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Nonlinear Model Equations and Variational Principles

True Laws of Nature cannot be linear.

Albert Einstein

. . . the progress of physics will to a large extent depend on the
progress of nonlinear mathematics, of methods to solve
nonlinear equations . . . and therefore we can learn by
comparing different nonlinear problems.

Werner Heisenberg

Our present analytical methods seem unsuitable for the
solution of the important problems arising in connection with
nonlinear partial differential equations and, in fact, with
virtually all types of nonlinear problems in pure mathematics.
The truth of this statement is particularly striking in the field
of fluid dynamics. . .

John Von Neumann

2.1 Introduction

This chapter deals with the basic ideas and many major nonlinear model equations
which arise in a wide variety of physical problems. Included are one-dimensional
wave, Klein–Gordon (KG), sine–Gordon (SG), Burgers, Fisher, Korteweg–de Vries
(KdV), Boussinesq, modified KdV, nonlinear Schrödinger (NLS), Benjamin–Ono
(BO), Benjamin–Bona–Mahony (BBM), Ginzburg–Landau (GL), Burgers–Huxley
(BH), KP, concentric KdV, Whitham, Davey–Stewartson, Toda lattice, Camassa–
Holm (CH), and Degasperis–Procesi (DP) equations. This is followed by variational
principles and the Euler–Lagrange equations. Also included are Plateau’s problem,
Hamilton’s principle, Lagrange’s equations, Hamilton’s equations, the variational
principle for nonlinear Klein–Gordon equations, and the variational principle for
nonlinear water waves. Special attention is given to the Euler equation of motion,
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the continuity equation, the associated energy equation and energy flux, linear wa-
ter wave problems and their solutions, nonlinear finite amplitude waves (the Stokes
waves), gravity waves, gravity-capillary waves, and linear and nonlinear dispersion
relations. Finally, the modern theory of nonlinear water waves is formulated.

2.2 Basic Concepts and Definitions

The most general first-order nonlinear partial differential equation in two indepen-
dent variables x and y has the form

F (x, y, u, ux, uy) = 0. (2.2.1)

The most general second-order nonlinear partial differential equation in two in-
dependent variables x and y has the form

F (x, y, u, ux, uy, uxx, uxy, uyy) = 0. (2.2.2)

Similarly, the most general first-order and second-order nonlinear equations in
more independent variables can be introduced.

More formally, it is possible to write these equations in the operator form

Lxu(x) = f(x), (2.2.3)

where Lx is a partial differential operator and f(x) is a given function of two or
more independent variables x = (x, y, . . .). It has already been indicated in Sec-
tion 1.2 that if Lx is not a linear operator, (2.2.3) is called a nonlinear partial differ-
ential equation. Equation (2.2.3) is called an inhomogeneous nonlinear equation if
f(x) �= 0. On the other hand, (2.2.3) is called a homogeneous nonlinear equation if
f(x) = 0.

In general, the linear superposition principle can be applied to linear partial dif-
ferential equations if certain convergence requirements are satisfied. This principle is
usually used to find a new solution as a linear combination of a given set of solutions.
For nonlinear partial differential equations, however, the linear superposition princi-
ple cannot be applied to generate a new solution. So, because most solution methods
for linear equations cannot be applied to nonlinear equations, there is no general
method of finding analytical solutions of nonlinear partial differential equations, and
numerical techniques are usually required for their solution. A transformation of
variables can sometimes be found that transforms a nonlinear equation into a linear
equation, or some other ad hoc method can be used to find a solution of a particular
nonlinear equation. In fact, new methods are usually required for finding solutions
of nonlinear equations.

Methods of solution for nonlinear equations represent only one aspect of the
theory of nonlinear partial differential equations. Like linear equations, questions of
existence, uniqueness, and stability of solutions of nonlinear partial differential equa-
tions are of fundamental importance. These and other aspects of nonlinear equations
have led the subject into one of the most diverse and active areas of modern mathe-
matics.
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2.3 Some Nonlinear Model Equations

Nonlinear partial differential equations arise frequently in formulating fundamental
laws of nature and in the mathematical analysis of a wide variety of physical prob-
lems. Listed below are some important model equations of most common interest.

Example 2.3.1. The simplest first-order nonlinear wave (or kinematic wave) equa-
tion is

ut + c(u)ux = 0, x ∈ R, t > 0, (2.3.1)

where c(u) is a given function of u. This equation describes the propagation of a
nonlinear wave (or disturbance). A large number of nonlinear problems governed by
equation (2.3.1) include waves in traffic flow on highways (Lighthill and Whitham
1955; Richards 1956), shock waves, flood waves, waves in glaciers (Nye 1960,
1963), chemical exchange processes in chromatography, sediment transport in rivers
(Kynch 1952), and waves in plasmas.

Example 2.3.2. The nonlinear Klein–Gordon equation is

utt − c2∇2u+ V ′(u) = 0, (2.3.2)

where c is a constant, and V ′(u) is a nonlinear function of u usually chosen as the
derivative of the potential energy V (u). It arises in many physical problems includ-
ing nonlinear dispersion (Scott 1969; Whitham 1974) and nonlinear meson theory
(Schiff 1951).

Example 2.3.3. The sine-Gordon equation

utt − c2uxx + κ sinu = 0, x ∈ R, t > 0, (2.3.3)

where c and κ are constants, has arisen classically in the study of differential ge-
ometry, and in the propagation of a ‘slip’ dislocation in crystals (Frenkel and Kon-
torova 1939). More recently, it arises in a wide variety of physical problems including
the propagation of magnetic flux in Josephson-type super conducting tunnel junc-
tions, the phase jump of the wave function of superconducting electrons along long
Josephson junctions (Josephson 1965; Scott 1969), a chain of rigid pendula con-
nected by springs (Scott 1969), propagation of short optical pulses in resonant laser
media (Arecchi et al. 1969; Lamb 1971), stability of fluid motions (Scott et al. 1973;
Gibbon 1985), in ferromagnetism and ferroelectric materials, in the dynamics of
certain molecular chains such as DNA (Barone et al. 1971), in elementary particle
physics (Skyrme 1958, 1961; Enz 1963), and in weakly unstable baroclinic wave
packets in a two-layer fluid (Gibbon et al. 1979).

Example 2.3.4. The Burgers equation is

ut + uux = νuxx, x ∈ R, t > 0, (2.3.4)

where ν is the kinematic viscosity. This is the simplest nonlinear model equation
for diffusive waves in fluid dynamics. It was first introduced by Burgers (1948) to
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describe one-dimensional turbulence, and it also arises in many physical problems
including sound waves in a viscous medium (Lighthill 1956), waves in fluid-filled
viscous elastic tubes, and magnetohydrodynamic waves in a medium with finite elec-
trical conductivity.

Example 2.3.5. The Fisher equation

ut − νuxx = k

(
u− u2

κ

)
, x ∈ R, t > 0, (2.3.5)

where ν, k, and κ are constants, is used as a nonlinear model equation to study wave
propagation in a large number of biological and chemical systems. Fisher (1936) first
introduced this equation to investigate wave propagation of a gene in a population.
It is also used to study logistic growth–diffusion phenomena. In recent years, the
Fisher equation has been used as a model equation for a large variety of problems
which include gene-culture waves of advance (Aoki 1987), chemical wave propa-
gation (Arnold et al. 1987), neutron population in a nuclear reactor (Canosa 1969,
1973), and spread of early farming in Europe (Ammerman and Cavalli-Sforva 1971).
It also arises in the theory of combustion, nonlinear diffusion, and chemical kinetics
(Kolmogorov et al. 1937; Aris 1975; and Fife 1979).

Example 2.3.6. The Boussinesq equation

utt − uxx +
(
3u2

)
xx

− uxxxx = 0 (2.3.6)

describes one-dimensional weakly nonlinear dispersive water waves propagating in
both positive and negative x-directions (Peregrine 1967; Toda and Wadati 1973;
Zakharov 1968a, 1968b; Ablowitz and Haberman 1975; and Prasad and Ravin-
dran 1977). It also arises in one-dimensional lattice waves (Zabusky 1967) and ion-
acoustic solitons (Kako and Yajima 1980). In recent years, considerable attention has
been given to new forms of Boussinesq equations (Madsen et al. 1991; Madsen and
Sorensen 1992, 1993) dealing with water wave propagation and to modified Boussi-
nesq equations (Nwogu 1993; Chen and Liu 1995a, 1995b) in terms of a velocity
potential on an arbitrary elevation and free surface displacement of water.

Example 2.3.7. The Korteweg–de Vries (KdV) equation

ut + αuux + βuxxx = 0, x ∈ R, t > 0, (2.3.7)

where α and β are constants, is a simple and useful model for describing the long
time evolution of dispersive wave phenomena in which the steepening effect of the
nonlinear term is counterbalanced by the dispersion. It was originally introduced by
Korteweg and de Vries (1895) to describe the propagation of unidirectional shallow
water waves.

It admits the exact solution called the soliton. This equation arises in many phys-
ical problems including water waves (Johnson 1980, 1997; Debnath 1994), internal
gravity waves in a stratified fluid (Benney 1966; Redekopp and Weidman 1968),
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ion-acoustic waves in a plasma (Washimi and Taniuti 1966), pressure waves in a
liquid-gas bubble (Van Wijngaarden 1968), and rotating flow in a tube (Leibovich
1970). There are other physical systems to which the KdV equation applies as a
long wave approximation, including acoustic-gravity waves in a compressible heavy
liquid, axisymmetric waves in a nonuniformly rotating fluid, acoustic waves in an-
harmonic crystals, nonlinear waves in cold plasmas, axisymmetric magnetohydrody-
namic waves, and longitudinal dispersive waves in elastic rods.

Example 2.3.8. The modified KdV (mKdV) equation

ut − 6u2ux + uxxx = 0, x ∈ R, t > 0, (2.3.8)

describes nonlinear acoustic waves in an anharmonic lattice (Zabusky 1967) and
Alfvén waves in a collisionless plasma (Kakutani and Ono 1969). It also arises in
many other physical situations.

Example 2.3.9. The nonlinear Schrödinger (NLS) equation

iut + uxx + γ|u|2u = 0, x ∈ R, t > 0, (2.3.9)

where γ is a constant, describes the evolution of water waves ((Benney and
Roskes 1969; Hasimoto and Ono 1972; Davey 1972; Davey and Stewartson 1974;
Peregrine 1983); Zakharov 1968a, 1968b; Chu and Mei 1970; Yuen and Lake 1975;
Infeld et al. 1987; Johnson 1997). It also arises in some other physical systems which
include nonlinear optics (Kelley 1965; Talanov 1965; Bespalov and Talanov 1966;
Karpman and Krushkal 1969; Asano et al. 1969; Hasegawa and Tappert 1973), hy-
dromagnetic and plasma waves (Ichikawa et al. 1972; Schimizu and Ichikawa 1972;
Taniuti and Washimi 1968; Fulton 1972; Hasegawa 1990; Ichikawa 1979; Weiland
and Wiljelmsson 1977; Weiland et al. 1978), the propagation of a heat pulse in a solid
(Tappert and Varma 1970), nonlinear waves in a fluid-filled viscoelastic tube (Ravin-
dran and Prasad 1979), nonlinear instability problems (Stewartson and Stuart 1971;
Nayfeh and Saric 1971), and the propagation of solitary waves in piezoelectric semi-
conductors (Pawlik and Rowlands 1975).

Example 2.3.10. The Benjamin–Ono (BO) equation is

ut + uux +H{uxx} = 0, (2.3.10)

where H{f(ξ, t)} = f̃(x, t) is the Hilbert transform of f(ξ, t) defined by

H
{
f(ξ, t)

}
=

1

π
P

∫ ∞

−∞

f(ξ, t) dξ

ξ − x
, (2.3.11)

where P stands for the Cauchy principal value. This equation arises in the study of
weakly nonlinear long internal gravity waves (Benjamin 1967; Davis and Acrivos
1967; and Ono 1975) and belongs to the class of weakly nonlinear models.
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Example 2.3.11. The Benjamin–Bona–Mahony (BBM) equation

ut + ux + uux − uxxt = 0, x ∈ R, t > 0, (2.3.12)

represents another nonlinear model for long water waves. The KdV equation can be
written as

ut + ux + uux + uxxx = 0, x ∈ R, t > 0. (2.3.13)

The basic mathematical difference between the BBM and KdV equations can
readily be determined by comparing the approximate dispersion relations for the
respective linearized equations. We seek a plane wave solution of both linearized
equations of the form

u(x, t) ∼ exp
[
i(ωt− kx)

]
. (2.3.14)

The dispersion relation of the linearized KdV equation is then given by

ω = k − k3. (2.3.15)

The phase and group velocities are given by

Cp =
ω

k
= 1− k2 and Cg =

dω

dk
= 1− 3k2, (2.3.16ab)

which become negative for k2 > 1. This means that all waves of large wavenum-
bers (small wavelengths) propagate in the negative x-direction in contradiction to
the original assumption that waves travel only in the positive x-direction. This is an
undesirable physical feature of the KdV equation. To eliminate this unrealistic fea-
ture of the KdV equation, Benjamin et al. (1972) proposed equation (2.3.12). The
dispersion relation of the linearized version of (2.3.12) is

ω =
k

(1 + k2)
. (2.3.17)

Thus the phase and group velocities of waves associated with this model are given
by

Cp =
ω

k
=

(
1 + k2

)−1
, Cg =

(
1− k2

)(
1 + k2

)−2
. (2.3.18ab)

Both Cp and Cg tend to zero, as k → ∞, showing that short waves do not propagate.
In other words, the BBM model has the approximate features of responding only
significantly to short wave components introduced in the initial wave form. Thus,
the BBM equation seems to be a preferable model. However, the fact that the BBM
model is a better model than the KdV model has not been fully confirmed, yet.

