal basis v1, . . . , vp+q

with β(vj , vj) = 1 for j = 1, . . . , p, β(vj , vj) = −1 for j = p + 1, . . . , p + q,
and β(vj , vj) = 0 for j > p+ q.
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Exercise 2.2.3. Let β be a skew-symmetric bilinear form on a finite-dimen-
sional vector space V which is nondegenerate in the sense that β(v, V ) = {0}
implies v = 0. Show that there exists a basis v1, . . . , vn, w1, . . . , wn of V with

β(vi, wj) = δij and β(vi, vj) = β(wi, wj) = 0.

Exercise 2.2.4 (Metric characterization of midpoints). Let (X, ‖ · ‖)
be a normed space and x, y ∈ X distinct points. Let

M0 :=
{
z ∈ X : ‖z − x‖ = ‖z − y‖ = 1

2‖x− y‖
}

and m :=
x+ y

2
.

For a subset A ⊆ X, we define its diameter

δ(A) := sup
{
‖a− b‖ : a, b ∈ A

}
.

Show that:

(1) If X is a pre-Hilbert space (i.e., a vector space with a hermitian scalar
product), then M0 = {m} is a one-element set.

(2) ‖z −m‖ ≤ 1
2δ(M0) ≤ 1

2‖x− y‖ for z ∈ M0.
(3) For n ∈ N, we define inductively:

Mn :=
{
p ∈ Mn−1 : (∀z ∈ Mn−1) ‖z − p‖ ≤ 1

2δ(Mn−1)
}
.

Then, for each n ∈ N:
(a) Mn is a convex set.
(b) Mn is invariant under the point reflection sm(a) := 2m− a in m.
(c) m ∈ Mn.
(d) δ(Mn) ≤ 1

2δ(Mn−1).
(4)

⋂
n∈N

Mn = {m}.

Exercise 2.2.5 (Isometries of normed spaces are affine maps). Let
(X, ‖ · ‖) be a normed space endowed with the metric d(x, y) := ‖x − y‖.
Show that each isometry ϕ : (X, d) → (X, d) is an affine map by using the
following steps:

(1) It suffices to assume that ϕ(0) = 0 and to show that this implies that ϕ
is a linear map.

(2) ϕ(x+y
2 ) = 1

2 (ϕ(x) + ϕ(y)) for x, y ∈ X.
(3) ϕ is continuous.
(4) ϕ(λx) = λϕ(x) for λ ∈ 2Z ⊆ R.
(5) ϕ(x+ y) = ϕ(x) + ϕ(y) for x, y ∈ X.
(6) ϕ(λx) = λϕ(x) for λ ∈ R.

Exercise 2.2.6. Let β : V × V → V be a symmetric bilinear form on the
vector space V and

q : V → V, v �→ β(v, v)

the corresponding quadratic form. Then for ϕ ∈ End(V ) the following are
equivalent:
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(1) (∀v ∈ V ) q(ϕ(v)) = q(v).
(2) (∀v, w ∈ V ) β(ϕ(v), ϕ(w)) = β(v, w).

Exercise 2.2.7. We consider R
4 = R

3 × R, where the elements of R4 are
considered as spacetime events (q, t), q ∈ R

3, t ∈ R. On R
4, we have the

linear (time) functional

Δ : R4 → R, (x, t) �→ t

and we endow kerΔ ∼= R
3 with the euclidian scalar product

β(x, y) := x1y1 + x2y2 + x3y3.

Show that

H :=
{
g ∈ GL4(R) : g kerΔ ⊆ kerΔ, g|kerΔ ∈ O3(R)

} ∼= R
3
�
(
O3(R)× R

×)

and
G := {g ∈ H : Δ ◦ g = Δ} ∼= R

3
�O3(R).

In this sense, the linear part of the Galilei group (extended by the space
reflection S) is isomorphic to the symmetry group of the triple (R4, β,Δ),
where Δ represents a universal time function and β is the scalar product
on kerΔ. In the relativistic picture (Example 2.2.7), the time function is
combined with the scalar product in the Lorentz form.

Exercise 2.2.8. On the four-dimensional real vector space V := Herm2(C),
we consider the symmetric bilinear form β given by

β(A,B) := tr(AB)− trA trB.

Show that:

(1) The corresponding quadratic form is given by q(A) := β(A,A) =
−2 detA.

(2) Show that (V, β) ∼= R
3,1 by finding a basis E1, . . . , E4 of Herm2(C) with

q(a1E1 + · · ·+ a4E4) = a21 + a22 + a23 − a24.

(3) For g ∈ GL2(C) and A ∈ Herm2(C), the matrix gAg∗ is hermitian and
satisfies

q(gAg∗) = | det(g)|2q(A).

