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A Note to Instructors

The first Mathematical Experience appeared in 1981. At that
time, only a few years ago, it was commonly believed that it
was impossible to make contemporary mathematics meaning-
ful to the intelligent non-mathematician. Since then, dozens
of popular books on contemporary mathematics have been
published. James Gleick’s Chaos was a long-run best seller.
John Casti is producing a continuing series of such books.

In technologyand invention, it’'sa commonplace that know-
ing what’s possible is the most important ingredient of suc-
cessful innovation. Perhaps the first Mathematical Experience
changed people’s idea about what’s possible in exposition of
advanced contemporary mathematics.

Alert readers recognized the book as a work of philoso-
phy—a humanist philosophy of mathematics. It was far out,
“maverick” (Philip Kitcher’s term), virtually out of contact
with official academic philosophy of mathematics. In the past
15 years, humanist philosophy of mathematics has bloomed.
There are anthologies, symposia, a journal. The far-out mav-
erick of 15 years ago might be the mainstream in a few years.

The first Mathematical Experience was a trade book, not a
textbook. It was sold in book stores, not in professor’s offices.
But we heard over and over of college teachers using it, in
the United States, Europe, Australia, Hong Kong, Israel. It’s
used in two different ways: “Math for liberal arts students” in
colleges of art and science, and courses for future teachers,
especially secondary math teachers, in colleges of education.

In mathematics teaching, it’s a commonplace that “Mathe-
matics isn’t a spectator sport.” You learn by doing, especially
doing problems. Like all truisms, this is half true. Mathematics
education as doing, doing, doing—no thinking, no conver-
sation, no contemplation—can seem dreary. An artist isn’t
prohibited from occasional art appreciation—quite the con-
trary. You can’t learn practical skill as a spectator, but you can
learn good taste, among other things.

The first edition invited the reader to appreciate mathe-
matics, contemplate it, participate in a conversation about
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Companion Guide to The Mathematical Experience

it. It contained no problems. If a teacher selected it, he/she
had to supply what the book lacked. The study edition will be
more convenient for both teacher and student. It aims for bal-
ance between doing and thinking. There are plenty of prob-
lems, generous discussion guides, essay topics, and bibliogra-
phies. We’ve also introduced “projects™ connected sequences
of problems, rising in difficulty from very easy to a little less
easy. They provide extra problem-solving enjoyment, and they
make points about the nature of mathematics. We’ve written
a section on differential and integral calculus—a complete
course in 15 pages—and a section on the fascinating topic of
complex numbers—fascinating from both mathematical and
philosophical viewpoints.

The Standards of the National Council of Teachers of Math-
ematics appeared after the first Mathematical Experience. To a
large extent, they validated our enterprise. We were following
the Standardsbefore theywere written. The study edition does
so even more than the first.

No longer are “critical thinking” and “problem solving”
only features of mathematics. They've become catchwords in
American classrooms. The second Mathematical Experienceis a
part of the dominant trend in American education.



Special Features

IN THE TEXT

Topics to Explore are listed in each chapter of the text. In
this Companion Guide you will find you will find SUGGESTED
Torics For CrLassrooMm Discussions, Projects, and Tuto-
RIALS thatrelate to the Topics to Explore. Suggested Readings
in the textare resources for these topics, and additional video
resources for some topics are listed in this Companion Guide.

Essay Assignments can also be used as Topics FOR CLaASS-
ROOM DiscussioN. Suggested Readings in the text are re-
sources for these assignments.

In writing essays students can come to understand the ex-
tent of their mathematical knowledge. This activity also famil-
iarizes them with the language of mathematics—improving
dialogue in the classroom.

Problems can also be used in the classroom as group activi-
ties (see this Companion Guide, Part1v, Sample Group Activities).
Group activities encourage students to assume a more active
role in the classroom, helping them to see themselves and
their classmates (rather than only the instructor) as resources
for learning. Suggested Readings in the text are resources for
these assignments.

Computer Problems: In a course such as we are laying out,
computer problems can serve to emphasize a number of im-
portant points. Among them are: (1) the verification of math-
ematical statements and identities; (2) the discovery of new
facts through computer experimentation and induction (not
mathematical induction); (3) the great successes and occa-
sional pitfalls of the computation process; (4) the limitations
imposed by the digital language as opposed to the richer
existential language of “full” mathematics; (5) the extent to
which one needs mathematical knowledge and expertise be-
yond what is built into commercial mathematical software;
(6) the appreciation of the computational infrastructure of
our civilization, an infrastructure that is often hidden from
view.
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IN THE COMPANION GUIDE

Expository Research Papers: Suggestions are given (see
Part vi1, Suggestions for Expository Research Papers) for exposi-
tory research paper assignments. However, students should
also be encouraged to choose their own topics. It is impor-
tant to provide specific tasks for the students regarding the
writing of a research paper and to give them explicit dead-
lines. These tasks include writing a one-page essay describing
the topic they select and what they expect to learn and de-
monstrate in their paper; submitting a bibliography for the
paper; writing an outline; submitting a first draft (see Part 111,
Sample Syllabus) .

Topics for Classroom Discussion are useful for general class
discussion or as a source of group activities. Suggested Read-
ings in the text are resources for these discussions and addi-
tional video resources for some topics are listed in this Compan-
2on Guide. The emphasis for these topics is on discussion more
than leciure. Relinquishing the lecture as the primary mode of
instruction, taking the opportunity to hear the student in the
classroom, helps to foster an environment in which instruc-
tor and students converse to form a community of learners.
Conducting class meetings as open forums to discover student
interest in selected topics, to motivate and explore objectives
for topics, and to discuss possible directions that these topics
suggest, helps students recognize their responsibility in the
learning process.

Projects are connected sequences of explorations that start
with very familiar, “easy” material and gradually lead the stu-
dent to new discoveries and a glimpse at broader vistas. A
project can be assigned as individual homework, worth per-
haps two weeks each. Better, it can be carried out in small
groups which periodically report to the class as a whole to
compare notes. This reporting and comparing leads to work
on the project by the class as a whole, with occasional hints
and suggestions by the instructor. Such a class session will
re-energize the individual students or groups to go further.

Projects can be shortened by omitting the last parts, or en-
larged by instructor or students coming up with new direc-
tions to pursue. These projects are also models to help the
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instructor make up projects in line with her background and
interests.

Tutorials: Two of the additions to this Companion Guide
have been labelled “Tutorials.” One is about differential and
integral calculus, and the other is about complex numbers.
These two topics are essential in any survey of mathematics.
We suggest that the instructor provide the class with photo-
copies of this material.

Each of these sections could have been part of the orig-
inal text. They are more text-bookish than the rest of the
text, since they are straightforward presentations of classical
mathematics. But we still strive for a respectable level of liter-
ary style, and take every opportunity to tell about historical
background and philosophical controversies. The tutorial on
calculus is a tour de force. In only fifteen pages it explains the
guts of the usual one-semester course, including applications
and problems .

Pictures and diagrams are essential when teaching calculus.
Our artwork was done by Caroline Smith of the University of
New Mexico, to whom we are most grateful.
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Chapter 1

The Mathematical
Landscape

What s Mathematics? Where is Mathematics? The Mathematical
Communsty. Tools of the Trade. How Much Mathematics is Now
Known? Ulam’s Dilemma. How Much Mathematics Can There Be?

Topics for Classroom Discussion

1. An alien has landed. She asks you what mathematics
is. How do you answer? What do mathematicians do? Does
mathematics change?

2. What is Ulam’s dilemma? If you were Ulam, and a re-
porter for Newsweek was interviewing you regarding this di-
lemma, how would you explain it? Is there anything that can
be done about it? Will the Information Superhighway help?

3. Can mathematics establish truth? Plato thought so. Eric
Temple Bell thought not. What do you think? How are proof
and truth related? See, for example, “The Concept of Math-
ematical Truth” by Gian-Carlo Rota in Essays in Humanistic
Mathematics (Washington, D.C., Mathematical Association of
America, 1993).

4. Some mathematicians have described the process of
mathematical research as a kind of “playing around.” Discuss.

5. m is the ratio of a circle’s circamference to its diameter.
It cannot be constructed with a straightedge and a compass.
7 is irrational. It is a transcendental number. = shows up in
number theory, in geometry, in probability. Was 7 invented or
discovered by mathematicians? See, for example, “r and €” by
E. C. Titchmarsh in Mathematics: People, Problems, Results edited
by D. Campbell and J. Higgens (Belmont, CA: Wordwsorth
International, 1984).
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6. Investigate the number e. What kind of number is it?
Where do we find it in mathematics? Was it invented or dis-
covered by mathematicians? A good reference is e — The Story
of a Number, by Eli Maor (Princeton: Princeton University
Press, 1994).

7. Find reasons for thinking that any brief definition of
mathematics must be inadequate.

8. Defend the view that computer science is part of math-
ematics.

9. Could there be such a thing as “unconscious mathemat-
ics” which need not be symbolized in any way, but which leads
to certain consequences?

10. How much music is there? How much literature is there?
In these instances, how could you make an acceptable defini-
tion of “how much”? How could you go about implementing
your definition? What could you do with an answer?

Chapter 2

Varieties of
Mathematical
Experience

The Ideal Mathematician. The Individual and the Culture. The Cur-
rent Individual and Collective Consciousness. A Physicist Looks as
Mathematics. 1. R. Shafarevitch and the New Neoplatonism. Un-
orthodoxies

L Discussion Topic: Proof

1. In “The Ideal Mathematician” the student asks the ideal
mathematician about proof. What is your conception of
proof? How would you answer the following questions:

12
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a. What is the role of proof in mathematics?

b. Why do mathematicians prove theorems?

c. What does it mean for a mathematical statement to be
considered true?

2. Christian Goldbach (1690-1764) conjectured that every
even number greater than two is the sum of two odd primes.
Do you believe this? Why? Pick ten even numbers and see if
they each are the sum of two odd primes.

3. Whatrole do intuition and evidence play in proof? What
is the difference between conjecture and a proof?

4. Kurt Godel (1906-1978) showed that not every true
statement is provable in mathematics. Is every provable state-
ment true in mathematics?

II. Discussion Topic: The Many Roads to Proof

1. Is there only one type of proof? If someone asked you
to describe what a proof is and what it does, what would you
say?

2. The MAaTHEMATICS! videotape “The Theorem of Pytha-
goras” (Pasadena: California Institute of Technology, 1988)
demonstrates several animated dissection proofs of the Py-
thagorean theorem. Students can be challenged to construct
their own dissection proof or one they see in the videotape.

A nice follow-up to seeing this video is the geometric para-
dox one encounters in dissecting an 8-inch square into a
5x13-inchrectangle (see Fibonacci Numbersby N. N. Vorob’ev).
It’s very effective in demonstrating the difference between ev-
idence and proof. Fibonacci numbers can be introduced here
or later to revisit the paradox. (See page 35 of this Companion
Gutde.)

3. Doyou think there is proofin the following professional
areas: medicine, physics, law, religion?

4. How would you prove that 123 x 587 = 72201?

II1. Tutorial: Calculus

This is a concise presentation of the main ideas of calculus.
Because the topic is so important, we make some unavoidable
concessions to the standard textbook format.

13
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Calculusis the heart of modern mathematics, since Newton.
It’s the part of mathematics most important in science and
technology, the part engineers must know.

It grows out of two main problems which at first seem un-
related.

The central discovery of calculus is that these problems are
opposites or inverses.

The first main problem in calculus is speed. How fast is
something changing? The solution of this problem is “the
differential calculus.” The second main problem is area. How
big is the inside of some curved region? The solution of this
problem is “the integral calculus.”

First we’ll talk about speed. It’s easy to find the speed if it’s
constant. Just divide the distance traveled by the time elapsed.
Speed = Distance /Time.

- —
e ————— et
0 miles 6 miles .
1p.M. Speed = 6 mi/2 hr = 3 mph 3r.Mm.

Motion at Constant Speed

But in real motion, speed isn’t constant. You start your car
at speed zero. You go faster till you get to the speed limit.

Car goes from
Albuquerque to Santa Fe, vanable speed

Motion at Variable Speed

Then to stop, you slow back down to zero. Your speed changes

14
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from instant to instant. What is your speed at some particular
instant?

