
Chapter 2
Clifford Algebra in Euclidean 3-Space

2.1 Reflections, Rotations, and Quaternions in E3

2.1.1 Using Square Matrices to Represent Vectors

One frequently represents a vector x in the 3-dimensional Euclidean space E3 by
x D xi C yj C zk or .x; y; z/. However, neither of these notations easily generalize
to higher dimensions. Alternate notations which do easily generalizes to higher
dimensions are x D x1i1 C x2i2 C x3i3 and

x D �
x1; x2; x3

� D x1 .1; 0; 0/C x2 .0; 1; 0/C x3 .0; 0; 1/ : (2.1)

These alternate notations have their own problem. In most areas of mathematics,
we expect a superscript to designate an exponent. You might think that we
could reserve superscripts for exponents and use subscripts to designate different
coordinates or other labels. This approach is sometimes used for so-called flat
spaces. However, if we accept Einstein’s Theory of General Relativity, we live in
a space that is curved. To reserve superscripts for exponents in the study of curved
spaces is simply too restrictive and inconvenient.

So how can you distinguish a superscript representing an exponent from a
superscript representing some kind of label? If you see a superscript outside of some
bracket (usually round), you can be confident that it represents an exponent. For
example,

.a/2 D aa:

On the other hand, if the meaning is clear from the context, the brackets may be
omitted. For example, in the next chapter, I will write c to represent the speed of
light and c2 to represent the square of the speed of light.

I now turn to another issue. Usually, one represents a vector as a linear
combinations of unit row vectors as in (2.1), or a linear combination of unit column
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4 2 Clifford Algebra in Euclidean 3-Space

vectors. However, as we shall soon see, it is sometimes useful to represent a vector
as a linear combination of square matrices. For example, we could write

x D x1e1 C x2e2 C x3e3; (2.2)

where

e1 D

2

6
6
4

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

3

7
7
5 ; e2 D

2

6
6
4

0 0 1 0

0 0 0 �1
1 0 0 0

0 �1 0 0

3

7
7
5 ; and

e3 D

2

6
6
4

1 0 0 0

0 1 0 0

0 0 �1 0

0 0 0 �1:

3

7
7
5 (2.3)

At first sight, this may seem to be a pointless variation. However, representing
a vector in terms of these square matrices enables us to multiply vectors in a way
that would not otherwise be possible. We should first note that these matrices have
some special algebraic properties. In particular,

.e1/2 D .e2/2 D .e3/2 D I: (2.4)

where I is the identity matrix. Furthermore,

e2e3 C e3e2 D e3e1 C e1e3 D e1e2 C e2e1 D 0: (2.5)

A set of matrices that satisfy (2.4) and (2.5) is said to form the basis for the
Clifford algebra associated with Euclidean 3-space. There are matrices other than
those presented in (2.3) that satisfy (2.4) and (2.5). (See Prob. 2.) In the formalism
of Clifford algebra, one never deals with the components of any specific matrix
representation. We have introduced the matrices of (2.3) only to demonstrate that
there exist entities that satisfy (2.4) and (2.5).

Now let us consider the product of two vectors. Suppose y D y1e1Cy2e2Cy3e3;
then

xy D .x1y1 C x2y2 C x3y3/I C x2y3e2e3 C x3y2e3e2

C x3y1e3e1 C x1y3e1e3 C x1y2e1e2 C x2y1e2e1:

Using the relations of (2.5), we have

xy D .x1y1 C x2y2 C x3y3/I C .x2y3 � x3y2/e2e3

C .x3y1 � x1y3/e3e1 C .x1y2 � x2y1/e1e2: (2.6)

(Note xy ¤ yx.)
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From (2.6), we can construct formulas for the familiar scalar product hx; yi and
the less familiar wedge product x ^ y. In particular,

hx; yi I D 1

2
.xy C yx/ D �

x1y1 C x2y2 C x3y3
�

I, and (2.7)

x ^ y D 1

2
.xy � yx/ D .x2y3 � x3y2/e2e3

C .x3y1 � x1y3/e3e1 C .x1y2 � x2y1/e1e2. (2.8)

With a slight abuse of notation, we frequently omit the I that appears in (2.7).
We note that the coefficients of e2e3, e3e1, and e1e2 that appear in the wedge

product x ^ y are the three components of the cross product x � y.

2.1.2 1-Vectors, 2-Vectors, 3-Vectors, and Clifford Numbers

By considering all possible products of e1, e2 , and e3, one obtains an 8-dimensional
space spanned by fI; e1; e2; e3; e2e3; e3e1; e1e2; e1e2e3g, where

e2e3 D

2
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4

0 0 �1 0

0 0 0 1

1 0 0 0

0 �1 0 0
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�1 0 0 0

3
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7
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e1e2 D

2

6
6
4

0 �1 0 0

1 0 0 0

0 0 0 �1
0 0 1 0

3

7
7
5 , and e1e2e3 D

2

6
6
4

0 �1 0 0

1 0 0 0

0 0 0 1

0 0 �1 0

3

7
7
5 :

One might think that one could obtain higher order products. However, any such
higher order product will collapse to a scalar multiple of one of the eight matrices
already listed. For example:

e1e2e3e2 D e1e2.e3e2/ D �e1e2.e2e3/ D �e1.e2e2/e3 D �e1e3 D e3e1.