(4) For g ∈ SL2(C), we define a linear map ρ(g) ∈ GL(Herm2(C)) by
ρ(g)(A) := gAg∗. Then we obtain a homomorphism

ρ : SL2(C) → O(V, β) ∼= O3,1(R).

(5) Show that ker ρ = {±1}.
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Exercise 2.2.9. Let β : V × V → K be a bilinear form.
(1) Show that there exist a unique symmetric bilinear form β+ and a

unique skew-symmetric bilinear form β− with β = β+ + β−.
(2) Aut(V, β) = O(V, β+) ∩ Sp(V, β−).

Exercise 2.2.10. (a) Let G be a group, N ⊆ G a normal subgroup and
q : G → G/N, g �→ gN the quotient homomorphism. Show that:

(1) If G ∼= N �δ H for a subgroup H, then H ∼= G/N .
(2) There exists a subgroup H ⊆ G with G ∼= N �δ H if and only if there

exists a group homomorphism σ : G/N → G with q ◦ σ = idG/N .
(b) Show that

GLn(K) ∼= SLn(K)�δ K
×

for a suitable homomorphism δ : K× → Aut(SLn(K)).

Exercise 2.2.11. Show that Op,q(C) ∼= Op+q(C) for p, q ∈ N0, p+ q > 0.

Exercise 2.2.12. Let (V, β) be a euclidian vector space, i.e., a real vector
space endowed with a positive definite symmetric bilinear form β. An element
σ ∈ O(V, β) is called an orthogonal reflection if σ2 = 1 and ker(σ − 1) is
a hyperplane. Show that for any finite-dimensional euclidian vector space
(V, β), the orthogonal group O(V, β) is generated by reflections.

Exercise 2.2.13. (i) Show that, if n is odd, each g ∈ SOn(R) has the eigen-
value 1.

(ii) Show that each g ∈ On(R)− has the eigenvalue −1.

Exercise 2.2.14. Let V be aK-vector space. An element ϕ ∈ GL(V ) is called
a transvection if dimK(im (ϕ − idV )) = 1 and im (ϕ − idV ) ⊆ ker(ϕ − idV ).
Show that:

(i) For each transvection ϕ, there exist a vϕ ∈ V and a αϕ ∈ V ∗ such that
ϕ(v) = v − αϕ(v)vϕ and αϕ(vϕ) = 0.

(ii) For each transvection ϕ, there exist a vϕ ∈ V and a αϕ ∈ V ∗ such that
ϕ(v) = v − αϕ(v)vϕ and αϕ(vϕ) = 0.

(ii) If dimV < ∞, then det(ϕ) = 1 for each transvection ϕ.
(iii) If ψ ∈ GL(V ) commutes with all transvections, then every element of V

is an eigenvector of ψ, so that ψ ∈ K
× idV .

(iv) Z(GL(V )) = K
×1.

(v) If dimV = n < ∞, then Z(SL(V )) = Γ1, where Γ := {z ∈ K
× : zn = 1}.

Exercise 2.2.15. Let V be a finite-dimensional K-vector space for K = R or
C and β be a skew symmetric bilinear form on V . Show that:

(i) A transvection ϕ(v) = v − αϕ(v)vϕ preserves β if and only if

(∀v, w ∈ V ) : αϕ(v)β(vϕ, w) = αϕ(w)β(vϕ, v).

If, in addition, β is nondegenerate, we call ϕ a symplectic transvection.
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(ii) If β is nondegenerate and ψ ∈ GL(V ) commutes with all symplectic
transvections, then every vector in V is an eigenvector of ψ.

Exercise 2.2.16. Let V be a finite-dimensional K-vector space for K = R or
C and β be a non-degenerate symmetric bilinear form on V . An involution
ϕ ∈ O(V, β) is called an orthogonal reflection if dimK(im(ϕ− idV )) = 1. Show
that:

(i) For each orthogonal reflection ϕ, there exists a non-isotropic vϕ ∈ V such

that ϕ(v) = v − 2
β(v,vϕ)
β(vϕ,vϕ) .

(ii) If ψ ∈ GL(V ) commutes with all orthogonal reflections, then every non-
isotropic vector for β is an eigenvector of ψ, and this implies that ψ ∈
K

× idV .
(iv) Z(O(V, β)) = {±1}.

2.3 Quaternionic Matrix Groups

It is an important conceptual step to extend the real number field R to
the field C of complex numbers. There are numerous motivations for this
extension. The most obvious one is that not every algebraic equation with
real coefficients has a solution in R, and that C is algebraically closed in
the sense that every nonconstant polynomial, even with complex coefficients,
has zeros in C. This is the celebrated Fundamental Theorem of Algebra.
For analysis, the main point in passing from R to C is that the theory of
holomorphic functions permits us to understand many functions showing up
in real analysis from a more natural viewpoint, which leads to a thorough
understanding of singularities and of integrals which can be computed with
the calculus of residues.

