
Chapter 2
Approximation and Interpolation

The present chapter is basically concerned with the approximation of functions. The
functions in question may be functions defined on a continuum – typically a finite
interval – or functions defined only on a finite set of points. The first instance arises,
for example, in the context of special functions (elementary or transcendental) that
one wishes to evaluate as a part of a subroutine. Since any such evaluation must be
reduced to a finite number of arithmetic operations, we must ultimately approximate
the function by means of a polynomial or a rational function. The second instance
is frequently encountered in the physical sciences when measurements are taken
of a certain physical quantity as a function of some other physical quantity (such
as time). In either case one wants to approximate the given function “as well as
possible” in terms of other simpler functions.

The general scheme of approximation can be described as follows. We are
given the function f to be approximated, along with a class ˆ of “approximating
functions” ' and a “norm” k � k measuring the overall magnitude of functions. We
are looking for an approximation O' 2 ˆ of f such that

kf � O'k � kf � 'k for all ' 2 ˆ: (2.1)

The function O' is called the best approximation to f from the class ˆ, relative to
the norm k � k.

The class ˆ is called a (real) linear space if with any two functions '1,
'2 2 ˆ it also contains '1 C '2 and c'1 for any c 2 R, hence also any (finite)
linear combination of functions 'i 2 ˆ. Given n “basis functions” �j 2 ˆ,
j D 1; 2; : : : ; n, we can define a linear space of finite dimension n by

ˆ D ˆn D
8
<

:
' W '.t/ D

nX

jD1
cj �j .t/; cj 2 R

9
=

;
: (2.2)

Examples of linear spaces ˚ . 1. ˆ D Pm: polynomials of degree � m. A basis for
Pm is, for example, �j .t/ D t j�1, j D 1; 2; : : : ; m C 1, so that n D m C 1.
Polynomials are the most frequently used “general-purpose” approximants for
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56 2 Approximation and Interpolation

dealing with functions on bounded domains (finite intervals or finite sets of
points). One reason is Weierstrass’s theorem, which states that any continuous
function can be approximated on a finite interval as closely as one wishes by a
polynomial of sufficiently high degree.

2. ˆ D S
k
m.�/: (polynomial) spline functions of degree m and smoothness class k

on the subdivision

� W a D t1 < t2 < t3 < � � � < tN�1 < tN D b

of the interval [a; b]. These are piecewise polynomials of degree � m pieced
together at the “joints” t2; : : : ; tN�1 in such a way that all derivatives up to and
including the kth are continuous on the whole interval [a; b], including the joints:

S
k
m.�/ D fs 2 CkŒa; b� W s

ˇ
ˇ
Œti ;tiC1�

2 Pm; i D 1; 2; : : : ; N � 1g:

We assume here 0 � k < m; otherwise, we are back to polynomials Pm (see
Ex. 68). We set k D �1 if we allow discontinuities at the joints. The dimension
of Skm.�/ is n D .m� k/ � .N � 2/CmC 1 (see Ex. 71), but to find a basis is a
nontrivial task; form D 1, see Sect. 2.3.2.

3. ˆ D Tm Œ0; 2��: trigonometric polynomials of degree � m on [0, 2�]. These
are linear combinations of the basic harmonics up to and including the mth one,
that is,

�k.t/ D cos .k � 1/t; k D 1; 2; : : : ; mC 1I
�mC1Ck.t/ D sin kt; k D 1; 2; : : : ; m;

where now n D 2m C 1. Such approximants are a natural choice when the
function f to be approximated is periodic with period 2� . (If f has period p,
one makes a preliminary change of variables t 7! t � p=2� .)

4. ˆ D En: exponential sums. For given distinct ˛j > 0, one takes �j .t/ D e�˛j t ,
j D 1; 2; : : : ; n. Exponential sums are often employed on the half-infinite
interval RC: 0 � t < 1, especially if one knows that f decays exponentially as
t ! 1.

Note that the important class of rational functions,

ˆ D Rr;s D f' W ' D p=q; p 2 Pr ; q 2 Psg;

is not a linear space. (Why not?)
Possible choices of norm – both for continuous and discrete functions –

and the type of approximation they generate are summarized in Table 2.1. The
continuous case involves an interval [a; b] and a “weight function” w.t/ (possibly
w.t/ � 1) defined on [a; b] and positive except for isolated zeros. The discrete case
involves a set of N distinct points t1, t2; : : : ; tN along with positive weight factors
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Table 2.1 Types of approximation and associated norms

Continuous norm Approximation Discrete norm

kuk1 D max
a�t�b

ju.t /j L1 kuk1 D max
1�i�N

ju.ti /j
Uniform
Chebyshev

kuk1 D
Z b

a

ju.t /jdt L1 kuk1 D
NX

iD1

ju.ti /j

kuk1;w D
Z b

a

ju.t /jw.t /dt Weighted L1 kuk1;w D
NX

iD1

wi ju.ti /j

kuk2;w D
 Z b

a

ju.t /j2w.t /dt
! 1

2

Weighted L2 kuk2;w D
 

NX

iD1

wi ju.ti /j2
! 1

2

Least squares

w1;w2; : : : ;wN (possibly all equal to 1). The interval [a; b] may be unbounded if
the weight function w is such that the integral extended over [a; b], which defines
the norm, makes sense.

Hence, we may take any one of the norms in Table 2.1 and combine it with any of
the preceding linear spacesˆ to arrive at a meaningful best approximation problem
(2.1). In the continuous case, the given function f , and the functions ' of the class
ˆ, of course, must be defined on [a; b] and such that the norm kf �'k makes sense.
Likewise, f and ' must be defined at the points ti in the discrete case.

Note that if the best approximant O' in the discrete case is such that kf � O'k D 0,
then O'.ti / D f .ti / for i D 1; 2; : : : ; N . We then say that O' interpolates f at
the points ti and we refer to this kind of approximation problem as an interpola-
tion problem.

The simplest approximation problems are the least squares problem and the in-
terpolation problem, and the easiest space ˆ to work with the space of polynomials
of given degree. These are indeed the problems we concentrate on in this chapter.
In the case of the least squares problem, however, we admit general linear spaces
ˆ of approximants, and also in the case of the interpolation problem, we include
polynomial splines in addition to straight polynomials.

Before we start with the least squares problem, we introduce a notational device
that allows us to treat the continuous and the discrete case simultaneously. We
define, in the continuous case,

�.t/ D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

0 if t < a .whenever � 1 < a/;

Z t

a

w.�/d� if a � t � b;

Z b

a

w.�/d� if t > b .whenever b < 1/:

(2.3)
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Then we can write, for any (say, continuous) function u,

Z

R

u.t/d�.t/ D
Z b

a

u.t/w.t/dt; (2.4)

since d�.t/ � 0 “outside” [a; b], and d�.t/ D w.t/dt inside. We call d� a
continuous (positive) measure. The discrete measure (also called “Dirac measure”)
associated with the point set ft1; t2; : : : ; tN g is a measure d� that is nonzero only at
the points ti and has the value wi there. Thus, in this case,

Z

R

u.t/d�.t/ D
NX

iD1
wiu.ti /: (2.5)

(A more precise definition can be given in terms of Stieltjes integrals, if we define
�.t/ to be a step function having jump wi at ti .) In particular, we can define the L2
norm as

kuk2;d� D
�Z

R

ju.t/j2d�.t/
� 1

2

; (2.6)

and obtain the continuous or the discrete norm depending on whether � is taken to
be as in (2.3), or a step function, as in (2.5).

We call the support of d� – and denote it by supp d� – the interval [a; b] in the
continuous case (assuming w positive on [a; b] except for isolated zeros), and the
set ft1; t2; : : : ; tN g in the discrete case. We say that the set of functions �j .t/ in (2.2)
is linearly independent on the support of d� if

nX

jD1
cj �j .t/ � 0 for all t 2 supp d� implies c1 D c2 D � � � D cn D 0: (2.7)

ExampleW the powers �j .t/ D t j�1, j D 1; 2; : : : ; n.

Here
nX

jD1
cj �j .t/ D pn�1.t/ is a polynomial of degree � n � 1. Suppose, first,

that supp d� = [a; b]. Then the identity in (2.7) says that pn�1.t/ � 0 on [a; b].
Clearly, this implies c1 D c2 D � � � D cn D 0, so that the powers are linearly
independent on supp d� = [a; b]. If, on the other hand, supp d� D ft1; t2; : : : ; tN g,
then the premise in (2.7) says that pn�1.ti / D 0, i D 1; 2; : : : ; N ; that is, pn�1 has
N distinct zeros ti . This implies pn�1 � 0 only if N � n. Otherwise, pn�1.t/ D
QN
iD1.t � ti / 2 Pn�1 would satisfy pn�1.ti / D 0, i D 1; 2; : : : ; N , without being

identically zero. Thus, we have linear independence on supp d� D ft1; t2; : : : ; tN g if
and only if N � n.
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2.1 Least Squares Approximation

We specialize the best approximation problem (2.1) by taking as norm the L2 norm

kuk2;d� D
�Z

R

ju.t/j2d�.t/
� 1

2

; (2.8)

where d� is either a continuous measure (cf. (2.3)) or a discrete measure (cf. (2.5)),
and by using approximants ' from an n-dimensional linear space

ˆ D ˆn D
8
<

:
' W '.t/ D

nX

jD1
cj �j .t/; cj 2 R

9
=

;
: (2.9)

Here the basis functions �j are assumed linearly independent on supp d� (cf. (2.7)).
We furthermore assume, of course, that the integral in (2.8) is meaningful whenever
u D �j or u D f , the given function to be approximated.

The solution of the least squares problem is most easily expressed in terms of
orthogonal systems �j relative to an appropriate inner product. We therefore begin
with a discussion of inner products.

2.1.1 Inner Products

Given a continuous or discrete measure d�, as introduced earlier, and given any two
functions u; v having a finite norm (2.8), we can define the inner product

.u; v/ D
Z

R

u.t/v.t/d�.t/: (2.10)

(Schwarz’s inequality j.u; v/j � kuk2;d� � kvk2;d�, cf. Ex. 6, tells us that the integral
in (2.10) is well defined.) The inner product (2.10) has the following obvious (but
useful) properties:

1. symmetry: .u; v/ D .v; u/;
2. homogeneity: .˛u; v/ D ˛.u; v/, ˛ 2 R;
3. additivity: .u C v;w/ D .u;w/C .v;w/; and
4. positive definiteness: .u; u/ � 0, with equality holding if and only if u � 0 on

supp d�.

Homogeneity and additivity together give linearity,

.˛1u1 C ˛2u2; v/ D ˛1.u1; v/C ˛2.u2; v/ (2.11)
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Fig. 2.1 Orthogonal vectors and their sum

in the first variable and, by symmetry, also in the second. Moreover, (2.11) easily
extends to linear combinations of arbitrary finite length. Note also that

kuk22; d� D .u; u/: (2.12)

We say that u and v are orthogonal if

.u; v/ D 0: (2.13)

This is always trivially true if either u or v vanishes identically on supp d�.
It is now a simple exercise, for example, to prove the Theorem of Pythagoras:

if .u; v/ D 0; then ku C vk2 D kuk2 C kvk2; (2.14)

where k � k D k � k2;d�. (From now on we use this abbreviated notation for the
norm.) Indeed,

ku C vk2 D .u C v; u C v/ D .u; u/C .u; v/C .v; u/C .v; v/

D kuk2 C 2.u; v/C kvk2 D kuk2 C kvk2;

where the first equality is a definition, the second follows from additivity, the
third from symmetry, and the last from orthogonality. Interpreting functions u; v
as “vectors,” we can picture the configuration of u; v (orthogonal) and u C v as in
Fig. 2.1.

More generally, we may consider an orthogonal systems fukgnkD1:

.ui ; uj / D 0 if i ¤ j; uk 6� 0 on supp d�I
i; j D 1; 2; : : : ; nI k D 1; 2; : : : ; n: (2.15)
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For such a system we have the Generalized Theorem of Pythagoras,
ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

nX

kD1
˛kuk

ˇ
ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇ
ˇ

2

D
nX

kD1
j˛kj2kukk2: (2.16)

The proof is essentially the same as before. An important consequence of (2.16) is
that every orthogonal system is linearly independent on the support of d�. Indeed,
if the left-hand side of (2.16) vanishes, then so does the right-hand side, and this,
since kukk2 > 0 by assumption, implies ˛1 D ˛2 D � � � D ˛n D 0.

2.1.2 The Normal Equations

We are now in a position to solve the least squares approximation problem. By
(2.12), we can write the L2 error, or rather its square, in the form:

E2Œ'� WD k' � f k2 D .' � f; ' � f / D .'; '/ � 2.'; f /C .f; f /:

Inserting ' here from (2.9) gives

E2Œ'�D
Z

R

0

@
nX

jD1
cj �j .t/

1

A

2

d�.t/�2
Z

R

0

@
nX

jD1
cj �j .t/

1

Af .t/d�.t/C
Z

R

f 2.t/d�.t/:

(2.17)

The squared L2 error, therefore, is a quadratic function of the coefficients c1,
c2; : : : ; cn of '. The problem of best L2 approximation thus amounts to minimizing
a quadratic function of n variables. This is a standard problem of calculus and is
solved by setting all partial derivatives equal to zero. This yields a system of linear
algebraic equations. Indeed, differentiating partially with respect to ci under the
integral sign in (2.17) gives

@

@ci
E2Œ'� D 2

Z

R

0

@
nX

jD1
cj �j .t/

1

A�i .t/d�.t/ � 2

Z

R

�i .t/f .t/d�.t/;

and setting this equal to zero, interchanging integration and summation in the
process, we get

nX

jD1
.�i ; �j /cj D .�i ; f /; i D 1; 2; : : : ; n: (2.18)

These are called the normal equations for the least squares problem. They form a
linear system of the form

Ac D b; (2.19)

where the matrix A and the vector b have elements
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A D Œaij �; aij D .�i ; �j /I b D Œbi �; bi D .�i ; f /: (2.20)

By symmetry of the inner product, A is a symmetric matrix. Moreover, A is positive
definite; that is,

xTAx D
nX

iD1

nX

jD1
aij xi xj > 0 if x ¤ Œ0; 0; : : : ; 0�T: (2.21)

The quadratic function in (2.21) is called a quadratic form (since it is homogeneous
of degree 2). Positive definiteness of A thus says that the quadratic form whose
coefficients are the elements of A is always nonnegative, and zero only if all
variables xi vanish.

To prove (2.21), all we have to do is insert the definition of the aij and use the
elementary properties 1–4 of the inner product:

xTAx D
nX

iD1

nX

jD1
xixj .�i ; �j / D

nX

iD1

nX

jD1
.xi�i ; xj �j / D

�
�
�
�
�

nX

iD1
xi�i

�
�
�
�
�

2

:

This clearly is nonnegative. It is zero only if
Pn

iD1 xi�i � 0 on supp d�, which, by
the assumption of linear independence of the �i , implies x1 D x2 D � � � D xn D 0.

Now it is a well-known fact of linear algebra that a symmetric positive definite
matrix A is nonsingular. Indeed, its determinant, as well as all its leading principal
minor determinants, are strictly positive. It follows that the system (2.18) of normal
equations has a unique solution. Does this solution correspond to a minimum of
EŒ'� in (2.17)? Calculus tells us that for this to be the case, the Hessian matrix H D
Œ@2E2=@ci@cj � has to be positive definite. But H D 2A, since E2 is a quadratic
function. Therefore, H , with A, is indeed positive definite, and the solution of the
normal equations gives us the desired minimum. The least squares approximation
problem thus has a unique solution, given by

O'.t/ D
nX

jD1
Ocj �j .t/; (2.22)

where Oc D Œ Oc1; Oc2; : : : ; Ocn�T is the solution vector of the normal equation (2.18).
This completely settles the least squares approximation problem in theory. How

about in practice?
Assuming a general set of (linearly independent) basis functions, we can see the

following possible difficulties.

1. The system (2.18) may be ill-conditioned. A simple example is provided by
supp d� D Œ0; 1�, d�.t/ D dt on [0,1], and �j .t/ D t j�1, j D 1; 2; : : : ; n.
Then

.�i ; �j / D
Z 1

0

t iCj�2 dt D 1

i C j � 1
; i; j D 1; 2; : : : ; nI
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that is, the matrix A in (2.18) is precisely the Hilbert matrix (cf. Chap. 1, (1.60)).
The resulting severe ill-conditioning of the normal equations in this example
is entirely due to an unfortunate choice of basis functions – the powers. These
become almost linearly dependent, more so the larger the exponent (cf. Ex. 38).
Another source of degradation lies in the element bj D R 1

0
�j .t/f .t/dt of the

right-hand vector b in (2.18). When j is large, the power �j D t j�1 behaves
very much like a discontinuous function on [0,1]: it is practically zero for much
of the interval until it shoots up to the value 1 at the right endpoint. This has
the unfortunate consequence that a good deal of information about f is lost
when one forms the integral defining bj . A polynomial �j that oscillates rapidly
on [0,1] would seem to be preferable from this point of view, since it would
“engage” the function f more vigorously over all of the interval [0,1].

2. The second disadvantage is the fact that all coefficients Ocj in (2.22) depend on

n; that is, Ocj D Oc.n/j , j D 1; 2; : : : ; n. Increasing n, for example, will give an
enlarged system of normal equations with a completely new solution vector. We
refer to this as the nonpermanence of the coefficients Ocj .

Both defects 1 and 2 can be eliminated (or at least attenuated in the case of 1)
in one stroke: select for the basis functions �j an orthogonal system,

.�i ; �j / D 0 if i ¤ j I .�j ; �j / D k�j k2 > 0: (2.23)

Then the system of normal equations becomes diagonal and is solved immedi-
ately by

Ocj D .�j ; f /

.�j ; �j /
; j D 1; 2; : : : ; n: (2.24)

Clearly, each of these coefficients Ocj is independent of n, and once com-
puted, remains the same for any larger n. We now have permanence of
the coefficients. Also, we do not have to go through the trouble of solv-
ing a linear system of equations, but instead can use the formula (2.24)
directly. This does not mean that there are no numerical problems associ-
ated with (2.24). Indeed, it is typical that the denominators k�j k2 in (2.24)
decrease rapidly with increasing j , whereas the integrand in the numera-
tor (or the individual terms in the case of a discrete inner product) are of
the same magnitude as f . Yet the coefficients Ocj also are expected to de-
crease rapidly. Therefore, cancellation errors must occur when one computes
the inner product in the numerator. The cancellation problem can be alleviated
somewhat by computing Ocj in the alternative form

Ocj D 1

.�j ; �j /

 

f �
j�1X

kD1
Ock�k; �j

!

; j D 1; 2; : : : ; n; (2.25)

where the empty sum (when j D 1) is taken to be zero, as usual. Clearly, by
orthogonality of the �j , (2.25) is equivalent to (2.24) mathematically, but not
necessarily numerically.
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An algorithm for computing Ocj from (2.25), and at the same time O'.t/, is as
follows:

s0 D 0;

for j D 1; 2; : : : ; n do
2

4
Ocj D 1

k�j k2 .f � sj�1; �j /

sj D sj�1 C Ocj �j .t/:
This produces the coefficients Oc1; Oc2; : : : ; Ocn as well as O'.t/ D sn.
Any system f O�j g that is linearly independent on the support of d� can be

orthogonalized (with respect to the measure d�) by a device known as the
Gram1–Schmidt 2procedure. One takes

�1 D O�1
and, for j D 2; 3; : : : , recursively forms

�j D O�j �
j�1X

kD1
ck�k; ck D . O�j ; �k/

.�k; �k/
:

Then each �j so determined is orthogonal to all preceding ones.

2.1.3 Least Squares Error; Convergence

We have seen in Sect. 2.1.2 that if the class ˆ D ˆn consists of n functions �j ,
j D 1; 2; : : : ; n, that are linearly independent on the support of some measure d�,
then the least squares problem for this measure,

min
'2ˆn

kf � 'k2;d� D kf � O'k2;d�; (2.26)

1Jórgen Pedersen Gram (1850–1916) was a farmer’s son who studied at the University of
Copenhagen. After graduation, he entered an insurance company as computer assistant and,
moving up the ranks, eventually became its director. He was interested in series expansions of
special functions and also contributed to Chebyshev and least squares approximation. The “Gram
determinant” was introduced by him in connection with his study of linear independence.
2Erhard Schmidt (1876–1959), a student of Hilbert, became a prominent member of the Berlin
School of Mathematics, where he founded the Institute of Applied Mathematics. He is considered
one of the originators of Functional Analysis, having contributed substantially to the theory of
Hilbert spaces. His work on linear and nonlinear integral equations is of lasting interest, as is his
contribution to linear algebraic systems of infinite dimension. He is also known for his proof of the
Jordan curve theorem. His procedure of orthogonalization was published in 1907 and today also
carries the name of Gram. It was known, however, already to Laplace.
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Fig. 2.2 Least squares approximation as orthogonal projection

has a unique solution O' D O'n given by (2.22). There are many ways we can select
a basis �j in ˆn and, therefore, many ways the solution O'n can be represented.
Nevertheless, it is always one and the same function. The least squares error – the
quantity on the right-hand side of (2.26) – therefore is independent of the choice of
basis functions (although the calculation of the least squares solution, as mentioned
previously, is not). In studying this error, we may thus assume, without restricting
generality, that the basis �j is an orthogonal system. (Every linearly independent
system can be orthogonalized by the Gram–Schmidt orthogonalization procedure;
cf. Sect. 2.1.2.) We then have (cf. (2.24))

O'n.t/ D
nX

jD1
Ocj�j .t/; Ocj D .�j ; f /

.�j ; �j /
: (2.27)

We first note that the error f � O'n is orthogonal to the space ˆn; that is,

.f � O'n; '/ D 0 for all ' 2 ˆn; (2.28)

where the inner product is the one in (2.10). Since ' is a linear combination of the
�k , it suffices to show (2.28) for each ' D �k , k D 1; 2; : : : ; n. Inserting O'n from
(2.27) in the left-hand side of (2.28), and using orthogonality, we find indeed

.f � O'n; �k/ D
0

@f �
nX

jD1
Ocj�j ; �k

1

A D .f; �k/� Ock.�k; �k/ D 0;

the last equation following from the formula for Ock in (2.27). The result (2.28) has
a simple geometric interpretation. If we picture functions as vectors, and the space
ˆn as a plane, then for any f that “sticks out” of the plane ˆn, the least squares
approximant O'n is the orthogonal projection of f onto ˆn; see Fig. 2.2.

In particular, choosing ' D O'n in (2.28), we get

.f � O'n; O'n/ D 0
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and, therefore, since f D .f � O'n/C O'n, by the Theorem of Pythagoras (cf. (2.14))
and its generalization (cf. (2.16)),

kf k2 D kf � O'nk2 C k O'nk2

D kf � O'nk2 C
�
�
�
�
�
�

nX

jD1
Ocj �j

�
�
�
�
�
�

2

D kf � O'nk2 C
nX

jD1
j Ocj j2k�j k2:

Solving for the first term on the right-hand side, we get

kf � O'nk D
8
<

:
kf k2 �

nX

jD1
j Ocj j2k�j k2

9
=

;

1
2

; Ocj D .�j ; f /

.�j ; �j /
: (2.29)

Note that the expression in braces must necessarily be nonnegative.
The formula (2.29) for the error is interesting theoretically, but of limited

practical use. Note, indeed, that as the error approaches the level of the machine
precision eps, computing the error from the right-hand side of (2.29) cannot produce
anything smaller than

p
eps because of inevitable rounding errors committed during

the subtraction in the radicand. (They may even produce a negative result for the
radicand.) Using instead the definition,

kf � O'nk D
�Z

R

Œf .t/ � O'n.t/�2d�.t/
� 1
2

;

along, perhaps, with a suitable (positive) quadrature rule (cf. Chap. 3, Sect. 3.2),
is guaranteed to produce a nonnegative result that may potentially be as small as
O.eps/.

If we are now given a sequence of linear spaces ˆn, n D 1; 2; 3; : : : ; as defined
in (2.2), then clearly

kf � O'1k � kf � O'2k � kf � O'3k � � � � ;

which follows not only from (2.29), but more directly from the fact thatˆ1 � ˆ2 �
ˆ3 � � � � : If there are infinitely many such spaces, then the sequence of L2 errors,
being monotonically decreasing, must converge to a limit. Is this limit zero? If so, we
say that the least squares approximation process converges (in the mean) as n ! 1.
It is obvious from (2.29) that a necessary and sufficient condition for this is

1X

jD1
j Ocj j2k�j k2 D kf k2: (2.30)
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An equivalent way of stating convergence is as follows: given any f with kf k <
1, that is, any f in theL2;d� space, and given any " > 0, no matter how small, there
exists an integer n D n" and a function '� 2 ˆn such that kf � '�k � ". A class
of spaces ˆn having this property is said to be complete with respect to the norm
k � k D k � k2;d�. One therefore calls (2.30) also the completeness relation.

For a finite interval [a; b], one can define completeness of fˆng also for the
uniform norm k � k D k � k1 on [a; b]. One then assumes f 2 C Œa; b� and also
�j 2 C Œa; b� for all basis functions in all classes ˆn, and one calls fˆng complete
in the norm k � k1 if for any f 2 C Œa; b� and any " > 0 there is an n D n" and a
'� 2 ˆn such that kf � '�k1 � ". It is easy to see that completeness of fˆng in
the norm k � k1 (on [a; b]) implies completeness of fˆng in the L2 norm k � k2;d�,
where supp d� D Œa; b�, and hence convergence of the least squares approximation
process. Indeed, let " > 0 be arbitrary and let n and '� 2 ˆn be such that

kf � '�k1 � "
�Z

R

d�.t/

� 1
2

:

This is possible by assumption. Then

kf � '�k2;d� D
�Z

R

Œf .t/ � '�.t/�2d�.t/
� 1

2

� kf � '�k1
�Z

R

d�.t/

� 1
2

� "
�Z

R

d�.t/

� 1
2

�Z

R

d�.t/

� 1
2

D ";

as claimed.

ExampleW ˆn D Pn�1.
Here completeness of fˆng in the norm k � k1 (on a finite interval [a; b]) is

a consequence of Weierstrass’s Approximation Theorem. Thus, polynomial least
squares approximation on a finite interval always converges (in the mean).