In this fashion, we have obtained an 8-dimensional vector space that is closed
under multiplication. A vector space closed under multiplication is called an
algebra. An algebra that arises from a vector space with a scalar product in the
same manner as this example does from E3 is called a Clifford algebra. (We will
give a more formal definition of a Clifford algebra in Chap. 4.)
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Fig. 2.1 The vector x’ is the
result of reflecting x with
respect to the plane
perpendicular to the unit
vector a

a x,a

a

x'

x

I label the matrices e1, e2, and e3 to be Dirac vectors. Any linear combination of
Dirac vectors is a 1-vector. A linear combination of e2e3, e3e1, and e1e2 is a 2-vector.
In the same vein, a scalar multiple of I is a 0-vector and any scalar multiple of e1e2e3
is a 3-vector. A general linear combination of vectors of possibly differing type is a
Clifford number.

It will be helpful to use an abbreviated notation for products of Dirac vectors. In
particular, let

e2e3 D e23, e3e1 D e31, e1e2 D e12, and e1e2e3 D e123.

2.1.3 Reflection and Rotation Operators

The algebraic properties of Clifford numbers provide us with a convenient way
of representing reflections and rotations. Suppose a is a vector of unit length
perpendicular to a plane passing through the origin and x is an arbitrary vector inE3:

(See Fig. 2.1.) In addition, suppose Kx is the vector obtained from x by reflection of
x with respect to the plane corresponding to a. Then

Kx D x � 2 ha; xi a: (2.9)

From (2.7), it is clear that

2 ha; xi a D .ax C xa/ a D axa C x.a/2 D axa C x.

So (2.9) becomes
Kx D �axa (2.10)

A rotation is the result of two successive reflections (See Fig. 2.2). From Fig. 2.2,
it is clear that x̋ is the vector that results from rotating vector x through the angle
2 about an axis with the direction of the axial vector a � b. We can rewrite this
relation in the form:

x̋ D �bKxb D baxab, or

x̋ D R�1xR where R D ab. (2.11)
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Fig. 2.2 When x is subjected
to two successive reflections
first with respect to a plane
perpendicular to a and then
with respect to a plane
perpendicular to b, the result
is a rotation of x about an axis
in the direction of a � b. The
angle of rotation is twice the
angle between a and b

It is useful to explicitly compute the product ab and interpret the separate
components. If

a D a1e1 C a2e2 C a3e3,

and

b D b1e1 C b2e2 C b3e3,

then from (2.7) and (2.8):

R D ab D 1

2
.ab C ba/C 1

2
.ab � ba/

D I ha;bi C a ^ b.

Since both a and b are vectors of unit length, ha;bi D cos . Furthermore, the
magnitude of a � b is sin . Although a ^ b unlike a � b is a 2-vector, a ^ b has the
same three components as a � b. For this reason, we can write

a ^ b D �
n1e23 C n2e31 C n3e12

�
sin ,

where n1; n2; and n3 are the direction cosines of the axial vector a � b. With this
thought in mind, we have

R D I cos C .n1e23 C n2e31 C n3e12/ sin .
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Note! These ideas can be generalized to higher dimensions. For higher dimen-
sions the entity a ^ b remains well defined, while a � b becomes meaningless. In
higher dimensions, you no longer have an axis of rotation; so you must think of the
rotation as occurring in the 2-dimensional plane spanned by a and b.

We should note that  represents 1
2

the angle of rotation. If � is the actual angle
of rotation, we then have

R D I cos
�

2
C .n1e23 C n2e31 C n3e12/ sin

�

2
. (2.12)

To obtain R�1 from R, one can replace � by �� or reverse the order of the Dirac
vectors. In either case,

R�1 D I cos
�

2
� .n1e23 C n2e31 C n3e12/ sin

�

2
. (2.13)

Returning to (2.11), we see that there appears to be two representations for the
same rotation. In the context of (2.11), R is equivalent to �R. From (2.12), we
see that changing the sign of R is equivalent to replacing � by � C 2� . Indeed,
the operator R does not have the expected periodicity of 2� , but it does have a
periodicity of 4� . One’s first reaction is to think that Clifford algebra has introduced
an undesirable complication. In the context of (2.11), this may be the case. However,
there are circumstance for which this “complication” corresponds to physical reality.
We will discuss this point in the next section.

Meanwhile, we note that for k reflections:

Kx D .�1/kakak�1 : : : a1xa1a2 : : : ak D .�1/kT�1xT. (2.14)

2.1.4 Quaternions

Using quaternions, you can represent a rotation operator in a form essentially
identical to that which appears in (2.12). What are quaternions? They were invented
(discovered?) by William Rowan Hamilton (1805–1865) in 1843. Before that
time, it had been observed that the multiplication of complex numbers could be
interpreted as the multiplication of points in a 2-dimensional plane. This was first
done by Casper Wessel (1745–1818) in 1797 and then again independently by
Jean Robert Argand (1768–1822) in 1806 (Kramer 1981, pp. 72–73). In particular,
instead of writing:

.aC ib/.c C id / D .ac � bd/C i.ad C bc/, one can write,

.a; b/.c; d / D .ac � bc; ad C bc/.