Example 2.3.12. The Ginzburg–Landau (GL) equation is

At + aAxx = bA+ cA|A|2, (2.3.19)

where a and b are complex constants determined by the dispersion relation of linear
waves, and c is determined by the weakly nonlinear interaction (Stewartson and Stu-
art 1971). This equation describes slightly unstable nonlinear waves and has arisen
originally in the theories of superconductivity and phase transitions.
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The complex Ginzburg–Landau equation simplifies significantly if all of the co-
efficients are real. The real Ginzburg–Landau equation has been extensively investi-
gated in problems dealing with phase separation in condensed matter physics (Ben-
Jacob et al. 1985; Van Saarloos 1989; Balmforth 1995).

Example 2.3.13. The Burgers–Huxley (BH) equation

ut + αuux − νuxx = β(1− u)(u− γ)u, x ∈ R, t > 0, (2.3.20)

where α, β ≥ 0, γ (0 < γ < 1), and ν are parameters, describes the interac-
tion between convection, diffusion, and reaction. When α = 0, equation (2.3.20)
reduces to the Hodgkin and Huxley (1952) equation which describes nerve pulse
propagation in nerve fibers and wall motion in liquid crystals (Scott 1977; Satsuma
1987a, 1987b; Wang 1985, 1986; Wang et al. 1990). Because of the complexity of the
Huxley equation, the FitzHugh–Nagumo equations (FitzHugh 1961; Sleeman 1982;
Nagumo et al. 1962) proposed simple, analytically tractable, and particularly useful
model equations which contain the key features of the Huxley model. On the other
hand, when β = 0, equation (2.3.20) reduces to the Burgers equation (2.3.4) de-
scribing diffusive waves in nonlinear dissipating systems. Satsuma (1987a, 1987b)
obtained solitary wave solutions of (2.3.20) by using Hirota’s method in soliton the-
ory.

Example 2.3.14. The Kadomtsev–Petviashvili (KP) equation

(ut − 6uux + uxxx)x + 3σ2uyy = 0, (2.3.21)

is a two-dimensional generalization of the KdV equation. Kadomtsev and Petviashiv-
ili (1970) first introduced this equation to describe slowly varying nonlinear waves in
a dispersive medium (Johnson 1980, 1997). Equation (2.3.21) with σ2 = +1 arises
in the study of weakly nonlinear dispersive waves in plasmas and also in the modula-
tion of weakly nonlinear long water waves (Ablowitz and Segur 1979) which travel
nearly in one dimension (that is, nearly in a vertical plane). Satsuma (1987a, 1987b)
showed that the KP equation has N line-soliton solutions which describe the oblique
interaction of solitons. The equation with σ2 = −1 arises in acoustics and admits un-
stable soliton solutions, whereas for σ2 = +1 the solitons are stable. Freeman (1980)
presented an interesting review of soliton interactions in two dimensions. Recently,
Chen and Liu (1995a, 1995b) have derived the unified KP (uKP) equation for surface
and interfacial waves propagating in a rotating channel with varying topography and
sidewalls. This new equation includes most of the existing KP-type equations in the
literature as special cases.

Example 2.3.15. The concentric KdV equation

2uR +
1

R
u+ 3uuξ +

1

3
uξξξ = 0 (2.3.22)

describes concentric waves on the free surface of water that have decreasing ampli-
tude with increasing radius. This is also called the cylindrical KdV equation which
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was first derived in another context by Maxon and Viecelli (1974). The inverse scat-
tering transform for equation (2.3.22) involves a linearly increasing potential which
yields eigenfunctions based on the Airy function (see Calogero and Degasperis
1978). A discussion of this equation and its solution can also be found in Johnson
(1997) and Freeman (1980).

Example 2.3.16. The nearly concentric KdV equation (or the Johnson equation)(
2uR +

1

R
u+ 3uuξ +

1

3
uξξξ

)
ξ

+
1

R2
uθθ = 0 (2.3.23)

describes the nearly concentric surface waves incorporating weak dependence on the
angular coordinate θ. In the absence of θ-dependence, equation (2.3.23) reduces to
(2.3.22). This equation was first derived by Johnson (1980) in his study of problems
of nonlinear water waves.

Example 2.3.17. The Davey–Stewartson (DS) equations

−2ikcpAτ + aAζζ − cpcgAyy + bA|A|2 + ck2Afζ = 0, (2.3.24)(
1− c2g

)
fζζ + fyy = d

(
|A|2

)
ζ
, (2.3.25)

where a, b, c, d are functions of δk (see Davey and Stewartson 1974; Johnson
1997), describe weakly nonlinear dispersive waves propagating in the x-direction
with a slowly varying structure in both the x- and y-directions. In the absence of
y-dependence with fζ ≡ 0, the DS equations recover the NLS equation for water
waves (see Hasimoto and Ono 1972) in the form

−2ikcpAτ + aAζζ + bA|A|2 = 0. (2.3.26)

This is similar to (2.3.9).

Example 2.3.18. The Whitham (1974) nonlinear nonlocal integrodifferential equa-
tion

ηt + dηηx +

∫ ∞

−∞
K(x− ξ)ηξ(ξ, t) dξ = 0 (2.3.27)

can describe symmetric waves that propagate without change of shape and peak at a
critical height, as well as asymmetric waves that invariably break. The kernel K(x)
is given by the inverse Fourier transform of the phase velocity c(k) = ω

k in the form

K(x) = F−1
{
c(k)

}
=

1

2π

∫ ∞

−∞
eikxc(k) dk. (2.3.28)

It is a well known fact that the nonlinear shallow water equations which neglect dis-
persion altogether lead to breaking of the typical hyperbolic kind, with development
of a vertical slope and a multivalued wave profile. It is clear that the third derivative
dispersion term in the KdV equation (2.3.7) prevents wave breaking. Whitham for-
mulated his equation (2.3.27) to describe the observed phenomena of solitary and pe-
riodic cnoidal waves as well as peaking and breaking of water waves. The Whitham
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equation is a kind of generalization of the KdV equation that takes c(k) = c0 − γk2

and K(x) = c0δ(x)+ δ′′(x), c20 = gh0. The detailed analysis of Whitham’s analysis
is given in Section 7.8 in Chapter 7.

Example 2.3.19. The Camassa and Holm (CH) Equation for the free surface eleva-
tion u(x, t) over a flat rigid bottom is

ut − uxxt + 3uux = 2uxuxx + uuxx, x ∈ R, t > 0. (2.3.29)

It describes the propagation of nonlinear dispersive shallow water equation to cap-
ture the essential features of wave breaking. It is integrable in the sense that there
exists a Lax pair, and has infinitely many conservation laws. The CH equation ad-
mits stable solitary wave solutions with a peak at their crests; these waves are called
peakons. A more elaborate discussion of this equation (Camassa and Holm 1993)
and its various extensions are presented in Section 9.13.

Example 2.3.20. The Degasperis and Procesi (DP) equation is

ut − uxxt + 4uux = 3uxuxx + uuxxx, x ∈ R, t > 0. (2.3.30)

It also describes the propagation of nonlinear dispersive shallow water waves. Its
solutions are singular, leading to wave breaking. The DP equation admits a shock-
peakon solution which is significantly different from the peakon solutions of the
CH equation. Both the CH and DP equations have soliton solutions which develop
singularities in finite time (or solutions blow-up in finite time). Both the CH and DP
equations can be combined into a (1 + 1)-dimensional b-family equation for fluid
velocity u(x, t) in the form

mt + umx + bmux = 0, x ∈ R, t > 0, (2.3.31)

where m = (u− uxx) and u = g ∗m is the convolution product given by

u(x) =

∫
R

g(x− ξ)m(ξ) dξ, g(x) =
1

2
exp

(
−|x|

)
, (2.3.32)

which determines the traveling wave shape and length scale for equation (2.3.31)
and the constant b is a balance (or bifurcation) parameter. Degasperis and Procesi
(1999) showed that (2.3.31) cannot be completely integrable unless b = 2 or b = 3.
When b = 2, equation (2.3.31) reduces to the CH equation (2.3.29) and when b = 3,
(2.3.31) becomes the DP equation (2.3.30). A more detailed discussion on these
equations can be found in Section 9.13.

Example 2.3.21 (The Toda Lattice Equation in a mass–spring system). A mass–
spring lattice is an infinite chain of identical masses m interconnected by nonlinear
springs. We assume that the springs have potential V (r), where r is the increase in
distance between adjacent masses from the rest value at which the spring energy is
minimum and its force (F = −dV

dr ) is zero. If yn is the longitudinal displacement of
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the nth mass from its equilibrium position, it follows from the Newton second law
of motion that

m
d2yn
dt2

= V ′(yn+1 − yn)− V ′(yn − yn−1). (2.3.33)

With rn = (yn+1 − yn), this gives an infinite set of differential equations

mr̈n =

[
dV (rn+1)

drn+1
− dV (rn)

drn

]
−

[
dV (rn)

drn
− dV (rn−1)

drn−1

]
, (2.3.34)

where n ∈ N.
In his celebrated paper, Toda (1967a, 1967b) investigated a mass–spring lattice

system with an anharmonic potential in the form

V (r) =
a

b

(
e−br + br − 1

)
, a, b > 0. (2.3.35)

With unit masses (m = 1), equation (2.3.34) reduces to the form

r̈n = a
(
2e−brn − e−brn+1 − e−brn−1

)
. (2.3.36)

This is known as the Toda lattice equation.
In the limit as b → 0 with finite ab, equation (2.3.36) reduces to the linear

differential-difference equation

r̈n = ab(rn+1 − 2rn + rn−1). (2.3.37)

This has solutions with a long wavelength velocity of
√
ab lattice points per unit

time.
When b is not small, the Toda lattice equation (2.3.36) admits exact solitary wave

solutions of the form (see Section 11.13)

rn = −1

b
log

[
1 + sinh2 κ sech2

{
κ

(
n± t

√
ab

κ
sinhκ

)}]
, (2.3.38)

where the velocity of the lattice wave is expressed in terms of the amplitude param-
eter κ in the form

v =
sinhκ

κ

√
ab, (2.3.39)

and the minus sign in (2.3.38) implies that the Toda lattice soliton (TLS) is a com-
pression wave.

As the amplitude of the TLS is reduced to zero (by letting sinhκ approach
zero), it reduces to a solution of the linear equation (2.3.37) traveling with veloc-
ity v =

√
ab.

We close this section by mentioning the Yang–Mills field equations which seem
to be a useful model unifying electromagnetic and weak forces. They have solutions,
called instantons, localized in space and time, which are interpreted as quantum-
mechanical transitions between different states of a particle. Recently, it has been
shown that the self-dual Yang–Mills equations are multidimensional integrable sys-
tems, and these equations admit reductions to well-known soliton equations in (1+1)
dimensions, that is, the sine-Gordon, NLS, KdV, and Toda lattice equations (Ward
1984, 1985, 1986).
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2.4 Variational Principles and the Euler–Lagrange Equations

Many physical systems are often characterized by their extremum (minimum, max-
imum, or saddle point) property of some associated physical quantity that appears
as an integral in a given domain, known as a functional. Such a characterization is a
variational principle leading to the Euler–Lagrange equation which optimizes the re-
lated functional. For example, light rays travel along a path from one point to another
in a minimum time. The shortest distance between two points on a plane curve is a
straight line. A physical system is in equilibrium if its potential energy is minimum.
So the main problem is to optimize a physical quantity (time, distance, or energy) in
most real-world problems. These problems belong to the subject of the calculus of
variations.

The classical Euler–Lagrange variational problem is to determine the extremum
value of the functional

I(u) =

∫ b

a

F (x, u, u′) dx, u′ =
du

dx
, (2.4.1)

with the boundary conditions

u(a) = α and u(b) = β, (2.4.2ab)

where α and β are given numbers and u(x) belongs to the class C2([a, b]) of func-
tions which have continuous derivatives up to the second order in a ≤ x ≤ b and the
integrand F has continuous second derivatives with respect to all of its arguments.

We assume that I(u) has an extremum at some u ∈ C2([a, b]). Then we consider
the set of all variations u + εv for finite u, and arbitrary v belonging to C2([a, b])
such that v(a) = 0 = v(b). We next consider the variation δI of the functional I(u)

δI = I(u+ εv)− I(u)

=

∫ b

a

[
F (x, u+ εv, u′ + εv′)− F (x, u, u′)

]
dx

which, by the Taylor series expansion,

=

∫ b

a

[
F (x, u, u′) + ε

(
v
∂F

∂u
+ v′

∂F

∂u′

)

+
ε2

2!