2.1.4 Examples of Orthogonal Systems

There are many orthogonal systems in use. The prototype of them all is the system
of trigonometric functions known from Fourier analysis. Other widely used systems
involve algebraic polynomials. We restrict ourselves here to these two particular
examples of orthogonal systems.
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1. Trigonometric functions: 1, cos t , cos 2t , cos 3t ; : : : ; sin t , sin 2t , sin 3t , : : : .
These are the basic harmonics; they are mutually orthogonal on the interval
[0; 2�] with respect to the equally weighted measure on [0,2�],

d�.t/ D

8
ˆ̂
<

ˆ̂
:

dt on Œ0; 2��;

0 otherwise:

(2.31)

We verify this for the sine functions: for k, ` D 1; 2; 3; : : : we have

Z 2�

0

sin kt � sin `t dt D �1
2

Z 2�

0

Œcos.k C `/t � cos.k � `/t� dt:

The right-hand side is equal to

�1
2

�
sin.k C `/t

k C `
� sin.k � `/t

k � `
�2�

0

D 0;

when k ¤ `, and equal to � otherwise. Thus,

Z 2�

0

sin kt � sin `t dt D

8
ˆ̂
<

ˆ̂
:

0 if k ¤ `;

� if k D `;

k; ` D 1; 2; 3; : : : : (2.32)

Similarly, one shows that

Z 2�

0

cos kt � cos `t dt D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0 if k ¤ `;

2� if k D ` D 0;

� if k D ` > 0;

k; ` D 0; 1; 2; : : : (2.33)

and

Z 2�

0

sin kt � cos `t dt D 0; k D 1; 2; 3; : : : ; ` D 0; 1; 2; : : : : (2.34)

The theory of Fourier series is concerned with the expansion of a given 2�-
periodic function in terms of these trigonometric functions,

f .t/ D
1X

kD0
ak coskt C

1X

kD1
bk sin kt: (2.35)
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Using (2.32)–(2.34), one formally obtains

a0 D 1

2�

Z 2�

0

f .t/ dt; ak D 1

�

Z 2�

0

f .t/ cos kt dt; k D 1; 2; : : : ;

bk D 1

�

Z 2�

0

f .t/ sin kt dt; k D 1; 2; : : : ; (2.36)

which are known as Fourier coefficients of f . They are precisely the coefficients
(2.24) for the system �j consisting of our trigonometric functions. By extension,
one therefore calls the coefficients Ocj in (2.24), for any orthogonal system �j , the
Fourier coefficients of f relative to this system. In particular, we now recognize
the truncated Fourier series (the series on the right-hand side of (2.35) truncated
at k D m, with ak , bk given by (2.36)) as the bestL2 approximation to f from the
class of trigonometric polynomials of degree � m relative to the norm (cf. (2.31))

kuk2 D
�Z 2�

0

ju.t/j2dt
� 1

2

:

2. Orthogonal polynomials: given a measure d� as introduced in (2.3)–(2.5), we
know from the example immediately following (2.7) that any finite number of
consecutive powers 1, t , t2; : : : are linearly independent on [a; b], if supp d� D
Œa; b�, whereas the finite set 1, t; : : : ; tN�1 is linearly independent on supp d� D
ft1; t2; : : : ; tN g. Since a linearly independent set can be orthogonalized by Gram–
Schmidt (cf. Sect. 2.1.2), any measure d� of the type considered generates
a unique set of (monic) polynomials �j .t/ D �j .t I d�/, j D 0; 1; 2; : : : ;

satisfying

deg�j D j; j D 0; 1; 2; : : : ;
Z

R

�k.t/�`.t/d�.t/ D 0 if k ¤ `: (2.37)

These are called orthogonal polynomials relative to the measure d�. (We slightly
deviate from the notation in Sects. 2.1.2 and 2.1.3 by letting the index j start
from zero.) The set �j is infinite if supp d� D Œa; b�, and consists of exactly N
polynomials �0, �1; : : : ; �N�1 if supp d� D ft1; t2; : : : ; tN g. The latter are referred
to as discrete orthogonal polynomials.

It is an important fact that three consecutive orthogonal polynomials are linearly
related. Specifically, there are real constants ˛k D ˛k.d�/ and positive constants
ˇk D ˇk.d�/ (depending on the measure d�) such that

�kC1.t/ D .t � ˛k/�k.t/ � ˇk�k�1.t/; k D 0; 1; 2; : : : ;

��1.t/ D 0; �0.t/ D 1: (2.38)
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(It is understood that (2.38) holds for all integers k � 0 if supp d� D Œa; b�, and
only for 0 � k < N � 1 if supp d� = ft1; t2; : : : ; tN g.)

To prove (2.38) and, at the same time identify the coefficients ˛k , ˇk , we note
that

�kC1.t/ � t�k.t/

is a polynomial of degree � k, since the leading terms cancel (the polynomials �j
are assumed monic). Since an orthogonal system is linearly independent (cf. the
remark after (2.16)), we can express this polynomial as a linear combination of �0,
�1; : : : ; �k . We choose to write this linear combination in the form:

�kC1.t/ � t�k.t/ D �˛k�k.t/ � ˇk�k�1.t/C
k�2X

jD0
�k;j �j .t/ (2.39)

(with the understanding that empty sums are zero). Now multiply both sides
of (2.39) by �k in the sense of the inner product (� , �) defined in (2.10). By
orthogonality, this gives .�t�k; �k/ D �˛k.�k; �k/; that is,

˛k D .t�k; �k/

.�k; �k/
; k D 0; 1; 2; : : : : (2.40)

Similarly, forming the inner product of (2.39) with �k�1 gives .�t�k; �k�1/ =
�ˇk.�k�1; �k�1/. Since .t�k; �k�1/ = .�k; t�k�1/ and t�k�1 differs from �k by
a polynomial of degree < k, we obtain by orthogonality .t�k; �k�1/ = .�k; �k/;
hence

ˇk D .�k; �k/

.�k�1; �k�1/
; k D 1; 2; : : : : (2.41)

Finally, multiplication of (2.39) by �`, ` < k � 1, yields

�k;` D 0; ` D 0; 1; : : : ; k � 2: (2.42)

Solving (2.39) for �kC1 then establishes (2.38), with ˛k , ˇk defined by (2.40)
and (2.41), respectively. Clearly, ˇk > 0. By convention, ˇ0 D R

R
d�.t/ DR

R
�20 .t/d�.t/.
The recursion (2.38) provides us with a practical scheme of generating orthogo-

nal polynomials. Indeed, since �0 D 1, we can compute ˛0 by (2.40) with k D 0.
This allows us to compute�1.t/ for any t , using (2.38) with k D 0. Knowing �0, �1,
we can go back to (2.40) and (2.41) and compute, respectively,˛1 and ˇ1. This gives
us access to �2 via (2.38) with k D 1. Proceeding in this fashion, using alternately
(2.40), (2.41), and (2.38), we can generate as many orthogonal polynomials as are
desired. This procedure – called Stieltjes’s procedure – is particularly well suited
for discrete orthogonal polynomials, since the inner product is then a finite sum,
.u; v/ =

PN
iD1 wiu.ti /v.ti / (cf. (2.5)), so that the computation of the ˛k , ˇk from
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(2.40) and (2.41) is straightforward. In the continuous case, the computation of the
inner product requires integration, which complicates matters. Fortunately, for many
important special measures d�.t/ D w.t/dt , the recursion coefficients are explicitly
known (cf. Chap. 3, Table 3.1). In these cases, it is again straightforward to generate
the orthogonal polynomials by (2.38).

The special case of symmetry (i.e., d�.t/ D w.t/dt with w.�t/ D w.t/ and
supp(d�) symmetric with respect to the origin) deserves special mention. In this
case, defining pk.t/ D .�1/k�k.�t/, one obtains by a simple change of variables
that .pk; p`/ D .�1/kC`.�k; �`/ D 0 if k ¤ `. Since pk is monic, it follows by
uniqueness that pk.t/ � �k.t/; that is,

.�1/k�k.�t/ � �k.t/ .d� symmetric/: (2.43)

Thus, if k is even, then �k is an even polynomial, that is, a polynomial in t2.
Likewise, when k is odd, �k contains only odd powers of t . As a consequence,

˛k D 0 for all k � 0 .d� symmetric/; (2.44)

which also follows from (2.40), since the numerator on the right-hand side of this
equation is an integral of an odd function over a symmetric set of points.

ExampleW Legendre3 polynomials.
We may introduce the monic Legendre polynomials by

�k.t/ D .�1/k kŠ

.2k/Š

dk

dtk
.1 � t2/k; k D 0; 1; 2; : : : ; (2.45)

which is known as the Rodrigues formula.
We first verify orthogonality on the interval Œ�1; 1� relative to the measure

d�.t/ D dt . For any ` with 0 � ` < k, repeated integration by parts gives

Z 1

�1
dk

dtk
.1 � t2/k � t `dt D

X̀

mD0
.�1/m`.` � 1/ � � � .` �mC 1/t`�m

� dk�m�1

dtk�m�1 .1 � t2/k
ˇ
ˇ
ˇ
ˇ

1

�1
D 0;

the last equation since 0 � k �m � 1 < k. Thus,

.�k; p/ D 0 for every p 2 Pk�1;

3Adrien Marie Legendre (1752–1833) was a French mathematician active in Paris, best known
not only for his treatise on elliptic integrals but also famous for his work in number theory and
geometry. He is considered as the originator (in 1805) of the method of least squares, although
Gauss had already used it in 1794, but published it only in 1809.
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proving orthogonality. Writing (by symmetry)

�k.t/ D tk C �kt
k�2 C � � � ; k � 2;

and noting (again by symmetry) that the recurrence relation has the form

�kC1.t/ D t�k.t/ � ˇk�k�1.t/;

we obtain

ˇk D t�k.t/ � �kC1.t/
�k�1.t/

;

which is valid for all t . In particular, as t ! 1,

ˇk D lim
t!1

t�k.t/ � �kC1.t/
�k�1.t/

D lim
t!1

.�k � �kC1/tk�1 C � � �
tk�1 C � � � D �k � �kC1:

(If k D 1, set �1 D 0.) From Rodrigues’s formula, however, we find

�k.t/ D kŠ

.2k/Š

dk

dtk
.t2k � kt2k�2 C � � � / D kŠ

.2k/Š

	
2k.2k � 1/ � � � .k C 1/tk

� k � .2k � 2/.2k � 3/ � � � .k � 1/tk�2 C � � � 


D tk � k.k � 1/
2.2k � 1/ t

k�2 C � � � ;

so that

�k D � k.k � 1/

2.2k � 1/
; k � 2:

Therefore,

ˇk D �k � �kC1 D � k.k � 1/
2.2k � 1/ C .k C 1/k

2.2k C 1/
D k

2

2k

.2k C 1/.2k � 1/
I

that is, since �1 D 0,

ˇk D 1

4 � k�2 ; k � 1: (2.46)

We conclude with two remarks concerning discrete measures d� with supp d� D
ft1; t2; : : : ; tN g. As before, the L2 errors decrease monotonically, but the last one is
now zero, since there is a polynomial of degree � N � 1 that interpolates f at the
N points t1; t2; : : : ; tN (cf. Sect. 2.1.2). Thus,

kf � O'0k � kf � O'1k � � � � � kf � O'N�1k D 0; (2.47)
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where O'n is the L2 approximant of degree � n,

O'n.t/ D
nX

jD0
Ocj �j .t I d�/; Ocj D .�j ; f /

.�j ; �j /
: (2.48)

We see that the polynomial O'N�1 solves the interpolation problem for PN�1. Using
(2.48) with n D N � 1 to obtain the interpolation polynomial, however, is a
roundabout way of solving the interpolation problem. We learn of more direct ways
in the next section.

2.2 Polynomial Interpolation

We now wish to approximate functions by matching their values at given points.
Using polynomials as approximants gives rise to the following problem: given nC1
distinct points x0, x1; : : : ; xn and values fi D f .xi / of some function f at these
points, find a polynomial p 2 Pn such that

p.xi / D fi ; i D 0; 1; 2; : : : ; n:

Since we have to satisfy nC 1 conditions, and have at our disposal nC 1 degrees of
freedom – the coefficients of p – we expect the problem to have a unique solution.
Other questions of interest, in addition to existence and uniqueness, are different
ways of representing and computing the polynomial p, what can be said about the
error e.x/ D f .x/ � p.x/ when x ¤ xi , i D 0; 1; : : : ; n, and the quality of
approximation f .x/ 	 p.x/ when the number of points, and hence the degree of
p, is allowed to increase indefinitely. Although these questions are not of the utmost
interest in themselves, the results discussed here are widely used in the development
of approximate methods for more important practical tasks such as solving initial
and boundary value problems for ordinary and partial differential equations. It is in
view of these and other applications that we study polynomial interpolation.

The simplest example is linear interpolation, that is, the case n D 1. Here, it is
obvious from Fig. 2.3 that the interpolation problem has a unique solution. It is also
clear that the error e.x/ can be as large as one likes (or dislikes) if nothing is known
about f other than its two values at x0 and x1.

One way of writing down the linear interpolant p is as a weighted average of f0
and f1 (already taught in high school),

p.x/ D x � x1

x0 � x1 f0 C x � x0

x1 � x0 f1:
This is the way Lagrange expressed p in the general case (cf. Sect. 2.1.2). However,
we can write p also in Taylor’s form, noting that its derivative at x0 is equal to the
“difference quotient,”

p.x/ D f0 C f1 � f0
x1 � x0 .x � x0/:
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Fig. 2.3 Linear interpolation

This indeed is a prototype of Newton’s form of the interpolation polynomial
(cf. Sect. 2.2.6).

Interpolating to function values is referred to as Lagrange interpolation. More
generally, we may wish to interpolate to function and consecutive derivative values
of some function. This is called Hermite interpolation. It turns out that the latter can
be solved as a limit case of the former (cf. Sect. 2.2.7).

2.2.1 Lagrange Interpolation Formula: Interpolation Operator

We prove the existence of the interpolation polynomial by simply writing it down.
It is clear, indeed, that

`i .x/ D
nY

jD0
j¤i

x � xj

xi � xj
; i D 0; 1; : : : ; n; (2.49)

is a polynomial of degree n that interpolates to 1 at x D xi and to 0 at all the other
points. Multiplying it by fi produces the correct value at xi , and then adding up the
resulting polynomials,

p.x/ D
nX

iD0
fi `i .x/;

produces a polynomial, still of degree � n, that has the desired interpolation
properties. To prove this formally, note that
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`i .xk/ D ıik D

8
ˆ̂
<

ˆ̂
:

1 if i D k;

0 if i ¤ k;

i; k D 0; 1; : : : ; n: (2.50)

Therefore,

p.xk/ D
nX

iD0
fi `i .xk/ D

nX

iD0
fi ıik D fk; k D 0; 1; : : : ; n:

This establishes the existence of the interpolation polynomial. To prove uniqueness,
assume that there are two polynomials of degree � n, say, p and p�, both
interpolating to f at xi , i D 0; 1; : : : ; n. Then

d.x/ D p.x/ � p�.x/

is a polynomial of degree � n that satisfies

d.xi / D fi � fi D 0; i D 0; 1; : : : ; n:

In other words, d has n C 1 distinct zeros xi . There is only one polynomial in Pn

with that many zeros, namely, d.x/ � 0. Therefore, p�.x/ � p.x/.
We denote the unique polynomial p 2 Pn interpolating f at the (distinct) points

x0, x1; : : : ; xn by
pn.f I x0; x1; : : : ; xnI x/ D pn.f I x/; (2.51)

where we use the long form on the left-hand side if we want to place in evidence the
points at which interpolation takes place, and the short form on the right-hand side
if the choice of these points is clear from the context. We thus have what is called
the Lagrange4 interpolation formula

pn.f I x/ D
nX

iD0
f .xi /`i .x/; (2.52)

with the `i .x/ – the elementary Lagrange interpolation polynomials – defined in
(2.49).

4Joseph Louis Lagrange (1736–1813), born in Turin, became, through correspondence with Euler,
his protégé. In 1766 he indeed succeeded Euler in Berlin. He returned to Paris in 1787. Clairaut
wrote of the young Lagrange: “ : : : a young man, no less remarkable for his talents than for
his modesty; his temperament is mild and melancholic; he knows no other pleasure than study.”
Lagrange made fundamental contributions to the calculus of variations and to number theory, and
worked also on many problems in analysis. He is widely known for his representation of the
remainder term in Taylor’s formula. The interpolation formula appeared in 1794. His Mécanique
Analytique, published in 1788, made him one of the founders of analytic mechanics.
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It is useful to look at Lagrange interpolation in terms of a (linear) operator Pn
from (say) the space of continuous functions to the space of polynomials Pn,

Pn W C Œa; b� ! Pn; p. � / D pn.f I � /: (2.53)

The interval [a; b] here is any interval containing all points xi , i D 0; 1; : : : ; n. The
operator Pn has the following properties:

1. Pn. f̨ / D ˛Pnf; ˛ 2 R (homogeneity);
2. Pn.f C g/ D Pnf C Png (additivity).

Combining 1 and 2 shows that Pn is a linear operator,

Pn. f̨ C ˇg/ D ˛Pnf C ˇPng; ˛; ˇ 2 R:

3. Pnf D f for all f 2 Pn.

The last property – an immediate consequence of uniqueness of the interpolation
polynomial – says that Pn leaves polynomials of degree � n unchanged, and hence
is a projection operator.

A norm of the linear operator Pn can be defined (similarly as for matrices,
cf. Chap. 1, (1.30)) by

kPnk D max
f 2CŒa;b�

kPnf k
kf k ; (2.54)

where on the right-hand side one takes any convenient norm for functions. Taking
the L1 norm (cf. Table 2.1), one obtains from Lagrange’s formula (2.52)

kpn.f I � /k1 D max
a�x�b

ˇ
ˇ
ˇ
ˇ
ˇ

nX

iD0
f .xi /`i .x/

ˇ
ˇ
ˇ
ˇ
ˇ

� kf k1 max
a�x�b

nX

iD0
j`i .x/j: (2.55)

Indeed, equality holds for some continuous function f ; cf. Ex. 30. Therefore,

kPnk1 D ƒn; (2.56)

where

ƒn D k�nk1; �n.x/ D
nX

iD0
j`i .x/j: (2.57)
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The function �n.x/ and its maximum ƒn are called, respectively, the Lebesgue5

function and Lebesgue constant for Lagrange interpolation. They provide a first
estimate for the interpolation error: let En.f / be the best (uniform) approximation
of f on [a; b] by polynomials of degree � n,

En.f / D min
p2Pn

kf � pk1 D kf � Opnk1; (2.58)

where Opn is the nth-degree polynomial of best uniform approximation to f . Then,
using the basic properties 1–3 of Pn, in particular, the projection property 3, and
(2.55) and (2.57), one finds

kf � pn.f I � /k1 D kf � Opn � pn.f � OpnI � /k1

� kf � Opnk1 Cƒnkf � Opnk1I

that is,

kf � pn.f I � /k1 � .1Cƒn/En.f /: (2.59)

Thus, the better f can be approximated by polynomials of degree � n, the smaller
the interpolation error. Unfortunately,ƒn is not uniformly bounded: no matter how
one chooses the nodes xi D x

.n/
i , i D 0; 1; : : : ; n, one can show that always ƒn >

O.logn/ as n ! 1. It is not possible, therefore, to conclude from Weierstrass’s
approximation theorem (i.e., from En.f / ! 0, n ! 1) that Lagrange interpolation
converges uniformly on [a; b] for any continuous function, not even for judiciously
selected nodes; indeed, one knows that it does not.

2.2.2 Interpolation Error

As noted earlier, we need to make some assumptions about the function f in order
to be able to estimate the error of interpolation, f .x/�pn.f I x/, for any x ¤ xi in
[a; b]. In (2.59) we made an assumption in terms of how well f can be approximated
on [a; b] by polynomials of degree � n. Now we make an assumption on the
magnitude of some appropriate derivative of f .

5Henri Leon Lebesgue (1875–1941) was a French mathematician best known for his work on the
theory of real functions, notably the concepts of measure and integral that now bear his name. These
became fundamental in many areas of mathematics such as functional analysis, Fourier analysis,
and probability theory. He has also made interesting contributions to the calculus of variations, the
theory of dimension, and set theory.
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It is not difficult to guess how the formula for the error should look: since the
error is zero at each xi , i D 0; 1; : : : ; n, we ought to see a factor of the form .x�x0/
.x � x1/ � � � .x � xn/. On the other hand, by the projection property 3 in Sect. 2.2.1,
the error is also zero (even identically so) if f 2 Pn, which suggests another factor
– the .n C 1/st derivative of f . But evaluated where? Certainly not at x, since
f would then have to satisfy a differential equation. So let us say that f .nC1/ is
evaluated at some point 	 D 	.x/, which is unknown but must be expected to
depend on x. Now if we test the formula so far conjectured on the simplest nontrivial
polynomial, f .x/ D xnC1, we discover that a factor 1=.nC 1/! is missing. So, our
final (educated) guess is the formula

f .x/ � pn.f I x/ D f .nC1/.	.x//
.nC 1/Š

nY

iD0
.x � xi /; x 2 Œa; b�: (2.60)

Here 	.x/ is some number in the open interval (a; b), but otherwise unspecified,

a < 	.x/ < b: (2.61)

The statement (2.60) and (2.61) is, in fact, correct if we assume that f 2
CnC1Œa; b�. An elegant proof of it, due to Cauchy,6 goes as follows. We can assume
x ¤ xi for i D 0; 1; : : : ; n, since otherwise (2.60) would be trivially true for any
	.x/. So, fix x 2 Œa; b� in this manner, and define a function F of the new variable
t as follows:

F.t/ D f .t/ � pn.f I t/ � f .x/ � pn.f I x/
nY

iD0
.x � xi /

nY

iD0
.t � xi /: (2.62)

Clearly, F 2 CnC1Œa; b�. Furthermore,

F.xi / D 0; i D 0; 1; : : : ; nI F.x/ D 0:

Thus, F has n C 2 distinct zeros in [a; b]. Applying repeatedly Rolle’s Theorem,
we conclude that

6Augustin Louis Cauchy (1789–1857), active in Paris, is truly the father of modern analysis. He
provided a firm foundation for analysis by basing it on a rigorous concept of limit. He is also
the creator of complex analysis, of which “Cauchy’s formula” (cf. (2.70)) is a centerpiece. In
addition, Cauchy’s name is attached to pioneering contributions to the theory of ordinary and partial
differential equations, in particular, regarding questions of existence and uniqueness. As with
many great mathematicians of the eighteenth and nineteenth centuries, his work also encompasses
geometry, algebra, number theory, and mechanics, as well as theoretical physics.
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F 0 has at least nC 1 distinct zeros in .a; b/

F 00 has at least n distinct zeros in .a; b/

F 000 has at least n� 1 distinct zeros in .a; b/

� � � � � � � � � � � � � � � � � � � � � � � � � � �

F .nC1/ has at least 1 zero in .a; b/

since F .nC1/ is still continuous on [a; b]. Denote by 	.x/ a zero of F .nC1/ whose
existence we just established. It certainly satisfies (2.61) and, of course, will depend
on x. Now differentiating F in (2.62) nC 1 times with respect to t , and then setting
t D 	.x/, we get

0 D f .nC1/.	.x// � f .x/ � pn.f I x/
nY

iD0
.x � xi /

� .nC 1/Š;

which, when solved for f .x/� pn.f I x/, gives precisely (2.60). Actually, what we
have shown is that 	.x/ is contained in the span of x0; x1; : : : ; xn, x, that is, in the
interior of the smallest closed interval containing x0; x1; : : : ; xn and x.

Examples. 1. Linear interpolation (n D 1). Assume that x0 � x � x1; that is,
[a; b] = [x0; x1], and let h D x1 � x0. Then by (2.60) and (2.61),

f .x/ � p1.f I x/ D .x � x0/.x � x1/
f 00.	/
2

; x0 < 	 < x1;

and an easy computation gives

kf � p1.f I �/k1 � M2

8
h2; M2 D kf 00k1: (2.63)

Here the 1-norm refers to the interval [x0; x1]. Thus, on small intervals of length
h, the error for linear interpolation is O.h2/.

2. Quadratic interpolation (n D 2) on equally spaced points x0, x1 D x0 C h,
x2 D x0 C 2h. We now have, for x 2 Œx0; x2�,

f .x/ � p2.f I x/ D .x � x0/.x � x1/.x � x2/f
000.	/
6

; x0 < 	 < x2;
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Fig. 2.4 Interpolation error for eight equally spaced points

and (cf. Ex. 43(a))

kf � p2.f I �/k1 � M3

9
p
3
h3; M3 D kf 000k1;

giving an error ofO.h3/.

3. nth-degree interpolation on equally spaced points xi D x0 C ih, i D 0; 1; : : : ; n.
When h is small, and x0 � x � xn, then 	.x/ in (2.60) is constrained to a
relatively small interval and f .nC1/.	.x// cannot vary a great deal. The behavior
of the error, therefore, is mainly determined by the product

Qn
iD0.x � xi /, the

graph of which, for n D 7, is shown in Fig. 2.4. We clearly have symmetry
with respect to the midpoint .x0 C xn/=2. It can also be shown that the relative
extrema decrease monotonically in modulus as one moves from the endpoints to
the center (cf. Ex. 29(c)).