The question that Hamilton asked himself was, “Could there be a 3-dimensional
version of this multiplication that would be useful for the study of physics?” Since
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his idea was to generalize the notion of complex numbers, he was investigating
triples of the form: a C ib C jc. You can invent all kinds of multiplication rules,
but he was looking for a rule that would be meaningful and useful for the study of
physics. Starting in 1828, he spent 15 years on this project without success. Finally
on October 16, 1843 (a Monday), he had an eureka experience. He was walking
along side of the Royal Canal in Dublin with his wife to preside at a Council meeting
of the Royal Irish Academy. Then it dawned on him that he should introduce a fourth
dimension. In this joyful moment, he carved the formulas for multiplying numbers
of the form: aC ibCjcCkd on a stone of the Broome Bridge (or Brougham Bridge
as he called it). ((O’Connor and Robertson: Hamilton) and (Boyer 1968, p. 625)).

Time has obliterated the original carving but in 1958, the Royal Irish Academy
erected a plaque commemorating the event:

Here as he walked by
on the 16th of October1843

Sir William Rowan Hamilton
in a flash of genius discovered
the fundamental formula for

quaternion multiplication
i2 D j2 D k2 D ijk D � 1

and cut it in a stone on this bridge.

From the formula that Hamilton carved in stone, it can be shown that

jk D �kj D i, ki D �ik D j, and ij D �ji D k.

(See Prob. 3.)
Due to this achievement, William Hamilton is known as the founder of modern

“abstract algebra.”
In the theory of quaternions, a rotation operator corresponding to that which

appears in (2.12) is written in the form:

R D I cos
�

2
� .n1i C n2j C n3k/ sin

�

2
. (2.15)

Comparison with (2.12) suggests that we can identify identify i, j, and k,
respectively, with �e23, �e31, and �e12. As mentioned above, the binary relations
for quaternion multiplication are:

.i/2 D .j/2 D .k/2 D �1, (2.16)

jk D �kj D i, (2.17)

ki D �ik D j, and (2.18)

ij D �ji D k. (2.19)
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You should check that the same equations hold for the corresponding 2-vectors
associated with E3. Namely:

.�e23/2 D .�e31/2 D .�e12/2 D �I; (2.20)

.�e31/.�e12/ D �.�e12/.�e31/ D .�e23/; (2.21)

.�e12/.�e23/ D �.�e23/.�e12/ D .�e31/; (2.22)

and .�e23/.�e31/ D �.�e31/.�e23/ D .�e12/: (2.23)

In Hamilton’s formulation, a vector x is represented as x1iCx2j C x3k and the
rotated vector Kx is computed by the quaternion version of (2.12).

Neither the usual vector formulation nor the Hamilton approach makes a good
distinction between an ordinary vector and an axial or pseudo-vector.

As we have seen, in the formalism of Clifford algebra, an ordinary vector appears
as a l-vector and a plane of rotation appears as a 2-vector. In three dimensions, a 1-
vector and a 2-vector both have three components. In the usual vector formalism,
they both appear as 1-vectors. In the quaternion formulation, they both appear as
2-vectors.

The distinction between the two entities arises if we consider a reflection. If, for
example, we consider a reflection with respect to the y-z plane, we have

Kx D �e1xe1.

If

x Dx1e1Cx2e2Cx3e3, then

x0 D �x1e1Cx2e2Cx3e3.
On the other hand, under the same reflection the 2-vector

X D x1e23Cx2e31Cx3e12 D x1e2e3Cx2e3e1Cx3e1e2
becomes

KX D x1.�e1e2e1/.�e1e3e1/C x2.�e1e3e1/.�e1e1e1/C x3.�e1e1e1/.�e1e2e1/ or

KX D x1e23�x2e31�x3e12.
This same distinction is carried out in the usual vector formulation but in a

somewhat awkward fashion. Let us consider the cross product x � y. Suppose

x Dx1e1Cx2e2Cx3e3, and

y Dy1e1Cy2e2Cy3e3, then

x � y D.x2y3 � x3y2/e1 C .x3y1 � x1y3/e2 C .x1y2 � x2y1/e3.
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How should the cross product transform under a reflection with respect to the y-z
plane? If we treat x � y as an ordinary vector, then

.x � y/0D �.x2y3 � x3y2/e1 C .x3y1 � x1y3/e2 C .x1y2 � x2y1/e3.

On the other hand, if we carry out the same reflection on x and y before computing
the cross product, we have

Kx D �x1e1Cx2e2Cx3e3,

Ky D �y1e1Cy2e2Cy3e3, and

Kx � Ky D.x2y3 � x3y2/e1 � .x3y1 � x1y3/e2 � .x1y2 � x2y1/e3.
When this second interpretation of the impact of a reflection on x � y is applied,

x � y is said to be an axial or pseudo-vector. In the context of Clifford algebra a
pseudo-vector is a 2-vector and this awkwardness disappears. Similarly, the entity
hx � y, zi ; which is referred to as a pseudo-scalar in the usual vector formulation,
becomes a 3-vector in Clifford algebra.

In three dimensions, it is still useful to use the usual cross product, when one
seeks a vector that is perpendicular to a plane spanned by two vectors such as x
and y. Thus, we will still use the usual definition:

x � y D.x2y3 � x3y2/e1 C .x3y1 � x1y3/e2 C .x1y2 � x2y1/e3.

However, we will also need the notion of a wedge product that we defined in (2.8).
Namely:

x ^ y D1

2
.xy � yx/ D .x2y3 � x3y2/e23 C .x3y1 � x1y3/e31 C .x1y2 � x2y1/e12.

In closing this section, we wish to bring to your attention the notion of orthogonal
transformations. An orthogonal transformation is simply a product of reflections.
This terminology is chosen when one wishes to focus on the fact that the standard
scalar product inEn is preserved. In this chapter, we have restricted ourselves toE3.
In this context, it is appropriate that you verify the fact that products of reflections
do indeed preserve the scalar product (at least in E3). (See Probs. 6 and 7.)