(
v
∂F

∂u
+ v′

∂F

∂u′

)2

+ · · · − F (x, u, u′)

]
dx

=

∫ b

a

ε

(
v
∂F

∂u
+ v′

∂F

∂u′

)
dx+O

(
ε2

)
. (2.4.3)

Thus, a necessary condition for the functional I(u) to have an extremum (or for I(u)
to be stationary) for an arbitrary ε is

0 = δI =

∫ b

a

(
v
∂F

∂u
+ v′

∂F

∂u′

)
dx, (2.4.4)
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which, integrating the second term by parts, is

=

∫ b

a

v

[
∂F

∂u
− d

dx

(
∂F

∂u′

)]
dx+

[
v
∂F

∂u′

]b

a

. (2.4.5)

Since v is arbitrary with v(a) = 0 = v(b), the last term of (2.4.5) vanishes and
consequently, the integrand of the integral in (2.4.5) must vanish, that is,

∂F

∂u
− d

dx

(
∂F

∂u′

)
= 0. (2.4.6)

This is called the Euler–Lagrange equation of the variational problem involving one
independent variable. Using the result

d

(
∂F

∂u′

)
=

∂

∂x

(
∂F

∂u′

)
dx+

∂

∂u

(
∂F

∂u′

)
du+

∂

∂u′

(
∂F

∂u′

)
du′, (2.4.7)

the Euler–Lagrange equations (2.4.6) can be written in the form

Fu − Fxu′ − u′Fuu′ − u′′Fu′u′ = 0. (2.4.8)

This is a second-order nonlinear ordinary differential equation for u provided
Fu′u′ �= 0 and, hence, there are two arbitrary constants involved in the solution.
However, when F does not depend explicitly on one of its variables x, u, or u′,
the Euler–Lagrange equation assumes a simplified form. Evidently, there are three
possible cases:

1. If F = F (x, u), then (2.4.6) reduces to Fu(x, u) = 0, which is an algebraic
equation.

2. If F = F (x, u′), then (2.4.6) becomes

∂F

∂u′ = const. (2.4.9)

3. If F = F (u, u′), then (2.4.6) takes the form

F − u′Fu′ = const. (2.4.10)

This follows from the fact that

d

dx
(F − u′Fu′) =

dF

dx
− u′ d

dx
Fu′ − u′′Fu′

= Fx + u′Fu + u′′Fu′ − u′ d

dx
Fu′ − u′′Fu′

= u′
(
Fu − d

dx
Fu′

)
= 0 by (2.4.6).

The Euler–Lagrange variational problem involving two independent variables
is to determine a function u(x, y) in a domain D ⊂ R

2 satisfying the boundary
conditions prescribed on the boundary ∂D of D and extremizing the functional
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I
[
u(x, y)

]
=

∫∫
D

F (x, y, u, ux, uy) dx dy, (2.4.11)

where the function F is defined over the domain D and assumed to have continuous
second-order partial derivatives.

Similarly, for functionals depending on a function of two independent variables,
the first variation δI of I is defined by

δI = I(u+ εv)− I(u). (2.4.12)

In view of Taylor’s expansion theorem, this reduces to

δI =

∫∫
D

[
ε(vFu + vxFp + vyFq) +O

(
ε2

)]
dx dy, (2.4.13)

where v = v(x, y) is assumed to vanish on ∂D and p = ux and q = uy .
A necessary condition for the functional I to have an extremum is that the first

variation of I vanishes, that is,

0 = δI =

∫∫
D

(vFu + vxFp + vyFq) dx dy

=

∫∫
D

v

(
Fu − ∂

∂x
Fp −

∂

∂y
Fq

)
dx dy

+

∫∫
D

[
v

(
∂

∂x
Fp +

∂

∂y
Fq

)
+ (vxFp + vyFq)

]
dx dy

=

∫∫
D

v

(
Fu − ∂

∂x
Fp −

∂

∂y
Fq

)
dx dy

+

∫∫
D

[
∂

∂x
(vFp) +

∂

∂y
(vFq)

]
dx dy. (2.4.14)

We assume that the boundary curve ∂D has a piecewise, continuously moving tan-
gent so that Green’s theorem can be applied to the second double integral in (2.4.14).
Consequently, (2.4.14) reduces to

0 = δI =

∫∫
D

v

(
Fu − ∂

∂x
Fp −

∂

∂y
Fq

)
dx dy

+

∫
∂D

v(Fp dy − Fq dx). (2.4.15)

Since v = 0 on ∂D, the second integral in (2.4.15) vanishes. Moreover, since v is an
arbitrary function, it follows that the integrand of the first integral in (2.4.15) must
vanish. Thus, the function u(x, y) extremizing the functional defined by (2.4.11)
satisfies the partial differential equation

∂F

∂u
− ∂

∂x
Fp −

∂

∂y
Fq = 0. (2.4.16)
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This is called the Euler–Lagrange equation for the variational problem involving two
independent variables.

The above variational formulation can readily be generalized for functionals de-
pending on functions of three or more independent variables. Many physical prob-
lems require determining a function of several independent variables which will lead
to an extremum of such functionals.

Example 2.4.1. Find u(x, y) which extremizes the functional

I
[
u(x, y)

]
=

∫∫
D

(
u2
x + u2

y

)
dx dy, D ⊂ R

2. (2.4.17)

The Euler–Lagrange equation with F = u2
x + u2

y = p2 + q2 is

∂

∂x

(
∂F

∂p

)
+

∂

∂y

(
∂F

∂q

)
= 0,

or
uxx + uyy = 0. (2.4.18)

This is a two-dimensional Laplace equation. Similarly, the functional

I
[
u(x, y, z)

]
=

∫∫∫
D

(
u2
x + u2

y + u2
z

)
dx dy dz, D ⊂ R

3, (2.4.19)

will lead to the three-dimensional Laplace equation

uxx + uyy + uzz = 0. (2.4.20)

In this way, we can derive the n-dimensional Laplace equation

∇2u = ux1x1 + ux2x2 + · · ·+ uxnxn = 0. (2.4.21)

Example 2.4.2 (Plateau’s Problem). Find the surface S in the (x, y, z)-space of min-
imum area passing through a given plane curve C.

The direction cosine of the angle between the z-axis and the normal to the surface
z = u(x, y) is (1 + u2

x + u2
y)

− 1
2 . The projection of the element dS of the area of the

surface onto the (x, y)-plane is given by (1 + u2
x + u2

y)
− 1

2 dS = dx dy. The area A
of the surface S is given by

A =

∫∫
D

(
1 + u2

x + u2
y

) 1
2 dx dy, (2.4.22)

where D is the area of the (x, y)-plane bounded by the curve C.
The Euler–Lagrange equation with F = (1 + p2 + q2)

1
2 is given by

∂

∂x

(
ux√

1 + p2 + q2

)
+

∂

∂y

(
uy√

1 + p2 + q2

)
= 0. (2.4.23)
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This is the equation of minimal surface, which reduces to the nonlinear elliptic partial
differential equation

(
1 + u2

y

)
uxx − 2uxuyuxy +

(
1 + u2

x

)
uyy = 0. (2.4.24)

Therefore, the desired function u(x, y) should be determined as the solution of the
nonlinear Dirichlet problem for (2.4.24). This is difficult to solve. However, if the
equation (2.4.23) is linearized around the zero solution, the square root term is re-
placed by one, and then the Laplace equation is obtained.

Example 2.4.3 (Lagrange’s Equation in Mechanics). According to the Hamilton
principle in mechanics, the first variation of the time integral of the Lagrangian
L = L(qi, q̇i, t) of any dynamical system must be stationary, that is,

0 = δI = δ

∫ t2

t1

L(qi, q̇i, t) dt, (2.4.25)

where L = T − V is the difference between the kinetic energy, T , and the potential
energy, V . In coordinate space, there are infinitely many possible paths joining any
two positions. From all these paths, which start at a point A at time t1 and end at
another point B at time t2, nature selects the path qi = qi(t) for which δI = 0.
Consequently, in this case, the Euler–Lagrange equation (2.4.6) reduces to

∂L

∂qi
− d

dt

(
∂L

∂q̇i

)
= 0, i = 1, 2, . . . , n. (2.4.26)

In classical mechanics, these equations are universally known as the Lagrange equa-
tions of motion.

The Hamilton function (or simply Hamiltonian) H is defined in terms of the
generalized coordinates qi, generalized momentum pi =

∂L
∂q̇i

, and L by

H =
n∑

i=1

(piq̇i − L) =
n∑

i=1

(
q̇i
∂L

∂q̇i
− L(qi, q̇i)

)
. (2.4.27)

It readily follows that

dH

dt
=

d

dt

[
n∑

i=1

(piq̇i − L)

]
=

n∑
i=1

q̇i

(
d

dt

∂L

∂q̇i
− ∂L

∂qi

)
= 0. (2.4.28)

Thus, H is a constant, and hence, the Hamiltonian is the constant of motion.

Example 2.4.4 (Hamilton’s Equations in Mechanics). To derive Hamilton equations
of motion, we use the concepts of generalized momentum pi and generalized force
Fi defined by

pi =
∂L

∂q̇i
and (2.4.29a)
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Fi =
∂L

∂qi
. (2.4.29b)

Consequently, the Lagrange equations of motion (2.4.26) reduce to

∂L

∂qi
=

dpi
dt

= ṗi. (2.4.30)

In general, the Lagrangian L = L(qi, q̇i, t) is a function of qi, q̇i, and t where q̇i
enters through the kinetic energy as a quadratic term. It then follows from the defi-
nition (2.4.27) of the Hamiltonian that H = H(pi, qi, t), and hence, its differential
is

dH =
∑ ∂H

∂pi
dpi +

∑ ∂H

∂qi
dqi +

∂H

∂t
dt. (2.4.31)

Differentiating (2.4.27) with respect to t gives

dH

dt
=

∑
pi

d

dt
q̇i +

∑
q̇i

d

dt
pi −

∑ ∂L

∂qi

d

dt
qi −

∑ ∂L

∂q̇i

d

dt
q̇i −

∂L

∂t
,

or equivalently,

dH =
∑

pi dq̇i +
∑

q̇i dpi −
∑ ∂L

∂qi
dqi −

∑ ∂L

∂q̇i
dq̇i −

∂L

∂t
dt,

which, due to equation (2.4.29a), is

=
∑

q̇i dpi −
∑ ∂L

∂qi
dqi −

∂L

∂t
dt. (2.4.32)

We next equate the coefficients of the two identical expressions (2.4.31) and
(2.4.32) to obtain

q̇i =
∂H

∂pi
, − ∂L

∂qi
=

∂H

∂qi
, −∂L

∂t
=

∂H

∂t
. (2.4.33)

Using the Lagrange equations (2.4.30), the first two equations in (2.4.33) give

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
. (2.4.34ab)

These are universally known as the Hamilton canonical equations of motion.

Example 2.4.5 (Law of Conservation of Energy). The kinetic energy of a mechanical
system described by a set of generalized coordinates qi is defined by

T =

n∑
i=1

n∑
j=1

1

2
aij q̇i ˙qj , (2.4.35)

where aij are known functions of qi, and q̇i is the generalized velocity.
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In general, the potential energy V = V (qi, q̇i, t) is a function of qi, q̇i, and t.
We assume here that V is independent of q̇i. For such a mechanical system, the
Lagrangian is defined by L = T − V .

Using the above definitions, the Hamilton principle states that, between any two
points t1 and t2, the actual motion takes place along the path qi = qi(t) such that the
functional

I
(
qi(t)

)
=

∫ t2

t1

Ldt =

∫ t2

t1

(T − V ) dt, (2.4.36)

is stationary (that is, the functional is an extremum). Or equivalently, the Hamilton
principle can be stated as

δI = δ

∫ t2

t1

(T − V ) dt = 0. (2.4.37)

The integral I defined by (2.4.36) is often called the action integral of the system.
Since the potential energy V does not depend on q̇i, it follows that

pi =
∂L

∂q̇i
=

∂T

∂q̇i
=

n∑
j=1

aij q̇j ,

and the Hamiltonian H defined by (2.4.27) becomes

H =

n∑
i=1

piq̇i − L =

n∑
i=1

q̇i

(
n∑

j=1

aij q̇j

)
− L = 2T − L = T + V. (2.4.38)

This proves that the Hamiltonian H is equal to the total energy. By (2.4.28), H is a
constant, thus, the total energy of the system is constant. This is the celebrated law
of conservation of energy.

Example 2.4.6 (Motion of a Particle Under the Action of a Central Force). Consider
the motion of a particle of mass m under the action of a central force −mF (r) where
r is the distance of the particle from the center of force. The kinetic energy T is

T =
1

2
mv2 =

1

2
m

(
ẋ2 + ẏ2

)
,

which, in terms of polar coordinates,

=
1

2
m

[{
d

dt
(r cos θ)

}2

+

{
d

dt
(r sin θ)

}2]
=

1

2
m

(
ṙ2 + r2θ̇2

)
. (2.4.39)

Since F = ∇V , the potential is given by

V (r) =

∫ r

F (r) dr. (2.4.40)

Then the Lagrangian L is given by
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L = T − V =
1

2
m

[(
ṙ2 + r2θ̇2

)
− 2

∫ r

F (r) dr

]
. (2.4.41)

Thus the Hamilton principle requires that the functional

I(r, θ) =

∫ t2

t1

Ldr =

∫ t2

t1

(T − V ) dt (2.4.42)

be stationary, that is, δI = 0. Consequently, the Euler–Lagrange equations are given
by

Lr −
d

dt
Lṙ = 0 and Lθ −

d

dt
Lθ̇ = 0, (2.4.43)

or equivalently,

r̈ − rθ̇2 = −F (r) and
d

dt

(
r2θ̇

)
= 0. (2.4.44)

These equations describe the planar motion of the particle.
It follows immediately from the second equation of (2.4.44) that

r2θ̇ = const. = h. (2.4.45)

In this case, rθ̇ represents the transverse velocity of the particle and mr2θ̇ = mh is
the constant angular momentum of the particle about the center of force.

Introducing r = 1
u , we find

ṙ =
dr

dt
= − 1

u2

du

dt
= − 1

u2

du

dθ
· dθ
dt

= −h
du

dθ
,

r̈ =
d2r

dt2
= −h

d

dt

(
du

dθ

)
= −h

d2u

dθ2
dθ

dt
= −h2u2 d

2u

dθ2
.

Substituting these into the first equation of (2.4.44) gives

d2u

dθ2
+ u =

1

h2u2
F

(
1

u

)
. (2.4.46)

This is the differential equation of the central orbit, and it can be solved by standard
methods.