It is evident that the oscillations become more violent as n increases. In
particular, the curve is extremely steep at the endpoints, and takes off to 1
rapidly as x moves away from the interval [x0; xn]. Although it is true that the
curve representing the interpolation error is scaled by a factor of O.hnC1/, it
is also clear that one ought to interpolate near the center zone of the interval
[x0; xn], if at all possible, and should avoid interpolation near the end zones, or
even extrapolation outside the interval. The highly oscillatory nature of the error
curve, when n is large, also casts some legitimate doubts about convergence of
the interpolation process as n ! 1. This is studied in the next section.
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2.2.3 Convergence

We first must define what we mean by “convergence.” We assume that we are given
a triangular array of interpolation nodes xi D x

.n/
i , exactly nC 1 distinct nodes for

each n D 0; 1; 2; : : : :

x
.0/
0

x
.1/
0 x

.1/
1

x
.2/
0 x

.2/
1 x

.2/
2

� � � � � � � � � � �
x
.n/
0 x

.n/
1 x

.n/
2 � � � x.n/n

� � � � � � � � � � � � � � � �

(2.64)

We further assume that all nodes x.n/i are contained in some finite interval [a; b].
Then, for each n, we define

pn.x/ D pn.f I x.n/0 ; x
.n/
1 ; : : : ; x.n/n I x/; x 2 Œa; b�: (2.65)

We say that Lagrange interpolation based on the triangular array of nodes (2.64)
converges if

pn.x/ ! f .x/ as n ! 1; (2.66)

uniformly for x 2 Œa; b�.
Convergence clearly depends on the behavior of the kth derivative f .k/ of f as

k ! 1. We assume that f 2 C1Œa; b�, and that

jf .k/.x/j � Mk for a � x � b; k D 0; 1; 2; : : : : (2.67)

Since jx � x.n/i j � b � a whenever x 2 Œa; b� and x.n/i 2 Œa; b�, we have

j.x � x
.n/
0 /.x � x

.n/
1 / � � � .x � x.n/n /j � .b � a/nC1; (2.68)

so that by (2.60)

jf .x/ � pn.x/j � .b � a/nC1 MnC1
.nC 1/Š

; x 2 Œa; b�:

We therefore have convergence if

lim
k!1

.b � a/k

kŠ
Mk D 0: (2.69)
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Fig. 2.5 The circular disk Cr

We now show that (2.69) is true if f is analytic in a sufficiently large region in
the complex plane containing the interval [a; b]. Specifically, let Cr be the circular
(closed) disk with center at the midpoint of [a; b] and radius r , and assume, for the
time being, that r > 1

2
.b � a/, so that Œa; b� � Cr . Assume f analytic in Cr . Then

we can estimate the derivative in (2.67) by Cauchy’s Formula,

f .k/.x/ D kŠ

2�i

I

@Cr

f .z/

.z � x/kC1 dz; x 2 Œa; b�: (2.70)

Noting that jz � xj � r � 1
2
.b � a/ (cf. Fig. 2.5), we obtain

jf .k/.x/j � kŠ

2�

max
z2@Cr

jf .z/j
Œr � 1

2
.b � a/�kC1 � 2�r:

Therefore, we can take for Mk in (2.67)

Mk D r

r � 1
2
.b � a/

max
z2@Cr

jf .z/j � kŠ

Œr � 1
2
.b � a/�k

; (2.71)

and (2.69) holds if

 
b � a

r � 1
2
.b � a/

!k

! 0 as k ! 1;

that is, if b � a < r � 1
2
.b � a/, or, equivalently,

r > 3
2
.b � a/: (2.72)



2.2 Polynomial Interpolation 83

We have shown that Lagrange interpolation converges (uniformly on [a; b]) for an
arbitrary triangular set of nodes (2.64) (all contained in [a; b]) if f is analytic in
the circular disk Cr centered at .a C b/=2 and having radius r sufficiently large so
that (2.72) holds.

Since our derivation of this result used rather crude estimates (see, in particular,
(2.68)), the required domain of analyticity for f that we found is certainly not sharp.
Using more refined methods, one can prove the following. Let d�.t/ be the “limit
distribution” of the interpolation nodes, that is, let

Z x

a

d�.t/; a < x � b;

be the ratio of the number of nodes x.n/i in [a; x] to the total number, n C 1, of
nodes, asymptotically as n ! 1. (When the nodes are uniformly distributed over
the interval [a; b], then d�.t/ D dt=.b � a/.) A curve of constant logarithmic
potential is the locus of all complex z 2 C such that

u.z/ D �; u.z/ D
Z b

a

ln
1

jz � t j d�.t/;

where � is a constant. For large negative � , these curves look like circles with large
radii and center at .aCb/=2. As � increases, the curves “shrink” toward the interval
[a; b]. Let


 D sup �;

where the supremum is taken over all curves u.z/ D � containing [a; b] in their
interior. The important domain (replacing Cr ) is then the domain

C
 D fz 2 C W u.z/ � 
g; (2.73)

in the sense that if f is analytic in any domain C containing C
 in its interior (no
matter how closely C covers C
 ), then

jf .z/ � pn.f I z/j ! 0 as n ! 1 (2.74)

uniformly for z 2 C
 .

Examples. 1. Equally distributed nodes: d�.t/ D dt=.b � a/, a � t � b. In this
case, C
 is a lens-shaped domain with tips at a and b, as shown in Fig. 2.6. Thus,
we have uniform convergence in C
 (not just on [a; b], as before) provided f is
analytic in a region slightly larger than C
 .

2. Arc sine distribution on [–1,1]: d�.t/ D 1

�

dtp
1 � t2

. Here the nodes are more

densely distributed near the endpoints of the interval [–1,1]. It turns out that in
this case C
 = [–1,1], so that Lagrange interpolation converges uniformly on
[–1,1] if f is “analytic on [1,1],” that is, analytic in any region, no matter how
thin, that contains the interval [–1,1] in its interior.
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Fig. 2.6 The domain C
 for uniformly distributed nodes

3. Runge’s7 example:

f .x/ D 1

1C x2
; � 5 � x � 5;

x
.n/

k D �5C k
10

n
; k D 0; 1; 2; : : : ; n: (2.75)

Here the nodes are equally spaced, hence asymptotically equally distributed.
Note that f .z/ has poles at z D ˙ i. These poles lie definitely inside the region
C
 in Fig. 2.6 for the interval [–5,5], so that f is not analytic in C
 . For this
reason, we can no longer expect convergence on the whole interval [–5,5]. It has
been shown, indeed, that

lim
n!1 jf .x/ � pn.f I x/j D

8
<

:

0 if jxj < 3:633 : : : ;
1 if jxj > 3:633 : : : :

(2.76)

We have convergence in the central zone of the interval [–5,5], but divergence in
the lateral zones. With Fig. 2.4 kept in mind, this is perhaps not all that surprising
(cf. MA 7(b)).

4. Bernstein’s8 example:

f .x/ D jxj; � 1 � x � 1;

x
.n/

k D �1C 2k

n
; k D 0; 1; 2; : : : ; n: (2.77)

7Carl David Tolme Runge (1856–1927) was active in the famous Göttingen school of mathematics
and is one of the early pioneers of numerical mathematics. He is best known for the Runge–Kutta
formula in ordinary differential equations (cf. Chap. 5, Sect. 5.6.5), for which he provided the basic
idea. He made also notable contributions to approximation theory in the complex plane.
8Sergei Natanovič Bernštein (1880–1968) made major contributions to polynomial approximation,
continuing in the tradition of his countryman Chebyshev. He is also known for his work on partial
differential equations and probability theory.
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Here analyticity of f is completely gone, f being not even differentiable at
x D 0. Accordingly, one finds that

lim
n!1jf .x/ � pn.f I x/j D 1 for every x 2 Œ�1; 1�;

except x D �1; x D 0; and x D 1: (2.78)

The fact that x D ˙ 1 are exceptional points is trivial, since they are interpolation
nodes, where the error is zero. The same is true for x D 0 when n is even, but
not if n is odd.

The failure of convergence in the last two examples can only in part be blamed
on insufficient regularity of f . Another culprit is the equidistribution of the
nodes. There are indeed better distributions, for example, the arc sine distribution
of Example 2. An instance of the latter is discussed in the next section.

We add one more example, which involves complex nodes, and for which the
preceding theory, therefore, no longer applies. We prove convergence directly.

5. Interpolation at the roots of unity (Fejér9): zk D exp.k2�i=n/, k D 1; 2; : : : ; n.
We show that

pn�1.f I z/ ! f .z/; n ! 1; for any jzj < 1; (2.79)

uniformly in any disk jzj � � < 1, provided f is analytic in jzj < 1 and
continuous on jzj � 1.

We have

!n.z/ WD
nY

kD1
.z � zk/ D zn � 1; !0

n.zk/ D nzn�1
k D n

zk
;

so that the elementary Lagrange polynomials are

`k.z/ D !n.z/

!0
n.zk/.z � zk/

D zn � 1
n
zk
.z � zk/

D zk
n

1

zk � z
C zn

zk
.z � zk/n

:

9Leopold Fejér (1880–1959) was a leading Hungarian mathematician of the twentieth century.
Interestingly, Fejér had great difficulties in mathematics at the elementary and lower secondary
school level, and even required private tutoring. It was an inspiring teacher in the upper-level
secondary school who awoke Fejér’s interest and passion for mathematics. He went on to discover
– still a university student – an important result on the summability of Fourier series, which made
him famous overnight. He continued to make further contributions to the theory of Fourier series,
but also occupied himself with problems of approximation and interpolation in the real as well
as complex domain. He in turn was an inspiring teacher to the next generation of Hungarian
mathematicians.
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Therefore,

pn�1.f I z/ D
nX

kD1

f .zk/

zk � z

zk
n

C zn
nX

kD1

f .zk/

z � zk

zk
n
: (2.80)

We interpret the first sum as a Riemann sum of an integral extended over the unit
circle:

nX

kD1

f .zk/

zk � z

zk
n

D 1

2�i

nX

kD1

f .eik2�=n/

eik2�=n � z
ieik2�=n � 2�

n

! 1

2�i

Z 2�

0

f .ei� /

ei� � z
iei�d� D 1

2�i

I

j
jD1
f .
/d



 � z
as n ! 1:

The last expression, by Cauchy’s Formula, however, is precisely f .z/. The
second term in (2.80), being just �zn times the first, converges to zero, uniformly
in jzj � � < 1.

2.2.4 Chebyshev Polynomials and Nodes

The choice of nodes, as we saw in the previous section, distinctly influences
the convergence character of the interpolation process. We now discuss a choice
of points – the Chebyshev points – which leads to very favorable convergence
properties. These points are useful, not only for interpolation, but also for other
purposes (integration, collocation, etc.). We consider them on the canonical interval
[–1,1], but they can be defined on any finite interval [a; b] by means of a linear
transformation of variables that maps [–1,1] onto [a; b].

We begin with developing the Chebyshev polynomials. They arise from the fact
that the cosine of a multiple argument is a polynomial in the cosine of the simple
argument; more precisely,

cosn� D Tn.cos �/; Tn 2 Pn: (2.81)

This is a consequence of the well-known trigonometric identity

cos.k C 1/� C cos.k � 1/� D 2 cos � cos k�;

which, when solved for the first term, gives

cos.k C 1/� D 2 cos� cos k� � cos.k � 1/�: (2.82)

Therefore, if cosm� is a polynomial of degree m in cos � for all m � k, then the
same is true form D kC1. Mathematical induction then proves (2.81). At the same
time, it follows from (2.81) and (2.82), if we set cos � D x, that
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TkC1.x/ D 2xTk.x/ � Tk�1.x/; k D 1; 2; 3; : : : ;

T0.x/ D 1; T1.x/ D x: (2.83)

The polynomials Tm so defined are called the Chebyshev polynomials (of the first
kind). Thus, for example,

T2.x/ D 2x2 � 1;

T3.x/ D 4x3 � 3x;

T4.x/ D 8x4 � 8x2 C 1;

and so on.
Clearly, these polynomials are defined not only for x in [–1,1], but also for

arbitrary real or complex x. It is only that on the interval [–1,1] they satisfy the
identity (2.81) (where � is real).

It is evident from (2.83) that the leading coefficient of Tn is 2n�1 (if n � 1); the
monic Chebyshev polynomial of degree n, therefore, is

ı
T n.x/ D 1

2n�1 Tn.x/; n � 1I ı
T 0 D T0: (2.84)

The basic identity (2.81) allows us to immediately obtain the zeros xk D x
.n/

k of
Tn: indeed, cosn� D 0 if n� D .2k � 1/�=2, so that

x
.n/

k D cos �.n/k ; �
.n/

k D 2k � 1
2n

�; k D 1; 2; : : : ; n: (2.85)

All zeros of Tn are thus real, distinct, and contained in the open interval (–1,1). They
are the projections onto the real line of equally spaced points on the unit circle;
cf. Fig. 2.7 for the case n D 4.

In terms of the zeros x.n/k of Tn, we can write the monic polynomial in factored
form as

ı
T n.x/ D

nY

kD1

�
x � x.n/k

�
: (2.86)

As we let � increase from 0 to � , hence x D cos � decrease from C1 to �1,
(2.81) shows that Tn.x/ oscillates between +1 and –1, attaining these extreme
values at

y
.n/

k D cos �.n/k ; �
.n/

k D k
�

n
; k D 0; 1; 2; : : : ; n: (2.87)
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Fig. 2.7 The Chebyshev polynomial y D T4.x/

In summary, then,

Tn

�
x
.n/

k

�
D 0 for x.n/k D cos

2k � 1

2n
�; k D 1; 2; : : : ; nI (2.88)

Tn

�
y
.n/

k

�
D .�1/k for y.n/k D cos

k

n
�; k D 0; 1; 2; : : : ; n: (2.89)

Chebyshev polynomials owe their importance and usefulness to the following
theorem, due to Chebyshev.10

Theorem 2.2.1. For an arbitrary monic polynomial
ı
pn of degree n, there holds

max�1�x�1 j ı
pn.x/j � max�1�x�1 j ı

T n.x/j D 1

2n�1 ; n � 1; (2.90)

where
ı
T n is the monic Chebyshev polynomial (2.84) of degree n.

10Pafnuti Levovich Chebyshev (1821–1894) was the most prominent member of the St. Petersburg
school of mathematics. He made pioneering contributions to number theory, probability theory,
and approximation theory. He is regarded as the founder of constructive function theory, but also
worked in mechanics, notably the theory of mechanisms, and in ballistics.
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Proof (by contradiction). Assume, contrary to (2.90), that

max�1�x�1 j ı
pn.x/j <

1

2n�1 : (2.91)

Then the polynomial dn.x/ D ı
T n.x/ � ı

pn.x/ (a polynomial of degree � n � 1),
satisfies

dn

�
y
.n/
0

�
> 0; dn

�
y
.n/
1

�
< 0; dn

�
y
.n/
2

�
> 0; : : : ; .�1/ndn

	
y.n/n



> 0: (2.92)

Thus dn changes sign at least n times, and hence has at least n distinct real zeros.
But having degree �n � 1, it must vanish identically, dn.x/ � 0. This contradicts
(2.92); thus (2.91) cannot be true. ut

The result (2.90) can be given the following interesting interpretation: the best
uniform approximation (on the interval [–1,1]) to f .x/ D xn from polynomials in

Pn�1 is given by xn� ı
T n.x/, that is, by the aggregate of terms of degree � n�1 in

ı
T n

taken with the minus sign. From the theory of uniform polynomial approximation it
is known that the best approximant is unique. Therefore, equality in (2.90) can only

hold if
ı
pn D ı

T n.
What is the significance of Chebyshev polynomials for interpolation? Recall

(cf. (2.60)) that the interpolation error (on [–1,1], for a function f 2 CnC1Œ�1; 1�),
is given by

f .x/ � pn.f I x/ D f .nC1/.	.x//
.nC 1/Š

�
nY

iD0
.x � xi /; x 2 Œ�1; 1�: (2.93)

The first factor is essentially independent of the choice of the nodes xi . It is true
that 	.x/ does depend on the xi , but we usually estimate f .nC1/ by kf .nC1/k1,
which removes this dependence. On the other hand, the product in the second factor,
including its norm

�
�
�
�
�

nY

iD0
.� � xi /

�
�
�
�
�

1
; (2.94)

depends strongly on the xi . It makes sense, therefore, to try to minimize (2.94) over
all xi 2 Œ�1; 1�. Since the product in (2.94) is a monic polynomial of degree nC1, it
follows from Theorem 2.2.1 that the optimal nodes xi D Ox.n/i in (2.93) are precisely
the zeros of TnC1; that is,

Ox.n/i D cos
2i C 1

2nC 2
�; i D 0; 1; 2; : : : ; n: (2.95)
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For these nodes, we then have (cf. (2.90))

kf .�/ � pn.f I �/k1 � kf .nC1/k1
.nC 1/Š

� 1
2n
: (2.96)

One ought to compare the last factor in (2.96) with the much cruder bound given in
(2.68), which, in the case of the interval [–1,1], is 2nC1.

Since by (2.93) the error curve y D f � pn.f I �/ for Chebyshev points (2.95)
is essentially equilibrated (modulo the variation in the factor f .nC1/), and thus
free of the violent oscillations we saw for equally spaced points, we would expect
more favorable convergence properties for the triangular array (2.64) consisting of
Chebyshev nodes. Indeed, one can prove, for example, that

pn.f I Ox.n/0 ; Ox.n/1 ; : : : ; Ox.n/n I x/ ! f .x/ as n ! 1; (2.97)

uniformly on [–1,1], provided only that f 2 C1Œ�1; 1�. Thus we do not need
analyticity of f for (2.97) to hold.

We finally remark – as already suggested by the recurrence relation (2.83) – that
Chebyshev polynomials are a special case of orthogonal polynomials. Indeed, the
measure in question is precisely (up to an unimportant constant factor) the arc sine
measure

d�.x/ D dxp
1 � x2

on Œ�1; 1� (2.98)

already mentioned in Example 2 of Sect. 2.1.4. This is easily verified from (2.81)
and the orthogonality of the cosines (cf. Sect. 2.1.4, (2.33)):

Z 1

�1
Tk.x/T`.x/

dxp
1� x2

D
Z �

0

Tk.cos �/T`.cos �/d�

D
Z �

0

cos k� cos `�d� D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

0 if k ¤ `;

� if k D ` D 0;

1
2
� if k D ` > 0:

(2.99)

The Fourier expansion in Chebyshev polynomials (essentially the Fourier cosine
expansion) is therefore given by

f .x/ D
1X0

jD1
cj Tj .x/ D 1

2
c0 C

1X

jD1
cj Tj .x/; (2.100)
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where

cj D 2

�

Z 1

�1
f .x/Tj .x/

dxp
1 � x2

; j D 0; 1; 2; : : : : (2.101)

Truncating (2.100) with the term of degree n gives a useful polynomial approxi-
mation of degree n,

�n.x/ D
nX0

jD0
cj Tj .x/;

having an error

f .x/ � �n.x/ D
1X

jDnC1
cj Tj .x/ 	 cnC1TnC1.x/: (2.102)

The approximation on the far right is better the faster the Fourier coefficients cj
tend to zero. The error (2.102), therefore, essentially oscillates between CcnC1 and
�cnC1 as x varies on the interval [–1,1], and thus is of “uniform” size. This is in
stark contrast to Taylor’s expansion at x D 0, where the nth-degree partial sum has
an error proportional to xnC1 on [–1,1].

2.2.5 Barycentric Formula

Lagrange’s formula (2.52) is attractive more for theoretical purposes than for
practical computational work. It can be rewritten, however, in a form that makes
it efficient computationally, and that also allows additional interpolation nodes to
be added with ease. Having the latter feature in mind, we now assume a sequential
set x0, x1, x2; : : : of interpolation nodes and denote by pn.f I � / the polynomial of
degree � n interpolating to f at the first nC 1 of them. We do not assume that the
xi are in any particular order, as long as they are mutually distinct.

We introduce a triangular array of auxiliary quantities defined by

�
.0/
0 D 1; �

.n/
i D

nY

jD0
j¤i

1

xi � xj
; i D 0; 1; : : : ; nI n D 1; 2; 3; : : : : (2.103)

The elementary Lagrange interpolation polynomials of degree n, (2.49), can then be
written in the form

`i .x/ D �
.n/
i

x � xi !n.x/; i D 0; 1; : : : ; nI !n.x/ D
nY

jD0
.x � xj /: (2.104)
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Dividing Lagrange’s formula through by 1 � Pn
iD0 `i .x/, one finds

pn.f I x/ D
nX

iD0
fi `i .x/ D

nX

iD0
fi `i .x/

nX

iD0
`i .x/

D

nX

iD0
fi

�
.n/
i

x � xi
!n.x/

nX

iD0

�
.n/
i

x � xi
!n.x/

;

that is,

pn.f I x/ D

nX

iD0

�
.n/
i

x � xi
fi

nX

iD0

�
.n/
i

x � xi

; x ¤ xi for i D 0; 1; : : : ; n: (2.105)

This expresses the interpolation polynomial as a weighted average of the function
values fi D f .xi / and is, therefore, called the barycentric formula – a slight
misnomer, since the weights are not necessarily all positive. The auxiliary quantities
�
.n/
i involved in (2.105) are those in the row numbered n of the triangular array

(2.103). Once they have been calculated, the evaluation of pn.f I x/ by (2.105), for
any fixed x, is straightforward and cheap. Note, however, that when x is sufficiently
close to some xi , the right-hand side of (2.105) should be replaced by fi .

Comparison with (2.52) shows that

`i .x/ D
�
.n/
i

x � xi
nX

jD0

�
.n/
j

x � xj

; i D 0; 1; : : : ; n: (2.106)

In order to arrive at an efficient algorithm for computing the required quantities
�
.n/
i , we first note that, for k � 1,

�
.k/
i D �

.k�1/
i

xi � xk
; i D 0; 1; : : : ; k � 1: (2.107)

The last quantity �
.k/

k missing in (2.107) is best computed directly from the
definition (2.103),

�
.k/

k D 1
Qk�1
jD0.xk � xj /

; k � 1:
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We thus arrive at the following algorithm:

�
.0/
0 D 1;

for k D 1; 2; : : : ; n do
2

6
6
6
6
6
4

�
.k/
i D �

.k�1/
i

xi � xk
; i D 0; 1; : : : ; k � 1;

�
.k/

k D 1
Qk�1
jD0.xk � xj /

:

(2.108)

This requires 1
2
n.nC 1/ subtractions, 1

2
.n � 1/n multiplications, and 1

2
n.nC 3/

divisions for computing the nC1 quantities �.n/0 ; �
.n/
1 ; : : : ; �

.n/
n in (2.105). Therefore,

(2.106) in combination with (2.108) is more efficient than (2.49), which requires
O.n3/ operations to evaluate. It is also quite stable, since only benign arithmetic
operations are involved (disregarding the formation of differences such as x � xi ,
which occur in both formulae).

If we decide to incorporate the next data point .xnC1, fnC1/, all we need to do is
extend the k-loop in (2.108) through nC1, that is, generate the next row of auxiliary
quantities �.nC1/

0 , �.nC1/
1 ; : : : ; �

.nC1/
nC1 . We are then ready to compute pnC1.f I x/

from (2.105) with n replaced by nC 1.

2.2.6 Newton’s11 Formula

This is another way of organizing the work in Sect. 2.2.5. Although the compu-
tational effort remains essentially the same, it becomes easier to treat “confluent”
interpolation points, that is, multiple points in which not only the function values,
but also consecutive derivative values, are given (cf. Sect. 2.2.7).

Using the same setup as in Sect. 2.2.5, we denote

pn.x/ D pn.f I x0; x1; : : : ; xnI x/; n D 0; 1; 2; : : : : (2.109)

11Sir Isaac Newton (1643–1727) was an eminent figure of seventeenth century mathematics and
physics. Not only did he lay the foundations of modern physics, but he was also one of the
coinventors of differential calculus. Another was Leibniz, with whom he became entangled in
a bitter and life-long priority dispute. His most influential work was the Philosophiae Naturalis
Principia Mathematica, often called simply the Principia, one of the greatest work on physics
and astronomy ever written. Therein one finds not only his ideas on interpolation, but also
his suggestion to use the interpolating polynomial for purposes of integration (cf. Chap. 3,
Sect. 3.2.2).
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We clearly have

p0.x/ D a0;

pn.x/ D pn�1.x/C an.x � x0/.x � x1/ � � � .x � xn�1/;

n D 1; 2; 3; : : : ; (2.110)

for some constants a0, a1, a2; : : :. This gives rise to a new form of the interpolation
polynomial,

pn.f I x/ D a0 C a1.x � x0/C a2.x � x0/.x � x1/

C � � � C an.x � x0/.x � x1/ � � � .x � xn�1/; (2.111)

which is called Newton’s form. The constants involved can be determined, in
principle, by the interpolation conditions

f0 D a0;

f1 D a0 C a1.x1 � x0/;

f2 D a0 C a1.x2 � x0/C a2.x2 � x0/.x2 � x1/;

and so on, which represent a triangular, nonsingular (why?) system of linear
algebraic equations. This uniquely determines the constants; for example,

a0 D f0;

a1 D f1 � f0
x1 � x0 ;

a2 D f2 � a0 � a1.x2 � x0/
.x2 � x0/.x2 � x1/ ;

and so on. Evidently, an is a linear combination of f0, f1; : : : ; fn, with coefficients
that depend on x0, x1; : : : ; xn. We use the notation

an D Œx0; x1; : : : ; xn�f; n D 0; 1; 2; : : : ; (2.112)

for this linear combination, and call the right-hand side the nth divided difference of
f relative to the nodes x0, x1; : : : ; xn. Considered as a function of these n C 1

variables, the divided difference is a symmetric function; that is, permuting the
variables in any way does not affect the value of the function. This is a direct
consequence of the fact that an in (2.111) is the leading coefficient of pn.f I x/:
the interpolation polynomial pn.f I � / surely does not depend on the order in which
we write down the interpolation conditions.
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The name “divided difference” comes from the useful property

Œx0; x1; x2; : : : ; xk�f D Œx1; x2; : : : ; xk�f � Œx0; x1; : : : ; xk�1�f
xk � x0 (2.113)

expressing the kth divided difference as a difference of (k�1)st divided differences,
divided by a difference of the xi . Since we have symmetry, the order in which the
variables are written down is immaterial; what is important is that the two divided
differences (of the same order k � 1) in the numerator have k � 1 of the xi in
common. The “extra” one in the first term, and the “extra” one in the second, are
precisely the xi that appear in the denominator, in the same order.

To prove (2.113), let

r.x/ D pk�1.f I x1; x2; : : : ; xk I x/

and
s.x/ D pk�1.f I x0; x1; : : : ; xk�1I x/:

Then

pk.f I x0; x1; : : : ; xk I x/ D r.x/C x � xk

xk � x0 Œr.x/ � s.x/�: (2.114)

Indeed, the polynomial on the right-hand side has clearly degree � k and takes on
the correct value fi at xi , i D 0; 1; : : : ; k. For example, if i ¤ 0 and i ¤ k,

r.xi /C xi � xk
xk � x0

Œr.xi / � s.xi /� D fi C xi � xk

xk � x0 Œfi � fi � D fi ;

and similarly for i D 0 and for i D k. By uniqueness of the interpolation
polynomial, this implies (2.114). Now equating the leading coefficients on both
sides of (2.114) immediately gives (2.113).

Equation (2.113) can be used to generate the table of divided differences:

x f

x0 f0

�

� ��

x1 f1 Œx0; x1�f

x2 f2 Œx1; x2�f Œx0; x1; x2�f

x3 f3 Œx2; x3�f Œx1; x2; x3�f Œx0; x1; x2; x3�f

: : : : : : : : : : :

(2.115)

The divided differences are here arranged in such a manner that their computation
proceeds according to one single rule: each entry is the difference of the entry
immediately to the left and the one above it, divided by the difference of the x-value
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horizontally to the left and the one opposite the f-value found by going diagonally
up. Each entry, therefore, is calculated from its two neighbors immediately to the
left, which is expressed by the computing stencil in (2.115).

The divided differences a0, a1; : : : ; an (cf. (2.112)) that occur in Newton’s
formula (2.111) are precisely the first n C 1 diagonal entries in the table of
divided differences. Their computation requires n.nC 1/ additions and 1

2
n.n C 1/

divisions, essentially the same effort that was required in computing the auxiliary
quantities �.n/i in the barycentric formula (cf. Ex. 61). Adding another data point
.xnC1, fnC1/ requires the generation of the next line of divided differences. The
last entry of this line is anC1, and we can update pn.f I x/ by adding to it the term
anC1.x � x0/.x � x1/ � � � .x � xn/ to get pnC1 (cf. (2.110)).