The product of an even number of reflections (a rotation) is called a proper
orthogonal transformation, while the product of and odd number of reflections is
called an improper orthogonal transformation.

Problem 1. From the form of (2.11), it is clear that if the rotation operators R and
KR represent two successive rotations, then the combined rotation is represented by
the product R KR. Use this fact and (2.12) to show that a 900 rotation about the y-axis
followed by a 900 rotation about the x-axis is equivalent to a 1200 rotation about the
axis, which has the direction of the vector .1; 1; 1/.
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Problem 2. There are many representations that can be used for e1, e2, and e3. One
convenient representation is that using Pauli matrices � 1, � 2, and � 3. That is, we
can let

e1 D �1 D
�
0 1

1 0

�
, e2 D �2 D

�
0 �i
i 0

�
, and e3 D �3 D

�
1 0

0 �1
�

.

Show that in this representation, (2.4) and (2.5) are satisfied.

Problem 3. If you assume associativity for the multiplication of quaternions, then
using the equations that appears on Hamilton’s plaque, we have

ijk D � 1 ) .i/2jk D �i ) �jk D �i ) jk D i:

(a) In a similar fashion, show

ki D j and ij D k.

(b) Also show that
kj D �i, ik D �j, and ji D �k.

Problem 4. In the representation introduced in Prob. 2, the quaternions i, j, and k
are represented by complex 2 � 2 matrices. In particular,

i D �e23 D �i� 1 D
�
0 �i

�i 0

�
, j D �e31 D �i� 2 D

�
0 �1
1 0

�
,

and k D �e12 D �i� 3 D
� �i 0
0 i

�
.

In this representation, the rotation operator

R D I cos
�

2
C .e23n1 C e31n2 C e12n3/ sin

�

2

D
"

cos �
2

C in3 sin �
2
.n2 C in1/ sin �

2

�.n2 � in1/ sin �
2

cos �
2

� in3 sin �
2

#

:

Show that in this representation, the matrix representing R is unitary and has
determinant equal to 1. (From this result, it is clear that the algebraic properties
of the double-valued rotation operators for three dimensions can be ascertained by
studying the algebraic properties of 2 � 2 unitary matrices whose determinant is 1.
For this reason, the group of double-valued rotation operators is labeled SU.2/: The
letter U indicates “unitary”. The letter S indicates “special”, which in the context of
group representation theory means the determinant is 1.)
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Problem 5. Suppose

R D I cos
�

2
C On sin

�

2
, where

On Dn1e23 C n2e31 C n3e12.

(a) Using the fact that

.n1/2 C .n2/2 C .n3/2 D 1, show that

. On/2 D �1:
(b) Show that exp

�On. �
2
/
� D R: Hint: represent exp

� On. �
2
/
�

by a Taylor’s series and
then separate the odd and even odd and even powers On.

Problem 6. Suppose Kx D �axa and Ky D �aya, where a is a unit vector. Show
hKx; Kyi D hx; yi. (Remember from (2.7), hx; yi I D 1

2
.xy C yx/:)

Problem 7. Suppose Kx D .�1/kakak�1 : : : a1xa1a2 : : : ak and y0 D .�1/kakak�1
: : : a1ya1a2 : : : ak . Show hKx; Kyi D hx; yi.

2.2 The 4� Periodicity of the Rotation Operator

From the consequences of the last section, we see that if the vector x.�/ represents
the result of rotating vector x.0/ through an angle � , then we can represent the
rotation in the form:

x.�/ D R�1.�/x.0/R.�/, where

R.�/ D I cos
�

2
C On sin

�

2
,

On Dn1e23Cn2e31Cn3e12, and

n1, n2, along with n3 are the direction cosines for the axis of rotation.
Although x.�/ has a period of 2� , R.�/ has a period of 4�! With the

development of quantum mechanics in the 1920s, it became recognized that a 4�
periodicity sometimes occurs in nature. To explain the observed structure of the
hydrogen energy spectrum, it was necessary to attribute to the electron a spin of 1

2

and a periodicity of 4� . Later, it became recognized that some objects larger than
electrons also have a 4� periodicity (Bolker 1973). A demonstration of this fact has
been put forward by Edgar Riefin (1979).

For an object to display a 4� periodicity, it is necessary that it be in some sense
attached to its surroundings.
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Fig. 2.3 A book with a 4� periodicity

To illustrate this, you may wish to carry out a demonstration. First, hold a glass of
water in the palm of your hand. The hand holding the glass may be left or right but
it is important that your hand be under the glass with palm up. Then maintain a firm
grip on the glass and rotate it 3600 without moving your feet or spilling any water.
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When you have completed this maneuver, you will find yourself in an awkward
position with the glass slightly above your head and your elbow pointed upward.
Clearly, the relationship of the glass to you is quite different from what it was in its
initial position. However, if you continue the rotation, you may be surprised to find
that your arm will unwind itself and the glass will return to its initial position with
its initial relationship to you. Thus, the glass attached to your arm does not have a
2� periodicity but it does have a 4� periodicity.

This demonstration is shown in Fig. 2.3 where a book is used in place of a glass
of water.

2.3 *The Point Groups for the Regular Polyhedrons

One aspect of geometry, which attracts a lot of attention in physics, is symmetry
groups. The symmetry of a body can be characterized by the set of transformations
that maintain distances between points and bring the body into its original space
of occupation. Quite reasonably, these are called symmetry transformations. For
infinite bodies (for example an infinite crystal lattice), the set of symmetry transfor-
mations may contain translations.