In particular, if the law of force is the attractive inverse square F (r) = μ/r2 so
that the potential V (r) = −μ/r, the differential equation (2.4.46) becomes

d2u

dθ2
+ u =

μ

h2
. (2.4.47)

If the particle is projected initially from the distance a with velocity v at an angle
α that the direction of motion makes with the outward radius vector, then the constant
h in (2.4.45) is h = av sinα.

The angle φ between the tangent and radius vector of the orbit at any point is
given by
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cotφ =
1

r

dr

dθ
= u

d

dθ

(
1

u

)
= − 1

u

du

dθ
.

The initial conditions at t = 0 are

u =
1

a
,

du

dθ
= −1

a
cotα, when θ = 0. (2.4.48)

The general solution of (2.4.47) is

u =
μ

h2

[
1 + e cos(θ + ε)

]
, (2.4.49)

where e and ε are constants to be determined by the initial data.
Finally, the solution can be written as

�

r
= 1 + e cos(θ + ε), (2.4.50)

where

� =
h2

μ
=

1

μ
(av sinα)2. (2.4.51)

This represents a conic section of semilatus rectum � and eccentricity e with its axis
inclined at the point of projection.

The initial conditions (2.4.48) give

�

a
= 1 + e cos ε, − �

a
cotα = −e sin ε,

so that

tan ε =

(
�

�− a

)
cotα,

e2 =

(
�

a
− 1

)2

+
�2

a2
cot2 α = 1− 2�

a
+

�2

a2
cosec2α

= 1− 1

μ

(
2av2 sin2 α

)
+

1

μ2

(
a2v4 sin2 α

)

= 1 +

(
av sinα

μ

)2(
v2 − 2μ

a

)
. (2.4.52)

Thus, the central orbit is an ellipse, parabola, or hyperbola accordingly as e < 1,
= 1, or > 1, that is, v2 < (2μ/a), = (2μ/a), or > (2μ/a).

Example 2.4.7 (The Wave Equation of a Vibrating String). We assume that, initially,
the string of length � and line density ρ is stretched along the x-axis from x = 0 to
x = �. The string will be given a small lateral displacement, which is denoted by
u(x, t) at each point along the x-axis at time t. The kinetic energy T of the string is
given by
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T =
1

2

∫ �

0

ρu2
t dx, (2.4.53)

and the potential energy is given by

T =
T ∗

2

∫ �

0

u2
x dx, (2.4.54)

where T ∗ is the constant tension of the string.
According to the Hamilton principle

0 = δ

∫ t2

t1

Ldt = δ

∫ t2

t1

(T − V ) dt

= δ

∫ t2

t1

1

2

∫ �

0

(
ρu2

t − T ∗u2
x

)
dx dt. (2.4.55)

In this case, L = 1
2 (ρu

2
t −T ∗u2

x) which does not depend explicitly on x, t, or u, and
hence, the Euler–Lagrange equation is given by

∂

∂t
(ρut)−

∂

∂x
(T ∗ux) = 0,

or
utt − c2uxx = 0, (2.4.56)

where c2 = (T ∗/ρ). This is the wave equation of the vibrating string.

Example 2.4.8 (Two-Dimensional Wave Equation of Motion for Vibrating Mem-
brane). We consider the motion of a vibrating membrane occupying the domain
D under the action of a prescribed lateral force f(x, y, t) and subject to the homoge-
neous boundary conditions u = 0 on the boundary ∂D.

The kinetic energy T and the potential energy V are given by

T =
1

2
ρ

∫∫
D

u2
t dx dy, V =

1

2
μ

∫∫
D

(
u2
x + u2

y

)
dx dy, (2.4.57)

where ρ is the surface density, μ is the elastic modulus of the membrane, and u =
u(x, y, t) is the displacement function. The Lagrangian functional is of the form

L =

∫∫
D

L dx dy, (2.4.58)

where the Lagrangian density is given by

L =
1

2
ρu2

t −
1

2
μ
(
u2
x + u2

y

)
− uf(x, y, t). (2.4.59)

According to the Hamilton principle, the first variation of the Lagrangian L must
be stationary, that is,
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0 = δ

∫ t2

t1

Ldt = δ

∫ t2

t1

∫∫
D

[
1

2
ρu2

t −
1

2
μ
(
u2
x + u2

y

)
− uf

]
dx dy. (2.4.60)

The Euler–Lagrange equation is

∂L
∂u

− ∂

∂x
Lux − ∂

∂y
Luy − ∂

∂t
Lut = 0, (2.4.61)

or equivalently,
−f + μ(uxx + uyy)− ρutt = 0. (2.4.62)

This leads to the nonhomogeneous wave equation

μ∇2u− ρutt = f(x, y, t). (2.4.63)

This is the two-dimensional nonhomogeneous wave equation that can be solved with
the initial conditions

u(x, y, t = 0) = φ(x, y) and ut(x, y, t = 0) = ψ(x, y) at t = 0. (2.4.64)

Example 2.4.9 (Three-Dimensional Nonhomogeneous Wave Equation). In three-
dimensional wave propagation in elastic media, the traveling waves exhibit various
modes of vibration including longitudinal and transverse waves. To derive the ap-
propriate equations of motion in continuous media, we need to extend the Hamilton
principle by considering the displacement vector u = u(x, t). We use symmetric
motion given by u = u(u1, u2, u3) where ui = ui(x1, x2, x3, t), i = 1, 2, 3, and
denote the particle velocity by ut = (u1,t, u2,t, u3,t). Using this notation and tensor
summation convention, the kinetic energy T and the potential energy V are given by

T =
1

2
ρui,tui,t and V =

1

2
μui,jui,j , (2.4.65)

where ui,t =
∂ui

∂t and ui,j =
∂ui

∂xj
.

Introducing an external force term f(xi, t) so that the Lagrangian density is given
by

L =
1

2
ρui,tui,t −

1

2
μui,jui,j − uif(xi, t), (2.4.66)

the Lagrangian functional is of the form

L =

∫∫∫
D

L dxj . (2.4.67)

The generalized Hamilton principle for a three-dimensional continuum for vari-
ous modes of wave propagation described by u(xj , t) takes the form

0 = δI(u) = δ

∫ t2

t1

dt

∫∫∫
D

L dxj =

∫ t2

t1

dt

∫∫∫
D

δL dxj . (2.4.68)

This means that the function u = u(xj , t) makes the functional I(u) an extremum.
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Since L is a function of ui and ui,t, and the operator δ acts on the function ui

and ui,t, we expand L to obtain

δL =
∂L
∂ui

δui +
∂L
∂ui,t

δui,t +
∂L
∂ui,j

δui,j . (2.4.69)

We next substitute (2.4.69) into (2.4.68) and then integrate by parts with respect
to t to obtain ∫ t2

t1

∂L
∂ui,t

δui,t dt = −
∫ t2

t1

d

dt

(
∂L
∂ui,t

)
δui,t dt. (2.4.70)

Interchanging ∂
∂xj

and the δ variations in the integrals involving the spatial
derivatives of ui, it turns out that

∫∫∫
D

∂L
∂ui,j

δui,j dxj =

∫∫∫
D

∂L
∂ui,j

(
∂δui

∂xj

)
dxj ,

which, by integrating by parts, is

=
∂L
∂ui,t

δui −
∫∫∫

D

d

dxj

(
∂L
∂ui,j

)
δui dxj . (2.4.71)

Since ui vanishes at t1 and t2, the integrated term also vanishes. Using (2.4.69)–
(2.4.71) in (2.4.68) gives

0 = δI(u) = δ

∫ t2

t1

dt

∫∫∫
D

δui

[
∂L
∂ui

− d

dt

(
∂L
∂ui,t

)
− d

dxj

(
∂L
∂ui,j

)]
dxj .

(2.4.72)
This is true only if the coefficients of each of the linearly independent displacements
δui vanish. Consequently, (2.4.72) leads to the Euler–Lagrange equations of motion

∂L
∂ui

− d

dt

(
∂L
∂ui,t

)
− d

dxj

(
∂L
∂ui,j

)
= 0, (2.4.73)

where the summation over j is used.
In particular, if the Lagrangian L is of the form (2.4.66), (2.4.73) gives the non-

homogeneous wave equations

μ∇2ui − ρui,tt = f(xi, t). (2.4.74)

In the case of equilibrium, the Euler–Lagrange equations (2.4.74) reduce to the
Poisson equation

μ∇2ui = f(xi, t). (2.4.75)

We close this section by adding an important comment. Many equations in
applied mathematics and mathematical physics can be derived from the Euler–
Lagrange variational principle, the Hamilton principle, or from some appropriate
variational principle.
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2.5 The Variational Principle for Nonlinear Klein–Gordon
Equations

The nonlinear Klein–Gordon equation is

utt − c2uxx + V ′(u) = 0, (2.5.1)

where V ′(u) is some nonlinear function of u chosen as the derivative of the potential
energy V (u).

The variational principle for equation (2.5.1) is given by

δ

∫∫
L(u, ut, ux) dt dx = 0, (2.5.2)

where L is the associated Lagrangian density

L(u, ut, ux) =
1

2

(
u2
t − c2u2

x

)
− V (u). (2.5.3)

The Euler–Lagrange equation associated with (2.5.2) is

∂L

∂u
− ∂

∂x

(
∂L

∂ux

)
− ∂

∂t

(
∂L

∂ut

)
= 0, (2.5.4)

which can be simplified to obtain the Klein–Gordon equation (2.5.1).
We consider the variational principle

δ

∫∫
Ldx dt = 0, (2.5.5)

with the Lagrangian L given by

L ≡ 1

2

(
u2
t − c2u2

x − d2u2
)
− γu4, (2.5.6)

where γ is a constant. The Euler–Lagrange equation associated with (2.5.5) gives the
special case of the Klein–Gordon equation

utt − c2uxx + d2u+ 4γu3 = 0. (2.5.7)

2.6 The Variational Principle for Nonlinear Water Waves

In his pioneering work, Whitham (1965a, 1965b) first developed a general approach
to linear and nonlinear dispersive waves using a Lagrangian. It is well known that
most of the general ideas about dispersive waves have originated from the classi-
cal problems of water waves. So it is important to have a variational principle for
water waves. Luke (1967) first explicitly formulated a variational principle for two-
dimensional water waves and showed that the basic equations and boundary and free
surface conditions can be derived from the Hamilton principle.
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Fig. 2.1 A general surface gravity wave problem.

We now formulate the variational principle for three-dimensional water waves
in the form

δI = δ

∫∫
D

Ldx dt = 0, (2.6.1)

where the Lagrangian L is assumed to be equal to the pressure, so that

L = −ρ

∫ η(x,t)

−h(x,y)

[
φt +

1

2
(∇φ)2 + gz

]
dz, (2.6.2)

where D is an arbitrary region in the (x, t) space, ρ is the density of water, g is the
gravitational acceleration, and φ(x, z, t) is the velocity potential in an unbounded
fluid lying between the rigid bottom at z = −h(x, y) and the free surface z =
η(x, y, t) as shown in Figure 2.1. The functions φ(x, z, t) and η(x, t) are allowed to
vary subject to the restrictions δφ = 0 and δη = 0 at x1, x2, y1, y2, t1, and t2.

Using the standard procedure in the calculus of variations, (2.6.1) becomes

0 = −δ

∫∫
D

L

ρ
dx dt

=

∫∫
D

{[
φt +

1

2
(∇φ)2 + gz

]
z=η

δη

+

∫ η

−h

[φxδφx + φyδφy + φzδφz + δφt] dz

}
dx dt, (2.6.3)

which, integrating the z-integral by parts, is

=

∫∫
D

{[
φt +

1

2
(∇φ)2 + gz

]
z=η

δη

+

[
∂

∂t

∫ η

−h

δφ dz +
∂

∂x

∫ η

−h

φxδφ dz +
∂

∂y

∫ η

−h

φyδφ dz

]

−
∫ η

−h

(φxx + φyy + φzz)δφ dz −
[
(ηt + ηxφx + ηyφy − φz)δφ

]
z=η

+
[
(φxhx + φyhy + φz)δφ

]
z=−h

}
dx dt. (2.6.4)
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The second term within the square brackets integrates out to the boundaries ∂D
of D and vanishes if δφ is chosen to be zero on ∂D. If we take δη = 0, [δφ]z=η =
[δφ]z=−h = 0, since δφ is otherwise arbitrary; it turns out that

∇2φ = 0, −∞ < x, y < ∞, −h < z < η. (2.6.5)

Since δη, [δφ]z=η , [δφ]z=−h may be given arbitrary independent values, it follows
that

φt +
1

2
(∇φ)2 + gη = 0 on z = η, (2.6.6)

ηt + ηxφx + ηyφy − φz = 0 on z = η, (2.6.7)

φxhx + φyhy + φz = 0 on z = −h. (2.6.8)

Thus, (2.6.5)–(2.6.8) represent the well-known nonlinear system of equations for
classical water waves. Finally, this analysis is in perfect agreement with that of Luke
(1967) and Whitham (1965a, 1965b, 1974) for two-dimensional waves on water of
arbitrary but uniform depth h.

It may be relevant to mention Zakharov’s (1968a, 1968b) Hamiltonian formula-
tion. The Hamiltonian is

H =
1

2

∫ ∞

−∞

(
gη2 +

∫ η

−h

(∇φ)2 dz

)
dx. (2.6.9)

On the other hand, Benjamin and Olver (1982) have described the Hamiltonian
structure, symmetrics, and conservation laws for water waves. Olver (1984a, 1984b)
has discussed Hamiltonian and non-Hamiltonian models for water waves, and Hamil-
tonian perturbation theory and nonlinear water waves.

