
Chapter 3

Modeling the Objective Function

If you do not know where you are going, every road will get you
nowhere.
– Henry Kissinger

A goal without a plan is just a wish.
– Larry Elder

The objective function of a mathematical program is what an optimization
procedure uses to select better solutions over poorer solutions. For example,
if the objective is to maximize profit, then the procedure tries to move in
the direction of solutions that increase profit while still remaining feasible.
But when the profit depends on a parameter that is uncertain (like prices
tomorrow), then the notion of maximizing profit is no longer very simple.

3.1 Distribution of Outcomes

The broadest perspective you could take on this question is that your
decision, once taken today, results in a distribution of outcomes. Your choice
amounts to a choice of one distribution from a whole family of outcome dis-
tributions “parameterized” by your decision. If you ignore the randomness in
the problem (as many do, but of course you are not one of them!), then your
procedures will still select one distribution from this family—but you will be
unable to control that choice. You need some way to inform the optimization
process to select distributions with favorable characteristics.

Making a decision can be viewed as choosing one particular outcome
distribution over all others.

But what is a favorable characteristic of an outcome distribution? This is
a question with no simple answer. There have been many scientific avenues of
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62 3 Modeling the Objective Function

inquiry into this issue and no one way of looking at the question has emerged,
and many strange paradoxes remain. We will be content to indicate some
practical concepts that can be used to select better outcome distributions
over poor outcome distributions.

3.2 The Knapsack Problem, Continued

Let us first review the knapsack problem in its soft-constraint formulation:

max
xi∈{0,1}

n∑

i=1

cixi − d
∑

s∈S
ps

[
n∑

i=1

ws
i xi − b

]

+

. (3.1)

Consider a solution x̂. Unless we have a large capacity, there will be a
collection of sample points s ∈ W(x̂) representing scenarios where the com-
bined weight of the selected items turns out to be larger than the maxi-
mum weight allowed. So the distribution of objective function values will be
a random variable:

Vs(x̂) =

{∑
i (ci − dws

i ) x̂i + db if s ∈ W(x̂),∑
i cix̂i otherwise.

To analyze a solution to a stochastic program, you will need to examine the
distribution of the objective value and ask yourself: what are the features that
we are concerned about?

Perhaps the most important practical features of the distribution are the
expected value and the upper and lower quantiles, for example, the 10% and
90% quantiles. Are these what you expected? Should the penalty d or the
weight limit b be adjusted?

The main point we wish to make here is that it is a big challenge to
design an objective function that fully captures all the desired features of the
outcomes, and it is very rare to get it right the first time!

Soft constraints partition the underlying sample space into favorable and
unfavorable outcomes. It is perhaps worth examining this partition to learn
whether this is what was intended.

Consider a knapsack problem with two different customers. If the total
weight of accepted items from the two customers were very different, this
might be a bad outcome. For example, let us say that items in the set O1

come from the first customer class and items in the set O2 come from the
second customer class. We can track this difference by calculating the expected
difference in the weights of the excluded items:

∑
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When this difference is too large, it might be bad for customer relations!
Now, think for a minute—how could you change the problem to address this
issue?

Consider also the expected contribution of each item to the objective
function, which can be modeled as the profit for including the item less its
expected contribution to an overweight situation:

⎛

⎝ci − d
∑

s∈W(x̂)

psws
i

⎞

⎠ x̂i.

Slicing and dicing the contributions by item attributes may lead to
important insights into other features that need to be controlled. The main
point is that you should look carefully at the outcome distribution and verify
whether its properties were intended.

3.3 Using Expected Values

The most commonly used way of comparing two outcome distributions is to
compare the expected values. By “using expected values” we do not mean
that you are using a single point (the mean) as the realization of the random
parameters. Rather we mean that you are optimizing the expected value of
the outcome distribution.

Sometimes we choose an expected value criterion because this is the
simplest and most convenient approach. But in many cases it is also the right
thing to do. Here we will outline the most common arguments for maximizing
expected profit or minimizing expected cost.

3.3.1 You Observe the Expected Value

Where you face a situation that will be repeated over and over again, then
simple repetition favors the expected value criterion.

For example, the news vendor of Sect. 1.2 makes a fixed order that will be
used daily, say, for the next year. In such a case, even if there are severe varia-
tions in daily costs, it is still reasonable to minimize expected cost. The law of
large numbers takes over. Your annual result may be so close to the expected
cost that you would not care about the difference.