It is therefore a natural question whether there exists an extension F of the
field C which would similarly enrich analysis and algebra if we pass from C

to F. It is an important algebraic result that there exists no finite-dimensional
field extension of R other than C (cf. Exercise 2.3.4). This is most naturally
obtained in Galois theory, i.e., the theory of extending fields by adding zeros
of polynomials. It is closely related to the fact that every real polynomial is
a product of linear factors and factors of degree 2. Fortunately, this does not
mean that one has to give up, but that one has to sacrifice one of the axioms
of a field to obtain something new.

We call a unital (associative) algebra A a skew field or a division algebra
if every nonzero element a ∈ A× is invertible, i.e., A = A× ∪ {0}. Now
the question is: Are there any division algebras which are finite-dimensional
real vector spaces, apart from R and C. Here the answer is yes: there is
the four-dimensional division algebra H of quaternions, and this is the only
finite-dimensional real noncommutative division algebra.
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The easiest way to define the quaternions is to take

H :=

{(
a −b
b a

)
∈ M2(C) : a, b ∈ C

}
.

Lemma 2.3.1. H is a real subalgebra of M2(C) which is a division algebra.

Proof. It is clear that H is a real vector subspace of M2(C). For the product
of elements of H, we obtain

(
a −b
b a

)(
c −d
d c

)
=

(
ac− bd −ad− bc

bc+ ad −bd+ ac

)
∈ H.

This implies that H is a real subalgebra of M2(C).
We further have

det

(
a −b
b a

)
= |a|2 + |b|2, (2.4)

so that every nonzero element of H is invertible in M2(C), and its inverse

(
a −b
b a

)−1

=
1

|a|2 + |b|2

(
a b
−b a

)
(2.5)

is again contained in H. 	


A convenient basis for H is given by

1, I :=

(
i 0
0 −i

)
, J :=

(
0 −1
1 0

)
, and K := IJ =

(
0 −i
−i 0

)
.

Then the multiplication in H is completely determined by the relations

I2 = J2 = K2 = −1 and IJ = −JI = K.

Here C ∼= R1 + RI as real vector spaces, but H is not a complex algebra
because the multiplication in H is not a complex bilinear map.

Since H is a division algebra, its group of units is H× = H\{0}, and (2.4)
implies that

H
× = H ∩GL2(C).

On H, we consider the euclidian norm given by

|x| :=
√
detx,

∣
∣
∣
∣

(
a −b
b a

) ∣
∣
∣
∣ =

√
|a|2 + |b|2.

From the multiplicativity of the determinant, we immediately derive that

|xy| = |x| · |y| for x, y ∈ H. (2.6)
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It follows in particular that S := {x ∈ H : |x| = 1} is a subgroup of H. In
terms of complex matrices, we have S = SU2(C).

Many results about vector spaces and matrices over fields generalize to
matrices over division rings. If the division ring is noncommutative, however,
one has to be careful on which side one wants to let the ring act. We want
to recover the usual identification of linear maps with matrices acting from
the left on column vectors such that the composition of maps corresponds to
matrix multiplication. To this end, one has to consider the column vectors
with entries in H as a right H-module via componentwise multiplication.
See Exercises 2.3.1 and 2.3.2 for the basics of quaternionic linear algebra
(a systematic treatment of linear algebra on division rings can be found in
[Bou70], Chapter II).

In contrast to bases, linear maps and representing matrices, determinants
do not have a straightforward generalization to linear algebra over division
rings. Thus we cannot characterize the quaternionic general linear group
GLn(H) of invertible elements in the ring Mn(H) of n × n-matrices with
entries in H via an H-valued determinant.

Proposition 2.3.2. View Mn(H) as a real subalgebra of M2n(C) writing each
entry of A ∈ Mn(H) as a complex 2× 2-matrix. Then

GLn(H) =
{
A ∈ Mn(H) : detC(A) �= 0

}
,

where detC : M2n(C) → C is the ordinary determinant.

Proof. It suffices to show that Mn(H) ∩ GL2n(C) ⊆ GLn(H). So pick A ∈
Mn(H) which is invertible in M2n(C). Then the left multiplication λA by
A on Mn(H) is injective, hence bijective. Thus we have A−1 = λ−1

A (1) ∈
Mn(H). 	


It follows from Proposition 2.3.2 that GLn(H) is a (closed) subgroup of
GL2n(C). Moreover, it allows us to define the quaternionic special linear group

SLn(H) := GLn(H) ∩ SL2n(C).