But for finite bodies, symmetry transformations are restricted to rotations and
products of rotations and reflections. For this reason, Clifford algebra is a good tool
to attack the mathematics of symmetry for finite bodies.

Before getting very deep into this topic, it is useful to prove a theorem by
Élie Cartan (1938, pp. 13–17; 1966, pp. 10–12). His theorem states that in an
n-dimensional space (real or complex), a transformation consisting of any finite
number of reflections can also be obtained by a number of reflections that does not
exceed n.

In this text, we only need the real 3-dimensional version and that is the only
version we will prove.

Theorem 8. Suppose Kx D .�1/kak ak�1 : : : a1xa1a2 : : : ak . That is we have a
transformation consisting of k reflections. Then this same transformation (in E3)
can be achieved by three or fewer reflections.

Proof. Case 1. The number of reflections k is even. If we multiply an even number
of 1-vectors, we get a linear combination of the 0-vector I and the three 2-vectors
e23, e31, and e21. That is

a1a2 : : : ak D I˛ C e23ˇ1 C e31ˇ2 C e12ˇ3.

(This already looks like a rotation operator!) The operator akak�1 : : : a1 is essen-
tially the same as a1a2 : : : ak except for the fact that the underlying Dirac vectors
are in reverse order. Thus,

akak�1 : : : a1 D I˛ C e32ˇ1 C e13ˇ2 C e21ˇ3 D I˛ � e23ˇ1 � e31ˇ2 � e12ˇ3.
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Since .a1/2 D .a2/2 D : : : D .ak/2 D I; .akak�1 : : : a1/ .a1a2 : : : ak/ D I, and

I D �
I˛ � e23ˇ1 � e31ˇ2 � e12ˇ3

� �
I˛ C e23ˇ1 C e31ˇ2 C e12ˇ3

�

D I
�
.˛/2 C .ˇ1/2 C .ˇ2/2 C .ˇ3/2

�
:

Since .˛/2 C .ˇ1/2 C .ˇ2/2 C .ˇ3/2 D 1, there exists an angle  such that

cos D ˛ and sin D
p
.ˇ1/2 C .ˇ2/2 C .ˇ3/2.

Furthermore, if at least one of the ˇk’s is not zero, we can define the direction
cosines for the axis of rotation by

nk D ˇk=
p
.ˇ1/2 C .ˇ2/2 C .ˇ3/2 D ˇk= sin for k D 1; 2; and 3.

(Note! this definition guarantees that .n1/2 C .n2/2 C .n3/2 D 1.) We now have
shown:

a1a2 : : : ak D I cos C .n1e23 C n2e31 C n3e12/ sin .

If the sin D 0; a1a2 : : : ak D ˙I: Otherwise, we have a nontrivial rotation
operator. From Fig. 2.2, it is clear that this rotation operator can be replaced by
a product of two reflections.

Case 2. The number of reflections k is odd.
In this case, we can multiply out the first k-1 reflections to get a rotation operator

and we then have:

a1a2 : : : ak D �
I cos C .n1e23 C n2e31 C n3e12/ sin 

�
ak

D �
I cos C .n1e23 C n2e31 C n3e12/ sin 

�
.k1e1 C k2e2 C k3e3/:

If sin D 0 or k1n1 C k2n2 C k3n3 D 0, our product a1a2 : : : ak reduces to
a 1-vector. Otherwise after factoring the rotation into two reflections, we have the
product of three reflections. ut
Now we are in a position to have a reasonably intelligent discussion of symmetry
groups. Generally, the set of multiple reflections that bring a particular finite body
into its original position in space is called a point group for two reasons. One is due
to the fact that at least one point remains fixed under all symmetry transformations
associated with a particular body. The second is due to the fact that the set of the
symmetry transformations identified with a particular body forms a mathematical
structure known as a group.

Definition 9. A group is a set of elements with a binary operation ı having the
following properties:

(1) Closure: g1 2 G, g2 2 G ) g1 ı g2 2 G:
(2) Associativity: .g1 ı g2/ ı g3 D g1 ı .g2 ı g3/:
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Tetrahedron Cube Octahedron

IcosahedronDodecahedron

Fig. 2.4 The five regular polyhedrons

(3) Identity element: 9 an element e 2 G such that 8 g 2 G; e ı g D g ı e D g.
(4) Inverse: 8 g 2 G, 9 g�1 2 G such that g ı g�1 D g�1 ı g D e.

Examples of groups include the integers under addition, the positive rational
numbers under multiplication, and nonsingular n�n matrices under matrix multi-
plication.

We will only give a short description of a few point groups – in particular the five
point groups associated with the five regular polyhedrons. (See Fig. 2.4.) For each
of the polyhedrons, we have a finite symmetry group. One way to verify we have a
group is to run through the check list in the definition above.

The elements of a symmetry group for a finite solid are finite products of
reflections. It is clear that the multiplication of two finite products results in a finite
product, which preserves the original position of the relevant solid. Thus, the set of
symmetry transformations satisfy the property of closure.

The identity element corresponds to the transformation that does nothing or
rotates the solid some integral multiple of 3600:

To obtain the inverse of a product of reflections, one simply constructs the
product of the same reflections in the reverse order.