If you are planning for outcomes that will be repeated many times,
then it is likely correct to use expected value as the criterion for

choosing an outcome distribution.
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Before rejecting the mean value as an objective criterion, you should dig
into the operational details of how the decisions will be used in operations.
For example, even in the case where the news vendor revises the order on a
weekly basis, the average of the weekly costs over a year will also approximate
the mean value—even though the variation in the weekly costs may be quite
large. (How would you go about verifying this statement?)

3.3.2 The Company Has Shareholders

Making decisions under uncertainty in a corporate setting has some special
features that are the subject of a deep and extensive literature. We will base
our discussion here on a paper by Froot and Stein [15]. The basic idea is that a
public company has shareholders who themselves are making decisions under
uncertainty about how many shares they wish to hold in which company.
Very often shareholders want to be exposed to risk since risk also means
opportunity. The question is what sort of risk management should be pursued
by the company?

Let us suppose that the company faces a major internal decision with risky
outcomes. For simplicity of argument, let us also assume that even in the worst
of circumstances, the company will not go broke. (The issue of bankruptcy is
discussed below.)

Here are a couple of questions:

• Would you be risk averse in this situation or go for the expected value?
• Would you be willing to buy insurance to avoid the worst outcomes?

The way to answer this argument, according to [15], is to put yourself in
the shoes of one of your shareholders. Let us represent the shareholder by a
wise lady who understands that most of the risk in your profit is caused by
your technology choices. She understands that companies may have different
solutions to the problem at hand, and your success (or failure) depends on
which solution your customers end up preferring.

To hedge this uncertainty concerning technologies, she buys equally many
shares of your competitor’s company. From her perspective, there is no longer
any risk—except those that relate to her exposure to the market for your and
your competitor’s products.

What will happen now if both companies recognize the risks they are fac-
ing? For example, suppose they both decided to insure their technology risks?
Well, our wise lady still faces no market risk, but now, whichever technology
wins, she gets less! She will not be very happy with this decision.

If only one of the companies reduces risks, then it is even worse. Possibly
without knowing it, she now faces risks since the symmetry between the two
companies is gone and the expected value of her investments has gone down.
So to assure investors like her that she can safely invest in your company, she
must be assured that you will not behave in a way that increases the risks
for her.
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A company with shareholders should maximize expected profit and
leave risk adjustments to the owners, except for those risks that can

be hedged more cheaply by the company itself.

Some risk-reducing measures are only available to companies, as a result of
taxation rules, perhaps, or as a result of access to markets. If such measures are
available to a company, then it can and should be risk averse in those respects.
It is crucial that investors realize that this is being done. Many companies
make statements to this respect in their public reporting. If you run into this
problem in a practical setting, it is wise to consult with financially trained
people. Our point is that you become aware that even in decisions where you
do not observe repeated outcomes, it may not be appropriate to reduce all
the risk you face.

Our wise lady’s strategy is related to a very popular statistical arbitrage
called “pairs trading,” in which investors take a short position in one com-
petitor and an offsetting long position in another. The investor is not exposed
to the success or failure of the underlying market but will make money on a
temporary deviation that supposedly should revert to the statistical long-run
mean. This kind of gamble is really a byproduct of how large corporations
are managed. There really is no way to reward management for outcomes
based on whether a given technology is good or bad. The actual practice is
to reward steady earnings growth of the sort that can only be achieved by
holding a diversified portfolio generating the products and services sold by
their sales forces. If two large companies hold diversified portfolios and com-
parable brands, then taking bets on statistical properties of their earnings is
a plausible arbitrage strategy.

3.3.3 The Project Is Small Relative to the Total Wealth of a
Company or Person

Even if the variance of the income from an investment is very high relative
to the mean, this variability is usually not cause for concern if the numbers
happen to be small. When someone tells you: “The cost will be two or three
dollars, I am not sure which,” you probably say: “OK, I don’t mind.” You
are not concerned despite the fact that one estimate is 50% higher than the
other.

On the other hand, if the same person tells you, “Oh, it will cost two or
three million dollars,” you probably would hesitate, even if the ratio between
the two cost estimates is the same. Why? Probably because in the latter case,
the amounts are substantial relative to your total wealth.