Example.
x f

0 3

1 4 (4–3)/(1–0) D 1

2 7 (7–4)/(2–1) D 3 (3–1)/(2–0) D 1

4 19 (19–7)/(4–2) D 6 (6–3)/(4–1) D 1 (1–1)/(4–0) D 0

The cubic interpolation polynomial is

p3.f I x/ D 3C 1 � .x � 0/C 1 � .x � 0/.x � 1/C 0 � .x � 0/.x � 1/.x � 2/

D 3C x C x.x � 1/ D 3C x2;

which indeed is the function tabulated. Note that the leading coefficient of p3.f I � /
is zero, which is why the last divided difference turned out to be 0.

Newton’s formula also yields a new representation for the error term in Lagrange
interpolation. Let t temporarily denote an arbitrary “node” not equal to any of the
x0, x1; : : : ; xn. Then we have,

pnC1.f I x0; x1; : : : ; xn; t I x/

D pn.f I x/C Œx0; x1; : : : ; xn; t �f �
nY

iD0
.x � xi /:

Now put x D t ; since the polynomial on the left-hand side interpolates to f at t ,
we get

f .t/ D pn.f I t/C Œx0; x1; : : : ; xn; t �f �
nY

iD0
.t � xi /:

Writing again x for t (which was arbitrary, after all), we find

f .x/ � pn.f I x/ D Œx0; x1; : : : ; xn; x�f �
nY

iD0
.x � xi /: (2.116)
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This is the new formula for the interpolation error. Note that it involves no derivative
of f , only function values. The trouble is, that f .x/ is one of them. Indeed, (2.116)
is basically a tautology since, when everything is written out explicitly, the formula
evaporates to 0 D 0, which is correct, but not overly exciting.

In spite of this seeming emptiness of (2.116), we can draw from it an interesting
and very useful conclusion. (For another application, see Chap. 3, Ex. 2.) Indeed,
compare it with the earlier formula (2.60); one obtains

Œx0; x1; : : : ; xn; x�f D f .nC1/.	.x//
.nC 1/Š

;

where x0, x1; : : : ; xn, x are arbitrary distinct points in [a; b] and f 2 CnC1Œa; b�.
Moreover, 	.x/ is strictly between the smallest and largest of these points (cf. the
proof of (2.60)). We can now write x D xnC1, and then replace nC 1 by n to get

Œx0; x1; : : : ; xn�f D 1

nŠ
f .n/.	/: (2.117)

Thus, for any n C 1 distinct points in [a; b] and any f 2 CnŒa; b�, the divided
difference of f of order n is the nth scaled derivative of f at some (unknown)
intermediate point. If we now let all xi , i � 1, tend to x0, then 	, being trapped
between them, must also tend to x0, and, since f .n/ is continuous at x0, we obtain

Œx0; x0; : : : ; x0„ ƒ‚ …
nC1 times

�f D 1

nŠ
f .n/.x0/: (2.118)

This suggests that the nth divided difference at n+1 “confluent” (i.e., identical)
points be defined to be the nth derivative at this point divided by n!. This allows
us, in the next section, to solve the Hermite interpolation problem.

2.2.7 Hermite12 Interpolation

The general Hermite interpolation problem consists of the following: given K C 1

distinct points x0, x1; : : : ; xK in [a; b] and corresponding integers mk � 1, and
given a function f 2 CM�1Œa; b�, with M D max

k
mk , find a polynomial p of

lowest degree such that, for k D 0; 1; : : : ; K ,

p.�/.xk/ D f
.�/

k ; � D 0; 1; : : : ; mk � 1; (2.119)

where f .�/

k D f .�/.xk/ is the �th derivative of f at xk .

12Charles Hermite (1822–1901) was a leading French mathematician. An Academician in Paris,
known for his extensive work in number theory, algebra, and analysis, he is famous for his
proof in 1873 of the transcendental nature of the number e. He was also a mentor of the Dutch
mathematician Stieltjes.
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The problem can be thought of as a limiting case of Lagrange interpolation if
we consider xk to be a point of multiplicity mk , that is, obtained by a confluence
of mk distinct points into a single point xk . We can imagine setting up the table of
divided differences, and Newton’s interpolation formula, just before the confluence
takes place, and then simply “go to the limit.” To do this in practice requires that
each point xk be entered exactlymk times in the first column of the table of divided
differences. The formula (2.118) then allows us to initialize the divided differences
for these points. For example, if mk D 4, then

x f

� � � � �
xk fk

xk fk f 0
k

xk fk f 0
k

1
2
f 00
k

xk fk f 0
k

1
2
f 00
k

1
6
f 000
k

� � � � �

(2.120)

Doing this initialization for each k, we are then ready to complete the table of
divided differences in the usual way. (There will be no zero divisors; they have been
taken care of during the initialization.) We obtain a table with m0 Cm1 C � � � CmK

entries in the first column, and hence an interpolation polynomial of degree � n D
m0 C m1 C � � � C mK � 1, which, as in the Lagrange case, is unique. The n C 1

diagonal entries in the table give us the coefficients in Newton’s formula, as before,
except that in the product terms of the formula, some of the factors are repeated.
Also the error term of interpolation remains in force, with the repetition of factors
properly accounted for.

We illustrate the procedure with two simple examples.

1. Find p 2 P3 such that

p.x0/ D f0; p
0.x0/ D f 0

0 ; p
00.x0/ D f 00

0 ; p
000.x0/ D f 000

0 :

Here K D 0, m0 D 4, that is, we have a single quadruple point. The table of
divided differences is precisely the one in (2.120) (with k D 0); hence Newton’s
formula becomes

p.x/ D f0 C .x � x0/f
0
0 C 1

2
.x � x0/

2f 00
0 C 1

6
.x � x0/

3f 000
0 ;

which is nothing but the Taylor polynomial of degree 3. Thus Taylor’s polyno-
mial is a special case of a Hermite interpolation polynomial. The error term of
interpolation, furthermore, gives us

f .x/ � p.x/ D 1

24
.x � x0/4f .4/.	/; 	 between x0 and x;

which is Lagrange’s form of the remainder term in Taylor’s formula.
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Fig. 2.8 A Hermite interpolation problem

2. Find p 2 P3 such that

p.x0/ D f0; p.x1/ D f1; p
0.x1/ D f 0

1 ; p.x2/ D f2;

where x0 < x1 < x2 (cf. Fig. 2.8).
The table of divided differences now has the form:

x f

x0 f0

x1 f1 Œx0; x1�f

x1 f1 f 0
1 Œx0; x1; x1�f

x2 f2 Œx1; x2�f Œx1; x1; x2�f Œx0; x1; x1; x2�f .

If we denote the diagonal entries, as before, by a0, a1, a2, a3, Newton’s
formula takes the form

p.x/ D a0 C a1.x � x0/C a2.x � x0/.x � x1/C a3.x � x0/.x � x1/
2;

and the error formula becomes

f .x/ � p.x/ D .x � x0/.x � x1/2.x � x2/
f .4/.	/

4Š
; x0 < 	 < x2:

For equally spaced points, say, x0 D x1�h, x2 D x1Ch, we have, if x D x1Cth,
�1 � t � 1,

j.x � x0/.x � x1/
2.x � x2/j D j.t2 � 1/t2 � h4j � 1

4
h4;
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and so

kf � pk1 � 1

4
h4

kf .4/k1
24

D h4

96
kf .4/k1;

with the 1-norm referring to the interval [x0; x2].

2.2.8 Inverse Interpolation

An interesting application of interpolation – and, in particular, of Newton’s formula
– is to the solution of a nonlinear equation,

f .x/ D 0: (2.121)

Here f is a given (nonlinear) function, and we are interested in a root ˛ of the
equation for which we already have two approximations,

x0 	 ˛; x1 	 ˛:

We assume further that near the root ˛, the function f is monotone, so that

y D f .x/ has an inverse x D f �1.y/:

Denote, for short,
g.y/ D f �1.y/:

Since ˛ D g.0/, our problem is to evaluate g.0/. From our two approximations, we
can compute y0 D f .x0/ and y1 D f .x1/, giving x0 D g.y0/, x1 D g.y1/. Hence,
we can start a table of divided differences for the inverse function g:

y g

y0 x0

y1 x1 Œy0; y1�g

Wanting to compute g.0/, we can get a first improved approximation by linear
interpolation,

x2 D x0 C .0 � y0/Œy0; y1�g D x0 � y0Œy0; y1�g:

Now evaluating y2 D f .x2/, we get x2 D g.y2/. Hence, the table of divided
differences can be updated and becomes
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y g

y0 x0

y1 x1 Œy0; y1�g

y2 x2 Œy1; y2�g Œy0; y1; y2�g

This allows us to use quadratic interpolation to get, again with Newton’s formula,

x3 D x2 C .0 � y0/.0 � y1/Œy0; y1; y2�g D x2 C y0y1Œy0; y1; y2�g

and then
y3 D f .x3/; and x3 D g.y3/:

Since y0, y1 are small, the product y0y1 is even smaller, making the correction term
added to the linear interpolant x2 quite small. If necessary, we can continue updating
the difference table,

y g

y0 x0

y1 x1 Œy0; y1�g

y2 x2 Œy1; y2�g Œy0; y1; y2�g

y3 x3 Œy2; y3�g Œy1; y2; y3�g Œy0; y1; y2; y3�g

and computing

x4 D x3 � y0y1y2Œy0; y1; y2; y3�g; y4 D f .x4/; x4 D g.y4/;

giving us another data point to generate the next row of divided differences, and so
on. In general, the process will converge rapidly: xk ! ˛ as k ! 1. The precise
analysis of convergence, however, is not simple because of the complicated structure
of the successive derivatives of the inverse function g D f �1.

2.3 Approximation and Interpolation by Spline Functions

Our concern in Sect. 2.1.1 was with approximation of functions by a single
polynomial over a finite interval [a,b]. When more accuracy was wanted, we
simply increased the degree of the polynomial, and under suitable assumptions the
approximation indeed can be made as accurate as one wishes by choosing the degree
of the approximating polynomial sufficiently large.
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However, there are other ways to control accuracy. One is to impose a subdivision
� upon the interval [a,b],

� W a D x1 < x2 < x3 < � � � < xn�1 < xn D b; (2.122)

and use low-degree polynomials on each subinterval Œxi ; xiC1� (i D 1; 2; : : : ;

n�1) to approximate the given function. The rationale behind this is the recognition
that on a sufficiently small interval, functions can be approximated arbitrarily
well by polynomials of low degree, even degree 1, or zero, for that matter. Thus,
measuring the “fineness” of the subdivision� by

j�j D max
1�i�n�1�xi ; �xi D xiC1 � xi ; (2.123)

we try to control (increase) the accuracy by varying (decreasing) j�j, keeping the
degrees of the polynomial pieces uniformly low.

To discuss these approximation processes, we make use of the class of functions
(cf. Example 2 at the beginning of Chap. 2)

S
k
m.�/ D

n
s W s 2 CkŒa; b�; s

ˇ
ˇ
Œxi ;xiC1�

2 Pm; i D 1; 2; : : : ; n � 1
o
; (2.124)

wherem � 0, k � 0 are given nonnegative integers. We refer to S
k
m.�/ as the spline

functions of degree m and smoothness class k relative to the subdivision �. (If the
subdivision is understood from the context, we omit � in the notation on the left-
hand side of (2.124).) The point in the continuity assumption of (2.124), of course,
is that the kth derivative of s is to be continuous everywhere on [a,b], in particular,
also at the subdivision points xi (i D 2; : : : ; n � 1) of �. One extreme case is
k D m, in which case s 2 S

m
m necessarily consists of just one single polynomial of

degreem on the whole interval [a,b]; that is, Smm D Pm (see Ex. 68). Since we want
to get away from Pm, we assume k < m. The other extreme is the case where no
continuity at all (at the subdivision points xi ) is required; we then put k D �1. Thus
S

�1
m .�/ is the class of piecewise polynomials of degree �m, where the polynomial

pieces can be completely disjoint (see Fig. 2.9).
We begin with the simplest case – piecewise linear approximation – that is, the

case m D 1 (hence k D 0).

2.3.1 Interpolation by Piecewise Linear Functions

The problem here is to find an s 2 S
0
1.�/ such that, for a given function f defined

on [a,b], we have

s.xi / D fi where fi D f .xi /; i D 1; 2; : : : ; n: (2.125)
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Fig. 2.9 A function s 2 S
�1
m

Fig. 2.10 Piecewise linear interpolation.

We conveniently let the interpolation nodes coincide with the points xi of the
subdivision � in (2.122). This simplifies matters, but is not necessary (cf. Ex. 75).
The solution then indeed is trivial; see Fig. 2.10. If we denote the (obviously unique)
interpolant by s. � / D s1.f I � /, then the formula of linear interpolation gives

s1.f I x/ D fi C .x � xi /Œxi ; xiC1�f for xi � x � xiC1; i D 1; 2; : : : ; n � 1:

(2.126)

A bit more interesting is the analysis of the error. This, too, however, is quite
straightforward, once we note that s1.f I � / on Œxi ; xiC1� is simply the linear
interpolant to f . Thus, from the theory of (linear) interpolation,

f .x/ � s1.f I x/ D .x � xi /.x � xiC1/Œxi ; xiC1; x�f for x 2 Œxi ; xiC1�I

hence, if f 2 C2Œa; b�,

jf .x/ � s1.f I x/j � .�xi /
2

8
max

Œxi ;xiC1�
jf 00j; x 2 Œxi ; xiC1�:
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It then follows immediately that

kf . � /� s1.f I � /k1 � 1
8

j�j2kf 00k1; (2.127)

where the maximum norms are those on [a,b]; that is, kgk1 D max
Œa;b�

jgj. This

shows that the error indeed can be made arbitrarily small, uniformly on [a,b], by
taking j�j sufficiently small. Making j�j smaller, of course, increases the number
of polynomial pieces, and with it, the volume of data.

It is easy to show (see Ex. 80(b)) that

dist1.f;S01/ � kf . � /� s1.f I � /k1 � 2 dist1.f;S01/; (2.128)

where, for any set of functions S,

dist1.f;S/ WD inf
s2S kf � sk1:

In other words, the piecewise linear interpolant s1.f I � / is a nearly optimal
approximation, its error differing from the error of the best approximant to f from
S
0
1 by at most a factor of 2.

2.3.2 A Basis for S0
1
.�/

What is the dimension of the space S
0
1.�/? In other words, how many degrees of

freedom do we have? If, for the moment, we ignore the continuity requirement (i.e.,
if we look at S�1

1 .�/), then each linear piece has two degrees of freedom, and there
are n � 1 pieces; so dim S

�1
1 .�/ D 2n � 2. Each continuity requirement imposes

one equation, and hence reduces the degree of freedom by 1. Since continuity must
be enforced only at the interior subdivision points xi , i D 2; : : : ; n� 1, we find that
dim S

0
1.�/ D 2n�2�.n�2/D n. So we expect that a basis of S

0
1.�/must consist

of exactly n basis functions.
We now define n such functions. For notational convenience, we let x0 D x1 and

xnC1 D xn; then, for i D 1; 2; : : : ; n, we define

Bi.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

x � xi�1
xi � xi�1

if xi�1 � x � xi ;

xiC1 � x
xiC1 � xi

if xi � x � xiC1;

0 otherwise:

(2.129)
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Fig. 2.11 The functions Bi

Note that the first equation, when i D 1, and the second, when i D n, are to be
ignored, since x in both cases is restricted to a single point and the ratio in question
has the meaningless form 0/0. (It is the other ratio that provides the necessary
information in these cases.) The functions Bi may be referred to as “hat functions”
(Chinese hats), but note that the first and last hat is cut in half. The functions Bi are
depicted in Fig. 2.11. We expect these functions to form a basis of S01.�/. To prove
this, we must show:

(a) the functions fBigniD1 are linearly independent and
(b) they span the space S01.�/.

Both these properties follow from the basic fact that

Bi.xj / D ıij D

8
ˆ̂
<

ˆ̂
:

1 if i D j;

0 if i ¤ j;

(2.130)

which one easily reads from Fig. 2.11. To show (a), assume there is a linear
combination of the Bi that vanishes identically on [a,b],

s.x/ D
nX

iD1
ciBi .x/; s.x/ � 0 on Œa; b�: (2.131)

Putting x D xj in (2.131) and using (2.130) then gives cj D 0. Since this holds
for each j D 1; 2; : : : ; n, we see that only the trivial linear combination (with all
ci D 0) can vanish identically. To prove (b), let s 2 S

0
1.�/ be given arbitrarily. We

must show that s can be represented as a linear combination of the Bi . We claim
that, indeed,

s.x/ D
nX

iD1
s.xi /Bi .x/: (2.132)
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This is so, because the function on the right-hand side has the same values as s at
each xj , and therefore, being in S

0
1.�/, must coincide with s.

Equation (2.132), which holds for every s 2 S
0
1.�/, may be thought of as the

analogue of the Lagrange interpolation formula for polynomials. The role of the
elementary Lagrange polynomials `i is now played by the Bi .

2.3.3 Least Squares Approximation

As an application of the basis fBi g, we consider the problem of least squares
approximation on [a,b] by functions in S

0
1.�/. The discrete L2 approximation

problem with data given at the points xi (i D 1; 2; : : : ; n), of course, has the trivial
solution s1.f I � /, which drives the error to zero at each data point. We therefore
consider only the continuous problem: given f 2 C Œa; b�, find Os1.f I � / 2 S

0
1.�/

such that

Z b

a

Œf .x/ � Os1.f I x/�2dx �
Z b

a

Œf .x/ � s.x/�2dx for all s 2 S
0
1.�/: (2.133)

Writing

Os1.f I x/ D
nX

iD1
OciBi .x/; (2.134)

we know from the general theory of Sect. 2.1 that the coefficients Oci must satisfy the
normal equations

nX

jD1

"Z b

a

Bi .x/Bj .x/dx

#

Ocj D
Z b

a

Bi .x/f .x/dx; i D 1; 2; : : : ; n: (2.135)

Now the fact that Bi is nonzero only on (xi�1; xiC1) implies that
Z b

a

Bi .x/

�Bj .x/dx D 0 if ji � j j > 1; that is, the system (2.135) is tridiagonal. An easy
computation (cf. Ex. 77) indeed yields

1

6
�xi�1 � Oci�1C 1

3
.�xi�1C�xi/ Oci C 1

6
�xi � OciC1 D bi ; i D 1; 2; : : : ; n; (2.136)

where bi D R b
a Bi .x/f .x/dx =

R xiC1

xi�1
Bi .x/f .x/dx. Note, by our convention, that

�x0 D 0 and �xn D 0, so that (2.136) is in fact a tridiagonal system for the
unknowns Oc1, Oc2; : : : ; Ocn. Its matrix is given by
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2

6
6
6
6
6
6
6
6
6
6
4

1
3
�x1

1
6
�x1 0

1
6
�x1

1
3
.�x1 C�x2/

1
6
�x2

1
6
�x2

: : :

: : :
: : : 1

6
�xn�1

0 1
6
�xn�1 1

3
�xn�1

3

7
7
7
7
7
7
7
7
7
7
5

:

As it must be, by the general theory of Sect. 2.1, the matrix is symmetric
and positive definite, but it is also diagonally dominant, each diagonal element
exceeding by a factor of 2 the sum of the (positive) off-diagonal elements in the
same row. The system (2.136) can therefore be solved easily, rapidly, and accurately
by the Gauss elimination procedure, and there is no need for pivoting.

Like the interpolant s1.f I � /, the least squares approximant Os1.f I � /, too, can be
shown to be nearly optimal, in that

dist1.f;S01/ � kf . � /� Os1.f I � /k1 � 4 dist1.f;S01/: (2.137)

The spread is now by a factor of 4, rather than 2, as in (2.128).

2.3.4 Interpolation by Cubic Splines

The most widely used splines are cubic splines, in particular, cubic spline inter-
polants. We first discuss the interpolation problem for splines s 2 S

1
3.�/. Continuity

of the first derivative of any cubic spline interpolant s3.f I � / can be enforced by
prescribing the values of the first derivative at each point xi , i D 1; 2; : : : ; n. Thus
let m1, m2; : : : ; mn be arbitrary given numbers, and denote

s3.f I � /jŒxi ;xiC1�
D pi .x/; i D 1; 2; : : : ; n � 1: (2.138)

Then, we enforce s0
3.f I xi / D mi , i D 1; 2; : : : ; n, by selecting each piece pi of

s3.f I � / to be the (unique) solution of a Hermite interpolation problem, namely,

pi .xi / D fi ; pi .xiC1/ D fiC1;

p0
i .xi / D mi ; p0

i .xiC1/ D miC1;
i D 1; 2; : : : ; n � 1: (2.139)

We solve (2.139) by Newton’s interpolation formula. The required divided differ-
ences are:
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xi fi

xi fi mi

xiC1 fiC1 Œxi ; xiC1�f
Œxi ; xiC1�f �mi

�xi

xiC1 fiC1 miC1
miC1 � Œxi ; xiC1�f

�xi

miC1 Cmi � 2Œxi ; xiC1�f
.�xi /2

and the interpolation polynomial (in Newton’s form) is

pi.x/ D fi C .x � xi /mi C .x � xi /2 Œxi ; xiC1�f �mi

�xi

C .x � xi /
2.x � xiC1/

miC1 Cmi � 2Œxi ; xiC1�f
.�xi /2

:

Alternatively, in Taylor’s form, we can write

pi .x/ D ci;0 C ci;1.x � xi /C ci;2.x � xi /2 C ci;3.x � xi /
3;

xi � x � xiC1; (2.140)

where, by noting that x � xiC1 D x � xi ��xi ,
ci;0 D fi ;

ci;1 D mi ;

ci;2 D Œxi ; xiC1�f �mi

�xi
� ci;3 ��xi ;

ci;3 D miC1 Cmi � 2Œxi ; xiC1�f
.�xi/2

: (2.141)

Thus to compute s3.f I x/ for any given x 2 Œa; b� that is not an interpolation
node, one first locates the interval Œxi ; xiC1� containing x and then computes the
corresponding piece (2.138) by (2.140) and (2.141).

We now discuss some possible choices of the parametersm1, m2; : : : ; mn.

(a) Piecewise cubic Hermite interpolation. Here one selects mi D f 0.xi /, assum-
ing that these derivative values are known. This gives rise to a strictly local
scheme, in that each piece pi can be determined independently from the others.
Furthermore, the error of interpolation is easily estimated, since from the theory
of interpolation,

f .x/ � pi.x/ D .x � xi /
2.x � xiC1/2Œxi ; xi ; xiC1; xiC1; x�f; xi � x � xiC1I
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hence, if f 2 C4Œa; b�,

jf .x/ � pi .x/j �
�
1

2
�xi

�4

max
Œxi ;xiC1�

jf .4/j
4Š

; xi � x � xiC1:

There follows:

kf . � /� s3.f I � /k1 � 1
384

j�j4 kf .4/k1: (2.142)

In the case of equally spaced points xi , one has j�j D .b � a/=.n � 1/ and,
therefore,

kf . � /� s3.f I � /k1 D O.n�4/ as n ! 1: (2.143)

This is quite satisfactory, but note that the derivative of f must be known at
each point xi , and the interpolant is only in C1Œa; b�.

As to the derivative values, one could approximate them by the derivatives
of p2.f I xi�1; xi ; xiC1I x/ at x D xi , which requires only function values of
f , except at the endpoints, where again the derivatives of f are involved, the
points a D x0 D x1 and b D xn D xnC1 being double points (cf. Ex. 78). It can
be shown that this degrades the accuracy to O.j�j3/.

(b) Cubic spline interpolation. Here we require s3.f I � / 2 S
2
3.�/, that is,

continuity of the second derivative. In terms of the pieces (2.138) of s3.f I � /,
this means that

p00
i�1.xi / D p00

i .xi /; i D 2; 3; : : : ; n � 1; (2.144)

and translates into a condition for the Taylor coefficients in (2.140), namely,

2 ci�1;2 C 6 ci�1;3 ��xi�1 D 2 ci;2; i D 2; 3; : : : ; n � 1:

Plugging in the explicit values (2.141) for these coefficients, we arrive at the
linear system

.�xi/mi�1 C 2.�xi�1 C�xi/mi C .�xi�1/miC1 D bi ; i D 2; 3; : : : ; n� 1;
(2.145)

where
bi D 3f.�xi/Œxi�1; xi �f C .�xi�1/Œxi ; xiC1�f g: (2.146)

These are n � 2 linear equations in the n unknownsm1, m2; : : : ; mn. Once m1

and mn have been chosen in some way, the system again becomes tridiagonal
in the remaining unknowns and hence is readily solved by Gauss elimination.
Here are some possible choices of m1 and mn.
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(b.1) Complete splines: m1 D f 0.a/, mn D f 0.b/. It is known that for this spline

kf .r/. � /�s.r/.f I � /k1 � cr j�j4�rkf .4/k1; r D 0; 1; 2; 3; if f 2 C4Œa; b�;

(2.147)

where c0 D 5
384

, c1 D 1
24

, c2 D 3
8
, and c3 is a constant depending on the mesh

ratio j�j
mini �xi

. Rather remarkably, the bound for r D 0 is only five times larger
than the bound (2.142) for the piecewise cubic Hermite interpolant, which
requires derivative values of f at all interpolation nodes xi , not just at the
endpoints a and b.

(b.2) Matching of the second derivatives at the endpoints: s00
3 .f I a/ D f 00.a/,

s00
3 .f I b/ D f 00.b/. Each of these conditions gives rise to an additional

equation, namely,

2m1 Cm2 D 3Œx1; x2�f � 1

2
f 00.a/�x1;

mn�1 C 2mn D 3Œxn�1; xn�f C 1

2
f 00.b/�xn�1: (2.148)

One conveniently adjoins the first equation to the top of the system (2.145),
and the second to the bottom, thereby preserving the tridiagonal structure of
the system.

(b.3) Natural cubic spline: s00.f I a/ D s00.f I b/ D 0. This again produces two
additional equations, which can be obtained from (2.148) by putting there
f 00.a/ D f 00.b/ D 0. They are adjoined to the system (2.145) as described in
(b.2). The nice thing about this spline is that it requires only function values
of f – no derivatives! – but the price one pays is a degradation of the accuracy
to O.j�j2/ near the endpoints (unless indeed f 00.a/ D f 00.b/ D 0).