To show that the symmetry groups for the regular polyhedrons have only a
finite number of members, let us consider the example of the cube. (See Fig. 2.5.)
Applying Cartan’s theorem, we know that an even number of reflections (a proper
orthogonal transformation) can be reduced to either the identity element or a
rotation. The possible symmetry rotations are not difficult to count.
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A

B

CFig. 2.5 Some symmetry
axes of rotation for the cube

Perhaps, the most obvious symmetry rotations are those that correspond to the
fourfold axes that pass through the centers of opposite faces. Not counting the 3600

identity rotation, we have symmetry rotations of 900, 1800, and 2700. Since there
are three such axes, this gives us 3 � 3 D 9 elements.

We also have some twofold axes that pass through the midpoints of opposite
edges. Since there are 12 edges, there are six such axes and corresponding to each
of these axes is a symmetry rotation of 1800. This accounts for six more elements
in the group. Then there are four threefold axes that pass through opposite vertices.
This adds another eight members to the group.

Finally, there is the identity transformation. Thus, the total number of proper
orthogonal members for the point group associated with the cube is 9 C 6 C 8 C
1 D 24. (Because any product of reflections has two representations in the Clifford
formalism (˙/; there are 48 Clifford numbers in the Clifford version of the proper
orthogonal group for the cube.)

To obtain the number of improper orthogonal transformations by simply counting
them is difficult because some members of this set are not simple reflections but
products of three reflections. To complete our counting problem, we wish to apply
the following theorem:

Theorem 10. For a finite point group, the number of improper orthogonal trans-
formations (products of an odd number of reflections) is equal to the number of
proper transformations (products of an even number of reflections). Note! For
those familiar with group theory, what is proven below is that the set of improper
orthogonal transformations is a coset of the subgroup of proper orthogonal
transformations.

Proof. To establish the truth of this theorem, we choose a unit vector a correspond-
ing to a simple reflection in the group and then show that any improper orthogonal
transformation can be represented uniquely (aside from the sign ambiguity) in the
form Ra where R is a rotation or ˙ the identity element I:
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Consider a product of an odd number of reflections a1a2 : : : ak . If k is odd,
we can multiply out the first k-1 reflections to get a rotation operator R. So we
have

a1a2 : : : ak D Rak.

If ak D a, we are incredibly lucky. Otherwise,

Rak D Rak.a/2 D R.aka/a D R KRa D R̋a, where

R̋ D R KR. Thus, we have

a1a2 : : : ak D R̋a.

To show that this representation is unique aside from the sign ambiguity, suppose

Ra D ˙ KRa. Multiply both sides by a to get

R.a/2 D ˙ KR.a/2 or R D ˙ KR: ut

Applying this theorem to the cube, we see that the point group for the cube has
48 members (96 for the double valued Clifford version).

Using the terminology of group theory, we say the order of the point group for
the cube is 48.

To get the orders for the point groups of the other polyhedrons, the chief problem
is counting the edges and vertices. For example, the dodecahedron is constructed by
assembling 12 regular pentagons. Before assembly, the 12 pentagons have a total of
12 � 5 D 60 edges. When assembled, one edge from one pentagon and one edge
from a second pentagon align to become a single edge of the dodecahedron. Thus,
the dodecahedron has 60=2 D 30 edges, which correspond to 30=2 D 15 twofold
axes. Similarly, the 60 vertices of the 12 pentagons become 60=3 D 20 vertices for
the dodecahedron. In turn, this corresponds to ten threefold axes.

For four of the five regular polyhedrons, the axes of symmetry pass through pairs
of faces, pairs of edges, or pairs of vertices. The one exception is the tetrahedron. For
the tetrahedron, the twofold axes do indeed correspond to pairs of edges. However
for the threefold axes, the situation is different. For the tetrahedron, each threefold
axis passes through one vertex and one face.

When you determine the orders of the point groups (See Prob. 12.), you will
see that the order of the point group for the cube is identical to the order of the
point group for the octahedron. This raises the possibility that the two groups are
isomorphic. Two groups are said to be isomorphic if one can set up a one-to-one
correspondence between the groups is such a way that if x in one group corresponds
to Kx in the second group and y corresponds to Ky then x ı y corresponds to Kx ı Ky.
For the cube and the octahedron, this is plausible because the numbers of fourfold,
threefold, and twofold axes match up in the two groups. Nonetheless, it would
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a b

Fig. 2.6 (a) A cube aligned with a skeleton frame of an octahedron. (b) An icosahedron aligned
with a skeleton frame of a dodecahedron

be very difficult to determine an isomorphic correspondence without resorting to
geometry. However using geometry, it becomes a trivial exercise to establish the
isomorphism. One merely matches the vertices of one with the face centers of the
other. In Fig. 2.6a, we have aligned a cube with the skeleton frame of an octahedron
is such a way that the symmetry axes of rotation for the two polyhedrons coincide.
Thus we see that a proper symmetry transformation for one of the polyhedrons is
a proper symmetry transformation for the other. The two point groups also contain
the same improper symmetry transformations. (See Prob. 15.) Thus, the two point
groups are isomorphic.

In Fig. 2.6b, we have aligned an icosahedron with the skeleton frame of a
dodecahedron with similar consequences.

One can also demonstrate geometrically that the point group for the tetrahedron
is a subgroup of the point groups for the other polyhedrons so that any symmetry
transformation of the tetrahedron is also a symmetry transformation of the other
polyhedrons.