Use expected value if the relative importance of the project is small.
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This is actually a variant of the first argument about observing the
expected value. If a project is small relative to a company’s total wealth,
then the company probably has a very large number of these projects, and it
will observe the expected value (but now the expectation is over projects and
not over outcomes within a single project).

If none of these arguments applies, then it is probably time for you to
think properly about what risk actually means in your case and if you should
be worried about it.

3.4 Penalties, Targets, Shortfall, Options, and Recourse

When soft constraints are incorporated into an objective function, the part
of the objective function that models the soft constraints will have a certain
shape. Again, look at the knapsack problem (3.1). The soft constraint part of
the objective is the expected value of a piecewise linear function of the excess
weight. It is zero below the capacity b and has slope d above the capacity. This
piecewise linear function has many names and appears in many contexts.

3.4.1 Penalty Functions

In the language of linear programming, such functions are sometimes called
penalty functions. The penalty function has two parts. One is the target in-
terval, which in the knapsack case is the interval below the capacity, namely
(−∞, b]. The second part is the penalty rate, namely the rate at which the
penalty accumulates as the target is missed. This rate may be an actual cost
of responding to the penalty, but more usually it is a modeling approach that
is used by the modeler to shape the outcome distribution. An example for the
knapsack problem can be found in Fig. 3.1.

Penalty

Total weight

b

Fig. 3.1: Penalty function for knapsack problem

3.4.2 Targets and Shortfall

One can use penalty functions to indicate a desire to reach a target. Al-
though there is a similarity to a penalty formulation of a soft constraint, a
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Shortfall

Profit
v

Fig. 3.2: Example of shortfall function with a target v

target formulation is not really a soft constraint since the act of selecting a
target reshapes the outcome distribution. If you prefer outcomes xs above a
given target v to outcomes below the target, then the simplest criterion that
measures this preference is called the shortfall measure:

∑

s∈S
ps(v − xs)+. (3.2)

Consider the function

h(y) =

{
0 if y < 0,

y if y ≥ 0.
(3.3)

This is a piecewise linear function with slope 0 below zero and slope 1
above zero. An illustration of a penalty function can be found in Fig. 3.2. It is
not hard to see that

∑

s∈S
psh(v − xs) =

∑

s∈S
ps(v − xs)+. (3.4)

This function compares two outcome distributions by looking at the
expected values over the region below the target v. So in the situation where
xs represents the return of an investment portfolio over some time horizon,
then perhaps we would like to avoid outcomes with higher values of h(v−xs).
If we are in a maximizing frame of mind (most investors are), then we could
maximize the following expression:

max
x∈X

{
∑

s∈S
psxs −

∑

s∈S
psh(v − xs)

}
, (3.5)

where X is some set that constrains our portfolio choices. What are we
maximizing here? We are maximizing a piecewise linear function, which, com-
putationally, is not too hard. What would it do? Well, if we had two outcome
distributions with similar means, this method of choosing outcomes would
prefer the one with a larger conditional expectation over the outcomes that
lie above the target v.
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Fig. 3.3: Value of call option as a function of the price of the underlying
security

These types of shortfall measures are very useful in applications involving
uncertainty. Target shortfall measures are a natural way to describe differences
in outcome distributions, and the optimization technology required to solve
them is readily available. We will find many examples of these in this book.

3.4.3 Options

Penalty functions model a cost that is incurred when certain underlying events
occur. In finance, a contract with terms that incur a cost or produce a payment
depending on the occurrence of a future event is called an option. A typical
type of option is a call option, which grants the owner the right to buy an
underlying security at a fixed price, called the strike price, at some fixed date
in the future.

The owner of the call option has a choice on the exercise date. If the
price of the underlying is above the strike price, then the owner can buy the
underlying security for the strike price and then sell it at the market price.
The owner’s profit equals the difference between the market price and the
strike price. On the other hand, if the market price is below the strike, then
the owner need not do anything. The option payout is a function that is zero
below the strike and increases linearly with slope 1 above the strike, as in
Fig. 3.3.

Can you see that an option payout (Fig. 3.3) looks like a penalty function
(Fig. 3.1) with a target equal to the interval above the strike price and a rate
equal to one? Also note the similarity with the shortfall function (Fig. 3.2).
Many penalty formulations can be framed in terms of call and put options
because penalties are essentially invoked when a stochastic value goes above
or below a target.