Here’s another practical example. Nick, our math profes-
sor, falls off the First International Unpaid Debts Building
in Miami. How fast is he falling? In school we learned that
in a vacuum, under the acceleration of gravity, a body falls
162 feet in £ seconds. How fast is he falling after 2 seconds,
ignoring air resistance?

Nick falling off the F1.U.D. Building.

In the time interval between 2 seconds and 2.1 seconds—
time lapse of 0.1 second—the distance Nick falls is the differ-
ence between how far he had fallen after 2 seconds and how
far he had fallen after 2.1 seconds.

16(2.1)% — 16(2%) feet = 6.56 feet.

Dividing distance by time (0.1 second), his average speed over
that tenth of a second is 65.6 ft/sec. That’s the constant speed
that would carry him the same distance in the same time as did
his actual fall at the accelerated speed.

Exercise. Repeat the calculation with a time lapse of 0.01 sec-
ond. (You'll get an average speed of 64.16 ft/sec, between time
2 seconds and time 2.01 seconds.)

15
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Do it still again, with a tiny time lapse, 0.001 seconds. (Nick’s
average velocity over this time period is 64.01 ft/sec.)

We don’t want an average speed. We want the exact speed at
time 2! That means a time lapse of zero. The formula Speed =
Distance/Time breaks down, because division by zero is mean-
ingless. However, without setting the time lapse equal to 0 you've
crept closer and closer to 0. You used lapses of 0.1, 0.01, 0.001,
and found speeds of 65.6, 64.16, 64.016.

NOW!! A giant conceptual leap! If the average speeds ap-
proach a limit as the time lapse approaches zero, we declare,
as a definition, that this limit is the instantaneous speed!! In
this example, the limit is 64 ft/sec when ¢ = 2. It makes sense!
It works! That’s what we mean by instantaneous rate of speed
or velocity.

LEiBNIZ

BERKELEY

ROBINSON

16
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This notion of rate as a Imit took hundreds of years to for-
mulate. Medieval and Renaissance mathematicians calculated
a few rates of change without defining mathematically what
they wanted. The founders of calculus, Isaac Newton and Got-
tfried Leibniz, enjoyed a bitter quarrel about priority in the
discovery.

Leibniz’ explanation of differentiation was not quite the
same as Newton’s. Leibniz used an infinitesimal increment—
a number bigger than zero, yet smaller than any ordinary
number.

Then George Berkeley, an empiricist philosopher and An-
glican bishop, showed that the reasoning of both Newton and
Leibniz was illegitimate. The small increment is sometimes
defined to be not zero, sometimes to be zero. This is a contra-
diction! It was hundreds of years before an answer to Berkeley
was found. But meanwhile mathematicians went on with the
calculus anyway.

/

{+dt “Distance
0
1s CHEATING!'”
t+h says
Berkeley
(then h=0) di~ 0
Newton’s Leibniz’s
falling falling
stone stone

For centuries, people doubted whether infinitesimals make
sense. In the 1960s an American logician, Abraham Robinson,
used methods from modern logic to make the infinitesimal
respectable.

17
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Exercise. Make a graph of this falling body function: distance =
time squared or d = t*. (We dropped the 16 to simplify your
graphing and our calculating.) This is a quadratic function. Its
graph is a parabola. You've studied parabolas, but this calcula-
tion is different. Mark the points (2, 4) and (2.1, 4.41) on the
parabola. The second is above and right of the first. Draw a
straight line (called the “secant”) between the two. What's the
slope of this line? (“Rise over run.”) Rise = 2.12 — 2% = 0.41.
Run =2.1 — 2 = 0.1. Slope = 0.41/0.1 = 4.1, which we just found
is also the average veloaity (allowing for the factor of 16 which we
took out). The average rate of change of distance as a func-
tion of time is identical to the slope of its graph! Again, replace
0.1 by 0.01 and 0.001. The corresponding marks on the graph
are creeping closer and closer to (2, 4). The slopes of the se-
cants are exactly the numbers you found to approximate the
instantaneous rate of change. “In the limit,” as the two points
approach closer and closer, and the denominator approaches
zero, the secant becomes a tangent and its slope becomes the
instantaneous speed, called the derivative.

(2,4)

0.41

41
01 - Slope

Differentiating z* is the same as finding its shape. (This graph is
called a parabola.)

The process of calculating the derivative (the speed) is
called differentiation. Simple functions usually have simple
derivatives. The derivative of t" is nt™~!. (n is any number, in-
teger or fraction, positive or negative.) The derivative of the
natural logarithm of ¢ is 1/t. The derivative of € is ae®. The

18
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dernivative of sint is cost; of cost, — sint. These formulas are
always derived in first semester calculus.

Exercise. In a way similar to how you found the rate of change
of f(t) =t att =2, find the rate of change of that function at
an arbitrary time t. Do the same for the cubic f(t) = t3. Check
your answer with the formula in the previous paragraph for ™.

Now you’re ready for the second main problem of calcu-
lus, integration—finding the area inside a curve. To solve it,
strangely enough, we’ll talk about another, quite different-
sounding problem. Given the velocity of a moving body—say
a car driving down the highway—can we calculate the total
distance traveled, at any instant of the trip? This is the oppo-
site of the problem we analyzed above. There we were given
the distance and found the velocity.

Start with the simplest case—constant velocity. Suppose
that from 2 pM to 3 PM you’re driving at a steady 50 miles
per hour. How far do you go in that hour? In half an hour? At
any time ¢ between 2 PM and 3 PMm?

Of course you can answer this—in one hour, 50 miles. In
half an hour, 25 miles. In ¢t hours, 50t miles—where ¢ can be
a fraction.

o iy

Albuquerque Santa Fe
D=125 D=25 D =50

Driving 50 miles at a constant speed of 50 m.p.h.

The graph of these facts is simple. Time elapsed is meas-
ured on the horizontal time axis. The graph of the constant
velocity 50 is a horizontal line 50 units above the time axis.
We compute distance by multiplying speed times time—that
is, height of the velocity line times length of the time axis
from start to finish. The product of these horizontal and ver-
tical lengths equals the area of the rectangle they enclose.
Distance is represented graphically as areal

The real problem comes when you vary the speed of your
car. Then the graph of v(t), velocity as a function of time, is

19
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distance = vt
area = vt

v

time

On a time-velocity graph, distance = area.

a curve, not a horizontal line. How can we find the distance
traveled now? Since we know how to do it in the case of con-
stant speed (horizontal graph), replace the curved graph by a
precewise horizontal graph.

Variable velocity is approximated by piecewise-constant velocity.

In other words, instead of a speed varying smoothly, make
the speed constant for a second, then a different constant for
the next second. The distance traveled in each second is the
speed in miles per second, and is shown in the graph as the
area of a skinny vertical rectangle, of width one second. The
areas of the little rectangles under the velocity curve add up
to something close to the total distance, and also to the total
area under the curve. So we see that in the case of varying
speed, as in the case of constant speed, the distance traveled is
equal to the area under the velocity curve.

To summarize: To a distance function d(t) is associated a
velocity function v(t), the derivative of d(t). To v(¢) in turn

20



Ch. 2: Varieties of Mathematical Experience

S

t=0 t=1

V=504
v

Distance = area under any velocity graph (variable speed).

is associated an area function A(t), the area under the graph
of v(t) up to the vertical line ¢. The area A(t) is equal to the
distance d(t), the antiderwvative of v(t). The area A(t) under
the graph of v(t) is called the “integral” of v(t). The func-
tion d(t), from which v(f) was obtained by differentiation, is
the antiderivative of v (). Finding A(t) is called “integrating”
v(t). We have just proved the “Fundamental Theorem of Cal-
culus™ The area function of v (the integral of v) is equal to
the antiderivative of v:

At = d(t).

We have been thinking of v(t) as a “velocity function.” But
any function can be interpreted as a velocity function! So the
Fundamental Theorem says: The integral of the derivative
of any function is the function itself (except possibly for an
additive constant).

Computing the derivative directly from its definition is of-
ten easy; computing the integral directly from its definition
can be hard. The Fundamental Theorem let’s us do the hard
part by doing the easy part: make a dictionary of differentia-
tion formulas. If in your collection you find a function w(t)
whose derivative is v(t), then w(t) is the integral of v!

Let’s do an example simple enough that we can get the
area by a direct integration. We’ll take v(t) = t. Not a very
realistic velocity function—you’d soon get a speeding ticket!
But never mind, this is just theory.

Let’s call the region whose area we want to evaluate D. The
lower boundary of D is a portion of the positive z-axis; the
upper boundary is part of the graph of v(t) = t. This graph
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Distance = area under speed graph if speed = time.

is a line through the origin with slope 1. The left boundary,
t = 0,is the pointwhere upper and lower boundaries intersect.
The right boundary is a vertical segment, 0 < y < . You see
immediately that D is an isosceles right triangle with sides of
length t inches.

Using the triangle area formula (one-half base times alti-
tude), you find the area A = t?/2 square inches. Next youw’ll
find the area by calculus. Why do it twice? Because the trian-
gle area formula only works for triangles and polygons. The
calculus works for curved areas too.

What you do is cut up the triangle with vertical lines 0.01
inches apart. This makes a lot of long, skinny pieces, almost
rectangles, with a tiny little triangle at the top of each rectan-

v=f|=0.23

3
L4

1 13

Area ~ sum of skinny rectangles if velocity = time.

22
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gle. What if you ignore those tiny little triangles? Each rectan-
gle is 0.01 inches wide. How high? The upper boundary of
each rectangle is part of the line y = . The point of the graph
above z = 0.23, for example, has y-coordinate y = z = 0.23.
That’s the height of the rectangle inside the 23rd piece. The
area of any rectangle is height times width, so the area of this
rectangle is 0.01 times 0.23 = 0.0023 square inches.

To get the whole area, add the areas of all these rectangles.
Just as the 23rd has area 0.0023 square inches, the 38th will
have area 0.0038 square inches, and so on. Adding them all
up, and factoring out 0.0001, you get for your approximation
to the area of the whole triangle

0.0001 x 1+2+3+---+100+--+).

How far should the sum go? Well, how many rectangles are
there? You have a base ¢ inches long, and you cut it into pieces
0.01 inch = 1/100 inch wide. So there are 100¢ rectangles. The
last term of the sum in parentheses is 100%.

This is a nice puzzle:1 +2+3 +---+100f =?

A lovely trick does the job. It was discovered by the fa-
mous mathematician Karl Friedrich Gauss in school in the
first grade. A mean teacher set the class to add all the num-
bers up to 100.

Karl noticed he could write the sum twice—once forward,
once backward. The number in the first sum plus its neighbor
below in the second sum always add up to 101. He had 100
such pairs. So the two sums together equal 100 times 101. The
single separate sum would be half of that: 5,050.

With young Karl as model, you’ll find that the sum of the
numbersup to 100t is 50¢ times (100¢+1), which is 5000t +50¢.
Look back and remember, this had to be multiplied by 0.0001.
Since (5000) (0.0001) = 0.5, we get 0.5¢> + 50t(0.0001). The
first term, 0.5 £2, is the exact answer, as we already know from
geometry. The second term is “the error.” It’s the total area of
those little triangles we neglected. It isn’t such a big error—
t/200. If we replace 0.01 by 0.001, the error will be 50 ¢ divided
by 10° square inches, instead of 10%.

Butwhy stop at 0.001 or 0.0001? Your calculations still work,
even if the rectangles are so thin you can’t see them. You're
taking the width of the little rectangle as a “parameter” which
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&\mu

I+ 2+ 3+ +99+100= S
100+ 99+ 98+....... +2+ 1= 5
101+101+101....... +101 +101 =28

Young Gauss with double sum, thinking “Aha!”

you’re “sending to zero.” If you set it really close to zero (but
not equal to zero) you get an error so small it just doesn’t
matter.

(Itwouldn’t do to set the thickness of each little piece equal
to zero. Then each little rectangle would have area zero, and
they’d all add up to zero.)

Calculating area by adding many tiny rectangles is called
“integration.” As in calculating instantaneous speed in the
differential calculus, the method works, it makes sense, so the
area inside a curve is defined to be the limit of the areas of in-
scribed or circumscribed polygons. There can’tbe a proofthat
the limit equals the area, because we have no other definition
of area, except that limit!