2.7 The Euler Equation of Motion and Water Wave Problems

The Euler equation of motion and the equation of continuity have provided the fun-
damental basis of the study of modern theories of water waves, which are the most
common observable phenomena in nature. Water wave motions are of great impor-
tance as they range from waves generated by wind or solar heating at the surface of
oceans to flood waves in rivers, from waves caused by a moving ship in a channel
to tsunami (tidal waves) generated by earthquakes, and from solitary waves on the
surface of a channel generated by a disturbance to waves generated by underwater
explosions, to mention only a few.

Making reference to Debnath’s book (1994), Nonlinear Water Waves, the Euler
equation of motion in an inviscid and incompressible fluid of constant density ρ
under the action of body force F = (0, 0,−g) where g is the constant acceleration
of gravity and the equation of continuity are given by

Du

Dt
= −1

ρ
∇p+ F, (2.7.1)
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∇ · u =
∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.2)

where x = (x, y, z) is the rectangular Cartesian coordinates and u = (u, v, w) is the
velocity vector, p is the pressure field, and

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
. (2.7.3)

These equations constitute a closed system of four nonlinear partial differential
equations for four unknowns u, v, w, and p. So these equations with appropriate
initial and boundary conditions are sufficient to determine the velocity field u and
pressure p uniquely.

In the study of water waves, the body force is always the acceleration due to
gravity, that is, F = (0, 0,−g). It is convenient to write the three components of the
Euler equation in the form

Du

Dt
= −1

ρ

∂p

∂x
, (2.7.4)

Dv

Dt
= −1

ρ

∂p

∂y
, (2.7.5)

Dw

Dt
= −1

ρ

∂p

∂z
− g, (2.7.6)

and the continuity equation (2.7.2).
In cylindrical polar coordinates x = (r, θ, z) with the velocity vector u =

(u, v, w), the Euler equations and the continuity equation are given by

Du

Dt
− v2

r
= −1

ρ

∂p

∂r
, (2.7.7)

Dv

Dt
+

uv

r
= −1

ρ

1

r

∂p

∂θ
, (2.7.8)

Dw

Dt
= −1

ρ

∂p

∂z
− g, (2.7.9)

1

r

∂

∂r
(ru) +

1

r

∂v

∂θ
+

∂w

∂z
= 0, (2.7.10)

where
D

Dt
=

∂

∂t
+ u

∂

∂r
+

v

r

∂

∂θ
+ w

∂

∂z
. (2.7.11)

One of the fundamental properties of a fluid flow is called the vorticity, which is
defined by the curl of the velocity field so that ωωω = curlu = ∇ × u. The vorticity
vector ωωω measures the local spin or rotation of individual fluid particles. Evidently,
fluid flows in which ωωω = 0 are called irrotational. In the real world, fluid flows
are hardly irrotational anywhere; however, for many flows the vorticity is very small
almost everywhere and the fluid motion may be treated as irrotational. In problems
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of water waves, the motion of fluid is considered unsteady and irrotational which
implies that the vorticity ωωω = curlu = ∇ × u = 0. So there exists a single-valued
velocity potential φ so that u = ∇φ. The continuity equation (2.7.2) then reduces to
the Laplace equation

∇2φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2
= 0. (2.7.12)

Using the vector identity, (u · ∇)u = 1
2∇u2 − u×ωωω combined with ωωω = 0 and

u = ∇φ, the Euler equation (2.7.1) may be written in the form

∇
[
φt +

1

2
(∇φ)2 +

p

ρ
+ gz

]
= 0. (2.7.13)

This can be integrated with respect to the space variables to obtain the equation

φt +
1

2
(∇φ)2 +

p

ρ
+ gz = c(t), (2.7.14)

where c(t) is an arbitrary function of time only (∇c = 0) determined by the pres-
sure imposed at the boundaries of the fluid flow. Since only the pressure gradient
affects the flow, a function of t alone added to the pressure field p has virtually no
effect on the motion. So, without loss of generality, we can set c(t) ≡ 0 in (2.7.14).
Consequently, equation (2.7.14) becomes

φt +
1

2
(∇φ)2 +

p

ρ
+ gz = 0. (2.7.15)

This equation is known as Bernoulli’s equation (or the pressure equation), which
completely determines the pressure in terms of the velocity potential φ. Thus, the
Laplace equation (2.7.12) and (2.7.15) are used to determine φ and p, and hence the
velocity components u, v, w, and the pressure p.

In cylindrical polar coordinates x = (r, θ, z) with the velocity field u =
(φr,

1
rφθ, φz), the Laplace equation becomes

∇2φ =
1

r

∂

∂r
(rφr) +

1

r2
∂2φ

∂θ2
+

∂2φ

∂z2
= 0. (2.7.16)

We assume that the fluid occupies the region −h ≤ z ≤ 0 with the plane z =
−h as the rigid bottom boundary and the plane z = 0 as the upper (free surface)
boundary in the undisturbed state. We suppose that the upper boundary is the surface
exposed to a constant atmospheric pressure pa. Since the free surface is exposed to
the constant atmospheric pressure pa, we have p = pa on this surface. After the
motion is set up, we denote this surface by S with the equation z = η(x, y, t) where
η is an unknown function of x, y, and t that tends to zero as t → 0. The function
η(x, y, t) is referred to as the free surface elevation.

The rate of change of η, following a fluid particle, is equal to the vertical compo-
nent of ∇φ at the surface, that is,
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ηt + u · ∇η = φz on z = η.

Or equivalently, this free surface condition reads as

ηt + φxηx + φyηy − φz = 0 on z = η. (2.7.17)

This is called the kinematic free surface condition.
Since p = pa on S, after absorbing pa

ρ and c(t) into φt, equation (2.7.14) can be
rewritten as

∂φ

∂t
+

1

2
(∇φ)2 + gz = 0 on S for t ≥ 0. (2.7.18)

Since S is a free boundary surface, it contains the same fluid particles for all
times, that is, S is a material surface. Hence, it follows from (2.7.18) that

D

Dt

[
∂φ

∂t
+

1

2
(∇φ)2 + gz

]
= 0 on S for t ≥ 0.

Or equivalently, on S for t ≥ 0,
(

∂

∂t
+∇φ · ∇

)[
∂φ

∂t
+

1

2
(∇φ)2 + gz

]

= φtt + 2∇φ · ∇(φt) +
1

2
∇φ · ∇(∇φ)2 + gφz = 0. (2.7.19)

Since the bottom boundary z = −h is a rigid solid surface at rest, the condition
to be satisfied at this boundary is

∂φ

∂z
= 0 on z = −h, t ≥ 0. (2.7.20)

Thus, Laplace’s equation (2.7.12) together with the free surface boundary con-
ditions (2.7.17), (2.7.19) and the bottom boundary condition (2.7.20) determine the
velocity potential φ and the free surface elevation η. Because of the presence of the
nonlinear terms in the free surface boundary conditions (2.7.17) and (2.7.19), the de-
termination of φ and η in the general case is a difficult task. We restrict our discussion
to two particular cases because of the great importance of water wave motions.

Example 2.7.1 (Small Amplitude Water Waves). We consider plane waves propagat-
ing in the x-direction whose amplitude varies in the z-direction with the gravitational
force as the only body force. We first consider the case where the motion is linear so
that nonlinear terms in velocity components may be neglected. In this case, no dis-
tinction is made between the initial and the current states of the free surface bound-
ary, and the boundary conditions (2.7.18) and (2.7.19) are given in the linearized
forms

φt + gη = 0 on z = 0, t > 0, (2.7.21)

φtt + gφz = 0 on z = 0, t > 0. (2.7.22)
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These conditions yield

ηt = φz on z = 0, t > 0. (2.7.23)

For a plane wave propagating in the x-direction with frequency ω and wavenum-
ber k, we seek a solution for φ(x, z, t) in the form

φ = Φ(z) exp
[
i(ωt− kx)

]
, (2.7.24)

where Φ(z) is a function to be determined.
Substituting (2.7.24) in the Laplace equation (2.7.12) with no y dependence gives

an equation for Φ as
Φzz = k2Φ. (2.7.25)

The general solution of this equation is

Φ(z) = Aekz +Be−kz, (2.7.26)

where A and B are arbitrary constants. Using the boundary condition (2.7.20), we
find A exp(−kh) = B exp(kh) so that the solution (2.7.26) takes the form

Φ = C cosh k(z + h), (2.7.27)

where C = 2A exp(−kh) = 2B exp(kh) is an arbitrary constant so that the solution
(2.7.24) becomes

φ = C cosh k(z + h) exp
[
i(ωt− kx)

]
. (2.7.28)

Using (2.7.28) in (2.7.21) yields

η = a exp
[
i(ωt− kx)

]
, (2.7.29)

where a = (Cω/ig) cosh kh = max |η| is the amplitude. Thus, the solution (2.7.28)
assumes the final form

φ =

(
iag

ω

)
cosh k(z + h)

cosh kh
exp

[
i(ωt− kx)

]
. (2.7.30)

Substituting (2.7.30) into (2.7.22) gives the following dispersion relation be-
tween the frequency and wavenumber:

ω2 = gk tanh kh. (2.7.31)

Thus, the phase velocity, cp = (ωk ), can be obtained from (2.7.31) as

c2p =
ω2

k2
=

g

k
tanh(kh). (2.7.32)

This result shows that the phase velocity cp depends on the wavenumber k, depth
h, and the gravity g. Hence, water waves are dispersive in nature. This means that, as
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the time passes, the waves would disperse (spread out) into different groups such that
each group would consist of waves having approximately the same wavelength. The
quantity dω

dk represents the velocity of such a group in the direction of propagation
and is called the group velocity, cg. It follows from (2.7.31) that

cg =
dω

dk
=

(
g

2ω

)(
tanh kh+ kh sech2kh

)
, (2.7.33)

which, by using (2.7.32), is

=
1

2
cp

[
1 +

2kh

sinh 2kh

]
. (2.7.34)

Evidently, the group velocity is different from the phase velocity.
In the case where wavelength 2π/k is large compared with the depth h, such

waves are called long waves (or shallow water waves), kh � 1 so that tanh kh ≈
kh, and hence, sinh 2kh ≈ 2kh. In such a situation, results (2.7.32) and (2.7.34) give

cg = cp ≈
√
gh = c. (2.7.35)

Thus, shallow water waves are nondispersive and their speed varies as the square
root of the depth.

In the other limiting case, where the wavelength is very small compared with the
depth, such waves are called short waves (or deep water waves), kh � 1. In the limit
kh → ∞, [cosh k(z+h)/ cosh kh] → exp(kz), and the corresponding solutions for
φ and η become

φ = Re

(
iag

ω

)
exp

[
kz + i(ωt− kx)

]

=

(
ag

ω

)
exp(kz) sin(kx− ωt), (2.7.36)

η = Re a exp
[
i(ωt− kx)

]
= a cos(ωt− kx). (2.7.37)

In the limit kh → ∞, tanh kh → 1 so that the dispersion relation becomes

ω2 = gk. (2.7.38)

Consequently,

cp =

(
g

k

) 1
2

=

(
gλ

kπ

) 1
2

, (2.7.39)

cg =
1

2
cp. (2.7.40)

Evidently, deep water waves are dispersive and the phase velocity is proportional to
the square root of their wavelength. Also the group velocity is equal to one-half of
the phase velocity.
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Example 2.7.2 (The Stokes’ Waves or Nonlinear Finite Amplitude Waves). We con-
sider the Stokes’ waves where the motion is nonlinear and the amplitude of the waves
is not small. We recall Bernoulli’s equation (2.7.18) and (2.7.19) and write them for
ready reference in the form

η = −1

g

[
φt +

1

2
(∇φ)2

]
z=η

, (2.7.41)

[φtt + gφz]z=η + 2[∇φ · ∇φt]z=η +
1

2

[
∇φ · ∇(∇φ)2

]
z=η

= 0. (2.7.42)

A systematic procedure can be employed to rewrite these boundary conditions
by using Taylor’s series expansions of the potential φ and its derivatives in the form

φ(x, y, z = η, t) = [φ]z=0 + η[φz]z=0 +
1

2
η2[φzz]z=0 + · · · , (2.7.43)

φz(x, y, z = η, t) = [φz]z=0 + η[φzz]z=0 +
1

2
η2[φzzz]z=0 + · · · . (2.7.44)

Substituting these and similar Taylor’s expansions into (2.7.41) gives

η = −1

g

[
φt +

1

2
(∇φ)2

]
z=0

+ η

[
−1

g

{
φt +

1

2
(∇φ)2

}
z

]
z=0

+ · · ·

= −1

g

[
φt +

1

2
(∇φ)2

]
z=0

+
1

g2

[{
φt +

1

2
(∇φ)2

}{
φt +

1

2
(∇φ)2

}
z

]
z=0

+ · · ·

= −1

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

+O
(
φ3

)
. (2.7.45)

Similarly, condition (2.7.42) gives

[φtt + gφz]z=0 + η
[
(φtt + gφz)z

]
+

1

2
η2

[
(φtt + gφz)zz

]
z=0

+ · · ·+ 2[∇φ · ∇φt]z=0 + 2η
[
{∇φ · ∇φt}z

]
z=0

+ η2
[
{∇φ · ∇φt}zz

]
z=0

+ · · ·+ 1

2

[{
∇φ · ∇(∇φ)2

}]
z=0

+
1

2
η
[{
∇φ · ∇(∇φ)2

}
z

]
z=0

+
1

4
η2

[{
∇φ · ∇(∇φ)2

}
zz

]
z=0

+ · · · = 0. (2.7.46)

We substitute (2.7.45) for η into (2.7.46) to obtain

[φtt + gφz]z=0 −
1

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

[
(φtt + gφz)z

]
z=0

+
1

2g2

[{
φt +

1

2
(∇φ)2 − 1

g
φtφzt

}2]
z=0

[
(φtt + gφz)zz

]
z=0
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+ 2
[
(∇φ) · ∇φt

]
z=0

− 2

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

[
(∇φ · ∇φt)z

]
z=0

+
1

2

[
∇φ · ∇(∇φ)2

]
z=0

− 2

g

[
φt +

1

2
(∇φ)2 − 1

g
φtφzt

]
z=0

×
[{

∇φ · ∇(∇φ)2
}
z

]
z=0

= 0. (2.7.47)

The first-, second-, and third-order boundary conditions on z = 0 are respectively
given by

(φtt + gφz) = 0 +O
(
φ2

)
, (2.7.48)

(φtt + gφz) + 2[∇φ · ∇φt]−
1

g
φt(φtt + gφz)z = 0 +O

(
φ3

)
, (2.7.49)

(φtt + gφz) + 2[∇φ · ∇φt] +
1

2

[
∇φ · ∇(∇φ)2

]

− 1

g
φt

[
φtt + gφz + 2(∇φ · ∇φt)

]
z
− 1

g

[
1

2

(
∇φ2

)
− 1

g
φtφzt

]
[φtt + gφz]z

+
1

2g2
[φt]

2
[
(φtt + gφz)zz

]
= 0 +O

(
φ4

)
, (2.7.50)

where O (·) indicates the order of magnitude of the neglected terms. These results
can be determined by the third-order expansion of plane progressive surface waves.