3.4.4 Recourse

Another term that applies to penalty formulations is recourse. A recourse
model describes actions that lead to a future cost or benefit in response to
future events. In the case of a penalty formulation, the recourse model just
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calculates the penalty (such models are called “simple recourse” in the lit-
erature). But a recourse action could be more complex. A recourse model
can minimize the impact of a bad event using multiple technologies that are
available to the decision maker but that may not be available to investors.

Investors use options to implement strategies for portfolio management.
In the same way, decision makers may invest in recourse capabilities to improve
their capabilities for managing uncertainty. In a sense, a stochastic program
with recourse can be viewed as an option portfolio selection model. However,
recourse is a concept that goes far beyond options. Recourse is modeled from
the collection of possible actions and resources available to the decision maker,
so in a sense, the use of recourse models allows decision makers to design their
own options.

3.4.5 Multiple Outcomes

Typically in stochastic programming, you are concerned with multiple
outcomes. In the foregoing example, we were concerned with maximizing
the mean return and at the same time wanted to minimize the shortfall
measure. The natural thing to do was to parameterize the problem:

max
x∈X

{
∑

s∈S
psxs − λ

∑

s∈S
psh(v − xs).

}
(3.6)

Varying the parameter gives an “efficient frontier” of solutions; λ = 0
gives the solution that maximizes expected return, and as λ grows higher and
higher, it will give the solution that minimizes the shortfall measure.

This “multiobjective” style of optimization procedure is very common in
stochastic programming. It allows us to describe multiple targets and objec-
tives, and the optimization process generates efficient sets of solutions, each
with different properties relative to the targets.

3.5 Expected Utility

The problem of choosing outcome probability distributions has a very deep
technical literature that centers around the economic utility theory developed
by von Neumann and Morgenstern [54]. The basic idea is that preferences
between outcome distributions (following certain rules) can be modeled by
choosing an outcome distribution that maximizes expected utility, where utility
is modeled by a concave function of the outcomes. We will give just a brief
outline here of the portfolio selection problem in finance since it is in finance
that the basic assumptions of expected utility are likely to be satisfied.

Let us place ourselves in the realistic world of choosing to invest in
corporations that are in effect managing portfolios of businesses. As observed
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previously, one can anticipate some statistical regularity of outcomes that will
be observed as dividend payments or changes in the market prices of company
stock. Purchasing a single share of stock in company i will produce an annual
return of ri(s), where s is a scenario parameter indicating the strength of the
market returns modified by the idiosyncratic performance of management.
(Just to be clear on the meaning of return, we will adopt the convention that
a return less than 1.0 represents a loss and one greater than 1.0 a gain.)

Investing in a portfolio x = (xi, i ∈ I) of companies will therefore produce
an outcome distribution of

s �→
∑

i∈I

xiri(s), with probability p(s). (3.7)

Since companies are run by managers who are rewarded for earnings growth,
it is quite likely that there is some statistical regularity to the dividend pay-
ments. Under the assumptions of expected utility, then, there exists a utility
function F (·) such that the optimal choice of outcome distribution is given by
maximizing expected utility:

max
x

∑

s∈S
psF

(∑

i∈I

xiri(s)

)
. (3.8)

Now we ask the question—what should the utility function be? In the
case of expected value optimization, the utility function is just the identity
F (R) = R. Should we use the expected value criterion to choose an optimal
collection of stocks? What are the other choices?

If our perspective is very long term (for the rest of our long lives, for
example) and our objective is to simply take the money every year and spend
it, then the expected value discussion applies: the variability over many many
years will oscillate around the mean.

On the other hand, if we take the money and reinvest it, then the story
is different. When the returns are identically distributed, the strategy that
achieves the maximum wealth is the one that maximizes the logarithm of
the return. (Of course, this is simply the mean of the exponential growth
one achieves through reinvestment—so the mean wins out here, too!). This
result is originally due to Kelly and has been developed in the stochastic
programming context by Ziemba and his colleagues [41].

Of course, these objectives assume we know the distributions rather pre-
cisely. In fact, the distributional characteristics of investment returns change
over time. The next section investigates an important tool used by portfolio
managers to model the risks of investment.