(b.4) “Not-a-knot spline” (C. de Boor): here we require p1.x/ � p2.x/ and
pn�2.x/ � pn�1.x/; that is, the first two pieces of the spline should be the
same polynomial, and similarly for the last two pieces. In effect, this means
that the first interior knot x2, and the last one xn�1, both are inactive (hence
the name). This again gives rise to two supplementary equations expressing
continuity of s000

3 .f I x/ at x D x2 and x D xn�1 (cf. Ex. 79).

2.3.5 Minimality Properties of Cubic Spline Interpolants

The complete and natural splines defined in (b.1) and (b.3) of the preceding
section have interesting optimality properties. To formulate them, it is convenient
to consider not only the subdivision� in (2.122), but also the subdivision

�0 W a D x0 D x1 < x2 < x3 < � � � < xn�1 < xn D xnC1 D b; (2.149)

in which the endpoints are double knots. This means that whenever we interpolate
on�0, we interpolate not only to function values at all interior points but also to the
function as well as first derivative values at the endpoints.
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The first of the two theorems relates to the complete cubic spline interpolant,
scompl.f I � /.
Theorem 2.3.1. For any function g 2 C2Œa; b� that interpolates f on �0, there
holds

Z b

a

Œg00.x/�2dx �
Z b

a

Œs00
compl.f I x/�2dx; (2.150)

with equality if and only if g. � / D scompl.f I � /.
Note that scompl.f I � / in Theorem 2.3.1 also interpolates f on�0, and among all

such interpolants its second derivative has the smallest L2 norm.

Proof of Theorem 2.3.1. We write (for short) scompl D s. The theorem follows, once
we have shown that

Z b

a

Œg00.x/�2dx D
Z b

a

Œg00.x/ � s00.x/�2dx C
Z b

a

Œs00.x/�2dx: (2.151)

Indeed, this immediately implies (2.150), and equality in (2.150) holds if and only if
g00.x/� s00.x/ � 0, which, integrating twice from a to x and using the interpolation
properties of s and g at x D a gives g.x/ � s.x/.

To complete the proof, note that (2.151) is equivalent to
Z b

a

s00.x/Œg00.x/ � s00.x/�dx D 0: (2.152)

Integrating by parts, we get

Z b

a

s00.x/Œg00.x/ � s00.x/�dx

D s00.x/Œg0.x/ � s0.x/�
ˇ
ˇb
a

�
Z b

a

s000.x/Œg0.x/ � s0.x/�dx

D �
Z b

a

s000.x/Œg0.x/ � s0.x/�dx; (2.153)

since s0.b/Dg0.b/Df 0.b/, and similarly at xD a. But s000 is piecewise constant, so
Z b

a

s000.x/Œg0.x/ � s0.x/�dx

D
n�1X

�D1
s000.x� C 0/

Z x�C1

x�

Œg0.x/ � s0.x/�dx

D
n�1X

�D1
s000.x� C 0/Œg.x�C1/� s.x�C1/ � .g.x�/� s.x�//� D 0;
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since both s and g interpolate to f on �. This proves (2.152) and hence the
theorem. ut

For interpolation on �, the distinction of being optimal goes to the natural cubic
spline interpolant snat.f I � /. This is the content of the second theorem.

Theorem 2.3.2. For any function g 2 C2Œa; b� that interpolates f on � (not �0),
there holds

Z b

a

Œg00.x/�2dx �
Z b

a

Œs00
nat.f I x/�2dx; (2.154)

with equality if and only if g. � / D snat.f I � /.
The proof of Theorem 2.3.2 is virtually the same as that of Theorem 2.3.1, since

(2.153) holds again, this time because s00.b/ D s00.a/ D 0. ut
Putting g. � / D scompl.f I � / in Theorem 2.3.2 immediately gives

Z b

a

Œs00
compl.f I x/�2dx �

Z b

a

Œs00
nat.f I x/�2dx: (2.155)

Therefore, in a sense, the natural cubic spline is the “smoothest” interpolant.
The property expressed in Theorem 2.3.2 is the origin of the name “spline.”

A spline is a flexible strip of wood used in drawing curves. If its shape is given by
the equation y D g.x/, a � x � b, and if the spline is constrained to pass through
the points .xi ; gi /, then it assumes a form that minimizes the bending energy

Z b

a

Œg00.x/�2dx
.1C Œg0.x/�2/3

over all functions g similarly constrained. For slowly varying g (kg0k1 
 1), this
is nearly the same as the minimum property of Theorem 2.3.2.

2.4 Notes to Chapter 2

There are many excellent texts on the general problem of best approximation as
exemplified by (2.1). One that emphasizes uniform approximation by polynomials
is Feinerman and Newman [1974]; apart from the basic theory of best polynomial
approximation, it also contains no fewer than four proofs of the fundamental
theorem of Weierstrass. For approximation in the L1 and L1 norm, which is
related to linear programming, a number of constructive methods, notably the
Remez algorithms and exchange algorithms, are known, both for polynomial and
rational approximation. Early, but still very readable, expositions are given in
Cheney [1998] and Rivlin [1981], and more recent accounts in Watson [1980]
and Powell [1981]. Nearly-best polynomial and rational approximations are widely
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used in computer routines for special functions; for a survey of work in this
area, up to about 1975, see Gautschi [1975a], and for subsequent work, van der
Laan and Temme [1984] and Németh [1992]. Much relevant material is also
contained in the books by Luke [1975] and [1977]. The numerical approximation
and software for special functions is the subject of Gil et al. [2007]; exhaustive
documentation can also be found in Lozier and Olver [1994]. A package for some
of the more esoteric functions is described in MacLeod [1996]. For an extensive
(and mathematically demanding) treatment of rational approximation, the reader is
referred to Petrushev and Popov [1987], and forL1 approximation, to Pinkus [1989].
Methods of nonlinear approximation, including approximation by exponential sums,
are studied in Braess [1986]. Other basic texts on approximation and interpolation
are Natanson [1964, 1965, 1965] and Davis [1975] from the 1960s, and the more
recent books by DeVore and Lorentz [1993] and its sequel, Lorentz et al. [1996]. A
large variety of problems of interpolation and approximation by rational functions
(including polynomials) in the complex plane is studied in Walsh [1969]. An
example of a linear space ˆ containing a denumerable set of nonrational basis
functions are the sinc functions – scaled translates of sin�t

�t
. They are of importance

in the Shannon sampling and interpolation theory (see, e.g., Zayed [1993]) and are
also useful for approximation on infinite or semi-infinite domains in the complex
plane; see Stenger [1993], [2000] and Kowalski et al. [1995] for an extensive
discussion of this. A reader interested in issues of current interest related to
multivariate approximation can get a good start by consulting Cheney [1986].

Rich and valuable sources on polynomials and their numerous properties
of interest in applied analysis are Milovanović et al. [1994] and Borwein and
Erdélyi [1995]. Spline functions – in name and as a basic tool of approximation –
were introduced in 1946 by Schoenberg [1946]; also see Schoenberg [1973]. They
have generated enormous interest, owing both to their interesting mathematical
theory and practical usefulness. There are now many texts available, treating
splines from various points of view. A selected list is Ahlberg et al. [1967],
Nürnberger [1989], and Schumaker [2007] for the basic theory, de Boor [2001] and
Späth [1995] for more practical aspects including algorithms, Atteia [1992] for an
abstract treatment based on Hilbert kernels, Bartels et al. [1987] and Dierckx [1993]
for applications to computer graphics and geometric modeling, and Chui [1988], de
Boor et al. [1993], and Bojanov et al. [1993] for multivariate splines. The standard
text on trigonometric series still is Zygmund [2002] .

Section 2.1. Historically, the least squares principle evolved in the context of
discrete linear approximation. The principle was first enunciated by Legendre in
1805 in a treatise on celestial mechanics (Legendre [1805]), although Gauss used it
earlier in 1794, but published the method only in 1809 (in a paper also on celestial
mechanics). For Gauss’s subsequent treatises, published in 1821–1826, see the
English translation in Gauss [1995]. The statistical justification of least squares as
a minimum variance (unbiased) estimator is due to Gauss. If one were to disregard
probabilistic arguments, then, as Gauss already remarked (Goldstine [1977, p. 212]),
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one could try to minimize the sum of any even (positive) power of the errors, and
even let this power go to infinity, in which case one would minimize the maximum
error. But by these principles “ : : : we should be led into the most complicated
calculations.” Interestingly, Laplace at about the same time also proposed discrete
L1 approximation (under the side condition that all errors add up to zero). A reader
interested in the history of least squares may wish to consult the article by
Sheynin [1993].

The choice of weights wi in the discrete L2 norm k � k2;w can be motivated on
statistical grounds if one assumes that the errors in the data f .xi / are uncorrelated
and have zero mean and variances �2i ; an appropriate choice then is wi D ��2

i .
The discrete problem of minimizing kf � 'k2;w over functions ' in ˆ as given

by (2.2) can be rephrased in terms of an overdetermined system of linear equations,
Pc D f , where P D Œ�j .xi /� is a rectangular matrix of size N � n, and
f D Œf .xi /� the data vector of dimensionN . If r D f � Pc, r D Œri � denotes the
residual vector, one tries to find the coefficient vector c 2 R

n such that
P

i wi r2i is
as small as possible. There is a vast literature dealing with overdetermined systems
involving more general (full or sparse) matrices and their solution by the method
of least squares. A large arsenal of modern techniques of matrix computation
can be brought to bear on this problem; see, for example, Björck [1996] for an
extensive discussion. In the special case considered here, the method of (discrete)
orthogonal polynomials, however, is more efficient. It has its origin in the work of
Chebyshev [1859]; a more contemporary exposition, including computational and
statistical issues, is given in Forsythe [1957].

There are interesting variations on the theme of polynomial least squares
approximation. One is to minimize kf � pk2;d� among all polynomials in Pn

subject to interpolatory constraints at m C 1 given points, where m < n. It turns
out that this can be reduced to an unconstrained least squares problem, but for
a different measure d� and a different function f ; cf. Gautschi [1996, Sect. 2.1].
Something similar is true for approximation by rational functions with a prescribed
denominator polynomial. A more substantial variation consists in wanting to ap-
proximate simultaneously a function f and its first s derivatives. In the most general
setting, this would require the minimization of

R

R

Ps
�D0Œf .�/.t/ � p.�/.t/�2d��.t/

among all polynomials p 2 Pn, where d�� are given (continuous or discrete)
positive measures. The problem can be solved, as in Sect. 2.1.2, by orthogonal
polynomials, but they are now orthogonal with respect to the inner product
.u; v/Hs D Ps

�D0
R

R
u.�/.t/v.�/.t/d��.t/ – a so-called Sobolev inner product. This

gives rise to Sobolev orthogonal polynomials; see Gautschi [2004, Sect. 1.7] for
some history on this problem and relevant literature.

Section 2.1.2. The alternative form (2.25) of computing the coefficients Ocj was
suggested in the 1972 edition of Conte and de Boor [1980] and is further discussed
by Shampine [1975]. The Gram–Schmidt procedure described at the end of this
section is now called the classical Gram–Schmidt procedure. There are other,
modified, versions of Gram–Schmidt that are computationally more effective; see,
for example, Björck [1996, pp. 61ff].
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Section 2.1.4. The standard text on Fourier series, as already mentioned, is
Zygmund [2002], and on orthogonal polynomials, Szegö [1975]. Not only is it true
that orthogonal polynomials satisfy a three-term recurrence relation (2.38), but the
converse is also true: any system f�kg of monic polynomials satisfying (2.38) for all
k � 0, with real coefficients ˛k and ˇk > 0, is necessarily orthogonal with respect
to some (in general unknown) positive measure. This is known as Favard’s Theorem
(cf., e.g., Natanson [1965], Vol. 2, Chap. 8, Sect. 6]). The computation of orthogonal
polynomials, when the recursion coefficients are not known explicitly, is not an easy
task; a number of methods are surveyed in Gautschi [1996]; see also Gautschi [2004,
Chap. 2]. Orthogonal systems in L2.R/ that have become prominent in recent
years are wavelets, which are functions of the form  j;k.t/ D 2j=2 .2j t � k/,
j; k D 0;˙1;˙2; : : : , with  a “mother wavelet” – square integrable on
R and (usually) satisfying

R

R
 .t/dt D 0. Among the growing textbook and

monograph literature on this subject, we mention Chui [1992], Daubechies [1992],
Walter [1994], Wickerhauser [1994], Hernández and Weiss [1996], Resnikoff and
Wells [1998], Burrus et al. [1998], and Novikov et al. [2010].

Section 2.2. Although interpolation by polynomials and spline functions is most
common, it is sometimes appropriate to use other systems of approximants for in-
terpolation, for example, trigonometric polynomials or rational functions. Trigono-
metric interpolation at equally spaced points is closely related to discrete Fourier
analysis and hence accessible to the Fast Fourier Transform (FFT). For this, and
also for rational interpolation algorithms, see, for example, Stoer and Bulirsch
[2002, Sects. 2.1.1 and 2.2]. For the fast Fourier transform and some of its important
applications, see Henrici [1979a] and Van Loan [1992].

Besides Lagrange and Hermite interpolation, other types of interpolation
processes have been studied in the literature. Among these are Fejér–Hermite
interpolation, where one interpolates to given function values and requires
the derivative to vanish at these points, and Birkhoff (also called lacunary)
interpolation, which is similar to Hermite interpolation, but derivatives of only
preselected orders are being interpolated. Remarkably, Fejér–Hermite interpolation
at the Chebyshev points (defined in Sect. 2.2.4) converges for every continuous
function f 2 C Œ�1; 1�. The convergence theory of Lagrange and Fejér–Hermite
interpolation is the subject of a monograph by Szabados and Vértesi [1990].
The most comprehensive work on Birkhoff interpolation is the book by G. G.
Lorentz et al. [1983]. A more recent monograph by R. A. Lorentz [1992] deals with
multivariate Birkhoff interpolation.

Section 2.2.1. The growth of the Lebesgue constants ƒn is at least O.logn/ as
n ! 1; specifically, ƒn >

2
�

logn C c for any triangular array of interpolation
nodes (cf. Sect. 2.1.4), where the constant c can be expressed in terms of Euler’s
constant � (cf. Chap. 1, MA 4) by c D 2

�

	
log 8

�
C �


 D 0:9625228 : : : ; see
Rivlin [1990, Theorem 1.2]. The Chebyshev points achieve the optimal order
O.logn/; for them, ƒn � 2

�
logn C 1 (Rivlin [1990, Theorem 1.2]). Equally

spaced nodes, on the other hand, lead to exponential growth of the Lebesgue
constants inasmuch as ƒn � 2nC1=.en logn/ for n ! 1; see Trefethen and
Weideman [1991] for some history on this result and Brutman [1997a] for a recent
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survey on Lebesgue constants. The very last statement of Sect. 2.1.2 is the content
of Faber’s Theorem (see, e.g., Natanson [1965, Vol. 3, Chap. 2, Theorem 2]), which
says that, no matter how one chooses the triangular array of nodes (2.64) in
Œa; b�, there is always a continuous function f 2 C Œa; b� for which the Lagrange
interpolation process does not converge uniformly to f . Indeed, there is an f 2
C Œa; b� for which Lagrange interpolation diverges almost everywhere in Œa; b�; see
Erdös and Vértesi [1980]. Compare this with Fejér–Hermite interpolation.

Section 2.2.3. A more complete discussion of how the convergence domain of
Lagrange interpolation in the complex plane depends on the limit distribution of
the interpolation nodes can be found in Krylov [1962, Chap. 12, Sect. 2].

Runge’s example is further elucidated in Epperson [1987]. For an analysis
of Bernstein’s example, we refer to Natanson [1965, Vol. 3, Chap. 2, Sect. 2]. The
same divergence phenomenon, incidentally, is exhibited also for a large class of
nonequally spaced nodes; see Brutman and Passow [1995]. The proof of Example 5
follows Fejér [1918].

Section 2.2.4. The Chebyshev polynomial arguably is one of the most interesting
polynomials from the point of view not only of approximation theory, but also of
algebra and number theory. In Rivlin’s words, it “ : : : is like a fine jewel that
reveals different characteristics under illumination from various positions.” In his
text, Rivlin [1990] gives ample testimony in support of this view. Another text,
unfortunately available only in Russian (or Polish), is Paszkowski [1983], which
has an exhaustive account of analytic properties of Chebyshev polynomials as well
as numerical applications.

The convergence result stated in (2.97) follows from (2.59) and the logarithmic
growth ofƒn, since En.f / logn ! 0 for f 2 C1Œ�1; 1� by Jackson’s theorems (cf.
Cheney [1998, p. 147]). A more rigorous estimate for the error in (2.102) is En.f / �
k�n�f k1 � 	

4C 4
�2

logn

 En.f / (Rivlin [1990, Theorem 3.3]), where the infinity

norm refers to the interval Œ�1; 1� and En.f / is the best uniform approximation of
f on Œ�1; 1� by polynomials of degree n.

Section 2.2.5. A precursor of the algorithm (2.108) expressing �.k/k in the form of
a sum rather than a product, and thus susceptible to serious cancellation errors, was
proposed in Werner [1984]. The more stable algorithm given in the text is due to
Berrut and Trefethen [2004]. Barycentric formulae have been developed also for
trigonometric interpolation (see Henrici [1979b] for uniform, and Salzer [1949] and
Berrut [1984] for nonuniform distributions of the nodes), and for cardinal (sinc-)
interpolation (Berrut [1989]); for the latter, see also Gautschi [2001] and Chap. 1,
MA 10.

Section 2.2.7. There are explicit formulae, analogous to Lagrange’s formula,
for Hermite interpolation in the most general case; see, for example, Stoer and
Bulirsch [2002, Sect. 2.1.5]. For the important special case mk D 2, see also
Chap. 3, Ex. 34(a).

Section 2.2.8. To estimate the error of inverse interpolation, using an appropriate
version of (2.60), one needs the derivatives of the inverse function f �1. A general
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expression for the nth derivative of f �1 in terms of the first n derivatives of f is
derived in Ostrowski [1973, Appendix C].

Section 2.3. The definition of the class of spline functions Skm.�/ can be refined to
S

k

m.�/, where kT D Œk2; k3; : : : ; kn�1� is a vector with integer components ki � �1
specifying the degree of smoothness at the interior knots xi ; that is, s.j /.xi C 0/ �
s.j /.xi � 0/ D 0 for j D 0; 1; : : : ; ki . Then S

k
m.�/ as defined in (2.124) becomes

S
k

m.�/ with k D Œk; k; : : : ; k�.

Section 2.3.1. As simple as the procedure of piecewise linear interpolation may
seem, it can be applied to advantage in numerical Fourier analysis, for example. In
trying to compute the (complex) Fourier coefficients cn.f / D 1

2�

R 2�
0 f .x/e�inxdx

of a 2�-periodic function f , one often approximates them by the “discrete Fourier
transform” Ocn.f / D 1

N

PN�1
kD0 f .xk/e�inxk , where xk D k 2�

N
. This can be computed

efficiently (for large N ) by the Fast Fourier Transform. Note, however, that Ocn.f /
is periodic in n with period N , whereas the true Fourier coefficients cn.f / tend
to zero as n ! 1. To remove this deficiency, one can approximate f by some
(simple) function ' and thereby approximate cn.f / by cn.'/. Then cn.'/ will
indeed tend to zero as n ! 1. The simplest choice for ' is precisely the piecewise
linear interpolant ' D s1.f I � / (relative to the uniform partition of Œ0; 2�� into N
subintervals). One then finds, rather remarkably (see Chap. 3, Ex. 14), that cn.'/ is
a multiple of the discrete Fourier transform, namely, cn.f / D �n Ocn.f /, where �n D
�

sin.n�=N/
n�=N

�2
; this still allows the application of the FFT but corrects the behavior

of Ocn.f / at infinity. The same modification of the discrete Fourier transform by an
“attenuation factor” �n occurs for many other approximation processes f 	 '; see
Gautschi [1971/1972] for a general theory (and history) of attenuation factors.

The near optimality of the piecewise linear interpolant s1.f I � /, as expressed by
the inequalities in (2.128), is noted by de Boor [2001, p. 31].

Section 2.3.2. The basis (2.129) for S
0
1.�/ is a special case of a B-spline basis

that can be defined for any space of spline functions Sk

m.�/ previously introduced
(cf. de Boor [2001, Theorem IX(44)]. The B-splines are formed by means of divided
differences of order mC 1 applied to the truncated power .t � x/mC (considered as
a function of t). Like the basis in (2.129), each basis function of a B-spline basis is
supported on at mostmC1 consecutive intervals of� and is positive on the interior
of the support.

Section 2.3.3. A proof of the near optimality of the piecewise linear least squares
approximant Os1.f I � /, as expressed by the inequalities (2.137), can be found in
de Boor [2001, p. 32]. For smoothing and least squares approximation procedures
involving cubic splines, see, for example, de Boor [2001, Chap. XIV].

Section 2.3.4. (a) For the remark in the last paragraph of (a), see de Boor [2001,
Chap. 4, Problem 3].

(b.1) The error bounds in (2.147), which for r D 0 and r D 1 are asymptotically
sharp, are due to Hall and Meyer [1976].

(b.2) The cubic spline interpolant matching second derivatives at the endpoints
satisfies the same error bounds as in (2.147) for r D 0, 1, 2, with constants c0 D 3

64
,
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c1 D 3
16

, and c2 D 3
8
; see Kershaw [1971, Theorem 2]. The same is shown also for

periodic spline interpolants s, satisfying s.r/.a/ D s.r/.b/ for r D 0, 1, 2.
(b.3) Even though the natural spline interpolant, in general, converges only with

order j�j2 (e.g., for uniform partitions �), it has been shown by Atkinson [1968]
that the order of convergence is j�j4 on any compact interval contained in the open
interval .a; b/, and by Kershaw [1971] even on intervals extending (in a sense
made precise) to Œa; b� as j�j ! 0. On such intervals, in fact, the natural spline
interpolant s provides approximations to any f 2 C4Œa; b� with errors satisfying
kf .r/ � s.r/k1 � 8crKj�j4�r , where K D 2 C 3

8
kf .4/k1 and c0 D 1

8
, c1 D 1

2
,

and c2 D 1.
(b.4) The error of the “not-a-knot” spline interpolant is of the same order as

the error of the complete spline; it follows from Beatson [1986, (2.49)] that for
functions f 2 C4Œa; b�, one has kf .r/ � s.r/k1 � cr j�j4�rkf .4/k1, r D 0,
1, 2 (at least when n � 6), where cr are constants independent of f and �. The
same bounds are valid for other schemes that depend only on function values,
for example, the scheme with m1 equal to the first (or second) derivative of
p3.f I x1; x2; x3; x4I � / at x D a, and similarly for mn. The first of these schemes
(using first-order derivatives of p3) is in fact the one recommended by Beatson and
Chacko [1989, 1992] for general-purpose interpolation. Numerical experiments in
Beatson and Chacko [1989] suggest values of approximately 1 for the constants cr
in the preceding error estimates. In Beatson and Chacko [1992] further comparisons
are made among many other cubic spline interpolation schemes.

Section 2.3.5. The minimum norm property of natural splines (Theorem 2.3.1)
and its proof based on the identity (2.151), called “the first integral relation” in
Ahlberg et al. [1967], is due to Holladay [1957], who derived it in the context of
numerical quadrature. “Much of the present-day theory of splines began with this
theorem” (Ahlberg et al. [1967, p. 3]). An elegant alternative proof of (2.152), and
hence of the theorem, can be based (cf. de Boor [2001, pp. 64–66]) on the Peano
representation (see Chap. 3, Sect. 3.2.6) of the second divided difference of g � s,
that is, Œxi�1; xi ; xiC1�.g� s/ D R

R
K.t/.g00.t/� s00.t//dt , by noting that the Peano

kernelK , up to a constant, is the B-spline Bi defined in (2.129). Since the left-hand
side is zero by the interpolation properties of g and s, it follows from the preceding
equation that g00 � s00 is orthogonal to the span of the Bi , hence to s00, which lies in
this span.

Exercises and Machine Assignments to Chapter 2

Exercises

1. Suppose you want to approximate the function

f .t/ D
8
<

:

�1 if �1 � t < 0;

0 if t D 0;

1 if 0 < t � 1
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by a constant function '.x/ D c:

(a) on [–1,1] in the continuousL1 norm,
(b) on ft1; t2; : : : ; tN g in the discrete L1 norm,
(c) on [–1,1] in the continuousL2 norm,
(d) on ft1; t2; : : : ; tN g in the discrete L2 norm,
(e) on [–1,1] in the 1-norm,
(f) on ft1; t2; : : : ; tN g in the discrete 1-norm.

The weighting in all norms is uniform (i.e., w.t/ � 1, wi D 1) and ti D
�1C 2.i�1/

N�1 , i D 1; 2; : : : ; N . Determine the best constant c (or constants c, if
there is nonuniqueness) and the minimum error.

2. Consider the data

f .ti / D 1; i D 1; 2; : : : ; N � 1I f .tN / D y � 1:

(a) Determine the discrete L1 approximant to f by means of a constant c
(polynomial of degree zero).

(b) Do the same for discrete (equally weighted) least square approximation.
(c) Compare and discuss the results, especially as N ! 1.

3. Let x0, x1; : : : ; xn be pairwise distinct points in [a; b], �1 < a < b < 1, and
f 2 C1Œa; b�. Show that, given any " > 0, there exists a polynomialp such that
kf � pk1 < " and, at the same time, p.xi / D f .xi /, i D 0; 1; : : : ; n. Here
kuk1 D maxa�x�b ju.x/j. fHint: write p D pn.f I � /C !nq, where pn.f I � /
is the interpolation polynomial of degree n (cf. Sect. 2.2.1, (2.51)), !n.x/ D
Qn
iD0.x � xi /, q 2 P, and apply Weierstrass’s approximation theorem.g

4. Consider the function f .t/ D t˛ on 0 � t � 1, where ˛ > 0. Suppose we
want to approximate f best in the Lp norm by a constant c, 0 < c < 1, that is,
minimize the Lp error

Ep.c/ D kt˛ � ckp D
�Z 1

0

jt˛ � cjpdt

�1=p

as a function of c. Find the optimal c D cp for p D 1; p D 2, and p D 1,
and determine Ep.cp/ for each of these p-values.

5. Taylor expansion yields the simple approximation ex 	 1 C x, 0 � x � 1.
Suppose you want to improve this by seeking an approximation of the form
ex 	 1C cx, 0 � x � 1, for some suitable c.

(a) How must c be chosen if the approximation is to be optimal in the
(continuous, equally weighted) least squares sense?

(b) Sketch the error curves e1.x/ := ex�.1Cx/ and e2.x/ := ex�.1Ccx/ with
c as obtained in (a) and determine max0�x�1 je1.x/j and max0�x�1 je2.x/j.