As indicated before, the first-order plane wave potential φ in deep water is
given by (2.7.36). Direct substitution of the first-order velocity potential (2.7.36)
in the second-order boundary condition (2.7.49) reveals that the second-order terms
in (2.7.49) vanish. Thus, the first-order potential is a solution of the second-order
boundary-value problem, and we can state that

φ =

(
ga

ω

)
ekz sin(kx− ωt) +O

(
a3

)
. (2.7.51)

Substitution of this result into (2.7.45) leads to the second-order result for η in the
form

η = a cos(kx− ωt)− 1

2
ka2 + ka2 cos2(kx− ωt) + · · ·

= a cos(kx− ωt) +
1

2
ka2 cos

{
2(kx− ωt)

}
+ · · · . (2.7.52)

The second term in (2.7.52), which represents the second-order correction to the
surface profile, is positive at the crests kx− ωt = 0, 2π, 4π, . . . , and negative at the
troughs kx − ωt = π, 3π, 5π, . . . . But the crests are steeper, and the troughs flatter
as a result of the nonlinear effect. The notable feature of solution (2.7.52) is that the
wave profile is no longer sinusoidal. The actual shape of the wave profile is a curve
known as a trochoid (see Figure 2.2), whose crests are steeper and troughs are flatter
than those of the sinusoidal wave.

Substituting the wave potential (2.7.51) in the third-order boundary condition
(2.7.50) reveals that all nonlinear terms vanish identically except one term, (12 )∇φ ·
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Fig. 2.2 The surface wave profile.

∇(∇φ)2. Thus the boundary condition for the third-order plane wave solution is
given by

φtt + gφz +
1

2
∇φ · ∇(∇φ)2 = 0 +O

(
φ4

)
. (2.7.53)

If the first-order solution (2.7.51) is substituted into the third-order boundary
condition on z = 0, the dispersion relation with second-order effect is obtained in
the form

ω2 = gk
(
1 + a2k2

)
+O

(
k3a3

)
. (2.7.54)

Note that this relation involves the amplitude in addition to frequency and wavenum-
ber. This is called the nonlinear dispersion relation and it can be expressed in terms
of the phase velocity as

cp =
ω

k
=

(
g

k

) 1
2 (
1 + k2a2

) 1
2 ≈

(
g

k

) 1
2
(
1 +

1

2
a2k2

)
. (2.7.55)

Thus the phase velocity depends on the wave amplitude, and waves of large ampli-
tude travel faster than smaller ones. The dependence of cp on amplitude is known as
the amplitude dispersion in contrast to the frequency dispersion as given by (2.7.38).

It may be noted that Stokes’ results (2.7.52), (2.7.54), and (2.7.55) can easily be
approximated further to obtain solutions for long waves (or shallow water) and for
short waves (or deep water).

We conclude this example by discussing the phenomenon of breaking of water
waves, which is one of the most common observable phenomena on an ocean beach.
A wave coming from deep ocean changes shape as it moves across a shallow beach.
Its amplitude and wavelength also are modified. The wavetrain is very smooth some
distance offshore, but as it moves inshore, the front of the wave steepens noticeably
until, finally, it breaks. After breaking, waves continue to move inshore as a series
of bores or hydraulic jumps, whose energy is gradually dissipated by means of the
water turbulence. Of the phenomena common to waves on beaches, breaking is the
physically most significant and mathematically least known. In fact, it is one of the
most intriguing longstanding problems of water waves theory.

For waves of small amplitude in deep water, the maximum particle velocity is
v = aω = ack. But the basic assumption of small amplitude theory implies that v

c =
ak � 1. Therefore, wave breaking can never be predicted by the small amplitude
wave theory. That possibility arises only in the theory of finite amplitude waves. It is
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Fig. 2.3 The steepest wave profile.

to be noted that the Stokes’ expansions are limited to relatively small amplitude and
cannot predict the wavetrain of maximum height at which the crests are found to be
very sharp. For a wave profile of constant shape moving at a uniform velocity, it can
be shown that the maximum total crest angle as the wave begins to break is 120◦; see
Figure 2.3.

The upshot of the Stokes’ analysis reveals that the inclusion of higher-order terms
in the representation of the surface wave profile distorts its shape away from the
linear sinusoidal curve. The effects of nonlinearity are likely to make crests narrower
(sharper) and the troughs flatter as depicted in Figure 2.7 of Debnath (1994). The
resulting wave profile more accurately portrays the water waves that are observed in
nature. Finally, the sharp crest angle of 120◦ was first found by Stokes.

On the other hand, in 1865, Rankine conjectured that there exists a wave of ex-
treme height. In a moving reference frame, the Euler equations are Galilean invariant,
and the Bernoulli equation (2.7.14) on the free surface of water with ρ = 1 becomes

1

2
|∇φ|2 + gz = E.

Thus, this equation represents the conservation of local energy, where the first term
is the kinetic energy of the fluid and the second term is the potential energy due to
gravity. For the wave of maximum height, E = gzmax, where zmax is the maximum
height of the fluid. Thus, the velocity is zero at the maximum height so that there
will be a stagnation point in the fluid flow. Rankine conjectured that a cusp is devel-
oped at the peak of the free surface with a vertical slope so that the angle subtended
at the peak is 120◦ as also conjectured by Stokes (1847). Toland (1978) and Am-
ick et al. (1982) have proved rigorously the existence of a wave of greatest height
and the Stokes’ conjecture for the wave of extreme form. However, Toland (1978)
also proved that if the singularity at the peak is not a cusp, that is, if there is no
vertical slope at the peak of the free surface, then the Stokes’ remarkable conjecture
of the crest angle of 120◦ is true. Subsequently, Amick et al. (1982) confirmed that
the singularity at the peak is not a cusp. Therefore, the full Euler equations exhibit
singularities, and there is a limiting amplitude to the periodic waves.

We next formulate the modern mathematical theory of nonlinear water waves. It
is convenient to take the free surface elevation above the undisturbed mean depth h
as z = η(x, y, t) so that the free surface of water is at z = H = h + η and the
horizontal rigid bottom is at z = 0 where the z-axis is vertical positive upwards.
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It is also convenient to introduce nondimensional flow variables based on a typ-
ical horizontal length scale � (which may be wavelength λ), typical vertical length
scale h, typical horizontal velocity scale, c =

√
gh (shallow water wave speed),

typical time scale ( c� ), typical vertical velocity scale (hc� ), and the typical pressure
scale ρc2. Using asterisks to denote nondimensional flow variables, we write

(x, y) = �
(
x∗, y∗

)
, z = hz∗, t =

(
�

c

)
t∗, (2.7.56)

(u, v) = c
(
u∗, v∗

)
, w =

(
hc

�

)
w∗, and p = ρc2p∗. (2.7.57)

We next introduce two fundamental parameters δ and ε defined by

δ =
h2

�2
and ε =

a

h
, (2.7.58)

where δ is called the long wavelength (or shallowness) parameter, ε is called the
amplitude parameter, and a is the typical wave amplitude. These two parameters
play a crucial role in the modern theory of water waves.

In terms of the amplitude parameter, the free surface at z = H = h + η and the
bottom boundary surface at z = 0 of the fluid can be written as the nondimensional
form

z = 1 + εη and z = 0, (2.7.59)

where (ηa ) is replaced by the nondimensional value η.
The variable pressure field P representing the deviation from the hydrostatic

pressure gρ(h− z) is given by

p = pa + gρ(z − h) + gρhP, (2.7.60)

where pa is the constant atmospheric pressure and the scale gρh of pressure is based
on the pressure at the depth z = h.

In terms of the nondimensional variables, the Euler equations (2.7.4)–(2.7.6) and
the continuity equation (2.7.2) can be written in the form, dropping the asterisks and
replacing P by p,

Du

Dt
= −∂p

∂x
,

Dv

Dt
= −∂p

∂y
, δ

Dw

Dt
= −∂p

∂z
, (2.7.61)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.7.62)

The kinematic free surface and the dynamic free surface conditions (see Debnath
1994, pp. 6–7) are expressed in the nondimensional form, dropping the asterisks,

w = ε(ηt + uηx + vηy) on z = 1 + εη, (2.7.63)

p = εη on z = 1 + εη. (2.7.64)

The bottom boundary condition is
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w = 0 on z = 0. (2.7.65)

It follows from the free surface conditions that both w and p are proportional to
the amplitude parameter ε. In the limit as ε → 0, both w and p tend to zero, indicating
that there is no disturbance at the free surface.

Consistent with the governing equations and the boundary conditions, we intro-
duce a set of scaled flow variables

(u, v, w, p) → ε(u, v, w, p) (2.7.66)

so that the governing equations (2.7.61) and (2.7.62) and the boundary conditions
(2.7.63)–(2.7.65) become

Du

Dt
= −∂p

∂x
,

Dv

Dt
= −∂p

∂y
, δ

Dw

Dt
= −∂p

∂z
, (2.7.67)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.68)

w = ηt + ε(uηx + vηy), p = η on z = 1 + εη, (2.7.69)

w = 0 on z = 0, (2.7.70)

where
D

Dt
≡ ∂

∂t
+ ε

(
u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z

)
, (2.7.71)

and parameters δ and ε are given by (2.7.58).
In general, there are two most commonly adopted and useful approximations:

(i) ε → 0, that is, small amplitude water waves governed by the linearized equations,
and (ii) δ → 0, that is, shallow water wave equations (or long water waves). These
approximate models and their solutions constitute the classical theory of water waves
(see Debnath 1994).

In the first case, the linearized equations of water waves are obtained from
(2.7.67)–(2.7.71) in the limit as ε → 0 in the form

∂u

∂t
= −∂p

∂x
,

∂v

∂y
= −∂p

∂y
, δ

∂w

∂t
= −∂p

∂z
, (2.7.72)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.73)

w = ηt and p = η on z = 1, (2.7.74)

w = 0 on z = 0. (2.7.75)

In the second case, the shallow water equations (long water waves) are described
in the sense that

√
δ = (h� ) is small so that δ → 0 with fixed amplitude parameter ε.

Consequently, the governing equations and the boundary conditions are obtained
from (2.7.67)–(2.7.71) in the limit as δ → 0 in the form

Du

Dt
= −∂p

∂x
,

Dv

Dt
= −∂p

∂y
,

∂p

∂z
= 0, (2.7.76)
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∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (2.7.77)

w = ηt + ε(uηx + vηy) and p = η on z = 1 + εη, (2.7.78)

w = 0 on z = 0, (2.7.79)

where D
Dt is given by (2.7.71).

Finally, equations that describe small amplitude waves ε → 0 and long waves
(δ → 0) are obviously consistent with (2.7.72)–(2.7.75) for the first case, and also
with equations (2.7.76)–(2.7.79) with

∂p

∂z
= 0; p = η on z = 1 (2.7.80)

or (2.7.76)–(2.7.79) with ε → 0.
The solutions of these various approximate governing equations describe the

classical water waves (see Debnath 1994).

Example 2.7.3 (Solution of a Linearized Water Wave Problem). We consider the
propagation of a plane harmonic water wave in the x-direction in a fluid of constant
depth. With no y-dependence, the governing equations and the boundary conditions
are obtained from (2.7.72)–(2.7.75) in the form

ut = −px, δwt = −pz, ux + wz = 0, (2.7.81)

w = ηt and p = η on z = 1, (2.7.82)

w = 0 on z = 0. (2.7.83)

We assume a plane wave solution in the form

(u,w, p) =
[
u∗(z), w∗(z), p∗(z)

]
exp

[
i(ωt− kx)

]
. (2.7.84)

The free surface elevation is given by

η(x, t) = a exp
[
i(ωt− kx)

]
+ c.c., (2.7.85)

where a is a constant wave amplitude and c.c. denotes the complex conjugate. Obvi-
ously, (2.7.85) represents a plane harmonic wave whose initial form at t = 0 is given
by η(x, 0).