One can imbed a tetrahedron inside a cube so that the threefold axes for the
two polyhedrons coincide. (See Fig. 2.7a.) The twofold axes of the tetrahedron do
not coincide with the twofold axes of the cube. However, the twofold axes of the
tetrahedron do coincide with the fourfold axes of the cube. Thus, it becomes clear
that any proper orthogonal transformation in the point group for the tetrahedron
belongs to the point group for the cube. It can also be said that any improper
transformation belonging to the point group for the tetrahedron is also an improper
transformation belonging to the point group for the cube. (See Prob. 16.) Thus, it is
clear that the point group for the tetrahedron is a subgroup of the point group for the
cube.

It is more difficult to visualize but the point group for the tetrahedron is also a
subgroup of the dodecahedron (or icosahedron). (See Fig. 2.7b.)
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Fig. 2.7 (a) A tetrahedron aligned with the skeleton frame of a cube. (b) A tetrahedron aligned
with the skeleton frame of a dodecahedron
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E

Fig. 2.8 A cube aligned with
the skeleton frame of a
dodecahedron.

It is also enlightening to examine Fig. 2.8. You may not be convinced that
connecting some of the vertices of the dodecahedron as shown in Fig. 2.8 results in
the edges of a cube. However, it should be clear that the direction of line segment AB
is perpendicular to the direction of line segment DE. Furthermore, line segment DE
is parallel to line segment BC. Thus, the edges of our suspect cube do indeed meet
at right angles at each vertex. By studying the alignment of the various symmetry
axes of rotation in Fig. 2.8, we reach the conclusion that the intersection of the point
group for the cube (or octahedron) and the point group for the dodecahedron (or
icosahedron) is the point group for the tetrahedron.
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Problem 11. Prove that there are no more than five regular polyhedrons. Hint:
What is the maximum number of equilateral triangles that can share a single vertex?

Problem 12. Determine the orders of the point groups for the tetrahedron, octahe-
dron, dodecahedron, and icosahedron. Are your results consistent with Figs. 2.6a
and 2.6b?

Problem 13. How does the result of Prob. 1 relate to the point group for the cube?
What is the consequence of two successive 900 rotations about two non-aligned
fourfold axes?

Problem 14. In view of Fig. 2.7a, the three twofold axes of the tetrahedron can
be aligned with the x, y, and z axes. Suppose we designate a 1800 rotation about
the x-axis by Rx D ˙e23. Suppose we also define Ry and Rz in a similar manner.
Complete the following table:

ı I Rx Ry Rz

I
Rx Rx

Ry

Rz

You will find that the 1800 rotations commute, although the Clifford representa-
tions do not.

Problem 15. Consider Fig. 2.6a.

(a) Draw the figure with the cube and octahedron aligned with the x, y, and z axes.
(b) Describe a plane of reflection that is common to both the cube and octahedron.
(c) It has already been pointed out that if the cube and the octahedron are aligned

as in Fig. 2.6a, the proper orthogonal symmetry transformations for the two
point groups are identical. Use your result in part b) to show that the improper
symmetry transformations for the two point groups are identical.

(d) Explain why the improper symmetry transformations for the icosahedron are
the same as the improper symmetry transformations for the dodecahedron.

Problem 16. (a) Prove that any improper orthogonal symmetry transformation for
the tetrahedron is also an improper orthogonal symmetry transformation for the
cube. (If you get stuck, review the approach used in the proof of Theorem 10.)

(b) Explain why any improper orthogonal symmetry for the tetrahedron is also
an improper orthogonal symmetry transformation for the dodecahedron (or
icosahedron).

Problem 17. If a tetrahedron is aligned with the x, y, and z axes as shown in
Fig. 2.7a, then the rotations about the threefold axis shown are

˙
�

I cos 600 C sin 600
�
1p
3

e23 C 1p
3

e31 � 1p
3

e12

	�
D ˙1

2
ŒI C e23 C e31 � e12/�
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and

˙
�

I cos 1200 C sin 1200
�
1p
3

e23 C 1p
3

e31 � 1p
3

e12

	�
D �1

2
ŒI � e23 � e31 C e12/�

D ˙1

2
ŒI � e23 � e31 C e12/� :

(a) List all of the rotations for both the twofold and threefold axes. (Don’t compute
them all – after computing a few, you should see patterns.)

(b) Write down the Clifford representation of a reflection and use this to construct
a list of the improper orthogonal symmetry for the tetrahedron.

(c) In the list constructed in part b), which are simple reflections and which cannot
be achieved by fewer than three reflections?

Problem 18. Euler’s Formula
In 1750, Leonard Euler made the conjecture that for any convex polyhedron,

F � E C V D 2, where F equals the number of faces, E equals the number of
edges, and V equals the number of vertices (James 2002, p. 5). Determine whether
this formula is valid for the five regular polyhedrons. Suppose you slice off a corner
of a cube. Does the resulting solid satisfy Euler’s formula?

2.4 *Élie Cartan 1869–1951

The way mathematicians deal with differential geometry was significantly altered
by the work of Élie Cartan. In 1993, the American Mathematical Society published
a 301-page translation from Russian of a summary of his work. This short biography
is extracted from that source.

The authors of that summary are two Russian mathematicians: M.A. Akivis and
B.A. Rosenfeld (1993). Élie Cartan’s contributions to mathematics are so deep and
broad that these two accomplished geometers felt compelled to include a virtual
apology in their preface: “Of course the authors are only able to describe in detail
Cartan’s results connected with those branches of geometry in which the authors are
experts.” (Akivis and Rosenfeld 1993, p. xi).