Observe that H as a subset of M2(C) can be characterized as

H =
{
A ∈ M2(C) : AJ = JA

}
,

where J =
( 0 1

−1 0

)
is the matrix used to build the symplectic group Sp2(K)

in Definition 2.2.1. Thus GLn(H), viewed as a subgroup of GL2n(C) is given
by

GLn(H) =
{
A ∈ GL2n(C) : AJn = JnA

}
,

where Jn is the block diagonal matrix inM2n(C) having J as diagonal entries.
It turns out that inside GLn(H) one can define analogs of unitary groups

which are closely related to the symplectic groups. We note first that we can
write the norm on H as
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|x| =
√
x∗x,

where x∗ = a1 − bI − cJ − dK for x = a1 + bI + cJ + dK. We extend this
conjugation to matrices with entries in H setting

⎛

⎜
⎜
⎜
⎝

x11 x12 · · · x1m

x21 x22 · · · x2m

...
. . .

. . .
...

xn1 xn2 · · · xnm

⎞

⎟
⎟
⎟
⎠

∗

=

⎛

⎜
⎜
⎜
⎝

x∗
11 x∗

21 · · · x∗
m1

x∗
12 x∗

22 · · · x∗
m2

...
. . .

. . .
...

x∗
1n x∗

2n · · · x∗
nm

⎞

⎟
⎟
⎟
⎠

.

Note that with respect to the embedding Mn(H) → M2n(C) this involution

agrees with the standard involution A �→ A∗ = A
�

on M2n(C). Now

H
n ×H

n → H, (v, w) �→ v∗w

defines a quaternionic inner product on H
n and v �→ |v| :=

√
v∗v is a euclidian

norm on the real vector space H
n ∼= R

4n.

Definition 2.3.3. For p + q = n ∈ N view the matrix Ip,q from Defini-
tion 2.2.1 as an element of Mn(H) and define quaternionic unitary groups
via

Up,q(H) :=
{
g ∈ GLn(H) : g∗Ip,qg = Ip,q

}
.

If p or q is zero, then we simply write Un(H).

Proposition 2.3.4. Viewed as a subset of GL2n(C), the quaternionic unitary
group Up,q(H), is given by

Up,q(H) = U2p,2q(C) ∩ Sp
(
C

2n, β
)
,

where β : C2n × C
2n → C is the skew-symmetric bilinear form given by the

matrix J�
n I2p,2q. The group Sp(C2n, β) is conjugate to Sp2n(C) in GL2n(C).

In particular, Un(H) is isomorphic to a compact subgroup of Sp2n(C).

Proof. Let g ∈ Up,q(H) be viewed as an element of GL2n(C). Then we have
g∗I2p,2qg = I2p,2q and gJn = Jng. Therefore, J

�
n g∗ = g�J�

n and

g�J�
n I2p,2qg = J�

n I2p,2q. 	


2.3.1 Exercises for Section 2.3

For the first two exercises, recall that a right module M over a (noncom-
mutative) ring R is an abelian group M together with a map M × R →
M, (m, r) �→ mr such that r �→ (m �→ mr) defines a ring homomorphism
R → End(M).

Exercise 2.3.1. Let V be a right H-module. Show that
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(i) V is free, i.e., it admits an H-basis.
(ii) If V is finitely generated as an H-module, then it admits a finite H-basis.

In this case, all H-bases have the same number of elements. This number
is called the dimension of V over H and denoted by dimH(V ).

Exercise 2.3.2. Let V andW be two rightH-modules withH-bases v1, . . . , vm
and w1, . . . , wn. Given an H-linear map ϕ : V → W , write

ϕ(vj) =

n∑

k=1

wkakj

with akj ∈ H. Show that

(i) If ϕ(v) = w with v =
∑m

r=1 vrxr and W =
∑n

s=1 wsys, then

⎛

⎜
⎜
⎜
⎝

y1
y2
...
yn

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

a11 a12 · · · a1m
a21 a22 · · · a2m
...

. . .
. . .

...
an1 an2 · · · amn

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

x1

x2

...
xm

⎞

⎟
⎟
⎟
⎠

.

(ii) The map ϕ �→ (akj) is a bijection between the set of H-linear maps
ϕ : V → W and matrices A ∈ Mn(H) intertwining the composition of
maps with the ordinary matrix multiplication (whenever composition
makes sense).

Exercise 2.3.3. Show that the group Un(H) is compact and connected.

Exercise 2.3.4. Show that each finite-dimensional complex division algebra
is one-dimensional.

2.3.2 Notes on Chapter 2

The material covered in this chapter is standard and only touches the sur-
faces of what is known about the structure of matrix groups. For much more
detailed presentations, see [GW09] or [Gr01].
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