(c) Solve the analogous problem with three instead of two terms in the
modified Taylor expansion: ex 	 1C c1xC c2x

2, and provide error curves
for e1.x/ D ex � 1 � x � 1

2
x2 and e2.x/ D ex � 1 � c1x � c2x2.
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6. Prove Schwarz’s inequality

j.u; v/j � kuk � kvk

for the inner product (2.10). fHint: use the nonnegativity of ku C tvk2, t 2 R.g
7. Discuss uniqueness and nonuniqueness of the least squares approximant to a

function f in the case of a discrete set T D ft1; t2g (i.e., N D 2) and ˆn D
Pn�1 (polynomials of degree � n� 1). In case of nonuniqueness, determine all
solutions.

8. Determine the least squares approximation

'.t/ D c1

1C t
C c2

.1C t/2
; 0 � t � 1;

to the exponential function f .t/ D e�t , assuming d�.t/ D dt on [0,1].
Determine the condition number cond1A D kAk1kA�1k1 of the coefficient
matrix A of the normal equations. Calculate the error f .t/�'.t/ at t D 0, t D
1=2, and t D 1. fPoint of information: the integral

R1
1
t�me�xtdt D Em.x/

is known as the “mth exponential integral”; cf. Abramowitz and Stegun [1964,
(5.1.4)] or Olver et al. [2010, (8.19.3)].g

9. Approximate the circular quarter arc � given by the equation y.t/ D p
1 � t2,

0 � t � 1 (see figure) by a straight line ` in the least squares sense, using either
the weight function w.t/ D .1 � t2/�1=2, 0 � t � 1, or w.t/ D 1, 0 � t � 1.
Where does ` intersect the coordinate axes in these two cases?
fPoints of information:

R �=2
0

cos2 �d� D �
4

,
R �=2
0

cos3 �d� D 2
3
.g

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

γ

t

y

10. (a) Let the class ˆn of approximating functions have the following properties.
Each ' 2 ˆn is defined on an interval Œa; b� symmetric with respect to the
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origin (i.e., a D �b), and '.t/ 2 ˆn implies '.�t/ 2 ˆn. Let d�.t/ D
!.t/dt , with !.t/ an even function on Œa; b� (i.e., !.�t/ D !.t/). Show: if
f is an even function on Œa; b�, then so is its least squares approximant, O'n,
on Œa; b� from ˆn.

(b) Consider the “hat function” f .t/ D
�
1 � t if 0 � t � 1;

1C t if �1 � t � 0:

Determine its least squares approximation on [–1,1] by a polynomial of
degree �2. (Use d�.t/ D dt .) Simplify your calculation by using part (a).
Determine where the error vanishes.

11. Suppose you want to approximate the step function

f .t/ D
�
1 if 0 � t � 1;

0 if t > 1

on the positive line RC by a linear combination of exponentials �j .t/ D
e�jt ; j D 1; 2; : : : ; n, in the (continuous, equally weighted) least squares
sense.

(a) Derive the normal equations. How is the matrix related to the Hilbert
matrix?

(b) Use Matlab to solve the normal equations for n D 1; 2; : : : ; 8. Print n, the
Euclidean condition number of the matrix (supplied by the Matlab function
cond.m), along with the solution. Plot the approximations vs. the exact
function for 1 � n � 4.

12. Let �j .t/ D .t � aj /
�1, j D 1; 2; : : : ; n, where aj are distinct real numbers

with jaj j > 1, j D 1; 2; : : : ; n. For d�.t/ D dt on �1 � t � 1 and d�.t/ D 0,
t 62 Œ�1; 1�, determine the matrix of the normal equations for the least squares
problem

R

R
.f � '/2d�.t/ D min, ' D Pn

jD1 cj �j . Can the sytem f�j gnjD1,
n > 1, be an orthogonal system for suitable choices of the constants aj ?
Explain.

13. Given an integer n � 1, consider the subdivision �n of the interval Œ0; 1� into
n equal subintervals of length 1=n. Let �j .t/, j D 0; 1; : : : ; n, be the function
having the value 1 at t D j=n, decreasing on either side linearly to zero at the
neighboring subdivision points (if any), and being zero elsewhere.

(a) Draw a picture of these functions. Describe in words the meaning of a linear
combination �.t/ D Pn

jD0 cj �j .t/.
(b) Determine �j .k=n/ for j , k D 0; 1; : : : ; n.
(c) Show that the system f�j .t/gnjD0 is linearly independent on the interval

0 � t � 1. Is it also linearly independent on the set of subdivision points 0,
1
n

, 2
n
; : : : ; n�1

n
, 1 of �n? Explain.

(d) Compute the matrix of the normal equations for f�j g, assuming d�.t/ D dt
on [0,1]. That is, compute the .nC 1/ � .nC 1/ matrix A D Œaij �, where

aij D R 1
0 �i .t/�j .t/dt .
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14. Even though the function f .t/ D ln.1=t/ becomes infinite as t ! 0, it can
be approximated on [0,1] arbitrarily well by polynomials of sufficiently high
degree in the (continuous, equally weighted) least squares sense. Show this by
proving

en;2 WD min
p2Pn

kf � pk2 D 1

nC 1
:

fHint: use the following known facts about the “shifted” Legendre polynomial
�j .t/ of degree j (orthogonal on [0,1] with respect to the weight function w �
1 and normalized to satisfy �j .1/ D 1):

Z 1

0

�2j .t/dt D 1

2j C 1
; j � 0I

Z 1

0

�j .t/ ln.1=t/dt D
8
<

:

1 if j D 0;

.�1/j
j.jC1/ if j > 0:

The first relation is well known from the theory of orthogonal polynomials (see,
e.g., Sect. 1.5.1, p. 27 of Gautschi [2004]); the second is due to Blue [1979].g

15. Let d� be a continuous (positive) measure on Œa; b� and n � 1 a given integer.
Assume f continuous on Œa; b� and not a polynomial of degree � n � 1. Let
Opn�1 2 Pn�1 be the least squares approximant to f on Œa; b� from polynomials

of degree � n � 1:

Z b

a

Œ Opn�1.t/ � f .t/�2d�.t/ �
Z b

a

Œp.t/ � f .t/�2d�.t/; all p 2 Pn�1:

Prove: the error en.t/ D Opn�1.t/ � f .t/ changes sign at least n times in Œa; b�.
fHint: assume the contrary and develop a contradiction.g

16. Let f be a given function on [0,1] satisfying f .0/ D 0; f .1/ D 1.

(a) Reduce the problem of approximating f on [0,1] in the (continuous,
equally weighted) least squares sense by a quadratic polynomial p satis-
fying p.0/ D 0; p.1/ D 1 to an unconstrained least squares problem (for
a different function).

(b) Apply the result of (a) to f .t/ D t r ; r > 2. Plot the approximation against
the exact function for r D 3.

17. Suppose you want to approximate f .t/ on Œa; b� by a function of the form
r.t/ D �.t/=q.t/ in the least squares sense with weight function w, where
� 2 Pn and q is a given function (e.g., a polynomial) such that q.t/ > 0 on
Œa; b�. Formulate this problem as an ordinary polynomial least squares problem
for an appropriate new function f and new weight function w.

18. The Bernstein polynomials of degree n are defined by

Bn
j .t/ D

�
n

j

�

t j .1 � t/n�j ; j D 0; 1; : : : ; n;

and are usually employed on the interval 0 � t � 1.
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(a) Show that Bn
0 .0/ D 1, and for j D 1; 2; : : : ; n

dr

dt r
Bn
j .t/

ˇ
ˇ
ˇ
ˇ
tD0

D 0; r D 0; 1; : : : ; j � 1I dj

dt j
Bn
j .t/

ˇ
ˇ
ˇ
ˇ
tD0

¤ 0:

(b) What are the analogous properties at t D 1, and how are they most easily
derived?

(c) Prepare a plot of the fourth-degree polynomials B4
j .t/; j D 0; 1; : : : ; 4,

0 � t � 1.
(d) Use (a) to show that the system fBn

j .t/gnjD0 is linearly independent on [0,1]
and spans the space Pn.

(e) Show that
Pn

jD0 Bn
j .t/ � 1. fHint: use the binomial theorem.g

19. Prove that, if f�j gnjD1 is linearly dependent on the support of d�, then the
matrix A D Œaij �, where aij D .�i ; �j /d� D R

R
�i .t/�j .t/d�.t/, is singular.

20. Given the recursion relation �kC1.t/ D .t � ˛k/�k.t/ � ˇk�k�1.t/, k D
0; 1; 2; : : : ; for the (monic) orthogonal polynomials f�j . � I d�/g, and defining
ˇ0 D R

R
d�.t/, show that k�kk2 = ˇ0ˇ1 � � �ˇk , k D 0; 1; 2; : : : :

21. (a) Derive the three-term recurrence relation

p
ˇkC1 Q�kC1.t/ D .t � ˛k/ Q�k.t/ �

p
ˇk Q�k�1; k D 0; 1; 2; : : : ;

Q��1.t/ D 0; Q�0 D 1=
p
ˇ0

for the orthonormal polynomials Q�k D �k=k�kk, k D 0; 1; 2; : : : .
(b) Use the result of (a) to derive the Christoffel–Darboux formula

nX

kD0
Q�k.x/ Q�k.t/ D p

ˇnC1
Q�nC1.x/ Q�n.t/ � Q�n.x/ Q�nC1.t/

x � t
:

22. (a) Let �n. � / D �n. � I d�/ be the (monic) orthogonal polynomial of degree n
relative to the positive measure d� on R. Show:

Z

R

�2n.t I d�/d�.t/ �
Z

R

p2.t/d�.t/; all p 2 ı
Pn;

where
ı
Pn is the class of monic polynomials of degree n. Discuss the case

of equality. fHint: represent p in terms of �j . � I d�/; j D 0; 1; : : : ; n.g
(b) If d�.t/ D d�N .t/ is a discrete measure with exactly N support points

t1; t2; : : : ; tN , and �j .t/ D �j . � I d�N/; j D 0; 1; : : : ; N �1, are the corre-
sponding (monic) orthogonal polynomials, let �N .t/ D .t�˛N�1/�N�1.t/
� ˇN�1�N�2.t/, with ˛N�1; ˇN�1 defined as in Sect. 2.1.4(2). Show that
�N .tj / D 0 for j D 1; 2; : : : ; N .
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23. Let f�j gnjD0 be a system of orthogonal polynomials, not necessarily monic,
relative to the (positive) measure d�. For some aij , define

pi.t/ D
nX

jD0
aij �j .t/; i D 1; 2; : : : ; n;

(a) Derive conditions on the matrix A D Œaij � which ensure that the system
fpigniD0 is also a system of orthogonal polynomials.

(b) Assuming all �j monic and fpigniD0 an orthogonal system, show that each
pi is monic if and only if A D I is the identity matrix.

(c) Prove the same as in (b), with “monic” replaced by “orthonormal” through-
out.

24. Let .u; v/ D PN
kD1 wku.tk/v.tk/ be a discrete inner product on the interval [–

1,1] with �1 � t1 < t2 < � � � < tN � 1, and let ˛k , ˇk be the recursion
coefficients for the (monic) orthogonal polynomials f�k.t/gN�1

kD0 associated with
(u, v):

8
ˆ̂
<̂

ˆ̂
:̂

�kC1.t/ D .t � ˛k/�k.t/ � ˇk�k�1.t/;

k D 0; 1; 2; : : : ; N � 2;

�0.t/ D 1; ��1.t/ D 0:

Let x D b�a
2
t C aCb

2
map the interval [–1,1] to [a, b], and the points

tk 2 Œ�1; 1� to xk 2 Œa; b�. Define .u; v/� D PN
kD1 wku.xk/v.xk/, and let

f��
k .x/gN�1

kD0 be the (monic) orthogonal polynomials associated with .u; v/�.
Express the recursion coefficients ˛�

k , ˇ�
k for the f��

k g in terms of those for
f�kg. fHint: first show that ��

k .x/ D . b�a
2
/k�k.

2
b�a .x � aCb

2
//.g

25. Let

.?/

8
ˆ̂
<̂

ˆ̂
:̂

�kC1.t/ D .t � ˛k/�k.t/ � ˇk�k�1.t/;

k D 0; 1; 2; : : : ; n � 1;

�0.t/ D 1; ��1.t/ D 0

and consider

pn.t/ D
nX

jD0
cj �j .t/:

Show that pn can be computed by the following algorithm (Clenshaw’s
algorithm):



Exercises 125

.??/

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

un D cn; unC1 D 0;

uk D .t � ˛k/ukC1 � ˇkC1ukC2 C ck;

k D n � 1; n� 2; : : : ; 0;

pn D u0:

fHint: write (?) in matrix form in terms of the vector �T D Œ�0; �1; : : : ; �n�

and a unit triangular matrix. Do likewise for (??).g
26. Show that the elementary Lagrange interpolation polynomials `i .x/ are invari-

ant with respect to any linear transformation of the independent variable.
27. Use Matlab to prepare plots of the Lebesgue function for interpolation,

�n.x/, �1 � x � 1, for n D 5; 10; 20, with the interpolation nodes xi being
given by

(a) xi D �1C 2i
n

, i D 0; 1; 2; : : : ; n;

(b) xi D cos 2iC1
2nC2� , i D 0; 1; 2; : : : ; n.

Compute �n.x/ on a grid obtained by dividing each interval Œxi�1; xi �, i D
1; 2; : : : ; n, into 20 equal subintervals. Plot log10 �n.x/ in case (a), and �n.x/
in case (b). Comment on the results.

28. Let !n.x/ D Qn
kD0 .x � k/ and denote by xn the location of the extremum of

!n on [0,1], that is, the unique x in [0,1], where !0
n.x/ D 0.

(a) Prove or disprove that xn ! 0 as n ! 1.
(b) Investigate the monotonicity of xn as n increases.

29. Consider equidistant sampling points xk D k .k D 0; 1; : : : ; n) and !n.x/ D
Qn
kD0 .x � k/, 0 � x � n.

(a) Show that !n.x/ D .�1/nC1!n.n � x/. What kind of symmetry does this
imply?

(b) Show that j!n.x/j < j!n.x C 1/j for nonintegral x > .n � 1/=2.
(c) Show that the relative maxima of j!n.x/j increase monotonically (from the

center of Œ0; n� outward).

30. Let

�n.x/ D
nX

iD0
j`i .x/j

be the Lebesgue function for polynomial interpolation at the distinct points
xi 2 Œa; b�; i D 0; 1; : : : ; n, and ƒn D k�nk1 D maxa�x�b j�n.x/j the
Lebesgue constant. Let pn.f I � / be the polynomial of degree � n interpolating
f at the nodes xi . Show that in the inequality

kpn.f I � /k1 � ƒnkf k1; f 2 C Œa; b�;
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equality can be attained for some f D ' 2 C Œa; b�. fHint: let k�nk1 D
�n.x1/; take ' 2 C Œa; b� piecewise linear and such that '.xi / D sgn `i .x1/;
i D 0; 1; : : : ; n.g

31. (a) Let x0, x1; : : : ; xn be n C 1 distinct points in [a; b] and fi D f .xi /, i D
0; 1; : : : ; n, for some function f . Let f �

i D fi C "i , where j"i j � ". Use
the Lagrange interpolation formula to show that jpn.f �I x/� pn.f I x/j �
"�n.x/, a � x � b, where �n.x/ is the Lebesgue function (cf. Ex. 30).

(b) Show: �n.xj / D 1 for j D 0; 1; : : : ; n.
(c) For quadratic interpolation at three equally spaced points, show that

�2.x/ � 1:25 for any x between the three points.
(d) Obtain �2.x/ for x0 D 0, x1 D 1, x2 D p, where p � 1, and determine

max1�x�p �2.x/. How fast does this maximum grow with p? fHint: to
simplify the algebra, note from (b) that �2.x/ on 1 � x � p must be
of the form �2.x/ D 1C c.x � 1/.p � x/ for some constant c.g

32. In a table of the Bessel function J0.x/ D 1
�

R �
0

cos.x sin �/d� , where x is
incremented in steps of size h, how small must h be chosen if the table is to
be “linearly interpolable” with error less that 10�6 in absolute value? fPoint of
information:

R �=2
0

sin2 �d� D �
4

.g
33. Suppose you have a table of the logarithm function lnx for positive integer

values of x, and you compute ln 11:1 by quadratic interpolation at x0 D 10,
x1 D 11, x2 D 12. Estimate the relative error incurred.

34. The “Airy function” y.x/ D Ai.x/ is a solution of the differential equation
y00 D xy satisfying appropriate initial conditions. It is known that Ai.x/ on
Œ0;1/ is monotonically decreasing to zero and Ai0.x/monotonically increasing
to zero. Suppose you have a table of Ai and Ai0 (with tabular step h) and you
want to interpolate

(a) linearly between x0 and x1,
(b) quadratically between x0, x1, and x2,

where x0, x1 D x0 C h, x2 D x0 C 2h are (positive) tabular arguments.
Determine close upper bounds for the respective errors in terms of quantities
yk D y.xk/; y

0
k D y0.xk/; k D 0; 1; 2, contained in the table.

35. The error in linear interpolation of f at x0, x1 is known to be

f .x/ � p1.f I x/ D .x � x0/.x � x1/ f
00.	.x//
2

; x0 < x < x1;

if f 2 C2Œx0; x1�. Determine 	.x/ explicitly in the case f .x/ D 1
x

, x0 D 1,
x1 D 2, and find max1�x�2 	.x/ and min1�x�2 	.x/.

36. (a) Let pn.f I x/ be the interpolation polynomial of degree � n interpolating
f .x/ D ex at the points xi D i=n; i D 0; 1; 2; : : : ; n. Derive an upper
bound for

max
0�x�1je

x � pn.f I x/j
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and determine the smallest n guaranteeing an error less than 10�6 on
[0, 1]. fHint: first show that for any integer i with 0 � i � n one has
max0�x�1 j.x � i

n
/.x � n�i

n
/j � 1

4
.g

(b) Solve the analogous problem for the nth-degree Taylor polynomial tn.x/ D
1C x C x2

2Š
C � � � C xn

nŠ
, and compare the result with the one in (a).

37. Let x0 < x1 < x2 < � � � < xn and H D max0�i�n�1.xiC1 � xi /. Defining
!n.x/ D Qn

iD0.x�xi /, find an upper bound for k!nk1 D maxx0�x�xn j!n.x/j
in terms of H and n. fHint: assume xj � x � xjC1 for some 0 � j < n and
estimate .x � xj /.x � xjC1/ and

Q
i¤j

i¤jC1

.x � xi / separately.g
38. Show that the power xn on the interval �1 � x � 1 can be uniformly

approximated by a linear combination of powers 1; x; x2; : : : ; xn�1 with error
� 2�.n�1/. In this sense, the powers of x become “less and less linearly
independent” on [–1,1] with growing exponent n.

39. Determine

min max
a�x�b ja0xn C a1x

n�1 C � � � C anj; n � 1;

where the minimum is taken over all real a0; a1; : : : ; an with a0 ¤ 0. fHint: use
Theorem 2.2.1.g

40. Let a > 1 and P
a
n D fp 2 Pn W p.a/ D 1g. Define Opn 2 P

a
n by Opn.x/ D Tn.x/

Tn.a/
,

where Tn is the Chebyshev polynomial of degree n, and let k � k1 denote the
maximum norm on the interval Œ�1; 1�. Prove:

k Opnk1 � kpk1 for all p 2 P
a
n:

fHint: imitate the proof of Theorem 2.2.1.g
41. Let

f .x/ D
Z 1

5

e�t

t � x dt; � 1 � x � 1;

and let pn�1.f I � / be the polynomial of degree � n�1 interpolating f at the n
Chebyshev points x� D cos. 2��1

2n
�/; � D 1; 2; : : : ; n. Derive an upper bound

for max�1�x�1 jf .x/ � pn�1.f; x/j.
42. Let f be a positive function defined on Œa; b� and assume

min
a�x�b jf .x/j D m0; max

a�x�b jf .k/.x/j D Mk; k D 0; 1; 2; : : : :

(a) Denote by pn�1.f I � / the polynomial of degree � n � 1 interpolating
f at the n Chebyshev points (relative to the interval Œa; b�). Estimate the
maximum relative error rn D maxa�x�b j.f .x/ � pn�1.f I x//=f .x/j.

(b) Apply the result of (a) to f .x/ D ln x on Ir D fer � x � erC1g; r � 1 an
integer. In particular, show that rn � ˛.r; n/cn, where 0 < c < 1 and ˛ is
slowly varying. Exhibit c.
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(c) (This relates to the function f .x/ D lnx of part (b).) How does one
compute f .x/; x 2 Is , from f .x/; x 2 Ir?

43. (a) For quadratic interpolation on equally spaced points x0, x1 D x0 C h,
x2 D x0 C 2h, derive an upper bound for kf � p2.f I � /k1 involving
kf 000k1 and h. (Here kuk1 D maxx0�x�x2 ju.x/j.)

(b) Compare the bound obtained in (a) with the analogous one for interpolation
at the three Chebyshev points on [x0; x2].

44. (a) Suppose the function f .x/ D ln.2C x/, �1 � x � 1, is interpolated by a
polynomial pn of degree � n at the Chebyshev points xk D cos

	
2kC1
2nC2�



,

k D 0; 1; : : : ; n. Derive a bound for the maximum error kf � pnk1 D
max�1�x�1 jf .x/ � pn.x/j.

(b) Compare the result of (a) with bounds for kf � tnk1, where tn.x/ is the
nth-degree Taylor polynomial of f and where either Lagrange’s form of
the remainder is used or the full Taylor expansion of f .

45. Consider f .t/ D cos�1 t; �1 � t � 1. Obtain the least squares approximation
O'n 2 Pn of f relative to the weight function w.t/ D .1 � t/� 1

2 ; that is, find the
solution ' D O'n of

minimize

�Z 1

�1
Œf .t/ � '.t/�2

dtp
1 � t2 W ' 2 Pn

�

:

Express O'n in terms of Chebyshev polynomials �j .t/ D Tj .t/.
46. Compute T 0

n.0/, where Tn is the Chebyshev polynomial of degree n.
47. Prove that the system of Chebyshev polynomials fTk W 0 � k < ng is

orthogonal with respect to the discrete inner product .u; v/ D Pn
�D1 u.x�/v.x�/,

where x� are the Chebyshev points x� D cos 2��1
2n
� .

48. Let Tk.x/ denote the Chebyshev polynomial of degree k. Clearly, Tn.Tm.x// is
a polynomial of degree n �m. Identify it.

49. Let Tn denote the Chebyshev polynomial of degree n � 2. The equation

x D Tn.x/

is an algebraic equation of degree n and hence has exactly n roots. Identify
them.

50. For any x with 0 � x � 1 show that Tn.2x � 1/ D T2n.
p
x/.

51. Let f .x/ be defined for all x 2 R and infinitely often differentiable on R.
Assume further that

jf .m/.x/j � 1; all x 2 R; m D 1; 2; 3; : : : :

Let h > 0 and p2n�1 be the polynomial of degree < 2n interpolating f at the
2n points x D kh, k D ˙1;˙2; : : : ;˙n. For what values of h is it true that

lim
n!1p2n�1.0/ D f .0/ ‹
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(Note that x D 0 is not an interpolation node.) Explain why the convergence
theory discussed in Sect. 2.2.3 does not apply here. fPoint of information: nŠ �p
2�n.n=e/n as n ! 1 (Stirling’s formula).g

52. (a) Let xCi D cos
	
2iC1
2nC2�



, i D 0; 1; : : : ; n, be Chebyshev points on Œ�1; 1�.

Obtain the analogous Chebyshev points tCi on [a; b] (where a < b) and
find an upper bound of

Qn
iD0.t � tCi / for a � t � b.

(b) Consider f .t/ D ln t on [a; b], 0 < a < b, and let pn.t/ D pn.f I t .n/0 ,

t
.n/
1 ; : : : ; t

.n/
n I t). Given a > 0, how large can b be chosen such that

limn!1 pn.t/ D f .t/ for arbitrary nodes t .n/i 2 Œa; b� and arbitrary t 2
Œa; b�?

(c) Repeat (b), but with t .n/i D tCi (see (a)).
53. Let PC

m be the set of all polynomials of degree � m that are nonnegative on the
real line,

P
C
m D fp W p 2 Pm; p.x/ � 0 for all x 2 Rg:

Consider the following interpolation problem: find p 2 P
C
m such that p.xi / D

fi ; i D 0; 1; : : : ; n, where fi � 0 and xi are distinct points on R.

(a) Show that, if m D 2n, the problem admits a solution for arbitrary fi � 0.
(b) Prove: if a solution is to exist for arbitrary fi � 0, then, necessarily,

m � 2n. fHint: consider f0 D 1; f1 D f2 D � � � D fn D 0.g
54. Defining forward differences by �f.x/ D f .x C h/ � f .x/; �2f .x/ D

�.�f .x// D f .x C 2h/� 2f .x C h/C f .x/, and so on, show that

�kf .x/ D kŠhkŒx0; x1; : : : ; xk�f;

where xj D xCjh; j D 0; 1; 2; : : : : Prove an analogous formula for backward
differences.

55. Let f .x/ D x7. Compute the fifth divided difference [0,1,1,1,2,2]f of f . It is
known that this divided difference is expressible in terms of the fifth derivative
of f evaluated at some 	, 0 < 	 < 2 (cf. (2.117)). Determine 	.

56. In this problem f .x/ D ex throughout.

(a) Prove: for any real number t , one has

Œt; t C 1; : : : ; t C n�f D .e � 1/n
nŠ

et :

fHint: use induction on n.g
(b) From (2.117) we know that

Œ0; 1; : : : ; n�f D f .n/.	/

nŠ
; 0 < 	 < n:

Use the result in (a) to determine 	. Is 	 located to the left or to the right of
the midpoint n=2?
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57. (Euler, 1734) Let xk D 10k, k D 0; 1; 2; 3; : : :, and f .x/ D log10 x.

(a) Show that

Œx0; x1; : : : ; xn�f D .�1/n�1

10n.n�1/=2.10n � 1/
; n D 1; 2; 3; : : : :

fHint: prove more generally

Œxr ; xrC1; : : : ; xrCn�f D .�1/n�1

10rnCn.n�1/=2.10n � 1/ ; r � 0;

by induction on n.g
(b) Use Newton’s interpolation formula to determine pn.x/ D pn.f I x0; x1;

: : : ; xnI x/. Show that limn!1 pn.x/ exists for 1 � x < 10. Is the limit
equal to log10 x? (Check, e.g., for x D 9.)

58. Show that
@

@x0
Œx0; x1; : : : ; xn�f D Œx0; x0; x1; : : : ; xn�f;

assuming f is differentiable at x0. What about the partial derivative with respect
to one of the other variables?