Élie Joseph Cartan was born on April 9, 1869 in Dolomieu, a small village in
southeastern France of less than 2,000 people. At the time of his birth, no one would
have predicted that Élie Cartan would become a world renowned mathematician.
His father was a blacksmith. His older sister, Jeanne-Marie, became a dressmaker,
and his younger brother, Leon, would eventually join the family business as another
blacksmith.

Élie seemed destined for a similar career in rural France until a fateful visit to
Élie’s elementary school by the up and coming politician, Antonin Dubost (1844–
1921). This event would change Élie’s direction in life.
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When Élie’s teachers described their very remarkable student to Dubost, Dubost
encouraged the young Cartan to compete for a scholarship at a more competitive
lycée. Antonin Dubost eventually became the Minister of Justice under one adminis-
tration and later became President of the French Senate for what was essentially the
last 14 years of his life. Throughout his life, Antonin Dubost maintained a fatherly
interest in Cartan’s career.

To help Élie obtain the desired scholarship, one of his teachers, M. Dupuis,
supervised his preparation for the required exam. Cartan scored well on the exam,
received the scholarship, and left home at the age of 10.

At the age of 17, Cartan decided to become a mathematician and enrolled at
l’École Normale Supérieure in Paris. During the next three years, Cartan not only
attended lectures at l’École Normale Supérieure but also at the Sorbonne. In this
way, he became exposed to many outstanding mathematicians including Henri
Poincaré. After graduation, he was drafted into the French army for one year. He
then returned to Paris and received his doctorate at the Sorbonne two years later in
1894 while attracting the attention of prominent mathematicians including Sophus
Lie at Leipzig University in Germany.

Early in his career, Cartan developed aspects of Lie groups and Lie algebras
that could be applied to differential geometry. Later, his work on differential forms
led him to develop methods that are now commonly used to deal with differential
equations. In 1910, Cartan began to perfect the method of moving frames to deal
with problems in differential geometry (Cartan 1910a, 1910b). (You will encounter
this method in later chapters of this book.)

In 1915, when Cartan was 46, he was again drafted into the French army soon
after World War I broke out. However, he was not sent to the front. Instead, he was
assigned to a hospital set up in the building of l’École Normale Supérieure. This
situation allowed him to continue his mathematical research during the war years.

During these same war years, Einstein living in Berlin, discovered that a slight
variation of Riemannian geometry was necessary to express his general theory of
relativity. After the war, Einstein and others sought out mathematical structures that
could be used to construct a unified field theory. With this motivation, Cartan turned
his attention to extracting properties of more general geometric spaces that might
be useful. (His correspondence with Einstein was edited by Robert Debever and
published by Princeton University Press in 1979 under the title Élie Cartan and
Albert Einstein: Letters on Absolute Parallelism, 1929–1932.)

To summarize, Cartan was prolific. Akivis and Rosenfeld attribute over 200
publications to Cartan, and this includes several books that have been republished
in recent years.

Cartan was also successful as a family person. In 1903, he married Marie-
Louise Bianconi (1880–1950) and soon became the father of three sons: Henri
(1904–2008), Jean (1906–1932), and Louis (1909–1943). Later Élie and Marie-
Louise had a daughter Hélene (1917–1952). His first son, Henri, became a world
renowned mathematician in his own right. (Henri Cartan died on August 13, 2008
at the age of 104!) His second son, Jean, seemed headed for a promising career
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as a music composer but he died of tuberculosis at the age of 25. The third son,
Louis, was a talented physicist, but during World War II, he was arrested by Vichy
government police for his activities in the French resistance. He was then turned
over to the Germans who held him in captivity for 15 months before executing
him by decapitation. The daughter Hélene taught mathematics at several lycées and
authored several math papers before she died at the age of 34.

During most of his adult life, Élie Cartan made his home in Paris or within
commuting distance of Paris. He had spent much of his boyhood away from his
hometown but he always maintained his ties there. He encouraged his younger sister
Anna to pursue a career in math education. She taught at several secondary schools
for girls and authored two textbooks, which were reprinted many times.

In 1909, Cartan built a vacation home in Dolomieu and sometimes he could
be seen at the family blacksmith shop helping his father and brother to blow the
blacksmith bellows.

Cartan’s sister Anna and daughter Hélene were not the only women to receive
Cartan’s encouragement to study mathematics. After he retired from his professorial
position at the Sorbonne in 1940, he devoted the last years of his life in his 70s to
teaching mathematics at the École Normale Supérieure for girls.

After a long illness, he died in Paris on May 6, 1951.

2.5 *Suggested Reading

Milton Hamermesh 1962. Group Theory. Reading, Massachusetts, U.S.A: Addison-
Wesley Publishing Company, Inc. Also reprint edition 1990. New York. Dover
Publications, Inc.

The second chapter is devoted to the point groups.
Leo Dorst, Chris Doran, and Joan Lasenby (Editors) 2002. Applications of

Geometric Algebra in Computer Science and Engineering. Boston: Birkhäuser.
Chapter I entitled “Point Groups and Space Groups in Geometric Algebra”by David
Hestenes is devoted to the application of Geometric Algebra (Clifford Algebra) to
the classification of symmetry groups.

D.M.Y. Sommerville 1958. An Introduction to the Geometry of N Dimensions.
New York: Dover Publications, Inc.

This book includes a discussion of regular polyhedrons in higher dimensions.
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