What you have accomplished is not just a complicated way
to measure triangles. It works for about any area that comes
along. Problems on arc length, volume, probability, mass, elec-
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trical capacity, work, inertia, linear and angular momentum,
all lead to integrations such as you just did.

Now let’s see what happens if we do our calculus operations
in the opposite order—first integrate, then differentiate. Be-
fore, we started with a distance function, differentiated to get
a velocity function, then integrated that and got back our
original distance function. Now we start with a velocity func-
tion, integrate it to get an area and distance function, then
differentiate that, to get—what do you suppose?

Look back at the last example, but now let the right side of
the triangle be movable. In other words, ¢, the distance from
the origin, is variable. The right boundary is a stick you slide
right and left. To the right, area increases. To the left, area
decreases.

You’'re going to calculate the rate of change of A (the area of
D) as the stick moves to the right. That is, you will differentiate
the integral.

D need no longer be a triangle. It’s still bounded below by
the t-axis, on the left by the y-axis, and on the right by the
vertical line at £, but its upper boundary is the graph of any
function v(t) you like.

A
v

N
(4

t

Area ~ sum of skinny rectangles for any graph.

To differentiate—find a rate of change—increase the in-
dependent variable ¢ by a tiny little bit A see how much your
function increases from A(t) by A(t+h), and then divide this
increment of area by h. This quotient is the average increase
over the interval from ¢ to ¢ +h. Since h is small, the numerator
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and denominator are both close to zero. Their ratio is close to
a limit, which limit you defined as the rate of change of A(%).

In applying the definition of rate of change to the area
function A(t), you're working with two different pictures. The
integration picture computes the area of D, the region under
v(t), by cutting up D with many close vertical lines. The differ-
entiation picture computes the rate of change of any function
by drawing the secant through two nearby points on its graph.
We’re applying the differentiation picture to the integration
picture, or, if you like, plugging the integration picture into
the differentiation picture.

You're differentiating A(t), the area of D bounded by the
vertical line at t. Take your definition of the area A from the
integration picture. D is the region under the graph of v(?).
What happens to D and its area A if its right side moves a
bit further right? The region is enlarged by a tiny additional
piece, which differs from a rectangle only in a super-tiny bit at
the top. Its width is h, the amount of increase of ¢. Its height
is the height of the upper boundary of D, which is the graph
of v(t). So the height of the little added rectangle is v (%),
and its area is hv(%). This hv (£) is the increment of A(t). The
derivative of A(f) is the increment hv (%) divided by h.

That’s hv(t) /h =v(t) !

We have just shown that the derivative of 4 is v. But A is
the integral of v. The derivative of the integral of v equals the
integral of the derivative of v equals—v. Symbolically,

D: A—w
I. v— A
‘We have shown that in either order, differentiation and inte-

gration reverse each other. This is called “the Fundamental
Theorem of Calculus.”

The Fundamental Theorem of Calculus
IDs=DlIs=s
(Rate of change of area under velocity graph)
= (rate of change of distance)
= (height of velocity graph)
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The Fundamental Theorem gives a powerful method of
computing areas. Suppose we want to know the area A under
the parabola y = 372, between x = 0 and z = 3.

y=3z2

r=3

A=D=3%-27

An area under a curve, by the Fundamental Theorem.

According to your work a few paragraphs above, this func-
tion is the derivative of z3. Therefore, by the Fundamental
Theorem, its area function A(z) is z3. Between 0 and 2, the
area under 3z? is therefore 2% — 03 = 8 square inches.

Exercise. Use the Fundamental Theorem to compute the areas
under the curvesy =z, y =2, y=z*, 0 <z < 1.

The most important use of calculus is in solving differen-
tial equations. These involve an unknown function and its
first and second derivatives. In case the unknown function is
a distance, the first derivative is the velocity, and the second
derivative, the rate of change of the velocity, or the “accelera-
tion.” The fundamental law of mechanics, Newton’s third law,
says f = ma—force equals mass times acceleration. Often the
force is given by some fundamental principle governing the
motion under study. Since acceleration is a second derivative
of position, Newton’s law is a second-order differential equa-
tion. To find out how a body moves under the influence of a
force, we have to solve this differential equation.

In the case of the planets and the sun, the force is gravity,
which is directly proportional to the masses of the attract-
ing bodies, and inversely proportional to the square of their
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distance. In the case of only two bodies, such as Earth and
the Sun, the differential equation can be solved. By doing so,
Newton proved that the three laws of Kepler (elliptic orbits;
position vector covering equal areas in equal times; and the
length of year proportional to the 4/3-power of the orbits) are
equivalent to the law of gravity and the third law of motion.
But this calculation requires more technique than we have
mastered here.

This triumph of Newtonian calculus and physics is based
on ignoring the mutual attractions of the planets. If we think
of Mars, Earth, and the Sun as a system of three bodies, none
of whose mutual interaction should be ignored, we have the
stubbornly intractable three-body problem, which has been a
source of frustration for 300 years.

In order to get a glimpse of how differential equations solve
problems of motion, consider a ball thrown into the air in a
room with an M-foot ceiling. I want the ball to just barely
touch the ceiling. This depends on the velocity V with which
I toss the ball up. Given M, can I determine V'?

Q\IF,

How hard to throw to barely touch the ceiling?

As in all elementary treatments, we ignore air resistance.
The ball does not encounter any friction. The only force is
gravity, which creates a downward acceleration of 32 feet per

second?. The initial height of the ball is zero, since we measure
from ground level. Now Newton’s third law is

Mass x Acceleration = —32 x Mass.
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(The minus sign because acceleration due to gravity is down-
ward, decreasing h(t).) This equation can be solved by two
integrations. First divide through by the mass. Since accelera-
tion is the derivative of velocity, and since —32 is the derivative
of —32¢ + K, where K is any constant, the integration gives

Velocity = —32¢ + K .

We determine K by setting ¢ = 0. The equation becomes
“initial velocity = 0 + K,” so K = V, the initial velocity, which
we ultimately want to determine as a function of M. Velocity
=—32t+V.

Since velocity is the derivative of height, and —32t + V is
the derivative of —16¢2 + V¢t + L, where L again is an arbitrary
constant, integration gives

h=-168+Vt+L.

Again sett = 0. Since h(0), the initial heightis 0, we get L = 0.
So we have derived a formula for height as a function of time:
h(t) = —16t% + Vt.

MAX, M = V?/64
V = V6aM

l | »
] | , 4
V/32 V/16

Height of the ball as a function of time: up, then down.

Finally, whatis M, the maximum of h? When the ballreaches
its maximum M, it ceases its rise and is about to fall. At thatin-
stant its velocity is neither positive (up) nor negative (down).
It’s zero. But we have found a formula, Velocity = —32¢ + V.
Therefore, when Velocity =0, V' = 32¢, t = V/32. So the time
when the ball is at its highest is V/32. When t = V/32, our
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formula for h(t) simplifies to h(t) = V2/64, s0 V?/64 = M.
There’s a tiny simplification for you to check.

Solving for V, we find that V is the square root of 64M. For
instance, if M = 100 feet, V should be 80 feet per second.

We computed this figure for ball-playing here on Earth,
where g, the acceleration due to gravity, is 32 feet per second
per second. What if we visit the Moon? Or Mars? We’d have to
replace 32 by the gravitational constant there. On the moon
g is much smaller, so we’d need a smaller V for a given M.

/V Ball
g is smaller,

ball goes higher for same V'

V2
M= —
2g9

V =+29M

Weaker gravity, higher throw.

We could repeat the whole calculation, starting with the
Moon’s g instead of 32. Or we can just look at our Earthly
answer—V = the square root of 64M —and make the obvious
guess for Mars or the Moon—V = the square root of 2gM.

Finally, let’s go back to Nick, the math professor who fell
off the First International Unpaid Debts Building in Miami.

The fire department, thank goodness, is at the foot of the
building, life net ready, to catch Nick before he gets hurt. But
is the net strong enough? Let’s say Nick weighs 250 pounds,
and the building is 2600 feet tall. How hard is he going to hit
that life net? In other words, how fast will he be going when
he reaches the ground?

Like the planets and the ball, he is subject to Newton’s third
law, with gravitational force —32 feet per second per second.
In the equation “acceleration = —32,” we recognize that both
sides are derivatives, or rates of change. Acceleration is the
rate of change of velocity, and —32 is the rate of change or
derivative of —32t plus an arbitrary constant A. So, velocity
= —32¢ + A. What’s A? Set ¢ = 0. The velocity equation now
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Will Nick be saved?

reads: initial velocity = A. What was his initial velocity? When
he had justslipped off the roof, he hadn’tstarted to fall yet. His
velocity was zero. So A = 0. Again, in the equation “velocity
= —32t,” we recognize that both sides are rates of change.
Velocity is the rate of change of position h(t), and —32% is
the derivative of —16t? plus an arbitrary constant B. At the
time ¢ = 0, Nick had not yet fallen any distance, so B = 0, and
h(t) = —16t2.

Nick will arrive at ground level when his distance fallen,
16%2, equals 1600, the height of the building. That's when
t2 = 100, or ¢ = 10. So his velocity on hitting the life net is 32
times 10 = 320 feet/second. Multiplying by his weight, we find
that the life net must withstand a momentum of 250 times
320, or 80,000 foot-pounds per second.

There’s no way to get this information except by calculus
and differential equations.
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Outer Issues

Why Mathematics Works: A Conventionalist Answer. Utility. Num-
ber Mysticism. On the Utility of Mathematics to Other Scientific or
Technological Fields. Pure vs. Applied Mathematics. On the Utility
of Mathematics to Mathematics. Mathematical Models. Underneath
the Fig Leaf

I. Discussion Topic: Mathematics and Art

1. What are the relations of mathematics to art? Is com-
puter “art” really art? In what ways have artists used mathe-
matics, and/or computers?

2. In Descartes’ Dream by P. J. Davis and R. Hersh (Boston:
Harcourt, Brace, Jovanovich, 1986), artists are called “uncon-
scious mathematicians.” Discuss the different kinds of math-
ematics which artists discover, use, or create.

3. The Golden Rectangle and the Golden Ratio in art. See,
for example, For All Practical Purposes, edited by L. A. Steen
(New York: W.H. Freeman, 1987).

4. Is there beauty in geometric figures? Is there beauty in
reasoning?

II. Discussion Topic: Is Mathematics Created
or Discovered?

1. Cantor’s continuum hypothesis and the reason why con-
structivists reject it.

2. How does the mathematics-by-fiat view differ from the
Platonic view of mathematics that believes the universe im-
poses mathematics on humanity?

3. Iswan example of creation or discoveryin mathematics?
Geometricallywe describe 7 as the ratio of a circle’s circumfer-
ence to its diameter. It was not determined until 1767 that
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is irrational (Johann Lambert, 1728-1777). More than a cen-
tury later Ferdinand Lindemann (1852-1939) proved it could
not be the solution of any polynomial equation with integer
coefficients. This discovery showed that the squaring of the
circle is impossible. So the route from geometry to number
theory comes full circle?

4. The Fibonacci numbers appear in pineapples and pine
cones. Many patterns of biological growth can be described in
terms of this sequence of numbers. How would the Platonist,
the formalist, and the constructivist each explain this phe-
nomenon? See, for example, For All Practical Purposes, edited
by L. A. Steen (New York: W.H. Freeman, 1987).

Videotape Resources

Apostol, Tom: “The Story of 7 (MATHEMATICS!: Pasadena: California In-
stitute of Technology, 1988).

Freeman, W: “On Shape and Size” (For All Practical Purposes (New York:
W.H. Freeman, 1988) (30-minute videotape). The introduction includes a
discussion of Fibonacci numbers and the golden ratio.

III. Discussion Topic: Mathematical Models

1. The traveling salesman problem (see V. K. Balakrish-
nan’s Introductory Discrete Mathematics, Englewood Cliffs: Pren-
tice Hall, 1991).