59. (a) For nC 1 distinct nodes x� , show that

Œx0; x1; : : : ; xn�f D
nX

�D0

f .x�/
Q
�¤�.x� � x�/

:

(b) Show that

Œx0; x1; : : : ; xn�.fgj / D Œx0; x1; : : : ; xj�1; xjC1; : : : ; xn�f;

where gj .x/ D x � xj .
60. (Mikeladze, 1941) Assuming x0; x1; : : : ; xn mutually distinct, show that

Œx0; x0; : : : ; x0„ ƒ‚ …
m times

; x1; x2; : : : ; xn�f

D Œ

m times
‚ …„ ƒ
x0; : : : ; x0�f
nY

�D1
.x0 � x�/

C
nX

�D1

Œ

.m�1/ times
‚ …„ ƒ
x0; : : : ; x0; x� �f

nY

�D0
�¤�

.x� � x�/
:

fHint: use induction on m.g
61. Determine the number of additions and the number of multiplications/divisions

required

(a) to compute all divided differences for nC 1 data points,
(b) to compute all auxiliary quantities �.n/i in (2.103), and
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(c) to compute pn.f I � / (efficiently) from Newton’s formula (2.111), once
the divided differences are available. Compare with the analogous count
for the barycentric formula (2.105), assuming all auxiliary quantities
available. Overall, which, if any, of the two formulae can be computed more
economically?

62. Consider the data f .0/ D 5, f .1/ D 3, f .3/ D 5, f .4/ D 12.

(a) Obtain the appropriate interpolation polynomial p3.f I x/ in Newton’s
form.

(b) The data suggest that f has a minimum between x D 1 and x D 3. Find
an approximate value for the location xmin of the minimum.

63. Let f .x/ D .1Ca/x; jaj < 1. Show that pn.f I 0; 1; : : : ; nI x/ is the truncation
of the binomial series for f to n C 1 terms. fHint: use Newton’s form of the
interpolation polynomial.g

64. Suppose f is a function on [0,3] for which one knows that

f .0/ D 1; f .1/ D 2; f 0.1/ D �1; f .3/ D f 0.3/ D 0:

(a) Estimate f .2/, using Hermite interpolation.
(b) Estimate the maximum possible error of the answer given in (a) if one

knows, in addition, that f 2 C5Œ0; 3� and jf .5/.x/j � M on [0,3]. Express
the answer in terms of M .

65. (a) Use Hermite interpolation to find a polynomial of lowest degree satisfying
p.�1/ D p0.�1/ D 0, p.0/ D 1, p.1/ D p0.1/ D 0. Simplify your
expression for p as much as possible.

(b) Suppose the polynomial p of (a) is used to approximate the function
f .x/ D Œcos.�x=2/�2 on �1 � x � 1.

(b1) Express the error e.x/ D f .x/ � p.x/ (for some fixed x in Œ�1; 1�/
in terms of an appropriate derivative of f .

(b2) Find an upper bound for je.x/j (still for a fixed x 2 Œ�1; 1�).
(b3) Estimate max�1�x�1 je.x/j.

66. Consider the problem of finding a polynomial p 2 Pn such that

p.x0/ D f0; p
0.xi / D f 0

i ; i D 1; 2; : : : ; n;

where xi , i D 1; 2; : : : ; n, are distinct nodes. (It is not excluded that x1 D x0.)
This is neither a Lagrange nor a Hermite interpolation problem (why not?).
Nevertheless, show that the problem has a unique solution and describe how it
can be obtained.

67. Let

f .t/ D
8
<

:

0 if 0 � t � 1
2
;

1 if 1
2

� t � 1:
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(a) Find the linear least squares approximant Op1 to f on Œ0; 1�, that is, the
polynomial p1 2 P1 for which

Z 1

0

Œp1.t/ � f .t/�2dt D min:

Use the normal equations with �0.t/ D 1; �1.t/ D t .
(b) Can you do better with continuous piecewise linear functions (relative to

the partition Œ0; 1� D Œ0; 1
2
� [ Œ 1

2
; 1�) ? Use the normal equations for the

B-spline basis B0; B1; B2 (cf. Sect. 2.2.2 and Ex. 13).

68. Show that Smm.�/ D Pm.
69. Let � be the subdivision

� D Œ0; 1� [ Œ1; 2� [ Œ2; 3�
of the interval [0,3]. Define the function s by

s.x/ D

8
ˆ̂
<̂

ˆ̂
:̂

2 � x.3 � 3x C x2/ if 0 � x � 1;

1 if 1 � x � 2;

1
4
x2.3 � x/ if 2 � x � 3:

To which class Skm.�/ does s belong?
70. In

s.x/ D
8
<

:

p.x/ if 0 � x � 1;

.2 � x/3 if 1 � x � 2

determine p 2 P3 such that s.0/ D 0 and s is a cubic spline in S
2
3.�/ on the

subdivision� D Œ0; 1�[ Œ1; 2� of the interval [0,2]. Do you get a natural spline?
71. Let �: a D x1 < x2 < x3 < � � � < xn D b be a subdivision of [a; b] into

n � 1 subintervals. What is the dimension of the space S
k
m D fs 2 CkŒa; b�:

sjŒxi ;xiC1� 2 Pm, i D 1; 2; : : : ; n � 1g ?
72. Given the subdivision � W a D x1 < x2 < � � � < xn D b of Œa; b�, determine a

basis of “hat functions” for the space S D fs 2 S
0
1 W s.a/ D s.b/ D 0g.

73. Let � W a D x1 < x2 < x3 < � � � < xn�1 < xn D b be a subdivision of
Œa; b� into n� 1 subintervals. Suppose we are given values fi D f .xi / of some
function f .x/ at the points x D xi , i D 1; 2; : : : ; n. In this problem s 2 S

1
2

is a quadratic spline in C1Œa; b� that interpolates f on �, that is, s.xi / D fi ,
i D 1; 2; : : : ; n.

(a) Explain why one expects an additional condition to be required in order to
determine s uniquely.

(b) Define mi D s0.xi /, i D 1; 2; : : : ; n � 1. Determine pi WD s
ˇ
ˇ
Œxi ;xiC1� ,

i D 1; 2; : : : ; n � 1, in terms of fi ; fiC1, andmi .
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(c) Suppose one takes m1 D f 0.a/. (According to (a), this determines s
uniquely.) Show how m2;m3; : : : ; mn�1 can be computed.

74. Let the subdivision� of [a; b] be given by

� W a D x1 < x2 < x3 < � � � < xn�1 < xn D b; n � 2;

and let fi D f .xi /, i D 1; 2; : : : ; n, for some function f . Suppose you
want to interpolate this data by a quintic spline s5.f I � / (a piecewise fifth-
degree polynomial of smoothness class C4Œa; b�). By counting the number of
parameters at your disposal and the number of conditions imposed, state how
many additional conditions (if any) you expect are needed to make s5.f I � /
unique.

75. Let

� W a D x1 < x2 < x3 < � � � < xn�1 < xn D b:

Consider the following problem: given n � 1 numbers f� and n � 1 points 	�
with x� < 	� < x�C1 (� D 1; 2; : : : ; n � 1), find a piecewise linear function
s 2 S

0
1.�/ such that

s.	�/ D f� .� D 1; 2; : : : ; n � 1/; s.x1/ D s.xn/:

Representing s in terms of the basis B1, B2; : : : ; Bn of “hat functions,”
determine the structure of the linear system of equations that you obtain for
the coefficients cj in s.x/ D Pn

jD1 cjBj .x/. Describe how you would solve
the system.

76. Let s1.x/ D 1 C c.x C 1/3, �1 � x � 0, where c is a (real) parameter.
Determine s2.x/ on 0 � x � 1 so that

s.x/ WD
�
s1.x/ if �1 � x � 0;

s2.x/ if 0 � x � 1

is a natural cubic spline on Œ�1; 1�with knots at �1, 0, 1. How must c be chosen
if one wants s.1/ D �1?

77. Derive (2.136).
78. Determine the quantities mi in the variant of piecewise cubic Hermite interpo-

lation mentioned at the end of Sect. 2.3.4(a).
79. (a) Derive the two extra equations for m1, m2; : : : ; mn that result from the

“not-a-knot” condition (Sect. 2.3.4, (b.4)) imposed on the cubic spline
interpolant s 2 S

2
3.�/ (with � as in Ex. 73).

(b) Adjoin the first of these equations to the top and the second to the bottom
of the system of n � 2 equations derived in Sect. 2.3.4(b). Then apply
elementary row operations to produce a tridiagonal system. Display the
new matrix elements in the first and last equations, simplified as much as
possible.
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(c) Is the tridiagonal system so obtained diagonally dominant?
80. Let S01.�/ be the class of continuous piecewise linear functions relative to the

subdivision a D x1 < x2 < � � � < xn D b. Let kgk1 D maxa�x�b jg.x/j, and
denote by s1.gI � / the piecewise linear interpolant (from S

0
1.�// to g.

(a) Show: ks1.gI � /k1 � kgk1 for any g 2 C Œa; b�.
(b) Show: kf �s1.f I � /k1 � 2kf �sk1 for any s 2 S

0
1, f 2 C Œa; b�. fHint:

use additivity of s1.f I � / with respect to f .g
(c) Interpret the result in (b) when s is the best uniform spline approximant

to f .

81. Consider the interval Œa; b� D Œ�1; 1� and its subdivision � D Œ�1; 0� [ Œ0; 1�,
and let f .x/ D cos �

2
x, �1 � x � 1.

(a) Determine the natural cubic spline interpolant to f on �.
(b) Illustrate Theorem 2.3.2 by taking in turn g.x/ D p2.f I �1; 0; 1I x/ and

g.x/ D f .x/.
(c) Discuss analogously the complete cubic spline interpolant to f on �0

(cf. (2.149)) and the choices g.x/ D p3.f I �1; 0; 1; 1I x/ and g.x/ D
f .x/.

Machine Assignments

1. (a) A simple-minded approach to best uniform approximation of a function
f .x/ on [0,1] by a linear function ax C b is to first discretize the problem
and then, for various (appropriate) trial values of a, solve the problem of
(discrete) uniform approximation of f .x/ � ax by a constant b (which
admits an easy solution). Write a program to implement this idea.

(b) Run your program for f .x/ D ex; f .x/ D 1=.1 C x/; f .x/ D
sin �

2
x; f .x/ D x˛ .˛ D 2; 3; 4; 5/. Print the respective optimal values of

a and b and the associated minimum error. What do you find particularly
interesting in the results (if anything)?

(c) Give a heuristic explanation (and hence exact values) for the results, using
the known fact that the error curve for the optimal linear approximation
attains its maximum modulus at three consecutive points 0 � x0 < x1 <

x2 � 1 with alternating signs (Principle of Alternation).
2. (a) Determine the .nC 1/ � .nC 1/ matrix A D Œaij �, aij D .Bn

i ; B
n
j /, of the

normal equations relative to the Bernstein basis

Bn
j .t/ D

�
n

j

�

t j .1 � t/n�j ; j D 0; 1; : : : ; n;

and weight function w.t/ � 1 on [0,1]. fPoint of information:
R 1
0
tk

.1 � t/`dt D kŠ`Š=.k C `C 1/Šg.
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(b) Use Matlab to solve the normal equations of (a) for n D 5 W 5 W 25, when
the function to be approximated is f .t/ � 1. What should the exact answer
be? For each n, print the infinity norm of the error vector and an estimate
of the condition number of A. Comment on your results.

3. Compute discrete least squares approximations to the function f .t/ D sin
	
�
2
t



on 0 � t � 1 by polynomials of the form

'n.t/ D t C t.1 � t/

nX

jD1
cj t

j�1; n D 1.1/5;

using N abscissae tk D k=.N C 1/, k D 1; 2; : : : ; N , and equal weights 1.
Note that 'n.0/ D 0, 'n.1/ D 1 are the exact values of f at t D 0 and t D 1,
respectively. fHint: approximate f .t/ � t by a linear combination of �j .t/ D
t j .1 � t/; j D 1; 2; : : : ; n.g Write a Matlab program for solving the normal
equations Ac D b, A D Œ.�i ; �j /�, b D Œ.�i ; f � t/�, c D Œcj �, that does
the computation in both single and double precision. For each n D 1; 2; : : : ; 5

output the following:

• the condition number of the system (computed in double precision);
• the maximum relative error in the coefficients, max1�j�n j.csj � cdj /=cdj j,

where csj are the single-precision values of cj and cdj the double-precision
values;

• the minimum and maximum error (computed in double precision),

emin D min
1�k�N j'n.tk/� f .tk/j; emax D max

1�k�N j'n.tk/� f .tk/j:

Make two runs:

(a) N D 5; 10; 20; (b) N D 4.

Comment on the results.
4. Write a program for discrete polynomial least squares approximation of a

function f defined on [–1,1], using the inner product

.u; v/ D 2

N C 1

NX

iD0
u.ti /v.ti /; ti D �1C 2i

N
:

Follow these steps.

(a) The recurrence coefficients for the appropriate (monic) orthogonal polyno-
mials f�k.t/g are known explicitly:

˛k D 0; k D 0; 1; : : : ; N I ˇ0 D 2;

ˇk D
�

1C 1

N

�2
 

1 �
�

k

N C 1

�2
!�

4 � 1

k2

��1
; k D 1; 2; : : : ; N:
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(You do not have to prove this.) Define �k D k�kk2 D .�k; �k/, which is
known to be equal to ˇ0ˇ1 � � �ˇk (cf. Ex. 20).

(b) Using the recurrence formula with coefficients ˛k , ˇk given in (a), generate
an array � of dimension .N C 2;N C 1/ containing �k.t`/, k D
0; 1; : : : ; NC1; ` D 0; 1; : : : ; N . (Here k is the row index and ` the column
index.) Define�k D max0�`�N j�k.t`/j, k D 1; 2; : : : ; N C1. Print ˇk , �k ,
and �kC1 for k D 0; 1; 2; : : : ; N , where N D 10. Comment on the results.

(c) With Opn.t/ D Pn
kD0 Ock�k.t/, n D 0; 1; : : : ; N , denoting the least squares

approximation of degree � n to the function f on [–1,1], define

kenk2 D k Opn � f k D . Opn � f; Opn � f /1=2;

kenk1 D max
0�i�N j Opn.ti /� f .ti /j:

Using the array � generated in part (b), compute Ocn, kenk2, kenk1, n D
0; 1; : : : ; N , for the following four functions:

f .t/ D e�t ; f .t/ D ln.2C t/; f .t/ D p
1C t ; f .t/ D jt j:

Be sure you compute kenk2 as accurately as possible. For N D 10 and
for each f , print Ocn, kenk2, and kenk1 for n D 0; 1; 2; : : : ; N . Comment
on your results. In particular, from the information provided in the output,
discuss to what extent the computed coefficients Ock may be corrupted by
rounding errors.

5. (a) A Sobolev-type least squares approximation problem results if the inner
product is defined by

.u; v/ D
Z

R

u.t/v.t/d�0.t/C
Z

R

u0.t/v0.t/d�1.t/;

where d�0; d�1 are positive measures. What does this type of approxima-
tion try to accomplish?

(b) Letting d�0.t/ D dt; d�1.t/ D �dt on [0,2], where � > 0 is a parameter,
set up the normal equations for the Sobolev-type approximation in (a) of
the function f .t/ D e�t 2 on [0,2] by means of a polynomial of degree
n � 1. Use the basis �j .t/ D t j�1; j D 1; 2; : : : ; n. fHint: express the
components bi of the right-hand vector of the normal equations in terms
of the “incomplete gamma function” �.a; x/ D R x

0 t
a�1e�tdt with x D 4,

a D i=2.g
(c) Use Matlab to solve the normal equations for n D 2 W 5 and � D 0; :5; 1; 2.

Print

k O'n � f k1 and k O' 0
n � f 0k1; n D 2; 3; 4; 5

(or a suitable approximation thereof) along with the condition numbers of
the normal equations. fUse the following values for the incomplete gamma
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function: �. 1
2
; 4/D 1:764162781524843, �.1; 4/D 0:9816843611112658,

�.3
2
; 4/D 0:8454501129849537, �.2; 4/D0:9084218055563291,�.5

2
; 4/D

1:121650058367554.g Comment on the results.
6. With !n.x/ D Qn

kD0.x�k/, letMn be the largest, andmn the smallest, relative
maximum of j!n.x/j. For n D 5 W 5 W 30 calculate Mn, mn, andMn=mn, using
Newton’s method (cf. Chap 4, Sect. 4.6), and print also the respective number
of iterations.

7. (a) Write a subroutine that produces the value of the interpolation polynomial
pn.f I x0; x1; : : : ; xnI t/ at any real t , where n � 0 is a given integer,
xi are n C 1 distinct nodes, and f is any function available in the
form of a function subroutine. Use Newton’s interpolation formula and
exercise frugality in the use of memory space when generating the divided
differences. It is possible, indeed, to generate them “in place” in a single
array of dimension n C 1 that originally contains the values f .xi /; i D
0; 1; : : : ; n. fHint: generate the divided differences from the bottom up.g

(b) Run your routine on the function f .t/ D 1
1Ct 2 ; � 5 � t � 5, using

xi D �5 C 10 i
n
; i D 0; 1; : : : ; n, and n D 2 W 2 W 8 (Runge’s example).

Plot the polynomials against the exact function.
8. (a) Write a Matlab function y=tridiag(n,a,b,c,v) for solving a tridi-

agonal (nonsymmetric) system

2

6
6
6
6
6
6
6
6
6
6
4

a1 c1 0

b1 a2 c2

b2 a3 c3

: : :
: : :

: : :

cn�1
0 bn�1 an

3

7
7
7
7
7
7
7
7
7
7
5

2

6
6
6
6
6
6
6
6
6
6
4

y1

y2

y3

:::

yn�1
yn

3

7
7
7
7
7
7
7
7
7
7
5

D

2

6
6
6
6
6
6
6
6
6
6
4

v1

v2

v3
:::

vn�1
vn

3

7
7
7
7
7
7
7
7
7
7
5

by Gauss elimination without pivoting. Keep the program short.
(b) Write a program for computing the natural spline interpolant snat.f I � / on

an arbitrary partition a D x1 < x2 < x3 < � � � < xn�1 < xn D b of Œa; b�.
Print fi , errmax(i ); i D 1; 2; : : : ; n � 1g, where

errmax.i/ D max
1�j�N

ˇ
ˇsnat.f I xi;j / � f .xi;j /

ˇ
ˇ ; xi;j D xi C j � 1

N � 1
�xi :

(You will need the functiontridiag.) Test the program for cases in which
the error is zero (what are these, and why?).

(c) Write a second program for computing the complete cubic spline inter-
polant scompl.f I � / by modifying the program in (b) with a minimum of
changes. Highlight the changes in the program listing. Apply (and justify)
a test similar to that of (b).
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(d) Run the programs in (b) and (c) for Œa; b� = Œ0; 1�, n D 11, N D 51, and

(i) xi D i�1
n�1 , i D 1; 2; : : : ; n; f .x/ D e�x and f .x/ D x5=2;

(ii) xi D 	
i�1
n�1


2
, i D 1; 2; : : : ; n; f .x/ D x5=2.

Comment on the results.

Selected Solutions to Exercises

11. (a) We have

.�r ; �s/ D
Z 1

0

e�.rCs/tdt D � 1

r C s
e�.rCs/t

ˇ
ˇ
ˇ
ˇ

1

0

D 1

r C s
;

.�r ; f / D
Z 1

0

e�rtdt D �1
r

e�rt
ˇ
ˇ
ˇ
ˇ

1

0

D 1

r
.1 � e�r /:

The normal equations, therefore, are

nX

sD1

1

r C s
cs D 1

r
.1 � e�r /; r D 1; 2; : : : ; n:

The matrix is the Hilbert matrix of order n C 1 with the first column and
last row removed.

(b) PROGRAM

%EXII_11B
%
f0=’%8.0f %12.4e\n’;
f1=’%45.14e\n’;
disp(’ n cond solution’)
for n=1:8

A=hilb(n+1);
A(:,1)=[];
A(n+1,:)=[];
x=(1:n)’;
b=(1-exp(-x))./x;
c=A\b;
cd=cond(A);
fprintf(f0,n,cd)
fprintf(f1,c)
for i=1:201
t=.01*(i-1);
fa(i,n)=sum(c.*exp(-x*t));

end
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end
for i=1:11

tf(i)=.1*(i-1);
f(i)=1;

end
for i=1:201

tfa(i)=.01*(i-1);
end
plot(tf,f);
hold on
plot(ones(size(tf)),tf);
plot(tfa,fa(:,1),’:’);
plot(tfa,fa(:,2),’-.’);
plot(tfa,fa(:,3),’--’);
plot(tfa,fa(:,4),’-’);
axis([0 2 0 1.5]);
hold off

OUTPUT

>> EXII_11B
n cond solution
1 1.0000e+00

1.26424111765712e+00
2 3.8474e+01

1.00219345775339e+00
3.93071489855589e-01

3 1.3533e+03
-1.23430987802214e+00
9.33908483295774e+00
-7.45501111925180e+00

4 4.5880e+04
-2.09728726098036e+00
1.58114152051443e+01
-2.03996718636248e+01
7.55105210088422e+00

5 1.5350e+06
2.95960905289307e-01
-1.29075627900844e+01
8.01167511196597e+01
-1.26470845210147e+02
6.03098537899591e+01

6 5.1098e+07
2.68879580265092e+00
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-5.47821734938751e+01
3.03448008206274e+02
-6.28966173654415e+02
5.62805182233655e+02
-1.84248287095832e+02

7 1.6978e+09
1.19410815562677e+00
-1.89096699709436e+01
3.44042318216034e+01
2.67846414188988e+02
-9.16935587561045e+02
9.99544328640241e+02
-3.66412000082403e+02

8 5.6392e+10
-2.39677086853911e+00
9.42030165764484e+01
-1.09672261269167e+03
5.45217770865201e+03
-1.33593305457727e+04
1.71746576145770e+04
-1.11498207678274e+04
2.88841304234284e+03

>>

The condition numbers here are even a bit larger than the condition numbers
of the Hilbert matrices of the same order (cf. Chap. 1, MA 9).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

PLOTS

dotted line: n=1, dashdotted line: n D 2, dashed line: n=3,
solid line n=4
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16. (a) Let p.t/ D a0 C a1t C a2t
2. Then p satisfies the constraints if and only if

a0 D 0; a0 C a1 C a2 D 1, that is,

p.t/ D t2 C a1t.1 � t/:

Therefore, we need to minimize

Z 1

0

Œf .t/ � p.t/�2dt D
Z 1

0

Œf .t/ � t2 � a1t.1 � t/�2dt:

This is an unconstrained least squares problem for approximating the
function f .t/�t2 by a multiple of �1.t/ D t.1�t/. The normal equation is

a1

Z 1

0

Œt.1 � t/�2dt D
Z 1

0

.f .t/ � t2/t.1 � t/dt;

and yields the solution

Op.t/ D t2 C Oa1t.1 � t/;

where

Oa1 D
R 1
0
.f .t/ � t2/t.1 � t/dt
R 1
0
Œt.1 � t/�2dt

D 30

Z 1

0

f .t/t.1 � t/dt � 3

2
:

(b) If f .t/ D t r , then

Oa1 D 30

Z 1

0

t rC1.1 � t/dt � 3

2
D 30

.r C 2/.r C 3/
� 3

2

and

Op.t/ D t2 C
�

30

.r C 2/.r C 3/
� 3

2

�

t.1 � t/

D t

�
30

.r C 2/.r C 3/
� 3

2
C
�
5

2
� 30

.r C 2/.r C 3/

�

t

�

:

For r D 3, this gives Op.t/ D 1
2
t.3t � 1/.
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Plot:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.2

0

0.2

0.4

0.6

0.8

1

t

y

solid line: y D t3

dashed line: y D :5t.3t � 1/

27. PROGRAM

%EXII_27 Lebesgue functions
%
n=5;
%n=10;
%n=20;
i=1:n+1; mu=1:n+1;
% equally spaced points
x=-1+2*(i-1)/n;
%
% Chebyshev points
%x=cos((2*(i-1)+1)*pi/(2*n+2));
%
iplot=0;
for k=2:n+1
%for k=1:n+2

for j=1:21
iplot=iplot+1;
t(iplot)=x(k-1)+(j-1)*(x(k)-x(k-1))/20;

% if k==1
% t(iplot)=1+(j-1)*(x(1)-1)/20;
% elseif k<=n+1
% t(iplot)=x(k-1)+(j-1)*(x(k)-x(k-1))/20;
% else
% t(iplot)=x(n+1)+(j-1)*(-1-x(n+1))/20;
% end
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s=0;
for nu=1:n+1
mu0=find(mu-nu);
p=prod((t(iplot)-x(mu0))./(x(nu)-x(mu0)));
s=s+abs(p);

end
leb(iplot)=s;

end
end
plot(t,log10(leb))
%plot(t,leb)
axis([-1.2 1.2 -.05 .55])
%axis([-1.2 1.2 -.1 1.6])
%axis([-1.2 1.2 -.25 4.25])
%axis([-1.1 1.1 .9 2.4])
%axis([-1.1 1.1 .9 2.6])
%axis([-1.1 1.1 .9 3])
title(’equally spaced points; n=5’,

’Fontsize’,14)
%title(’equally spaced points; n=10’,

’Fontsize’,14)
%title(’equally spaced points; n=20’,

’Fontsize’,14)
%title(’Chebyshev points; n=5’,’Fontsize’,14)
%title(’Chebyshev points; n=10’,’Fontsize’,14)
ylabel(’log lambda’,’Fontsize’,14)
%ylabel(’lambda’,’Fontsize’,14)

OUTPUT
(on the next page)

At the interpolation nodes xi , one clearly has �n.xi / D 1. The local maxima
of �n between successive interpolation nodes are almost equal, and relatively
small, in case (b), but become huge near the endpoints of Œ�1; 1� in case (a). In
case (b), the global maxima occur at the endpoints ˙1.

36. We first prove the assertion of the Hint. One easily verifies that the functionˇ
ˇ
	
x � i

n


 	
x � n�i

n


ˇ
ˇ on Œ0; 1� is symmetric with respect to the midpoint 1

2
.