Substituting the solution (2.7.84) into (2.7.81) gives, dropping asterisks,

u =
k

ω
p, p′ = −iωδw, w′ = iku, (2.7.86)

where the prime denotes the derivative with respect to z.
It readily follows from (2.7.86) that

w′′ = iku′ =
ik2

ω
p′ =

(
δk2

)
w. (2.7.87)

Thus, the general solution of (2.7.87) is
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w = A exp
(√

δkz
)
+B exp

(
−
√
δkz

)
, (2.7.88)

where A and B are arbitrary constants to be determined from (2.7.82), (2.7.83) which
give

w(1) = iωa, p(1) = a, w(0) = 0. (2.7.89)

Consequently, the solution (2.7.88) assumes the final form

w(z) = Re(iωa)
sinh(

√
δkz)

sinh(
√
δk)

. (2.7.90)

It follows from the boundary conditions that

a = p(1) =
ω

k
u(1) =

ω

ik2
w′(1) =

(
aω2

k

)√
δ coth

(
k
√
δ
)
. (2.7.91)

This leads to the dispersion relation

ω2 =

(
k√
δ

)
tanh

(
k
√
δ
)
, (2.7.92)

where
√
δ = hλ−1 which is equal to dimensional (physical) quantity (h� ) and k

√
δ

is equal to dimensional quantity kh.
As before, the dispersion relation determines the frequency ω = ω(k) and the

phase velocity

c2p =

(
ω

k

)2

=
(
k
√
δ
)−1

tanh
(
k
√
δ
)
. (2.7.93)

The group velocity cg is given by

cg =
dω

dk
=

1

2ω
√
δ

[
tanh

(
k
√
δ
)
+ k

√
δ sech2

(
k
√
δ
)]

which, by (2.7.93), is

=
1

2
cp

[
1 +

2k
√
δ

sinh(2k
√
δ)

]
. (2.7.94)

In the case of shallow water waves, k
√
δ → 0 so that tanh(k

√
δ) ≈ k

√
δ. Hence,

results (2.7.93), (2.7.94) lead to cp = cg = 1. Both the phase and group velocities
are independent of the wavelength. So, the shallow water waves are nondispersive.
In terms of the dimensional variables, the phase velocity is

cp = ±c = ±
√

gh. (2.7.95)

This confirms the choice of the velocity scale c adopted before.
For deep water waves, k

√
δ → ∞ so that tanh(k

√
δ) → 1. Consequently,

ω2 =
k√
δ
, c2p =

(
k
√
δ
)−1

, and cg =
1

2
cp. (2.7.96)
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Example 2.7.4 (Small Amplitude Gravity-Capillary Surface Waves on Water of
depth h). The governing equation for the two-dimensional linearized gravity-
capillary surface waves on water of constant depth h with the free surface at z = 0
are given by

∇2φ = φxx + φzz = 0, −h ≤ z < 0, t > 0, (2.7.97)

where φ(x, z, t) is the velocity potential.
Representing the free surface elevation function by η = η(x, t), the linearized

kinematic and dynamic free surface conditions are

ηt − φz = 0 on z = 0, t > 0, (2.7.98)

φt + gη − T

ρ
ηxx = 0 on z = 0, t > 0, (2.7.99)

where g is the acceleration of gravity and T is the surface tension, and ρ is the
constant density of water.

The boundary condition at the horizontal rigid bottom at z = −h

φz = 0 at z = −h. (2.7.100)

We seek the same solution (2.7.28) for φ(z, x, t) and (2.7.29) for η(x, t) so that
φ(x, z, t) assumes the same form (2.7.30). In view of (2.7.98), (2.7.99) reduces to
the form

φtt + gφz −
T

ρ
φzxx = 0 on z = 0, t > 0. (2.7.101)

Substituting (2.7.30) into (2.7.101) gives the dispersion relation for the gravity-
capillary waves in the form

ω2 = gk

(
1 +

Tk2

ρg

)
tanh kh. (2.7.102)

Or equivalently, this gives the phase velocity cp of the surface gravity-capillary waves
on water of finite depth h

c2p =
ω2

k2
=

(
g

k
+

T

ρ
k

)
tanh kh. (2.7.103)

It can easily be recognized that result (2.7.102) or (2.7.103) is exactly the same
as result (2.7.31) or (2.7.32) with g replaced by (g + ρ−1Tk2). This means that
all the properties of gravity-capillary waves can be described correctly when this
replacement is made in the results of pure gravity waves.

Introducing the Froude number F and the Bond number τ by

F =
cp√
gh

and τ =
T

gρh2
, (2.7.104)

the dimensionless form of the dispersion relation (2.7.103) is
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Fig. 2.4 The square of the Froude number, F 2, against (kh)−1.

F 2 =

(
1

kh
+ τkh

)
tanh kh. (2.7.105)

The square of the Froude number is plotted against (kh)−1 = ( λ
2πh ) for four values

of the Bond number τ = 1.3, 1
3 , 0.1, and 0.05 in Figure 2.4. This figure shows that

F 2 decreases monotonically with (kh)−1 when τ > 1
3 , and it has a minimum for

τ < 1
3 . As kh = 2π(hλ ) → 0 (or λ

h → ∞), F → 1.
In case of water of infinite depth (kh → ∞, tanh kh → 1), (2.7.102) or (2.7.103)

leads to

ω2 = gk

(
1 +

Tk2

gρ

)
or c2p =

(
g

k
+

Tk

ρ

)
. (2.7.106)

Thus, for pure surface gravity waves (T = 0, g �= 0) in deep water, (2.7.106)
reduces to (2.7.38). Similarly, for pure surface capillary waves (g = 0, T �= 0), the
dispersion relation is

ω2 =
Tk3

ρ
or c2p =

Tk

ρ
. (2.7.107)

It is convenient to write (2.7.106) as

ω2 = gk(1 + T ∗) or c2p =
g

k
(1 + T ∗), (2.7.108)

where the parameter T ∗ = (Tk2/gρ) represents the relative importance of surface
tension and gravity.

It also follows from (2.7.106) that the phase velocity cp has a minimum value at
k = km =

√
gρ/T (or T ∗ = 1) with the corresponding minimum value for cp is

(cp)m =

(
4Tg

ρ

) 1
4

(2.7.109)

at the wavelength λ = λm = 2π(T/gρ)
1
2 .

The inequality k � km is the condition for the waves to be effectively pure
gravity waves with negligible surface tension. This is equivalent to large wavelength
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Fig. 2.5 The solid curve represents the phase velocity cp for capillary-gravity waves against λ.
(From Lighthill 1978.)

λ > λm = ( 2π
km

) = 2π( T
ρg )

1
2 . The phase velocity cp in (2.7.106) for gravity-capillary

waves in deep water is shown by the solid curve in Figure 2.5 against λ with mini-
mum (cp)m attained at λ = λm. The dotted curve corresponds to (2.7.107) for pure
capillary waves (or ripples) in deep water dominated by surface tension for small
λ < λm. The dashed curve corresponds to cp = (g/k)

1
2 for pure gravity waves for

large wavelengths λ > λm.
The group velocity for gravity-capillary waves can be calculated from the disper-

sion relation (2.7.102) and is given by

cg =
g

2ω

[(
1 +

3Tk2

gρ

)
tanh kh+

(
1 +

Tk2

gρ

)
kh sech2 kh

]
(2.7.110)

=
g

2ω

[
(1 + 3T ∗) tanh kh+ (1 + T ∗)kh sech2 kh

]
. (2.7.111)

We next multiply the numerator by kcp and the denominator by ω(= kcp), then
replace ω2 by (2.7.106) to obtain

cg =
1

2
cp

(
1 + 3T ∗

1 + T ∗ +
2kh

sinh 2kh

)
. (2.7.112)

In the deep water limit, kh → ∞, the second term in (2.7.112) tends to zero, and
hence, the group velocity of gravity-capillary waves is

cg =
1

2
cp

(
1 + 3T ∗

1 + T ∗

)
. (2.7.113)

This reduces to the result (2.7.96) for pure gravity waves (T ∗ = 0) in deep water

cg =
1

2
cp =

1

2

√
g

k
, (2.7.114)
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and for pure capillary waves in deep water (g → 0 and T ∗ → ∞), the group velocity
is

cg =
3

2
cp =

3

2

(
Tk

ρ

) 1
2

. (2.7.115)

It follows from the definition of group velocity (2.7.33) that the group and phase
velocities are related by a simple formula

cg =
dω

dk
=

d

dk
(kcp) = cp + k

dcp
dk

= cp − λ
dcp
dλ

. (2.7.116)

It is clear from (2.7.116) that cg �= cp. However, if cp does not depend on the
wavelength, λ (or wavenumber, k), then cg = cp. If dcp

dk > 0, then cg > cp, and

if dcp
dk < 0, then cg < cp. If cp is minimum for some k, then dcp

dk = 0, and hence,
cg = cp. For shallow water waves, ω2 = (gh)k2 or cp =

√
gh, and then cg = cp.

In case of gravity-capillary waves in deep water, cp has a minimum for k =

kmin =
√

gρ/T , and hence, cg = (cp)m. Figure 2.5 reveals that on the left of the

minimum, dcp
dk > 0, and hence, result (2.7.116) confirms that cg > cp, whereas on

the right of the minimum, dcp
dk < 0, and hence, cg < cp.

Finally, formula (2.7.116) can also be written in the form

cg = cp

(
1− k

dcp
dω

)−1

= cp

(
1− ω

cp

dcp
dω

)−1

. (2.7.117)

This is known as the Rayleigh formula for one-dimensional dispersive waves. The
general theory of dispersive waves was developed by Whitham in 1960s that will be
discussed in Chapter 7.

Example 2.7.5 (Total Energy of Pure Gravity Waves on Water of Constant Depth).
We calculate the potential energy and the kinetic energy of pure gravity waves on
water constant depth h. The potential energy over a single wavelength λ is given by

V =
gρ

2

∫ λ

0

η2 dx =
1

4
gρa2, (2.7.118)

where the free surface elevation η given by (2.7.37) is used to obtain the above
value V .

The kinetic energy T is given by

T =
1

2
ρ

∫ λ

0

dx

∫ n

−h

(
φ2
x + φ2

z

)
dz

which can be transformed into

T = −1

2
ρ

∫
φ
∂φ

∂n
dS =

1

2
ρ

∫ λ

0

(
φ
∂φ

∂z

)
z=0

dx

which is, by using (2.7.30),
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=
1

2
ρga2

∫ λ

0

sin2(kx− ωt) dx =
1

4
gρa2λ. (2.7.119)

Hence, the total energy per unit wavelength is

E = T + V =
1

2
gρa2λ. (2.7.120)

Thus, the total energy is half kinetic and half potential.
The horizontal and vertical velocity components of water particles are

u = φx =

(
agk

ω

)
cosh k(z + h)

cosh kh
exp

[
i(ωt− kx)

]
, (2.7.121)

v = φz = i

(
agk

ω

)
sinh k(z + h)

cosh kh
exp

[
i(ωt− kx)

]
. (2.7.122)

So, it is possible to determine the actual path of a fluid particle in motion from
(2.7.121)–(2.7.122). In terms of particle displacements X and Z of a particle whose
mean motion is (x, z), we get Ẋ = u and Ż = v in which terms of the second order
are neglected. So integration gives

X =

(
agk

ω2

)
cosh k(z + h)

cosh kh
sin(ωt− kx) +X0, (2.7.123)

Z =

(
agk

ω2

)
sinh k(z + h)

cosh kh
cos(ωt− kx) + Z0, (2.7.124)

where X0 and Z0 are constants of integration, and they move the origin of X and Z.
Eliminating (ωt− kx) from (2.7.123)–(2.7.124) gives the equation of a particle path
as

(X −X0)
2

cosh2 k(z + h)
+

(Z − Z0)
2

sinh2 k(z + h)
=

a2

sinh2 kh
. (2.7.125)

This represents an ellipse with the semi-major axis in the x-direction of magnitude
a cosech kh cosh k(z+ h) and with semi-minor axis in the z-direction of magnitude
a cosech kh cosh k(z+h). Both semi-axes decrease with depth. When X0 = Z0 = 0
and z = −h, X �= 0, Z = 0, and particles oscillate along the bottom. But for a real
liquid, viscosity would prevent such oscillations.

In deep water (kh → ∞), both cosh k(z+h)/ cosh kh and cosh k(z+h)/sinh kh
tend to exp(kz); hence, (2.7.123)–(2.7.124) give

X −X0 = aekz sin(ωt− kx), (2.7.126)

Z − Z0 = aekz cos(ωt− kx). (2.7.127)

These results show that the paths of the fluid particles are circles of radius aekz .
Clearly, the radius decreases exponentially with increasing depth.
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2.8 The Energy Equation and Energy Flux

In dealing with surface gravity waves, it is important and useful to derive an equation
that describes the flow of energy in the fluid. Thus, an energy equation is obtained
by taking the scalar product of the velocity vector u with the respective terms of the
momentum equation (2.7.13), with ∇φ replaced by u so that

∂u

∂t
+∇

(
1

2
u2 +

p

ρ
+ gz

)
= 0. (2.8.1)

We take the scalar product of u with (2.8.1) and use u · u = u2 to obtain

∂

∂t

(
1

2
u2

)
+ u · ∇

(
1

2
u2 +

p

ρ
+ gz

)
= 0. (2.8.2)

Since divu = 0, we can add ( 12u
2 + p/ρ+ gz) divu to (2.8.2) and use ∂z/∂t = 0

and the formula for div(au) with any scalar a to derive, multiplying by ρ,

∂

∂t

(
1

2
ρu2 + ρgz

)
+ div

[
u

(
1

2
ρu2 + p+ gρz

)]
= 0. (2.8.3)

The terms 1
2ρu

2 and ρgz represent the kinetic and potential energies, respectively,
and equation (2.8.3) describes a balance between the rate of change of energy and
energy flux terms, including convection by the velocity and the rate of working of the
pressure. In fact, the rate of change of energy per unit volume is described in terms
of the divergence of the energy flux F

F = u

(
1

2
ρu2 + p+ gρz

)
. (2.8.4)

Equation (2.8.3) gives, writing E = 1
2ρu

2 + ρgz,

∂E

∂t
+ divF = 0. (2.8.5)

This is usually called the law of conservation of energy.
In order to see some physical meaning of (2.8.3), we integrate it over some vol-

ume V enclosed by a closed surface S. By using the Gauss divergence theorem, we
can transform the volume integral over V to a surface integral over S. Consequently,

∂

∂t

∫
V

ρ

(
1

2
u2 + gz

)
dV = −

∫
V

div

[
ρu

(
1

2
u2 +

p

ρ
+ gz

)]
dV

= −
∫
S

(
1

2
ρu2 + p+ ρgz

)
u · n dS. (2.8.6)

This represents the rate of change of the total energy in a volume V that is equal to
the amount of energy flowing out of this volume across the surface S per unit time.
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For this reason F is called the energy flux density vector. Its magnitude represents
the amount of energy passing across a unit surface area normal to the velocity field u
per unit time. We may rewrite the right-hand side of (2.8.6) as

−
∫
S

u

(
1

2
ρu2

)
· n dS −

∫
S

pu · n dS −
∫
S

ρgzu · n dS. (2.8.7)

The first term is the kinetic energy transported across S per unit time by the fluid; the
second term is the work done by the pressure forces on the fluid within the surface,
and the third term is the work done by the gravitational force acting on the system.