2. Leonardo of Pisa (ca. 1202) developed the Fibonacci
sequence in trying to answer the following question:

If someone places a pair of rabbits in a certain place enclosed
on all sides by a wall, how many pairs of rabbits will be born
there in the course of one year, it being assumed that every
month a pair of rabbits produces another pair, and that rabbits
begin to bear young two months after their own birth?

Describe how the Fibonacci sequence answers the question.

3. Consider the current civil calendar. Compare and con-
trast it with the Moslem, Hebrew, Chinese, Greek Orthodox,
and “World” calendars.

4. Investigate the following models of the planetary sys-
tem: Ptolemaic, Copernican, Keplerian, and Newtonian.
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5. Read up on the history of ballistics and contrast the pre-
Galilean and the post-Galilean theories of the trajectory of a
missile.

6. Toss one die. Toss two dice. How would you assign the
probabilities? How would you justify your assignment? How
would you determine whether the dice were loaded?

7. Investigate models of decorative patterns. Discuss the
group-theoretical model. See Symmetries of Culture by Dorothy
K. Washburn and Donald W. Crowe (Seattle: University of
Washington Press, 1988). If you went into a paint and wallpa-
per store, how would wallpapers be classified? Why?

8. Discuss cryptographic models. There are many ways of
turning “plain text” into coded text. What are the pluses
and minuses? See, for example, Elementary Cryptanalysis by
A. Sinkov (Washington, D.C.: Mathematical Association of
America, 1966).

9. Examine measures of intelligence. Is IQ an adequate
mathematical model? Should IQ really be vector valued (i.e.,
many components to intelligence)? See Frames of Mind: The
Theory of Multiple Intelligences by Howard Gardner (New York:
Basic Books, 1983).

10. Discuss the mathematization of professional baseball.
How do you mathematize baseball strategy? How do you meas-
ure the value of a player? Check out SABERMATRICS and the
Society of American Baseball Research. Also see Men at Work:
The Craft of Baseball by George F. Will (New York: Macmillan,
1990).

Videotape Resources

Freeman, W.- For All Practical Purposes (New York: W.H. Freeman, 1988).
30-minute videotapes:

Management Science—Overview: Apollo 11; Optimization. airline sched-
uling, limited constraints and resources, Bell Labs; Disney World: queueing;
Avis: transportation; Street Smarts: street networks; Trains, Planes, and Criti-
cal Paths. Topics include the traveling salesman problem, algorithm for find-
ing the cheapest tour, combinatorial explosion, nearest neighbor algorithm,
telecommunications networks, minimum cost, spanning trees, Kruskal’s al-
gorithm, critical path problems; Scheduling Problems: “Juggling Machines.”
Topics include math modeling, machine scheduling, heuristic algorithms,
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listprocessing algorithms, bin packing; Linear Programming. “Juicy Prob-
lems.” Topics include constraints, optunization, feasible points, feasible sets,
corner principle, production policy, ssmplex method

Social Choice—Election Theory: “The Impossible Dream”: mathematics
of decision making, outcomes, game theory, fair division; Weighted Voting:
“More Equal Than Others™: weighted voting systems, Banzhaf power index,
apportionment; Zero Sum Games: games of conflict, problems of fair division;
Prisoner’s Dilemma: game theory, games of partial conflict, cooperation and
defection.

1V. Discussion Topic: Number Mysticism

1. Explore the figurate numbers of the Pythagoreans and
discover some number facts arising from them. See “Pythag-
orean Arithmetic” by R. Honsberger in Ingenuity in Mathemat-
ics (Washington, D.C.: Mathematical Association of America,
1970).

2. Develop some conjectures about the Fibonacci num-
bers.

Videotape Resources

Apostol, Tom: “The Theorem of Pythagoras” (MaTHEMATICS!: Pasadena:
California Institute of Technology, 1988).

V. Discussion Topic: Utility of Mathematics to Other
Scientific or Technological Fields, and Vice-Versa

1. Many different answers have been given to the question
of why mathematics is useful in describing the physical work-
ings of the universe. Find out what some of these answers have
been. Which one appeals to you most? Why?

2. Examine what role the Pythagorean theorem plays in
Einstein’s theory of relativity. See K. O. Friedrich’s book From
Pythagoras to Einstein, published by the Mathematical Associa-
tion of America, 1965).

Films

Molecular Spectroscopy, by Reid H. Ray, Film Industries, Inc, 1962, Chem-
ical Education Material Study; Dr. Bryce Crawford and Dr. John Overland,
University of Minnesota. This film includes applications of symmetries in
chemistry. It discusses how polyatomic molecules vibrate in symmetrical or
asymmetrical fashion. The symmetry of the molecules can be correlated to
the modes of vibration. Rotational motions of the molecules are explained.
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VI. Discussion Topic: Pure vs. Applied Mathematics

1. Archimedes was not satisfied with certain arguments or
proofs based upon mechanics. Why? See The Works of Archi-
medes, T. L. Heath, ed. (New York: Dover, 1953), Supplement,
pp- 7-14. Also see Theology and the Scientific Imagination, Amos
Funkenstein (Princeton: Princeton University Press, 1988,
Chapter V).

For questions 2, 3, and 4, see for example Mathematics: Peo-
ple, Problems, Resulls edited by D. Campbell and J. Higgens
(Belmont, CA: Wordwsorth International, 1984).

2. Does the pursuit of applied mathematics, as opposed to
pure mathematics, require a different type of personality?

3. Which is a harder subject: pure mathematics or applied
mathematics? Support your conclusions.

4. What kind of employment can a pure mathematician
find? An applied mathematician?

VII. Discussion Topic: On the Utility of Mathematics to
Mathematics

1. Discuss how mathematicians often use results from one
branch of mathematics to prove results in another. Examples:
the four-color theorem, Fermat’s last theorem.

2. Recall the dissection proof of Chapter 2, Problem 2 in
the text. Demonstrate how Fibonacci numbers can be used to
describe the one-unit discrepancy when you dissect an 8-inch
square and try to transform it into a 5 X 13-inch rectangle.

3. Investigate how Pythagorean triples can be used to gen-
erate Fibonacci numbers. See “Connections in mathematics:
An introduction to Fibonacci via Pythagoras” by E.A. Marchi-
sotto ( The Fibonacci Quarterly, Vol. 31, No. 1, February 1993).
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Inner Issues

Pattern, Order, and Chaos. Abstraction, Generalization, Formula-
tion. Proof. The Aesthetic Component. Mathematical Objects and
Structures; Existence.

I. Discussion Topic: Pattern, Order, and Chaos

1. Give examples from life and from mathematics that il-
lustrate order out of order; chaos out of chaos; order out of
chaos; and chaos out of order.

2. Frieze patterns, i.e., one-dimensional patterns.

3. Two-dimensional patterns (see, for example, Washburn
and Crowe, Symmetries of Culture: Theory and Practice of Plane Pat-
tern Analysis, Seattle: University of Washington Press, 1988).

I1. Discussion Topic: Proof and the Different Ways
of Proving

1. Do you find Euclid’s proof of the Pythagorean theorem
convincing? Why or why not? Look up one of the proofs by
dissection in E.S. Loomis’ book, The Pythagorean Proposition
(Washington, D.C.: National Council of Teachers of Mathe-
matics, 1968). Is it more or less convincing than Euclid’s?

2. Prosecutors in court claim to give proof of guilt. Is this
the same thing as mathematical proof? Does it have anything
in common with mathematical proof?

3. Logical theory says that if the assumptions are true and
the proof is correct, the conclusions must be true, with no
possible doubt whatever. Do you agree? Why or why not?

4. Mathematical induction: There is a castle with an infi-
nite number of rooms. The king has the key to room #1. When
he entersit, he finds the key to room #2. If in every room there
is the key to the next room, will the king be able to enter all
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the rooms of the castle? The analogy to this scenario is proof
by mathematical induction.

5. A proof by contradiction establishes a certain statement
by showing that its denial leads to a contradiction. Euclid’s
proof of the infinitude of primes is an example of such a
proof. See Journey Through Genius by W. Dunham (New York:
John Wiley & Sons, 1990).

6. The use of counterexample to disprove conjectures in
mathematics.

IIL. Discussion Topic: Pascal’s Triangle

1. Pascal’s triangle let’s you solve many problems involving
counting and choice. For example: While driving home from
work at rush hour you must pass through eight intersections
controlled by stoplights. When you reach an intersection the
light is either green or red. Use Pascal’s triangle to solve these
problems:

a. In how manyways can you go through the intersections
catching af least four green lights?

b. In how manyways can you go through the intersections
in which all the lights are green?

c. Inhow manyways can you go through the intersections
in which no more than two of the lights are green?

2. The sum of numbers lying above the nth rising diagonal
of Pascal’s triangle (including that diagonal) equals up.9 — 1
(where up,g is the (n +2)th term of the Fibonacci sequence).
Verify for several values of n. Now could you prove it? Look for
other identities connecting Fibonacci numbers with binomial
coefficients.

IV. Discussion Topic: The Aesthetic Component—
Beauty in Mathematics

1. What objects or processes do you see as beautiful? Are
there objects or processes in mathematics which can be so
described?

2. Discuss, analyze, and criticize Edna St. Vincent Millay’s
poem, “Euclid Alone Has Looked on Beauty Bare.”
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3. Examine three different proofs of the formula
1+2+3+---+n=n(n+1)/2.
Which do you find most pleasing? Why?

4. Examine some frieze patterns (see For All Practical Pur-
poses, edited by L. A. Steen [New York: W.H. Freeman, 1987]).

Do you have any preferences among them? Try to describe
why some are more pleasing to you than others.

5. Of the mathematical curves you are familiar with, which
do you consider the mostinteresting? Give reasons. Discuss Gi-
useppe Peano’s space-filling curve (see Mathematical Thought
from Modern to Ancient Times by M. Kline [New York: Oxford
University Press, 1972}, page 1018). What makes this interest-
ing or surprising? Why is it called a curve?

V. Discussion Topic: Mathematical Objects and
Structures— Existence—The Importance of
Context in Mathematics

1. Does the fundamental theorem of arithmetic hold in
Jonathan Swift’s Kingdom of Laputa (Gulliver’s Travels)? By
“traveling” to Laputa (see Sherman Stein’s Mathematics, The
Man-made Unwverse [San Francisco: W. H. Freeman, 1963],
page 32), students can compute Lagado primes and discover
how a change of context can change results in mathematics.

2. Where does the Pythagorean theorem hold? Can an
analog of the Pythagorean theorem be developed for three
dimensions? Does the theorem ever hold on the surface of
a sphere? What theorem holds on the surface of a sphere?
(See, for example, “A New Look, Pythagoras” by C. Thornton
in The Mathematics Teacher, vol. 74, no. 2, February 1981.)

3. React to the following statements:
a. A tourist travels from St. Louis, Missouri to Sydney,
Australia. She must cross the equator.
b. On the basis of the information given in (a.), we can
determine where the tourist has crossed the equator.

4, Let M =100%" andlet N = 371% React to the following
statements:
a. We can find a prime number larger than M + N.
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b. It’s easy to find a prime number larger than M + N.
¢. We can determine whether M N +1 is a prime number.

5. React to the following statement: You had an ancestor
who was alive on September 1, 1066.

VI Discussion Topic: Abstraction, Generalization,
Formalism

1. Generalize this statement in two different ways: If the
sides of a rectangle have length a and b, its area is ab.

2. Consider the following two statements and decide
whether B is a generalization of A.

Let A be the statement: The medians of any triangle in-
tersect in a single point.

LetBbe the statement: The angle bisectors of any triangle
intersect in a single point.

3. Referring to #2, can you find a statement that general-
izes both A and B?

VII. Project Topic: Mathematical Relations and Equiva-
lence Classes

Warning! This projectis about “abstract relations.” As often
happens in mathematics, words have been stolen from plain
English and given a “technical” meaning. The new meanings
of “relation” and “equivalent” are related to, but not the same
as the familiar plain English meanings.

We may be interested in the logical consequences of two
objects being more than a mile apart, as is true, for exam-
ple, of Boston and Austin. And we may abbreviate the state-
ment “Austin and Boston are more than a mile apart” with
some symbol—perhaps some letter of the alphabet—say R.
Then we can write, for short, “Boston R Austin” or “Austin
R Boston.” We can even speak of the relation R as a thing in
itself, and say “Boston and Austin are in relation R.”