Being quadratic, its maximum must occur either at x D 0 or at x D 1
2
, and

hence is the larger of i.n�i /
n2

and .n�2i/2
4n2

. The former attains its maximum at
i D n

2
, the latter at i D 0 (and i D n). Either one equals 1

4
. Thus,

max
0�x�1

ˇ
ˇ
ˇ
ˇ

�

x � i

n

��

x � n � i
n

�ˇ
ˇ
ˇ
ˇ � 1

4
for i D 0; 1; : : : ; n;

as claimed.
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(a) We have

ex � pn.f I x/ D e	.x/

.nC 1/Š

nY

kD0

�

x � k

n

�

; 0 < 	.x/ < 1:

Here we use
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nY

kD0

ˇ
ˇ
ˇ
ˇx � k

n

ˇ
ˇ
ˇ
ˇ D

v
u
u
t

nY

iD0

ˇ
ˇ
ˇ
ˇx � i

n

ˇ
ˇ
ˇ
ˇ

ˇ
ˇ
ˇ
ˇx � n � i

n

ˇ
ˇ
ˇ
ˇ

along with the assertion of the Hint to obtain

max
0�x�1je

x � pn.f I x/j � e

.nC 1/Š

�
1

4

� nC1
2

D e

2nC1.nC 1/Š
:

The smallest n making the upper bound � 10�6 is n D 7.
(b) From Taylor’s formula,

ex � tn.x/ D e	.x/

.nC 1/Š
xnC1; 0 < 	.x/ < 1:

Thus,

jex � tn.x/j � e

.nC 1/Š
:

This bound is larger than the one in (a) by a factor of 2nC1. Accordingly,
for it to be � 10�6 now requires n D 9.

47. We have, for 0 � k; ` < n,

.Tk; T`/ D
nX

�D1
Tk.x�/T`.x�/ D

nX

�D1
cos

�

k
2� � 1

2n
�

�

cos

�

`
2� � 1

2n
�

�

D 1

2

nX

�D1

�

cos

�

.k C `/
2� � 1
2n

�

�

C cos

�

.k � `/2� � 1

2n
�

��

D 1

2
Re

(
nX

�D1
ei.kC`/ 2��1

2n � C
nX

�D1
ei.k�`/ 2��1

2n �

)

D 1

2
Re

(

ei.kC`/ �2n
nX

�D1
ei.kC`/ ��1

n � C ei.k�`/ �2n
nX

�D1
ei.k�`/ ��1

n �

)

:

Assume k ¤ `. Both sums in the last equation are finite geometric series and
can thus be summed explicitly. One gets

.Tk; T`/ D 1

2
Re

�

ei.kC`/ �2n 1 � ei.kC`/�

1 � ei
kC`
n �

C ei.k�`/ �2n 1 � ei.k�`/�

1� ei k�`
n �

�

D 1

2
Re

(
i Œ1 � ei.kC`/��
2 sin kC`

2n
�

C i Œ1 � ei.k�`/��
2 sin k�`

2n
�

)

;
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where the denominators are not zero by the assumption on k and `. Now if kC`
(and hence also k � `) is even, both expressions in brackets are zero. If k C `

(and hence also k � `) is odd, the numerators are both 2i , hence the real part
equals zero. In either case, .Tk; T`/ D 0, as claimed.

An easy argument also shows that the value of the inner product is n
2

if
k D ` > 0, and n if k D ` D 0.

The result follows more easily from the continuous orthogonality
(cf. Sect. 2.2.4, (2.99)) by applying the Gauss–Chebyshev quadrature formula
(cf. Chap. 3, Sect. 3.2.3 and Ex. 36).

57. (a) For n D 1, the assertion of the Hint is true for all r � 0 since

Œxr ; xrC1� D log10 xrC1 � log10 xr
xrC1 � xr D .r C 1/� r

10r.10 � 1/ D 1

9 � 10r :

Thus, assume the assertion to be true for some n and all r � 0. Then, by
the property (2.113) of divided differences,

Œxr ; xrC1; : : : ; xrCn; xrCnC1�f

D ŒxrC1; xrC2; : : : ; xrCnC1�f � Œxr ; xrC1; : : : ; xrCn�f
xrCnC1 � xr

D .�1/n�1

10rnCn.n�1/=2.10n � 1/
1 � 10n

10n.10rCnC1 � 10r/

D .�1/n
10rnCn.n�1/=2 10nCr .10nC1 � 1/

D .�1/n
10r.nC1/Cn.nC1/=2 .10nC1 � 1/

;

which is precisely the assumed assertion with n replaced by nC 1.
(b) Let ak D Œx0; x1; : : : ; xk�f . By Newton’s formula, noting that a0 D

log10 1 D 0, we have

pn.x/ D
nX

kD1
ak.x � 1/.x � 10/ � � � .x � 10k�1/

D
nX

kD1

.�1/k�1

10k.k�1/=2.10k � 1/

k�1Y

`D0
.x � 10`/

D �
nX

kD1

1

10k.k�1/=2.10k � 1/

k�1Y

`D0
.10` � x/
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D �
nX

kD1

1

10k � 1
k�1Y

`D0
.1� x=10`/

D �
nX

kD1
tk.x/;

where

tk.x/ WD 1

10k � 1
k�1Y

`D0
.1 � x=10`/:

For 1 � x < 10, we have

jtk.x/j <
ˇ
ˇ
ˇ
ˇ
.1� x/.1 � x=10k�1/

10k � 1
ˇ
ˇ
ˇ
ˇ <

9

10k � 1

�

1 � 1

10k�1

�

<
9

10k
:

Thus, the infinite series
P1

kD1 tk.x/ is majorized by the convergent geomet-
ric series 9

P1
kD1 10�k and therefore also converges. However, for x D 9,

one computes

�
1X

kD1
tk.9/ D

1X

kD1

8

10k � 1

k�1Y

`D1
.1 � 9=10k/

D 0:89777 : : : < log10.9/ D 0:95424 : : : :

(For an analysis of the discrepancy, see Gautschi [2008].)
75. Let s.x/ D Pn

jD1cjBj .x/. Then, with points 	� as defined, the first n � 1

conditions imposed on s can be written as

c1B1.	1/C c2B2.	1/ D f1;

c2B2.	2/C c3B3.	2/ D f2;

� � � � � � � � � � � � � � � � � �
cn�1Bn�1.	n�1/C cnBn.	n�1/ D fn�1:

The last condition imposed is, since B1.x1/ D Bn.xn/ D 1,

c1 � cn D 0:
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The matrix of the system has the following structure:

2

6
6
6
6
6
6
6
6
6
6
4

� �
� �

� �
: : :

: : :

� �
1 �1

3

7
7
7
7
7
7
7
7
7
7
5

Note that Bj .	j / ¤ 0 for j D 1; 2; : : : ; n � 1.

SolutionW .1/ Subtract a suitable multiple of the first equation from the last
equation to create a zero in position .n; 1/. This produces a fill-in in position
.n; 2/. (2) Subtract a suitable multiple of the second equation from the last to
create a zero in position .n; 2/. This produces a fill-in in position .n; 3/, etc.
After n�1 such operations one obtains a nonsingular upper bidiagonal system,
which is quickly solved by back substitution.

79. (a) From Sect. 2.2.4, (2.140) and (2.141), the spline on Œxi ; xiC1� is

.
/ pi .x/ D ci;0 C ci;1.x � xi /C ci;2.x � xi /
2 C ci;3.x � xi /3;

where

.�
� /

ci;0 D fi ; ci;1 D mi; ci;2 D Œxi ; xiC1�f �mi

�xi
� ci;3�xi ;

ci;3 D miC1 Cmi � 2Œxi ; xiC1�f
.�xi /2

:

The two “not-a-knot” conditions are p000
1 .x2/ D p000

2 .x2/, p
000
n�2.xn�1/ D

p000
n�1.xn�1/. By (*), this yields

c1;3 D c2;3; cn�2;3 D cn�1;3:

Substituting from ( �
� ) , the first equality becomes

m2 Cm1 � 2Œx1; x2�f
.�x1/2

D m3 Cm2 � 2Œx2; x3�f
.�x2/2

;

or, after some elementary manipulations,
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.1/

m1 C
 

1 �
�
�x1

�x2

�2
!

m2 �
�
�x1

�x2

�2

m3

D 2

 

Œx1; x2�f �
�
�x1

�x2

�2

Œx2; x3�f

!

DW b1:

Similarly, the second equality becomes

.n/

mn�2 C
 

1 �
�
�xn�2
�xn�1

�2
!

mn�1 �
�
�xn�2
�xn�1

�2

mn

D 2

 

Œxn�2; xn�1�f �
�
�xn�2
�xn�1

�2

Œxn�1; xn�f
!

DW bn:

(b) The first equation (for i D 2) from Sect. 2.2.4, (2.145), is

.2/ �x2 m1 C 2.�x1 C�x2/m2 C�x1 m3 D b2:

Multiply (2) by
�x1

.�x2/2
and add to (1) to get the new pair of equations

8

<̂

:̂

�

1C �x1

�x2

�

m1 C
�

1C �x1

�x2

�2

m2 D b1 C �x1

.�x2/2
b2;

�x2 m1 C 2.�x1 C�x2/m2 C�x1 m3 D b2:

This is the beginning of a tridiagonal system.

Similarly, the last equation (for i D n � 1) from Sect. 2.2.4, (2.145), is

.n � 1/ �xn�1 mn�2 C 2.�xn�2 C�xn�1/mn�1 C�xn�2 mn D bn�1:

Multiply Eq. .n � 1/ by 1
�xn�1

and subtract from .n/; then the last two
equations become

8
ˆ̂
<

ˆ̂
:

�xn�1 mn�2 C 2.�xn�2 C�xn�1/mn�1 C�xn�2 mn D bn�1

�
�

1C �xn�2

�xn�1

�2

mn�1 � �xn�2

�xn�1

�

1C �xn�2

�xn�1

�

mn D bn � 1

�xn�1

bn�1:

This is the end of the tridiagonal system.
(c) No: the system is not diagonally dominant, since in the first equation

the diagonal element 1 C �x1
�x2

is less than the other remaining element
�
1C �x1

�x2

�2
.
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Selected Solutions to Machine Assignments

4. (a), (b) and (c)

PROGRAMS

%MAII_4ABC
%
%(a)
%
function [beta,gamma,mu,coeff,L2err, ...

maxerr]=MAII_4ABC(N)
P=zeros(N+2,N+1); i=0:N; t=-1+2*i/N;
beta(1)=2; b=(1+1/N)ˆ2; gamma(1)=2;
for k=1:N
beta(k+1)=b*(1-(k/(N+1))ˆ2) ...

/(4-1/kˆ2);
gamma(k+1)=beta(k+1)*gamma(k);

end
%
%(b) and (c)
%
P(1,:)=1; P(2,:)=t; mu(1)=max(abs(t));
for k=2:N+1
P(k+1,:)=t.*P(k,:)-beta(k)*P(k-1,:);
mu(k)=max(abs(P(k+1,:)));

end
for n=0:N
coeff(n+1)=2*sum(P(n+1,:) ...

.*f(t))/((N+1)*gamma(n+1));
end
for n=0:N
emax=0; e2=0;
for k=1:N+1

e=abs(sum(coeff(1:n+1)’ ...
.*P(1:n+1,k))-f(t(k)));

if e>emax, emax=e; end
e2=e2+eˆ2;

end
L2err(n+1)=sqrt(2*e2/(N+1));
maxerr(n+1)=emax;

end

function y=f(x)
y=exp(-x);
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%y=log(2+x);
%y=sqrt(1+x);
%y=abs(x);

%RUNMAII_4ABC Driver program for
% MAII_4ABC
%
f0=’%4.0f %20.15f %23.15e %23.15e\n’;
f1=’%12.0f %23.15e %12.4e %12.4e\n’;
disp([’ k beta(k)’ ...
’ gamma(k)’ ...
’ mu(k+1)’])

N=10;
[beta,gamma,mu,coeff,L2err,maxerr] ...
=MAII_4ABC(N);

for k=1:N+1
fprintf(f0,k-1,beta(k),gamma(k), ...
mu(k))

end
fprintf(’\n’)
disp([’ n coefficients’ ...
’ L2 error max error’])

for k=1:N+1
fprintf(f1,k-1,coeff(k),L2err(k), ...
maxerr(k))

end

OUTPUT

>> runMAII_4ABC
k beta(k) gamma(k) mu(k+1)
0 2.000000000000000 2.000000000000000e+00 1.000000000000000e+00
1 0.400000000000000 8.000000000000002e-01 5.999999999999999e-01
2 0.312000000000000 2.496000000000001e-01 2.879999999999998e-01
3 0.288000000000000 7.188480000000004e-02 1.152000000000001e-01
4 0.266666666666667 1.916928000000001e-02 7.680000000000001e-02
5 0.242424242424242 4.647098181818186e-03 3.351272727272728e-02
6 0.213986013986014 9.944140165289268e-04 1.488738461538463e-02
7 0.180923076923077 1.799124436058489e-04 5.269231888111895e-03
8 0.143058823529412 2.573806252055439e-05 1.834253163307282e-03
9 0.100309597523220 2.581774692464279e-06 5.068331109138542e-04
10 0.052631578947368 1.358828785507516e-07 3.771414197649772e-17

n coefficients L2 error max error
0 1.212203623058161e+00 1.0422e+00 1.5061e+00 f(t)=exp(-t)
1 -1.123748299778268e+00 2.7551e-01 3.8233e-01
2 5.430255798492442e-01 4.7978e-02 5.6515e-02
3 -1.774967744700318e-01 6.0942e-03 5.7637e-03
4 4.380735440218084e-02 5.9354e-04 7.1705e-04
5 -8.681309127655327e-03 4.5392e-05 5.0328e-05
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6 1.436822757642024e-03 2.7410e-06 3.1757e-06
7 -2.041262174764023e-04 1.2894e-07 1.3676e-07
8 2.539983220653184e-05 4.5185e-09 5.2244e-09
9 -2.811356175489033e-06 1.0329e-10 1.4201e-10
10 2.800374538854939e-07 6.2576e-14 7.9492e-14

n coefficients L2 error max error
0 6.379455015198038e-01 4.8331e-01 6.3795e-01 f(t)=ln(2+t)
1 5.341350646266596e-01 7.3165e-02 1.0381e-01
2 -1.436962628313260e-01 1.4112e-02 1.7593e-02
3 5.149163971020859e-02 2.9261e-03 3.2053e-03
4 -2.066713722106771e-02 6.1199e-04 8.2444e-04
5 8.790920250468457e-03 1.2409e-04 1.4929e-04
6 -3.863610725685766e-03 2.3550e-05 3.0261e-05
7 1.730112538790927e-03 4.0112e-06 4.5316e-06
8 -7.825109066954439e-04 5.7410e-07 6.9079e-07
9 3.553730415235034e-04 5.9485e-08 8.1789e-08
10 -1.613718817644612e-04 2.1657e-14 2.7534e-14

n coefficients L2 error max error
0 9.134654065768736e-01 5.7547e-01 9.1347e-01 f(t)=sqrt(1+t)
1 6.165636213969754e-01 1.6444e-01 2.9690e-01
2 -2.799173478370132e-01 8.6512e-02 1.2895e-01
3 2.654751232178156e-01 4.9173e-02 7.8888e-02
4 -2.969055755002559e-01 2.6985e-02 4.4684e-02
5 3.416320385824934e-01 1.3632e-02 1.8447e-02
6 -3.862066935480817e-01 6.1238e-03 9.0935e-03
7 4.215059528049150e-01 2.3530e-03 3.0774e-03
8 -4.411293520434504e-01 7.2661e-04 9.1223e-04
9 4.416771232533437e-01 1.5591e-04 2.1437e-04
10 -4.229517654415031e-01 2.7984e-14 3.5305e-14

n coefficients L2 error max error
0 5.454545454545454e-01 4.5272e-01 5.4545e-01 f(t)=|t|
1 5.046468293750710e-17 4.5272e-01 5.4545e-01
2 8.741258741258736e-01 1.1933e-01 1.9580e-01
3 0.000000000000000e+00 1.1933e-01 1.9580e-01
4 -7.284382284382317e-01 6.3786e-02 1.1189e-01
5 -5.429698379835253e-16 6.3786e-02 1.1189e-01
6 1.531862745098003e+00 4.1655e-02 6.9107e-02
7 -3.506197370654419e-15 4.1655e-02 6.9107e-02
8 -6.118812656642364e+00 2.7776e-02 3.8191e-02
9 2.061545898679865e-13 2.7776e-02 3.8191e-02
10 7.535204475298005e+01 3.9494e-14 5.0709e-14

>>

Comments

• Note that the last entry in themu column vanishes, confirming that �NC1
vanishes at all the N C 1 nodes t` (cf. Ex. 22(b)).

• The calculation of Ocn is subject to severe cancellation errors as n
increases. Indeed, from the formula for the coefficient Ocn (cf. (2.24)),

Ocn D 2

NX

`D0
f .t`/�n.t`/=..N C 1/�n//;
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one expects �n � Ocn, being a “mean value” of the quantities �n.t`/, to
have the order of magnitude of these quantitites, i.e., of �n, unless there
is considerable cancellation in the summation, in which case �n � Ocn is
much smaller in absolute value than�n. That, in fact, is clearly observed
in our output when n gets large.

• The maximum error for n D N should be zero since �N interpolates.
This is confirmed reasonably well in the output.

• e�t : Note the rapid convergence. This is because the exponential
function is an entire function, hence very smooth.

• ln.2 C t/: Remarkably good convergence in spite of the logarithmic
singularity at t D �2, a distance of 1 from the left endpoint of [–1,1].

•
p
1C t : Slow convergence because of f 0.t/ ! 1 as t ! �1. There

is a branch-point singularity at t D �1.
• jt j W Extremely slow convergence since f is not differentiable at t D 0.

Since f is even, the approximation for n odd is exactly the same as the
one for the preceding even n. This is evident from theL2 and maximum
errors and from the vanishing of the odd-numbered coefficients.

7. (a) PROGRAM

%MAII_7AB
%
hold on
it=(0:100)’; t=-5+it/10;
y=1./(1+t.ˆ2);
plot(t,y,’k*’)
axis([-5.5 5.5 -1.2 1.2])
for n=2:2:8;

i=(0:n)’; it=(0:100)’;
x=-5+10*i/n; t=-5+it/10;
y=pnewt(n,x,t);
plot(t,y)

end
hold off

%PNEWT
%
function y=pnewt(n,x,t)
d=zeros(n+1,1);
d=f(x);
if n==0

y=d(1);
return

end
for j=1:n
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for i=n:-1:j
d(i+1)=(d(i+1)-d(i))/(x(i+1)-x(i+1-j));

end
end
y=d(n+1);
for i=n:-1:1

y=d(i)+(t-x(i)).*y;
end

function y=f(x)
y=1./(1+x.ˆ2);

(b)
OUTPUT

The interpolation polynomials are drawn as solid lines, the exact function
as black stars.
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The “Runge phenomenon”, i.e., the violent oscillations of the interpolants
near the end points, is clearly evident.
8. (a)

PROGRAM

%TRIDIAG

%

% Gauss elimination without pivoting for a nxn (not

% necessarily symmetric) tridiagonal system with nonzero

% diagonal elements a, subdiagonal elements b, superdiagonal

% element c, and right-hand vector v. The solution vector

% is y. The vectors a and v will undergo changes by the

% routine.

%
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function y=tridiag(n,a,b,c,v)

y=zeros(n,1);

for i=2:n

r=b(i-1)/a(i-1);

a(i)=a(i)-r*c(i-1);

v(i)=v(i)-r*v(i-1);

end

y(n)=v(n)/a(n);

for i=n-1:-1:1

y(i)=(v(i)-c(i)*y(i+1))/a(i);

end

(b) The natural spline on the interval Œxi ; xiC1� is (cf. (2.140), (2.141))

snat.x/ D ci;0Cci;1.x�xi/Cci;2.x�xi /2Cci;3.x�xi /3; xi � x � xiC1;

where

ci;0 D fi ;

ci;1 D mi ;

ci;2 D Œxi ; xiC1�f �mi

�xi
� ci;3�xi ;

ci;3 D miC1 Cmi � 2Œxi ; xiC1�f
.�xi/2

;

and the vector m D Œm1;m2; : : : ; mn�
T satisfies the tridiagonal system of

equations (cf. Sect. 2.2.4, (b.3))

2m1 Cm2 D b1

.�x2/m1 C 2.�x1 C�x2/m2 C .�x1/m3 D b2

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

.�xn�1/mn�2 C 2.�xn�2 C�xn�1/mn�1 C .�xn�2/mn D bn�1
mn�1 C 2mn D bn

where

b1 D 3Œx1; x2�f

b2 D 3fŒ.�x2/Œx1; x2�f C .�x1/Œx2; x3�f g
: : : : : : : : : : : :

bn�1 D 3f.�xn�1/Œxn�2; xn�1�f C .�xn�2/ŒxnC1; xn�f g
bn D 3Œxn�1; xn�f
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PROGRAM (for natural spline)

%MAII_8B

%

f0=’%8.0f %12.4e\n’;

n=11; N=51;

a=zeros(n,1); b=zeros(n-1,1); c=b;

i=(1:n)’; j=(1:N)’;

x=(i-1)/(n-1);

%x=((i-1)/(n-1)).ˆ2;

f=exp(-x);

%f=sqrt(x).ˆ5;

dx=x(2:n)-x(1:n-1); df=(f(2:n)-f(1:n-1))./dx;

a(1)=2; a(n)=2; b(n-1)=1; c(1)=1;

v(1)=3*df(1); v(n)=3*df(n-1);

a(2:n-1)=2*(dx(1:n-2)+dx(2:n-1));

b(1:n-2)=dx(2:n-1); c(2:n-1)=dx(1:n-2);

v(2:n-1)=3*(dx(2:n-1).*df(1:n-2)+dx(1:n-2).*df(2:n-1));

m=tridiag(n,a,b,c,v);

c0=f(1:n-1); c1=m(1:n-1);

c3=(m(2:n)+m(1:n-1)-2*df)./(dx.ˆ2);

c2=(df-m(1:n-1))./dx-c3.*dx;

emax=zeros(n-1,1);

for i=1:n-1

xx=x(i)+((j-1)/(N-1))*dx(i);

t=xx-x(i);

s=c3(i);

s=t.*s+c2(i);

s=t.*s+c1(i);

s=t.*s+c0(i);

emax(i)=max(abs(s-exp(-xx)));

% emax(i)=max(abs(s-sqrt(xx).ˆ5));

fprintf(f0,i,emax(i))

end

(c) For the complete spline, only two small changes need to be made, as
indicated by comment lines in the program below.

PROGRAM (for complete spline)

%MAII_8C

%

f0=’%8.0f %12.4e\n’;

n=11; N=51;

a=zeros(n,1); b=zeros(n-1,1); c=b;

i=(1:n)’; j=(1:N)’;

x=(i-1)/(n-1);

% x=((i-1)/(n-1)).ˆ2;

f=exp(-x);
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%f=sqrt(x).ˆ5;

%

% The next statement is new and does not occur in the

% program of (b)

%

fder_1=-1; fder_n=-exp(-1);

%fder_1=0; fder_n=5/2;

dx=x(2:n)-x(1:n-1); df=(f(2:n)-f(1:n-1))./dx;

%

% The next two lines differ from the corresponding lines

% in the program of (b)

%

a(1)=1; a(n)=1; b(n-1)=0; c(1)=0;

v(1)=fder_1; v(n)=fder_n;

a(2:n-1)=2*(dx(1:n-2)+dx(2:n-1));

b(1:n-2)=dx(2:n-1); c(2:n-1)=dx(1:n-2);

v(2:n-1)=3*(dx(2:n-1).*df(1:n-2)+dx(1:n-2).*df(2:n-1));

m=tridiag(n,a,b,c,v);

c0=f(1:n-1); c1=m(1:n-1);

c3=(m(2:n)+m(1:n-1)-2*df)./(dx.ˆ2);

c2=(df-m(1:n-1))./dx-c3.*dx;

emax=zeros(n-1,1);

for i=1:n-1

xx=x(i)+((j-1)/(N-1))*dx(i);

t=xx-x(i);

s=c3(i);

s=t.*s+c2(i);

s=t.*s+c1(i);

s=t.*s+c0(i);

emax(i)=max(abs(s-exp(-xx)));

% emax(i)=max(abs(s-sqrt(xx).ˆ5));

fprintf(f0,i,emax(i))

end

(d) OUTPUT

>> MAII_8B >> MAII_8C

1 4.9030e-04 f(x)=exp(-x) 2.5589e-07 f(x)=exp(-x)

2 1.3163e-04 natural 2.2123e-07 complete

3 3.5026e-05 spline 2.0294e-07 spline

4 9.5467e-06 uniform 1.8288e-07 uniform

5 2.2047e-06 partition 1.6568e-07 partition

6 4.2094e-07 1.4984e-07

7 3.4559e-06 1.3568e-07

8 1.2809e-05 1.2247e-07

9 4.8441e-05 1.1190e-07

10 1.8036e-04 9.7227e-08

>> >>

>> MAII_8B >> MAII_8C
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1 2.0524e-04 f(x)=xˆ(5/2) 4.4346e-05 f(x)=xˆ(5/2)

2 5.3392e-05 natural 9.9999e-06 complete

3 1.6192e-05 spline 4.7121e-06 spline

4 2.7607e-06 uniform 3.9073e-07 uniform

5 1.2880e-06 partition 9.8538e-07 partition

6 9.8059e-06 5.2629e-07

7 3.4951e-05 4.7131e-07

8 1.3252e-04 3.6500e-07

9 4.9310e-04 3.1193e-07

10 1.8416e-03 2.4850e-07

>> >>

>> MAII_8B >> MAII_8C

1 6.6901e-07 f(x)=xˆ(5/2) 1.0809e-07 f(x)=xˆ(5/2)

2 2.3550e-07 natural 6.0552e-07 complete

3 1.1749e-06 spline 9.1261e-07 spline

4 1.6950e-06 nonuniform 1.3558e-06 nonuniform

5 1.5853e-06 partition 1.7319e-06 partition

6 1.6441e-05 2.1329e-06

7 6.8027e-05 2.5242e-06

8 3.2950e-04 2.9138e-06

9 1.4755e-03 3.3225e-06

10 6.5448e-03 3.6393e-06

>> >>

Comments

• Testing: For the natural spline, the error should be exactly zero if f is
any linear function. (Not for arbitrary cubics, since f 00 does not vanish at
x D 0 and x D 1, unless f is linear.) For the complete spline, the error
is zero for any cubic, if one sets m1 D f 0.0/ and mn D f 0.1/. Example:
f .x/ D x3; m1 D 0; mn D 3.

• The natural spline for the uniform partition is relatively inaccurate near
the endpoints, as expected.

• The complete spline is uniformly accurate for f .x/ D e�x but still
relatively inaccurate near x D 0 for f .x/ D x5=2 on account of the
“square root” singularity (of f 000) at x D 0.

• Nonuniform partition (for f .x/ D x5=2): The natural spline is accurate
near x D 0 because of the nodes being more dense there, but is still
inaccurate at the other end. The complete spline is remarkably accurate at
both ends, as well as elsewhere.
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