3.5.1 Markowitz Mean-Variance Efficient Frontier

You have likely heard of the Markowitz criterion, in which the objective
minimizes the variance for a given level of expected return [44]. Why is this
so popular? Well, for one thing it uses observable statistics—the mean and
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variance of financial returns are easily observable. But is it sensible? After all,
variance penalizes both downside risk and upside risk. Is it reasonable for an
investor to choose a criterion that minimizes the risk of going higher?

To answer this question, let us consider an investor who knows her
statistics. For instance, she knows the mean return vector m and the variance-
covariance matrix V . She also knows her von Neumann–Morgenstern and
wants to choose her portfolio according to maximum utility. But what utility
function? She goes to a Web site that offers to discover her utility by asking
questions about one gamble after another. But she is really not sure about
this at all. So many comparisons!

Along comes a slick stochastic programmer who offers to give her an entire
collection of optimal portfolios to choose from. Every one will be optimal for
some utility function. And up to a second-order approximation, every utility
function will be represented. How does he do it?

He argues like this. Suppose your utility function was F () and we knew
how to find its optimal portfolio, namely x̂ maximizes (3.8). Then of course we
know its expected return, namely R̂ =

∑
i mix̂i. Expand the utility function

to second order around this expected return:

F (R) ∼ F (R̂) + F ′(R̂)(R − R̂) + 1/2F ′′(R̂)(R − R̂)2. (3.9)

Now find the maximum utility using the right side of the approximation
instead of the left:

max
∑

s

ps
[
F (R̂) + F ′(R̂)

(
∑

i

ri(s)xi − R̂

)

+ 1/2F ′′(R̂)

(
∑

i

ri(s)xi − R̂

)2 ]
. (3.10)

Without loss of generality, let us also restrict the search to those choices that
satisfy

R̂ =
∑

i

mixi. (3.11)

This does not specify the choice of x (it does narrow it down considerably,
but let us keep going). The main point to keep in mind in the argument is
that the choice of F determines R̂. Now with this narrowing down, let us look
carefully at the approximate utility maximization. First, note that the term
F (R̂) is fixed, so it will be ignored in the approximate maximization. Second,
note that the second term disappears! This is because we are restricting our
choices of x to those that lie on the mean hyperplane (3.11). Finally, note that
the last term consists of the second derivative of a concave function (which is
negative) multiplied by the variance of the return. When we clear the negative
term from the objective, the maximization turns into a minimization and we
are left with the problem of minimizing the variance subject to a constraint
on the mean return.
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It follows that the approximation is none other than a version of the mean-
variance problem central to the Markowitz method:

min
∑

i,j xiVijxj

such that R̂ =
∑

imixi.
(3.12)

As we vary our choices of utility F () we will also vary our choices of return
R̂. It follows that all our choices will lie on the efficient frontier of solutions
that minimizes variance for a given level of mean return. This is the approach
originally formulated by Markowitz [44]. The mean-variance efficient frontier
does in fact present our investor with a collection of points that a utility-
maximizing investor would choose, up to a second-order approximation.

How good is the approximation? Well, this is something you can try for
yourself. Find some tables of annual returns of large corporations over the
past 20years, calculate the means and variances, and answer for yourself:
how good is the second-order approximation to your favorite utility function,
say, the logarithm? You will find that it is pretty close. After developing this
argument (in [34]) we asked this question. For the logarithm function it seemed
like the second-order approximation was very sensible for absolute returns in
the range of 75–400%—which is one very good reason for the popularity of
the Markowitz method over the 60 years since its discovery.

The other reasons are that the parameters are quite easily observed in the
marketplace. The covariance matrix and mean can be constructed by observ-
ing a time series of annual returns. The sequence of observations is viewed
as samples drawn from the distribution of future returns. Standard statis-
tical calculations can be used to provide appropriate estimates. It appears
that there are long-term cycles in market volatility; however, the same cannot
be said about variances and correlation terms for individual stocks—partly
because there is less data to estimate them and partly because the relative per-
formance of company stock prices depends on so many factors. However, the
actual performance of the mean-variance model over time is much more sen-
sitive to the estimation error in the fundamental parameters, most especially
the mean.

At this point we will close this discussion. This is not a book about
statistical arbitrage in financial markets; it is a book about modeling choices
under uncertainty. We hope we have conveyed to you some of the flavor and
language of expected utility and the mean-variance approach as it is applied
in investing.