Since Albuquerque, Hersh'’s residence, is more than a mile
from Moscow, Hersh has relation R to Boris Yeltsin. The ab-
breviation for this is the statement “Hersh RYeltsin,” or just
“HRY.” We might say, if we wished, “The ‘ordered pair’
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[H, Y] is in the relation R.” This would be correct, even
though in the plain English sense of the word Hersh has no
relationship to Yeltsin—they’re totally unrelated!

In mathematics, “relation” means no more than we say it
means. In plain English, “relate,” “relation,” and “relation-
ship,” mean much more. Try not to mix up the different
meanings of relation—the plain English “relation” and the
mathematics “relation.”

Part 1.

An “ordered pair” is by definition a set of two things, a first
one and a second one. [Me, you] is an ordered pair. [You, me]
is a different ordered pair.

A “binary relation on a set” is, by definition, some subset of
the “ordered pairs” of elements of the set.

Example: Suppose the set in question is the set of resi-
dents of Cincinnati. Is “the grandmother of” a binary rela-
tion on the set? If Sadie and Maizie are residents of Cincin-
nati, and Sadie is Maizie’s grandmother, then the ordered pair
[Sadie, Maizie] belongs to the relation “is the grandmother
of.”

If R is the name of arelation, “a Rb” means that the ordered
pair [a, b] satisfies the relation R. If a relation is such that
whenever {a, b] satisfies it, so does [b, a], we call the relation
“symmetric.” (“Bidirectional” would be a more vivid name.)

1. Give examples of both symmetric and nonsymmetric re-
lations, between people and between numbers (bidirectional
and not-bidirectional).

We call arelation R “reflexive” if whenever A belongs to the
set S, [a, a] belongs to R. (Everything in the set S satisfies
the relation R with itself.) On any set the relation of identity is
reflexive; everything is identical with itself. However, identity
is not the only reflexive relation. In geometry the relations of
congruence and similarity are reflexive, because every figure
is similar to itself and congruent to itself. The relation “lives
less than a block away from” is reflexive, because everybody
lives less than a block away from him/herself. In most neigh-
borhoods it’s not the identity, unless everybody lives more
than a block apart.
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2. Give other examples of reflexive and nonreflexive rela-
tions.

A relation is called “transitive” if aRb and bRc imply aRc.
(The relation of “sister” is transitive. The relation “father of”
is nontransitive, since the father of my father is not my father.
In fact, the father of my father could be my father only if my
father were his own father.)

3. Give still other examples of transitive and nontransitive
relations of people and of numbers.

Part 2.

If arelation is reflexive, symmetric, and transitive, it’s called
an “equivalence relation.” The subset of S consisting of all
the members of S having an equivalence relation to some
particular member of S is called the “equivalence class” of
that member. (The relation of similarity among triangles is an
equivalence relation. One equivalence class under the simi-
larity relation is the set of all equilateral triangles, since all
equilateral triangles are similar to each other.)

Show that if two equivalence classes are notidentical (don’t
have all members in common), then they must be disjoint
(have no members in common).

If we have a collection of subsets of S, and no two of these
subsets overlap, and every member of S is in some subset, we
say we have a “partition” of S.

4. Check that the relation on the integers of “having an
even number as difference” is reflexive, symmetric, and tran-
sitive. By definition, it is then an equivalence relation.

5. Verify that the relation in #4 partitions the integers into
two equivalence classes, the even numbers and the odd num-
bers.

6. CHALLENGE: Is the relation “having as a difference a
number like 3, 6, 9, 30, 90, etc., which is a multiple of 3,” an
equivalence relation? If not, why not? If so, find out what are
its equivalence classes.

Even if a relation R is not an equivalence relation, we can
still consider, for any element a of S, the subset V of all ele-
ments b related to a (such that aRb).
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Example: If S is the set of living human beings, and I, your
instructor, am a, and R is the relation “is the grandchild of,”
then the subset V would consist of all my living grandparents.
If all my grandparents are dead, V' has no elements and is
called “the empty set.”

7. Show by several examples that if R is not reflexive, not
transitive, or not symmetric, then the classes induced by R
need not define a partition on S (they may not be disjoint or
else may not include every element of 5).

(Note: This is a big chunk of abstract math. It aims to show
how abstraction unifies seemingly unrelated topics [kinship
relations, geometric relations, numerical relations]. It could
take several class periods, or could be a do-it-yourself activity,
with generous class discussion after the students have several
chancesatit. Itismeant to be fun. The last two examples point
to modular arithmetic [number congruence] which return
later on. The use of familiar examples from high school math
begins to shed a modern light on geometry.

Emphasize the WARNING. The difficulty for some studentsis
absorbing unfamiliar terminology and definitions. They can
use help from you. Go over the definitions and examples,
and let them think up one or two more in class. The whole
thing, or as much of it as you like, can be done in class as
a Socratic dialogue between teacher and class, or in small
groups working independently during class.)

VIII. Discussion Topic: The Chinese Remainder
Theorem

1. Introduction to congruence mod m (leta, b, m, be inte-
gers such that m divides a—b. Then we write a = bmod m) asa
preliminary to discussion of Shockley’s version of the Chinese
remainder theorem (see page 206 in the text).

2. Connections in mathematics: proof of the Chinese re-
mainder theorem using mathematical induction. See A First
Undergraduate Coursein Abstract Algebra (2nd edition) by A. Hill-
man and G. Alexanderson (Belmont: Wadsworth Publishing,
1978).
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3. Use Euclid’s theorem about the infinitude of primes and
the Chinese remainder theorem to prove there are a million
positive consecutive integers: T, z+1,z+2,...,£+999999, each
of which is an integral multiple of the cube of a prime. See
A First Undergraduate Course in Abstract Algebra (2nd edition)
by A. Hillman and G. Alexanderson (Belmont: Wadsworth
Publishing, 1978).

IX. Project Topic: The Stretched String

1. Is “straight line” a mathematical concept?

2. If yes, then when you walk a straight line are you doing
math?

3. When you thinkabout a straight line, is that doing math?

4. Suppose Appletown, Beantown, and Crabtown are situ-
ated on a north-south straight line. Must one be between the
other two? Are you sure? How do you know? Can you prove
it? Or have you ever seen it proved? What if the line were
east-west? Or some other direction?

5. Now suppose the three towns are all on a circle, radius
five miles, center at Dogtown. On that circle, must one be
between the other two? Can more than one be between two
others? Are you sure? How do you know? Do you think it could
be proved? Bywhat means? What if the circle were seven miles
in radius, center at Hogtown?

6. A “figure eight” is a smooth, unbroken curve that has
one point of self-intersection. It is traced on ice by figure
skaters. If A, B, C are three distinct points on a figure eight
curve, answer the same questions that you just answered for
a straight line and a circle.

(Note: Thisis a “think” question. Expect a few sentences in
answer to each question. There are no wrong answers except
a simple yes or no. The purpose is to let the student glimpse
the complexity and subtlety of seemingly simple concepts like
“straight line.” If you wish, you can tell the students, in appro-
priate language, that betweenness is a topological property,
not a metric one. Here are some philosophical issues you can
open, for writing assignment, class discussion, or both).
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7. Is a straight line something we know about from obser-
vation? From a definition in a book? Is it something in our
heads? What if the straight line in your head isn’t “the same”
as the one in my head? Could we find out? Is Euclid’s straight
line the same as Newton’s? As Einstein’s? Is the straight line
of a great-grandmother who has lived all her life in a valley in
the interior of New Guinea the same as Madame Curie’s? If
Madame Curie met her and had a common language, could
she try to find out?

X. Tutorial: Complex Numbers

Complex numbers are one of the wonders of human
thought. We start with an impossibility—negative numbers
can’t have square roots. Why not? Because a positive times
a positive is positive, and a negative times a negative is also
positive, and 0 times 0 is 0. No way to get to —1 by squaring
any number! We crash through anyway, and use the letter 2
to stand for exactly what doesn’t exist: the square root of —1.
And for this courageous behavior, our reward is one of the
most useful and powerful tools in mathematics!

Complex numbers are expressions such as 2 — 57 or % + %i,
where ¢ is the square root of —1. But there is no “square root
of —1”!

In high school you met the quadratic equation, az? +bz +c =
0. You learned how to solve it. In fact, the Babylonians knew.
how, 3,000 years ago. The two solutions or “roots” (one with
a plus, the other with a minus) are

x=PbiVW~4mW%.

Stick them into the quadratic equation—they work!

What if b — 4acis negative? Then the square root operation
in the formula is applied to a negative number. That doesn’t
make sense! Negative numbers have no square roots! Yet the
quadratic formula still works! What a puzzle—the formula is
meaningless, yet it works like a charm!

Consider this simple equation:

xX+1=0
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Solving this, you get
x=%(-1)"2

z is plus or minus the square root of —1. But there is no square
root of —1! Somebody long ago named it “imaginary” (“z” for
short).

How do we operate with these imaginary numbers? The
algebra of i is easy. Treat it like z, y, or any other letter. If
you square it, replace it by —1. So we can perform algebraic
operations on it. But still, it doesn’t mean anything, right?

What does —1 mean geometrically? As a factor, a multiplier,
it means “reverse direction,” or “rotate through 180 degrees,”
or in plain English, “flip over.”

Multiplying by i twiceis the same as multiplying by —1 once.
If multiplying by —1 means “flip over,” then multiplying by 7
once has to be an operation that, when applied twice, results in
flipping over.

If we are working with real numbers, with the one-dimen-
sional number line, we cannot find such an operation. But
somebody had a bright idea. Widen the context! Embed the
line in a two-dimensional context, in a plane.

We ask again. What can you do fwzce that results in flipping
over? In a two-dimensional context, the answer’s obvious. Ro-
tate through 90 degrees! (You could go in either direction.
We mathematicians picked counterclockwise.) We apply the
90-degree rotations to 1, which we interpret as the “unit line
segment”—the segment from z = 0 to = = 1, extending one
unit of distance to the right, in the positive z-direction. We
are interpreting ¢ as a 90-degree rotation, so multiplying by ¢
carries 1 off the real line up to the vertical axis. The “mean-
ingless” symbol 7 is now identified with the point on the line
perpendicular to the real axis at x = 0, one unit of distance
above the z-axis. That’s what a 90-degree rotation does to the
unit real line segment. The second 90-degree rotation takes
it to —1, which we see is indeed i?. From one unit right of the
origin, to one unit above the origin, to one unit left of the
origin.

This idea pulls ¢ out of the mysterious into the familiar. It’s
the basis for the tremendous power and utility of the complex
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numbers. Three mathematicians independently found this
geometric interpretation of i—Wessel, Argand, and Gauss.

What about —i? It must be “i flipped over”—one unit below
the origin.

Here’s anotherway to get —i. Multiply i by itself three times.
You get i3 = (i%)i = (—1)i = —i. That’s algebra. We can also
think geometrically: operating with 7 three times means three
counterclockwise right-angle rotations, which lands you on
the downward vertical axis, which is —z, as before. Check!

Since 1 is one unit above the origin, 2 has to be two units
up. Any real multiple of 7 is on the vertical axis, above or
below. What about “mixed numbers,” complex numbers like
2 + 8i? The 2 says “move two units to the right.” That’s called
“the real part.” The 3 says “move three units up.” That’s called
“the imaginary part.”

We have just accomplished something awesome. Every
point (a, b) in the Cartesian coordinate plane is now associ-
ated to a complex number a + bi, and every complex number
a + bi is now associated to a point (a,b). Complex numbers
have capabilities that Cartesian points (ordered pairs of real
numbers) don’t have. They add, subtract, multiply, and di-
vide! Thereby the points in the plane become algebraic. They
can add, subtract, multiply, or divide.

What'’s the geometric meaning of these operations?

Addition is easy. Pick two complex numbers, say 3 + 7¢ and
2 + 41. Plot their points (3,7) and (2,4). The obvious, natural
way to add is (3+7i) + (2+4i) = (3+2) + (7+4)i=5+11:. Plot
3+7i and 2+4i and 5+ 114 in your plane. With the origin, they
form a parallelogram. Another way to say it is, “the sum of two
complex numbers is the fourth vertex of the parallelogram
whose other three vertices are the two points and the origin.”