2.9 Exercises

1. Use the Hamilton principle to derive
(i) the Newton second law of motion, and

(ii) the equation for a simple harmonic oscillator.
2. Derive the equation of motion of an elastic beam of length �, line density ρ,

cross-sectional moment of inertia I , and modulus of elasticity E which is fixed
at each end and performs small transverse oscillations in the horizontal (x, t)-
plane.

3. Apply the variational principle

δ

∫∫
Ldx dt = 0,

where the Lagrangian L = 1
2 (u

2
xx + utux) + u3

x, to derive the equation

uxt + 6uxuxx + uxxxx = 0.

Show that this equation leads to the KdV equation when η = ux.
4. Use the variational principle

δ

∫∫ (
1− u2

t + u2
x

) 1
2 dx dt = 0

to derive the Born and Infeld (1934) equation(
1− u2

t

)
uxx + 2uxutuxt −

(
1 + u2

x

)
utt = 0.

5. Show that the variational principle (Whitham 1967a, 1967b)

δ

∫∫ {
1

2
ψxψt +

1

2
c0ψ

2
x +

1

6
c0ψ

3
x +

1

12
c0h

2
0

(
χ2 + 2χxψx

)}
dx dt = 0

gives the coupled equations

ψxt + c0(1 + ψx)ψxx +
1

6
c0h

2
0χxx = 0, ψxx − χ = 0,

where c0 and h0 are constants.
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6. Show that the variational principle (Whitham 1967a, 1967b)

δ

∫∫∫ {
φt + αβt +

1

2

(
u2 + v2

)}
dx dy dt = 0

leads to the equations

ux + vy = 0,
Dα

Dt
+ fv = 0,

Dβ

Dt
− u = 0,

where u = φx + αβx − α, v = φy + αβy − fβ, and

−p = φt + αβt +
1

2

(
u2 + v2

)
.

7. If L = L(ω, k) where ω = −θt and k = θx, show that the variational principle
(Whitham 1965a, 1965b; Lighthill 1967)

δ

∫∫
L(ω, k) dt dx = 0

gives the Euler–Lagrange equation

∂

∂t
(Lω) =

∂

∂x
(Lk).

Show also that this equation reduces to a second-order quasi-linear partial dif-
ferential equation for θ(x, t)

Lωωθtt − 2Lωkθxt + Lkkθxx = 0.

8. Derive the Boussinesq equation for water waves

utt − c2uxx − μuxxtt =
1

2

(
u2

)
xx

from the variational principle

δ

∫∫
Ldx dt = 0,

where L ≡ 1
2φ

2
t − 1

2c
2φ2

x + 1
2μφ

2
xt − 1

6φ
3
x and φ is the potential for u where

u = φx.
9. Show that the Euler equation of the variational principle

δI
[
u(x, y)

]
= δ

∫∫
D

F (x, y, u, p, q, l,m, n) dx dy = 0

is

Fu − ∂

∂x
Fp −

∂

∂y
Fq +

∂2

∂x2
Fl +

∂2

∂x∂y
Fm +

∂2

∂y2
Fn = 0,

where

p = ux, q = uy, l = uxx, m = uxy, and n = uyy.
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10. In each of the following cases, apply the variational principle or its simple ex-
tension with appropriate boundary conditions to derive the corresponding equa-
tions:

(a) F = u2
xx + u2

yy + u2
xy ,

(b) F = 1
2 [u

2
t − α2(u2

x + u2
y)− β2u2],

(c) F = 1
2 (utux + αu2

x + βu2
xx),

(d) F = 1
2 (u

2
t + α2u2

xx),

(e) F = p(x)u′ 2 + d
dx (q(x)u

2)− [r(x) + λs(x)]u2,

where p, q, r, and s are given functions of x, and α and β are constants.
11. Derive the Schrödinger equation from the variational principle

δ

∫∫∫
D

[
�
2

2m

(
ψ2
x + ψ2

y + ψ2
z

)
+ (V − E)ψ2

]
dx dy dz = 0,

where h = 2π� is the Planck constant, m is the mass of a particle moving under
the action of a force field described by the potential V (x, y, z), and E is the total
energy of the particle.

12. Derive the Poisson equation ∇2u = F (x, y) from the variational principle with
the functional

I(u) =

∫∫
D

[
u2
x + u2

y + 2uF (x, y)
]
dx dy,

where u = u(x, y) is given on the boundary ∂D of D.
13. Prove that the Euler–Lagrange equation for the functional

I =

∫∫∫
D

f(x, y, z, u, p, q, r, l,m, n, a, b, c) dx dy dz

is

Fu − ∂

∂x
Fp −

∂

∂y
Fq −

∂

∂z
Fr +

∂2

∂x2
Fl +

∂2

∂y2
Fm +

∂2

∂z2
Fn

+
∂2

∂x∂y
Fa +

∂2

∂y∂z
Fb +

∂2

∂z∂x
Fc = 0,

where (p, q, r) = (ux, uy, uz), (l,m, n) = (uxx, uyy, uzz), and (a, b, c) =
(uxy, uyz, uzx).

14. Derive the equation of motion of a vibrating string of length l under the action
of an external force F (x, t) from the variational principle

δ

∫ t2

t1

∫ l

0

[(
1

2
ρu2

t − T ∗u2
x

)
+ ρuF (x, t)

]
dx dt = 0,

where ρ is the line density and T ∗is the constant tension of the string.
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15. The kinetic and potential energies associated with the transverse vibration of a
thin elastic plate of constant thickness h are

T =
1

2
ρ

∫∫
D

u̇2 dx dy,

V =
1

2
μ0

∫∫
D

[
(∇u)2 − 2(1− σ)

(
uxxuyy − u2

xy

)]
dx dy,

where ρ is the surface density and μ0 = 2h3E/3(1− σ2).
Use the variational principle

δ

∫ t2

t1

∫∫
D

[
(T − V ) + fu

]
dx dy dt = 0

to derive the equation of motion of the plate

ρü+ μ0∇4u = f(x, y, t),

where f is the transverse force per unit area acting on the plate.
16. The kinetic and potential energies associated with wave motion in elastic solids

are

T =
1

2

∫∫∫
D

ρ
(
u2
t + v2t + w2

t

)
dx dy dz,

V =
1

2

∫∫∫
D

[
λ(ux + vy + wz)

2 + 2μ
(
u2
x + v2y + w2

z

)
+ μ

{
(vx + uy)

2 + (wy + vz)
2 + (uz + wx)

2
}]

dx dy dz.

Use the variational principle

δ

∫ t2

t1

∫∫∫
D

(T − V ) dx dy dz dt = 0

to derive the equation of wave motion in an elastic medium

(λ+ μ) grad divu+ μ∇2u = ρutt,

where u = (u, v, w) is the displacement vector.

17. Apply the variational principle (2.5.2) with the Lagrangian
L = 1

2 (utux − u2
xx − 2u3

x) to derive uxt − 6uxuxx + uxxxx = 0. Show that this
equation leads to the KdV equation when ux = η.

18. An inviscid and incompressible fluid flow under the conservative force field F =
−∇Ω with a potential Ω = gz, where g is the constant acceleration due to
gravity, is governed by the Euler equation (2.7.1).
(a) Show that

∂u

∂t
+∇

(
1

2
u · u+

p

ρ
+Ω

)
− u×ωωω = 0,

where ∇× u = ωωω is the vorticity vector.
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(b) Taking the scalar product of the above equation with u, derive the result

∂

∂t

(
1

2
u · u

)
+ (u · ∇)

(
1

2
u · u+

p

ρ
+Ω

)
= 0.

(c) Derive the energy equation

∂

∂t

(
1

2
ρu · u+ ρΩ

)
+∇ ·

[
u

(
1

2
ρu · u+ p+ ρΩ

)]
= 0.

Explain the significance of each term of the energy equation.
19. The three-dimensional Plateau problem is governed by the functional

I
[
u(x, y, z)

]
=

∫∫∫
D

(
1 + p2 + q2 + r2

) 1
2 dx dy dz

where p = ux, q = uy , and r = uz .
Find the Euler–Lagrange equation of this functional.

20. (a) Show that the Euler–Lagrange equation for the functional

I(u) =

∫ b

a

F (x,u,u′) dx,

where u = (u1, u2, . . . , un), ui ∈ C2[a, b], ui(a) = ai, and ui(b) = bi, i =
1, 2, . . . , n, is a system of n ordinary differential equations

Fui −
d

dx
Fu′

i
= 0, i = 1, 2, . . . , n.

(b) If F in (a) does not depend explicitly on x, then show that

F −
n∑

i=1

u′
iFu′

i
= const.

21. Consider a simple pendulum of length � with a bob of mass m suspended from
a frictionless support. Apply the Hamilton principle to the functional

I[θ(t)] =

∫ t2

t1

(T − V ) dt,

where T = 1
2m�2θ̇2 and V = mg(� − � cos θ) to derive the equation of the

simple pendulum

θ̈ + ω2 sin θ = 0, ω2 =
g

�
.

22. Derive the Euler–Lagrange equation for the functional

I(y(x)) =

∫ b

a

F (x, y, y′) dx,

where
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(a) F (x, y, y′) = u(x, y)
√

1 + y′2,

(b) F (x, y, y′) = 1√
2g
( 1+y′2

y1−y )
1
2 with y(a) = y1, y(b) = y2 < y1 (Brachis-

tochrone problem).
23. The Fermat principle in optics states that light travels from one point A(x1, y1)

to another point B(x2, y2) in an optically homogeneous medium along a path in
a minimum (least) time. The time taken for the light beam to travel from A to B
is

I
(
y(x)

)
=

∫ t2

t1

dt =

∫ x2

x1

(
dt

ds

)(
ds

dx

)
dx =

1

c

∫ x2

x1

√
1 + y′2 dx,

where c = ds
dt is the constant velocity of light.

Apply the variational principle

δI =
1

c
δ

∫ √
1 + y′2 dx = 0

to derive the Snell law of refraction of light, n sinφ = const., where n = 1
c is

the refractive index of the medium and φ is the angle made by the tangent to the
minimum path with the vertical y-axis.

24. (a) Derive the principle of least action for a conservative system

δ

∫ t2

t1

2T dt = 0,

where the time integral of 2T is called the action of the system.
(b) Explain the significance of this principle.

25. Show that the Euler–Lagrange equation of the variational principle

δI = δ

∫ b

a

F
(
x, y, y′, y′′, . . . , y(n)

)
dx = 0

is an ordinary differential equation of order 2n

Fy −
d

dx
Fy′ +

d2

dx2
Fy′′ − · · ·+ (−1)n

dn

dxn
Fy(n) = 0.

26. The electrostatic potential φ(x, y, z) is defined in terms of the electrostatic field
E so that E = −∇φ in a domain D of volume V , where φ is specified on ∂D.
Show that φ that minimizes the electric energy functional

I[φ] =
e0
2

∫∫∫
V

E2dv =
e0
2

∫∫∫
V

(∇φ)2 dv

satisfies the Laplace equation.
27. Use the Lagrangian L = T −V and the Lagrange equation to derive the Newton

laws of motion of a particle of mass m moving under a force, F = −∇V , in
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(a) one dimension,
(b) a two dimensional plane in Cartesian coordinates,
(c) a two dimensional plane in polar coordinates.

28. Seek a traveling wave solution

rn = A cos θ = A cos(ωt− kn)

of the linearized Toda lattice equation

mr̈n = (ab)(rn+1 − 2rn + rn−1),

where rn = (yn+1 − yn) and yn is the displacement of the nth mass.
Show that the dispersion relation is

ω2 =

(
4ab

m

)
sin2

(
k

2

)
.

29. Consider the Ablowitz and Ladik (AL) equation for the lattice system (1976a,
1976b)

i
dφn

dt
+ (φn+1 + φn−1)

(
1 +

γ

2
|φn|2

)
= 0.

(a) Using φn = e2itψn, show that the solution of the AL equation reduces to
that of the NLS equation

iψt + ψxx + γ|ψ|2ψ = 0,

as the ratio of anharmoncity to dispersion (γ) tends to zero.
(b) Show that the solution of the above AL equation is

φn(t) = Acn
[
β(n− vt); k

]
exp

[
−i(ωt+ αn+ φ0)

]
,

selecting the units of φn so that γ
2 = 1, the parameters A, ω and v are given by

A =
ksn(β; k)

dn(β; k)
, ω = −2cn(β; k) cosα

dn2(β; k)
, v = −2sn(β; k) sinα

β dn(β; k)
,

where 0 < β < ∞, −π ≤ α ≤ π, and 0 < k < 1.
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