The interested reader can go much further, of course. However, in the end,
we would like you to be aware that many market practioners, on the basis of
much experience, do not believe that past data inform the future behavior of
prices. Rather, the basic reason for prices to move one way or another is due
to supply and demand—and in the securities market the dynamics of supply
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Portfolio losses
VaR CVaR

Fig. 3.4: Density function, VaR, and CVaR for potential losses. VaR cor-
responds to a chosen quantile, while CVaR is the expected loss
above VaR

and demand are affected at times by overwhelming optimism and at times by
overwhelming pessimism and always amplified by leverage. This brings us to
our next topic.

3.6 Extreme Events

The 50-50-90 rule: Any time you have a 50-50 chance of getting some-
thing right, there’s a 90% probability you’ll get it wrong.
– Andy Rooney

Sometimes extremely bad things happen. Asteroids strike, virulent diseases
break out, markets crash, products fail. Models with uncertainty must consider
the consequences of extreme events.

In the financial industry, for example, regulators require some institutions
to estimate the upper tail of the loss distribution and to hold reserves propor-
tional to these loss estimates. The intention of the regulators is to force the
industry to model the worst-case extreme losses of their portfolios and to pe-
nalize extremely risky positions by forcing them to hold safe, but low-yielding,
securities in proportion to the extreme-loss potential. The upper quantile of
potential losses is called Value at Risk or VaR. A related, increasingly pop-
ular, and, in our view, preferable statistic is called the Conditional Value at
Risk or CVaR—which is the expected value of the losses that fall above the
VaR. This is illustrated in Fig. 3.4.

The first step in analyzing extreme risks is to decide what to analyze. In the
preceding investment problem, we could decided to set a benchmark return.
For example, we could have chosen a level Rs of returns (keep in mind that a
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return below 1.0 means that our investment has lost value) that represents an
absolute threshold below which we do not want to go. Then our losses relative
to the benchmark are

Ls(x) = Rs −
∑

i

xir
s
i for s ∈ S with probability ps. (3.13)

The VaR for the losses L corresponding to a quantileQ is calculated by sorting
the losses from lowest to highest and counting from the lowest loss up until
you have counted a proportion Q% of all scenarios. Here is a formula that
says the same thing but is switched around to highlight something that will
become important a bit later on:

VaR(x;Q) = inf
L

such that #

{
s ∈ S with Ls(x)− L ≥ 0

}
≥ 1−Q

100
, (3.14)

where the number sign # in front of the set indicates the number of points in
the set. The risk-level VaR(x;Q) divides the sample space of losses into two
parts: good and bad. The good points are the Q% that have losses below the
VaR(x;Q) and the bad points are the (100–Q)% that have losses greater than
the VaR(x;Q).

In banking and finance one says “our 99% VaR is USD 0.5B,” and it is
understood by bank regulators that the probability that the bank’s position
will suffer a loss greater than $500 million is only 1%. These statements are
taken quite seriously. In fact, the bank must demonstrate to the regulators,
by reconstructing their positions backward in time, that their past 200 daily
99% VaR loss estimates were violated no more than twice.

But can you see that VaR behaves a bit strangely as a function of x? Try
this thought experiment: take a position xi in the security with the absolute
worst losses and make a small increase in it. A good risk measure should
increase when you do more bad things. Is the VaR guaranteed to change? No,
it is not, and this is why it is a controversial measure.

The CVaR is defined as the expected value over the quantile in definition
(3.14) of VaR. Given that expected values are linear, one would anticipate that
a risk measure based on CVaR will behave as a risk measure should. However,
there is the complicating matter of locating the support of this expected value,
which behaves badly, as we have seen. A relatively new result by Rockafellar
and Uryasev shows that CVaR is indeed a well-behaved risk measure. They
proved that its value is given by the following stochastic program:

CVaR(x;Q) = inf
L

{
L+

1

1−Q

∑

s

ps max[0, Ls(x) − L]

}
. (3.15)

Do you see that this calculates expected value over the same set that we
counted points over for the calculation of VaR?
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In usage, VaR and CVaR have different purposes. Both are measures of
the tail behavior of an outcome distribution. VaR tells you something about
where the tail is supported, whereas CVaR gives you more information about
how the distribution behaves over the tail.