Subtraction is no problem. It’s just adding the negative of a
number. You negate a number by flipping it over (multiplying
by —1). So you subtract by first flipping over and then adding.

Multiplication is really exciting. We began with multiplica-
tion by ¢, which we interpreted as rotation counterclockwise
through a right angle. To multiply a complex number by a
positive real number, keep the complex number in the same
direction and multiply its length by the real number. If it’s a
negative real number, flip over.
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Whatabout multiplying by a mixed number—that’s neither
pure real nor pure imaginary?

First look at points on the unit circle—the circle with ra-
dius one and center at the origin. Every complex number
except zero has a direction and magnitude. There’s exactly
one complex number on the unit circle with a given direction.
So every complex number is a real number times a number
on the unit circle (a complex number with magnitude 1).
Therefore, it’s enough to be able to multiply by numbers on
the unit circle—numbers of magnitude one.

A point on the circle is defined by its angle, which is cus-
tomarily called 6. Its z and y coordinates are named by the
two trigonometric functions, z = cos#, y = sin 8, so the point
on the circle with angle 8 is cos§ + isin 8. If we have a second
such point with angle ¢ instead of 6, we can multiply them as
a straightforward algebra exercise, and get (cos#) (cos ¢) —
(sin 8) (sin @) +1 [(cos #) (sin ¢) + (sin 8) (cos d))] .

We need some trigonometry, to recognize that the first two
terms are just cos(f + ¢) and the terms in square brackets
multiplied by 4 are sin (6 + ¢). This formula reduces to z(6) x
2(9) =2(0+9).

In words, multiplication of points on the unit circle corre-
sponds to adding their angles—which is usually called “rotat-
ing.” The complex numbers permit us to perform rotations
in the plane by multiplication! This is why complex numbers
are wonderful. Rotation is an important operation in mathe-
matics and physics. To perform it by multiplying numbers is
a miracle.

Next, division. A simple trick turns division into multipli-
cation! Let’s divide by 3 + 4:. That’s the same as multiplying
by (34’1—41), which is the same as multiplying by ﬁ_%r This
is the trick we warned you of—multiplying and dividing by
3 — 44. (83 — 4i) is called the “conjugate” of (3 + 4i). Check
to see that (3 — 44) (3 + 44) = 25. In fact, any complex number
except 0, when multiplied by its conjugate, gives a positive
real number—the sum of the squares of the real and imagi-
nary parts. Prove this for yourself. This sum of squares is called

“the modulus squared.” So (—3571.) is equal to 13;%, which we
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rewrite, if we like, as % + (—545)1'. Division by zero is still im-
possible, as it is in the reals.

There’s an interesting consequence of the fact that multi-
plying numbers on the unit circle is done by adding angles.
We can find square roots, cube roots, any roots at all! The two
square roots of 1, —~1 and +1, which are on the unit circle, with
angles of 180 and 360 degrees. You can easily check thati, —1,
—1, and 1 are fourth roots of 1. They’re on the unit circle, at
angles of 90, 180, 270, and 360 degrees. With these examples
before us, it’s easy to guess that there are three cube roots of
1. We already know one of them—1 itself. But there are two
more, at angles of 120 and 240 degrees. They are called w
and w?. You can find their real and imaginary parts, either
by trigonometry or by solving a certain real quadratic equa-
tion. And there are five fifth roots, equally spaced on the unit
circle, six sixth roots, and so on.

The sum of the two square roots, the three cube roots, the
four fourth, or the five fifth roots of any number is zero. This
is easy to see in the even cases, 2, 4, etc. A proof that includes
both odd and even cases is short and easy, but it requires a
simple bright idea. Can you think of it?

How do you extract roots of other numbers besides 1? Let’s
find three cube roots of 8i. Any cube roots of 8 will be the
product of the cube root of 8 and a cube root of . The cube
root of 8 is 2. The imaginary unit ¢ is on the unit circle, with
angle 90 degrees. Since multiplication adds angles, one cube
root has an angle of 9—30 = 30 degrees. Where are the other two
roots? Equally spaced around the unit circle, at 150 degrees
and 270 degrees. Alittle trigonometry will tell you the real and
imaginary parts of 2(cos 30 + isin 30), 2(cos 150 + 7 sin 150),
and 2(cos 270 + i sin 270).

Now back to our original question. If there’s no square root
of —1, how can we get away with saying there is?

The answer is, there’s no square root of —1 where we looked
at first, among the real numbers, on the real number line. But
when we widened our search from the line to the plane, we
found a couple of square roots.

We can say it another way. When we looked at the real line
by itself, the point —1 had one coordinate: —1. But then we
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started to think of the real line as an z axis embedded in the
zy plane. The real line becomes the horizontal z axis of the
plane. All its points have y-coordinate 0. The point we called
—1 nowislabeled (—1, 0). This point corresponds to rotation
through 180 degrees, so its square root should be rotation
through 90 degrees, which has coordinates (0, 1).

Algebraically, we want (0, 1)? = (=1, 0). Write (0,1) as 0+1.
Square it according to ordinary algebra and use the rule i% =
~-1.

We didn’treally find a square root of the real number —1. We
found a square root of the complex number —1, which is ~1 +
0z, or (—1,0). By appropriately defining multiplication and
addition of ordered pairs (complex numbers), we arranged
that (0,1)2 is (—1, 0). 7 is just an abbreviation for (0,1), and
so 32 = —1 after all.

XI. Project Topic: Probability

Probabnlity is the quantitative study of randomness. It can be
described as the science which asks the following question:
Given a known collection of objects, what can be said about
the characteristics of an unknown sample of that collection?

INsTRUCTOR: In our experience, probability is a popular
topic for students. It generally is the the subject most often
chosen for expository research papers. We begin with a brief
outline of the basics, and conclude with a nice experiment
for the classroom.

Basic terminology: An experiment is a situation or problem in-
volving uncertain results. Qutcomes are various possible results
of experiments. The sample spaceis the set of all possible out-
comes of an experiment. An event is any subset of the sample
space. The union of two or more events is the event that at
least one of them occurs. Their ¢ntersection is the event that all
of them occur. The complement of an event A is the event that A
doesn’t occur. In a sample space S of equally likely outcomes,
the probability of an event F is the number of outcomes in F,
called n(E), divided by the number of outcomes of S, n(S):

P(E) = n(E)/n(S)-
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Permutations and Combinations

Permutations and combinations play arole in calculating prob-
abilities.

Basic ideas: The number of permutations, i.e., different ar-
rangements, of n objects taken r at a time where repetition is
allowed, is n".

Example: How many three-letter “words” can be formed
from the set of letters {a,b}? Answer: n = 2,7 = 3,s0n” =
23 =8.

The number of permutations, i.e., different arrangements,
of n objects taken r at a time where repetition is not allowed is
n!/(n—r)!,wheren!=(n) - (n—1)- (n—2) --- (3) - (2) - (1)
and is read “n-factorial.”

Example: How many ways can a two-person debate be ar-
ranged drawing speakers from an eight-member panel? An-
swer: n=8,r=2,s0 n!/(n—r)! =8!/6! = 56>

We are not concerned with “order” or arrangement of ob-
jects when we compute the number of combinations of them.
The number of combinations of n things taken r at a time is
nl/[rt(n — 7).

Example: There are 10 balls in an urn, each a different
color. If three balls are drawn from the urn, how many dif-
ferent combinations of colors are possible? Answer: n = 10,
r=3,son!/[r!(n—7r)!] =101/[3!71] = 120.

Some Basic Rules of Probability
The probability of any sample space is 1.
The probability of any event is at least 0 and at most 1.

If F and F are mutually exclusive events, then the proba-
bility of their union is the sum of their separate probabilities.

Example: What is the probability of getting a black queen
or a ten of hearts when picking one card from a deck? An-
swer: Let A = getting a black queen; then P(A) = 2/52. Let
B = getting a ten of hearts; then P(B) = 1/52. A and B are
mutually exclusive events since they cannot both happen at
the same time. So the probability of their union is the sum of
their probabilities: 3/52.
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If E and F are independent events, then the probability of
their intersection is the product of their individual probabili-
ties.

Example: A game involves tossing a fair coin and then pick-
ing a card from a deck. What is the probability of getting
a head and an ace? Answer: Let A = getting a head; then
P(A) = 1/2. Let B = getting an ace; then P(B) = 4/52. A
and B are independent events since the outcome of one does
not affect the outcome of the other. So the probability of A
intersection B is the product of the probabilities: 2/52 = 1/26.

The probability of any event E = (1 minus the probability
of its complement E’).

Example: What is the probability of rolling a number less
than six on one throw of a die? Answer: Let E = throwing a
number less than 6. Then E’ = throwing a number equal to 6
(since 6is the highestnumber onadie). So P(F) = 1-P(F').
P(E')=1/6,s0 P(E)=1-1/6=5/6.

For any two events in a sample space, the probability of their
union is the sum of their individual probabilities minus the
probability of their intersection.

Example: What is the probability of drawing a red card or a
queen in a single draw from a deck of cards? Answer: Let F =
drawing a red card; then P(E) = 26/52. Let F' = drawing a
queen; then P(F') = 4/52. E and F are not mutually exclusive
events, so their intersection is not empty. That is, there exist
cards which are both queens and red—two of them. So the
probability of E intersection F is 2/52.

Thus, the probability of the union of these two events is the
sum of their individual probabilities minus the probability of
their intersection: 26/52 + 4/52 — 2/52 = 28/52 = 7/13.

An Experiment

Let’s conduct an experiment: Your instructor wants to di-
vide your class into two sections. Suppose the number of stu-
dents is an even number. Rather than take time and trouble
with some logical method of dividing the class, the instruc-
tor decides (with the consent of the class) to simply decree
that everybody whose family name starts with a letter up to
or before M will be in section 1, and everybody whose family
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name starts with N or a later letter in the alphabet will be in
section 2.

There are 60 students in the class. (This number is arbi-
trary. You can substitute the actual number of students in your
class.) When the class is divided into two sections, it turns out
that there are exactly thirty students in each section.

a. Is this a miracle?

b. Is it just what you should expect?

c. How would your expectations change if the problem
was about an army of a million soldiers, and when split in
the same manner there were exactly half a million in each
sub-army?

d. What’s the extreme case in the opposite direction?

e. How would shrinking the class change your expecta-
tion?

f. If your instructor sets out to choose a section one class-
mate at a time, notknowing anyone’s name, what’s the chance
that any one choice would have a name from A to N? If you
don’t know, what seems like a reasonable guess?

g. What is the chance that your instructor would choose
two in a row with names from A to N? Three in a row? Thirty
in a row? Having chosen one, what is the chance that the one
she picks next out of the 59 remaining would have a name
from A to N. Having chosen two, with 58 remaining, what is
the chance the next would have a name from A to N?
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Selected Topics
in Mathematics

Group Theory and the Classification of Finite Stmple Groups. Non-
Cantorian Set Theory. Non-Fuclidean Geometry. The Prime Number
Theorem. Appendix A. Nonstandard Analysis. Fourier Analysis.

I. Discussion Topic: Non-Euclidean Geometry

Saccheri derived the fact that the sum of the angles of a
triangle is less than 180 degrees when the parallel postulate is
denied. Discuss the Saccheri quadrilateral.

IL. Project Topic: Spherical Geometry

Do some investigation of spherical geometry. This is the ge-
ometry of the night sky, the geometry of celestial navigation.
A spherical triangle is a region on a sphere bounded by three
arcs of great circles. A meridian (circle through the north and
south poles) is perpendicular (at right angles) to the equator.
Consider a sphere with radius 1, and a triangle with a vertex
at the North Pole and two vertices at the equator. One side of
the triangles is a piece of the equator. The other two sides are
pieces of meridians intersecting at the North Pole. Suppose
the angle at the North Pole is n degrees. What is the angle
sum of the triangle? Suppose the angle at the North Pole is
very small—0.000001 degrees. Then what is the angle sum?
Suppose the angle at the North Pole is almost 180 degrees, say
179.99999. Then what is the angle sum? Make a conjecture
on the possible angle sums of an arbitrary spherical triangle.