Regulators prefer VaR because they have more confidence in the statement
“only 5% of losses are greater than VaR” than they do in the statement “the
average of the worst 5% of losses is CVaR.” The second statement requires
a model of the tail distribution, which by necessity must always be based
on a sample of very few observations. People can disagree about tail distri-
butions, but the definition of the location of the tail is usually pretty well
estimated. Regulators will prefer to stick with estimates for which there is
broad agreement.

On the other hand, decision makers should prefer CVaR, for two reasons.
First, precisely because it does require a model of the tail distribution, the
inclusion of CVaR will force decision makers to think about how bad things
can get.

We can think of CVaR as being just like a target shortfall measurement,
but where the target is specified in terms of the quantile instead of some
arbitrary target. Of course we could just specify the target to be high enough
to be “in the tail.” The advantage of using CVaR is just the fact that we do
not have to guess beforehand where these tail values are.

Sometimes it is a good idea to use a different distribution for extreme
events. For example, on trading floors, the traders do not use the same dis-
tributions as the risk managers. Risk managers have different objectives and
different time horizons. A trader about to make a quick killing should not
be concerned about surviving a low-probability market crash over the next
30 days. It is the risk manager’s job to worry about that. The risk manager
does not do this by influencing the trader’s models. (It is hard to imagine a
trader accepting any kind of modeling advice from a risk manager!) Risk man-
agers do their job by limiting trader access to the firm’s capital. It is entirely
reasonable that the risk manager and the trader use different distributions to
achieve their objectives.

Extreme event modeling in finance is gradually being extended by regula-
tors to cover so-called operational risks. This covers things like power failures
at data centers, losses due to failures of internal controls, rogue traders (and
risk managers), and so forth. The financial system is so interlinked and the
traded volumes so great that an operation breakdown, say, due to a power
failure at a major bank’s data center, could have widespread financial and
economic consequences for weeks afterward.

Companies in industrial sectors with large extended supply chains are
also beginning to model the tail distributions of bad events, operational and
otherwise. Examples of bad events could be the bankruptcy of a key supplier
or creditor, quality control failures internally or of key suppliers, a major
product liability lawsuit, improper release of private information of consumers,
earthquake damage to a key electric power supplier, or losses in financial
portfolios that back employee insurance programs or working capital.
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3.7 Learning and Luck

I’m a great believer in luck, and I find the harder I work, the more I
have of it.
– Thomas Jefferson

Learning is a subject of its own, and we will not have a general discussion
of the issue here. However, since such things as learning organizations and
organizational memory are preached by many consultants, we would like to
mention but one issue that is relevant for this book. Learning presumably
implies that from the outcome of a decision we wish to become wiser. Next
time we make a similar decision we wish to either make a better decision
(if this one was not so good) or an equally good one (if this one was good).
For this to make any sense, there must be a causal relationship between what
we did and what happened.

If you walked backward into the store where you bought the winning
lottery ticket, you might think (many certainly do) that this is good for win-
ning, and you might choose to do the same in the future. We all know that this
is nonsense, and we call it superstition, not learning. If, instead, you have a
model you use for making some decision, and the decision leads to, say, a very
good outcome, do you then know it was a good decision and a good model?
Is there a logical connection between the ex-post observation and what you
did? Let us again exaggerate a bit. Assume there are two gambles, both with
the same price for taking part and both with the same winning prize. Assume
in one gamble there is a 10% chance of winning the prize, in the other 90%.
Assume you play the game with a 10% chance and, voila, you win! Does that
mean you made a good decision? Of course not. Is there anything to learn
from the ex-post observation? No, there is not. You were simply stupid and
lucky. We can say that because there is an ex-ante evaluation that in this
simple case tells us that what you did was stupid. The fact that you were
lucky does not change that.

So what is learning? We will not answer that question. But be aware
that learning is a difficult issue in a random environment. In genuine decision
contexts, there is a causal but stochastic relationship between what you do
and the consequences. But learning can be hard because you must separate
luck from cleverness.

But do we care? Maybe for our own decisions we often do not. We prefer
to value our decisions based on ex-ante analysis, looking for decisions that
according to our own utility function maximizes expected utility. But there is
a context where we really are interested. If you are to engage a consultant, he
probably sells himself based on his track record (sounds great, does it not?).
Here we are interested in ex-post learning. Is he really good or just lucky?
Maybe he looks so good because he takes too many chances, and for that
reason he is definitely not the one we want. Some say that if your broker
makes a lot of money for you over a reasonable period of time, fire him! He
takes too big risks.
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