The amount by which the angle sum exceeds 180 degrees
is called “the spherical excess.” For the triangle we are consid-
ering, it’s not hard to find its area by finding what proportion
of the whole sphere the triangle covers. The whole sphere has
area 4. The hemisphere has area 27. The triangle with vertex
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angle at the North Pole equal to 90 degrees is one fourth of
the northern hemisphere, so its area is 7/2. And so forth.

There is a beautifully simple connection between the spher-
ical excess of any spherical triangle and its area. Find it.

Videotape Resources

Freeman, W.: “Measurement: It Started in Greece” (For All Practical Purposes
(New York: W.H. Freeman, 1988)

Discussion Topic: Symmetries and Groups

1. Coding/decoding (cryptography) and inverses of func-
tions ’
2. Transpositions in music as reflections

3. Using composition and groups to find all seven frieze
patterns

4. Why do we study symmetries? How do we use algebra to
combine symmetries?

5. A snail’s shell is sometimes modeled by an exponential
spiral (spiral of Bernoulli). Describe this spiral from the point
of view of invariance. Use this example to show that a symme-
try in the algebraic sense may not correspond to a symmetry
in the usual visual sense.

Project Topic: Digital Sums and Casting Out Nines

Part 1.

If we add the digits of 123, we get 6. If we add the digits
of 12,345, we get 15. If we then add the digits in 15, we get 6
again. In this way, from any positive whole number (“natural
number”) we can obtain some one-digitnumber, the sum of its
digits or the repeated sum of digits. Let us call this number the
digital sum of 123 or of 12,345, or of any number 7, and abbre-
viate it “d” for short. (The term “digital sum” is not standard
terminology. Since we could not find any standard term in the
books, we made up our own.) Then d(123) = d(12345) = 6.
It should be clear that if n is between 1 and 9, d(n) = n.

1. Choose two three-digit numbers, call them a and b. Cal-
culate d(a), d(b), d(a +b), d(a) +d(b), and d(d(a) + d(b)).
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2. Do you notice anything interesting?

3. Would you like to make a conjecture (a guess) about
what will happen for other numbers?

4. How sure are you?

Try another example.

Still another.

Try numbers with two and four digits instead of three.
How sure are you now?

. Make an “addition” table showing d(a+b) instead of the
usual a + b for a and b from 0 to 10 or higher.

© 0 N>

10. Can we think of this table as defining a new, addition-
like operation?

11. For this strange new addition could we try to define an
“identity” (something that acts like zero under addition)?

12. Could we try to define “subtraction”?
Part 2.

13. RepeatPart 1 using the same additive definition of d(n),
but with multiplication and division replacing addition and
subtraction in Nos. 1 and 9-12.

14. Does this new “arithmetic” follow the laws of ordinary
arithmetic (associative addition, associative multiplication,
commutative addition, commutative multiplication, distribu-
tive multiplication over addition)?

15. Could we calculate “square roots” and “cube roots” in
this “arithmetic”?
Part 3.
16. Find an old math text that has a section on “casting out
nines.”
17. Read it and explain it to class.
18. How does it tie in with this problem?

(INsTrUCTOR: The students are being surreptitiously intro-
duced to abstract algebra—they are discovering other binary
operations besides the elementary ones.
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Explain to the class that quotation marks are systematically
used to distinguish ordinary addition and multiplication from
this new, funny kind of “addition” and “multiplication.”

Ifyou’re not familiar with this material, you’ll find it helpful
to work through the question in order to know what the stu-
dents will experience. “Casting out nines” is hundreds of years
old. It used to be a bookkeeper’s trick to check arithmetic.)

Students demand to know how it works. The answer has two
parts:

I. Taking the digital sum of anumber is the same as finding

itsremainder on division by 9 (“modulo 9” or “mod 9,” we say).

II. The sum or product of the remainders equals the re-
mainder of the sum or product, modulo 9.

To see (I), consider a three-digit number with hundreds
digit h, tens digit ¢, and units digit u. Write it as (99 + 1) +
(9+1)t+u. When we form the digital sum, we replace 100h =
(99h + h) by just h, which is the same as replacing it by the
remainder mod 9, since 99A has zero remainder.

To see (II)—why addition is preserved mod 9—add (h +
t+u) to ' +t' + ') and compare this number with (100h +
10¢ + u) + (100R" + 10¢’ + u'). The two answers differ by a
multiple of 9, which means they have the same digital sum. For
multiplication, do the analogous thing—multiply (h +¢ + u)
times A’ + ¢’ + u’) and compare the result with the product
of (100A + 10t + u) times (100R' + 10t' + u). Again the two
answers differ by a multiple of 9, which means they have the
same digital sum.

For division, things are more complex because 9 is fac-
torable, which means that multiplication modulo 9 has zero
divisors. It helps to look first at modular multiplication with a
prime modulus like 5 or 7.

II1. Discussion Topic: Nonstandard Analysis

1. In a nonstandard number system there are numbers
that are not zero and yet are smaller than any positive stan-
dard number. This seems to be a contradiction. Can mathe-
matics always create theories that “regularize” contradictory
situations?

57



Chapter Guidelines

2. Hailed as a great advance when it was discovered, non-
standard analysis seems to have made little impact in the teach-
ing of calculus. Discuss.

Videotape Resources

Freeman, W.: For All Practical Purposes (New York: W.H. Freeman, 1988):
“On Shape and Size.” The video opens the door to explorations of math-
ematical certainty, perspective, symmetry patterns, isometries in the plane,
the work of Escher, non-Euclidean geometry, and fractal geometry.

“Not Knot” (The Geometry Center, University of Minnesota, 1991). 16-
minute video with printed supplement.

“Outside In” (The Geometry Center, University of Minnesota, 1994). 22-
minute video with printed supplement.

“Group Theory” (British Open University, No M 101/27, 26 minutes,
color, 1977). This film includes an application of symmetries to the work of
post offices.

“Dihedral Kaleidoscopes,” with H. S. M. Coxeter (International Film Bu-
reau, 1966, 14 minutes); review in Mathematics Teacher 66 (1973).

“Mathematical Peep Show” (1961, 11 minutes); reviewed in Mathematics
Teacher, November 1971, p. 625.

“Symmetries of the Cube” (International Film Bureau, 1971, 14 minutes,
color); reviewed by Everett Van Akin in Mathematics Teacher, No. 8, 1972,
p- 733.

Freeman, W.: For All Practical Purposes (New York: W.H. Freeman, 1988):
“Scale and Form: How Big is Too Bigr” 30 minutes, includes a discussion of
symmetries, frieze patterns, Escher, and more.

Freeman, W.: For All Practical Purposes (New York: W.H. Freeman, 1988):
“Computer Science: Rules of the Game™: algorithms; “Counting by Twos”: nu-
merical representation; “Creating a Code™ encoding information; “Moving
Picture Show”: computer graphics.
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Confessions of a Prep Teacher. The Classic Classroom Crisis of Un-
derstanding and Pedagogy. Polya’s Craft of Discovery. The Creation
of New Mathematics. An Application of the Lakatos Heuristic. Com-
parative Aesthetics. Nonanalytic Aspects of Mathematics.

L. Discussion Topic: Problem Solving

1. How is the process of generating ideas different from
the process of evaluating them?

2. Some advice for solving mathematical problems based
on the philosophy of George Pélya:
A. Make Reasonable Guesses

- Try to make guesses that help narrow the scope of the
problem, like order-of-magnitude guesses.

- Be sure you can give reasonable evidence of the bases for
your guesses.

- Maintain a healthy skepticism toward your guesses.

- Investigate the consequences of your guesses; make new
guesses in light of new insights.

- Keep a record of all determinations you make as you
progress.
B. Solve Simpler Cases
- Test extreme cases (extremely small or large).
- Consider all parameters that can reasonably be varied.

C. Look for Patterns in the Data
- Use any perceived pattern to make a prediction.

- Check your prediction. If it’s incorrect, look for another
pattern. If it is correct, write a description of the pattern
on which it is based.

- If at least two predictions check out, try to prove that the
pattern on which they were based is general.
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IL. Project Topic: Magic Sevens and Periodic Decimals

Part 1.

Let n denote the six-digit number 142,857,
a. Calculate 2n and 3n.
b. Do you notice anything funny?
c. Are youwilling to guessin advance what happens next?
d. Write down your guess, then check it by calculating 4n.
e. Guess again, and check again with 5n.
f. Guess and check one after the other 6n, 7n, 8n.
'g. Are you a good math guesser? Give yourself a letter
grade

Part 2.

h. Carefully and accurately, by hand divide 7 into 1 to eight
decimal places.
i. Does this part have anything to do with Part 1?
j- What?
k. How?
1. Why?
m. Guess what will come in the 10th, 16th, and 22nd dec-
imal place. Write down your guess.
n. Check.
o. Give yourself a letter grade for guessing.

Part 3.

p. Calculate 1/9, 1/11, and 1/13 to enough decimal
places so that you can guess correctly what would appear in
the 30th place (if you felt like carrying the calculation that
far).

q. Check.

r. Experiment with the six-digit repetend you get from
1/13.

s. The term “repetend” has not been defined. It may not
be in your dictionary. Guess the meaning from the context
and the root word, “repeat,” or ask your instructor.

t. Try multiplying it by numbers 2, 3, 4, etc.

u. Figure out what’s going on.

v. Guess in advance the result of multiplying it by 12 and
13.
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w. Explain why the repetend can have six digits rather
than five or seven.

INsTRUCTOR: We always show the class why (A) every ra-
tional number is equal to an (ultimately) repeating decimal
and (B) every repeating decimal is equal to a rational num-
ber. (For example, 1/12 = 0.0833333 is not quite a repeating
decimal, but it is ultimately repeating.) For (A), as the division
is carried out, they always obtain a remainder less than the
divisor, so if the divisor is n, in at most n steps the remainder
must repeat, and from then on the whole calculation must re-
peat. For (B), we give a little lesson on geometric sequences
and series, starting with Zeno’s paradox of Achilles and the
tortoise, and the series 1/2+1/4+1/8 +---.

Geometric representation of Zeno’s paradox.

(Don’t define “limit” explicitly. Just note that if s is the sum
and r is the ratio (in this example 1/2), then (1/2) times
s = s — (1/2). Let them solve this equation for s. Be sure to
consider 7 = 1, r = —1, r = 10,.to show that |r| less than 1
is a necessary condition, and more important, to show that
a plausible conjecture, even if it seems to check, often is false with-
out some unforeseen, necessary condition. This deserves a whole
lesson of its own. The application to repeating decimals is an
unexpected, good review.)

(This problem can be a first look at number theory, or a
second look after the problem on congruence mod9. This
one is closer to familiar ideas, but more demanding compu-
tationally. In general, we welcome calculators or computers.
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The caveat here against calculating 1/7 by machine is that we
want the student to notice the calculation itself, not just the
result.)

(You could go on to 1/17,1/19,1/21, and so on. Or try to
explain why the permutations are cyclic and all of the same
length, and why that length is what it is. You could transpose
the whole thing to a base other than 10 and compare the
results of the two investigations.)

II. Project Topic: EXPLORE:*
Design a Winning Strategy for a Numerical Game

Rules of the game:

1. Four players choose two teams. Each person on each
team will be recording. At the top of your papers, write the
name of each person in the group.

2. Asagroup, choose a whole number between 1 and 100,
atrandom. Call it N.

3. Team 1 chooses a positive integer different from N that
is a divisor of N (i.e., that divides evenly into N so that the
remainder is zero), and subtracts that divisor from N. The
result of the subtraction is given to Team 2.

4. Team 2 works with the results of the subtraction just
as Team 1 worked with N: choosing a positive divisor of that
number different from the number itself, and subtracting the
chosen divisor form it. The result of the subtraction is given
to Team 1.

5. Continue the play, with teams taking turns choosing di-
visors and subtracting until the result reaches the number 1.
The team that produces the result 1 wins.

The goal of this group project is to design a winning strategy for
EXPLORE.

Directions for the Classroom Groups

1. Play three games of EXPLORE. Keep track of your games,
i.e., keep records so you will have a collection of data to use

* Adapted from Foundations of Higher Mathematics by Fendel /Resek, 1990.
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in designing your winning strategies. You’ll want to look for
patterns among your winning examples.

2. As a group, formulate at least two questions about a
winning strategy for the game and write these questions down.
Then discuss the questions in your group and try to conjecture
about possible answers.

3. Test your conjectures by playing at least three more
games.

4. Discuss the results with your group and write down your
conclusions.

After You Have Played EXPLORE:

Answer each of the following questions completely:

a. Is there always a winner in EXPLORE? Write a statement
explaining your answer. Identify any basic facts about whole
numbers that you need.

b. What are the possibilities for the last move of EXPLORE?
Why are there no other possibilities? Explain carefully, identi-
fying any basic facts about the whole numbers that you need.

c. Give a complete winning strategy for EXPLORE for the
appropriate team, using each of the numbers from 2 through
10 as the starting number.

d. Try to determine how many turns a game of EXPLORE
might take. Write down answers to the following to help you
answer these questions:

1. In terms of the starting number, what is the largest
number of turns the game can take?

2. In terms of the starting number, what is the smallest
number of turns the game can take?

3. In terms of a specified number of turns, what is the
smallest number you can start with?

4. In terms of a specified number of turns, what is the
largest number you can start with?

Videotape Resource

Polya, George: “Let Us Teach Guessing” (Washington D.C.: The Mathe-
matical Association of America, 1965).
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From Certainty to
Fallibility

Platonism, Formalism, Constructivism. The Philosophical Plight of
the Working Mathematician. The Euclid Myth. Foundations, Found
and Lost. The Formalist Philosophy of Mathematics. Lakatos and the
Philosophy of Dubitability

I. Discussion Topic: Platonism, Formalism,
Constructivism

1. Platonism views mathematics as a study about eternally
given objects which impose their nature upon the results of
mathematics. Mathematics thus deals with abstract or ideal
“objects” which have been independent of our thought about
them. Discuss 7, the Pythagorean theorem, the Fibonacci se-
quence, etc., from the viewpoint of the Platonist. Talk about
Godel and his connection to Platonism.

2. Constructivists admit only the existence of mathemat-
ical objects and theories that can be constructed. Construc-
tivists emphasize the algorithmic aspects of mathematics. Dis-
cuss the avoidance of the infinite in the mathematics of the
ancients. Make connections between the constructivist’s views
of mathematics and the needs of computer science.

3. Formalists reject the notion that mathematics relies on
experience. There are no mathematical objects—just formu-
las. Discuss the move to formalism that occurred during the
early twentieth century and what concerns motivated mathe-
maticians in this direction.

I1. Discussion Topic: The Euclid Myth

1. The nineteenth-century discovery of the independence
of the parallel postulate destroyed the view of Euclidean ge-
ometry as the exemplar of truth, freed mathematics from a
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total reliance on spatial intuition, and paved the way for a
flourishing of many new fields of geometry.

2. The destruction of the Euclid myth gives evidence of
mathematics as process and not a mere collection of facts or
“eternal truth.”

3. New branches of mathematics are often the conse-
quence of investigating familiar facts. Thus investigations
into the parallel postulate of Euclid led to the birth of new
branches of mathematics like non-Euclidean geometries. A
similar situation occurred in the birth of nontraditional alge-
bras in connection with investigations into the commutativity
of multiplication.

4. What is possible in one context in mathematics is often
impossible in another. Consider: lines that sometimes inter-
sect (Euclidean geometry); lines that always intersect (Rie-
mannian geometry); and lines thatnever intersect (Lobachev-
skian geometry). Study operations that maintain certain prop-
erties on one algebraic system (commutative multiplication
of the integers) but lose them in another (noncommutative
multiplication of quaternions).

5. Exploring the idea that “the familiar can be a source
of new knowledge” one can illustrate the multiculturalism of
mathematics. Discuss frieze patterns and the connections be-
tween the artifacts of different cultures and the Pythagorean
theorem. See for example “A Widespread Decorative Motif
and the Pythagorean Theorem” by P. Gerdes in For the Learn-
ing of Mathematics, vol. 8, 1988.

6. Godel’sincompleteness theorem is another example of
a result that stunned the mathematical world. Explore the
origins of this theorem in the ancient Greek (liar) paradox
of Epimenides (“This statement is false”) showing how Gédel
simply translated it into mathematical terms, using mathemat-
ical reasoning to explore mathematical reasoning itself. See
for example Gdidel’s Proof by Ernest Nagel and James R. New-
man (New York University Press, 1960).

Videotape Resources

Freeman, W.: “Measurement: It Started in Greece” (For All Practical Pur-
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poses (New York: W.H. Freeman, 1988) has nice illustrations of models of
Riemannian and Lobachevskian geometries.

IIL. Discussion Topic: What Is Mathematics
and What Do Mathematicians Do?

1. What do mathematicians do? Interview a practicing math-
ematician (academic, industrial, statistical, computer, etc.).
See how she/he answers this question about her/his work.

IV. Discussion Topic: The Axiomatic Method

1. The building blocks of deductive mathematics are the
axioms. What is the power of the axioms in defining a math-
ematical theory?

2. Axioms can be used to illustrate the connections be-
tween different branches in mathematics. They provide a
structure for understanding how different parts of mathemat-
ics are related.

3. Axioms provide an opportunity for the growth of math-
ematics. The axiomatization of geometry in ancient Greece
transformed mathematics from an experimental science into
an intellectual one. Several major crises, revolutions, direc-
tional changes, and developments in the history of mathe-
matics were tied to axioms.

4. Certain axioms have played an important role in the
history of mathematics. It is fascinating to try to determine
which axioms are crucial to which mathematical theories. Itis
also interesting to determine what consequences result from
denying specific axioms.

5. In 1904, Professor Maxime Bécher claimed: “Untl a
system of axioms is established, mathematics cannot begin its
work.” But 80 years later, Professor Morris Kline said, “When
a mathematical subject is ready for axiomatization, it is ready
for burial and the axioms are its obituary.” How can we eval-
uate each of these statements within their historical context
and come to some opinion of their accuracy in today’s math-
ematical world?
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Mathematical Reality

The Riemann Hypothesis. ©. Mathematical Models, Computers, and
Platonism. Classification of Finite Simple Groups. Four-Dimensional
Intuition. TrueFacts About Imaginary Objects. Why Should I Believe
a Computer?

L. Discussion Topic: Four-Dimensional Intuition

Goal: Help students understand the “possibilities” in math-
ematics, and the ability of mathematicians to reason intuitively
in contexts beyond physical experience.

1. Explore the many dimensions of mathematics. In E.
Abbott’s Flatland: A Romance of Many Dimensions (Princeton:
Princeton University Press, 1991), one can experience the re-
strictions of living in a two-dimensional world.

2. Artists who wanted to depict our three-dimensional
world on canvas gave impetus to the birth of projective ge-
ometry.

3. Mathematical facts and formulas are often born in a
certain dimension and are extended to other dimensions.
Consider the Pythagorean theorem, which is stated in a two-
dimensional environment. How do we extend it to three di-
mensions? See “A New Look, Pythagoras” by C. Thornton in
The Mathematics Teacher, vol. 74, no. 2, February 1981.)

4. Are there mathematical formulas that hold in two di-
mensions, but not in three?

5. We can obtain “evidence” for mathematical results in
two- and three-dimensional environments. Is this possible in
four dimensions? What process do we use to make mathemat-
ical statements about a four-dimensional environment?
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IL. Project Topic: A Round Trip to the Fourth Dimension
Part 1.

You know three-dimensional cubes and two-dimensional
cubes (usually called “squares”).

1. Does there exist a four-dimensional cube? If there is
such a thing, how many parts does it have?

Comment: At first this problem doesn’t make sense, for sev-
eral reasons. You may respond, “How can you ask me about
the fourth dimension? I don’t have a clue what that means.”
But in a few minutes you’ll be answering questions about the
four-dimensional cube! (For brevity, we say “hypercube” in-
stead of “four-dimensional cube.”)

This is a good candidate for Professor George Polya’s fa-
mous principle of problem-solving: If you can’t solve the problem
you have, think of a related problem you might be able to solve.

2. What is a related problem that might be easier to solve?
3. How many parts has an ordinary cube (a 3-cube)?
4. What are “parts™

For purposes of this problem, the parts of a cube are its
interior (three-dimensional), its faces (two-dimensional), its
edges (one-dimensional), and its vertices or corners (zero-
dimensional).

5. Count the various kinds of parts of a cube, write down
the numbers in order in a row, and add them up.

6. It’s not clear how to go up to four dimensions. But it
'would be easy to go (fill in the blank).

7. How many parts has a 2-cube (square)? Count them up,
write them down in order in a second row above the first row,
and add them up.

8. What should we understand by a 1-square? How many
parts has it, of which kinds? Write them down in a row above
the second row.

9. Same instructions for the zero-square. Now you have a
table, composed of four rows neatly going from zero to three.

10. Study the numbers in front of you till you see what
should go in the fifth column for the hypercube. (There is
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a simple relation between the numbers in any row and two
numbers in the previous row.)

11. How many parts has a hypercube?
Part 2.

12. Can you extend the table to more than five rows and
more than five columns?

13. Whatwould appear in the fourth row, k-th column? Fifth
row, k-th column? Sixth row, k-th column?

14. Guesswhatwould be the sum of the numbers in the n-th
TOowW.

15. Prove that the sum of the parts of an n-cube is 3™ in two
different ways: by induction using the recursion formula, or
by the binomial theorem, summing the number of parts of
the n-cube of dimension k.

A triangle is sometimes called a 2-simplex, because it’s two-
dimensional and is the simplest figure in two-space. Similarly,
a tetrahedron (triangular pyramid) is called a 3-simplex.

16. How many parts has a 4-simplex?

Part 3.

A square can be constructed by connecting two parallel line
segments. A 3-cube can be constructed by connecting two par-
allel squares. Construct a hypercube from two 3-cubes, and
then from this recursive construction give the geometric ex-
planation of the recursion formula you discovered empirically
in Part 2.

Part 4.

We can use coordinates to study cubes combinatorially. A
l-cube (unitline segment) can be taken as the segment of the
z-axis between z = 0 and z = 1. A unit square can be given
vertices in the z-y plane as (0,0), (0,1), (1,0),and (1,1). A
unit cube in the z—y—2z space has vertices at points whose three
coordinates are all either 0 or 1. Verify that there are eight
such vertices. So a unit hypercube is defined as the region
in four-dimensional (z—y—z—w) space where the vertices have
Jour coordinates that are either 0 or 1.
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An edge in any number of dimensions is defined by two
vertices, all of whose coordinates are the same except one.
(For example, in four-dimensional space, one edge of the
hypercube connects the vertex at (0,0,0,0) and the vertex
at (0,0,0,1).) A two-face is defined by a pair of edges, all of
whose coordinates are the same except for two. For example,
in three dimensions the face of the unit cube in the z—y plane
(z = 0) can be defined by two parallel edges, the first on the z-
axis, the second one unit up in the y-direction (y = 1,2 = 0). A
three-face (in four-space) is defined by two parallel two-faces,
just like the three-cube in three-space.

17. Using these definitions, recalculate the number of parts
for the 2-, 3-, and 4-cube.

Part 5.

18. Now do you believe there is such a thing as a four-
dimensional cube?

19. If not, then how come we are able to find out so many
facts about it?

20. If yes, then where and how does it exist?

(Note to the Instructor: The philosophical questions at the
beginning and end of the lesson are the main reasons for
doing it. Students should begin to get an idea of how far and
how reliably mathematics can stretch their imaginations. Of
course, you may want to assign only part of this problem.

The number of k-parts of the n-cube is 27 times (Z), or
E%‘f—;g% Summing over k, the binomial theorem gives 3™.

There may be questions about what this has to do with time
as the fourth dimension in relativity theory. The shortest and
simplest answer is, “Nothing.”

In one class a student commented, “This is really puremath-
ematics, isn’tit?” I took this to be a challenge: “What'’s the use
of all this anyhow?” Fortunately, a partial answer is easy to give
and very worthwhile in itself. The preeminently practical sub-
ject of linear programming deals with n-dimensional linear
geometry. True, we aren’t mainly concerned with counting
parts. But it is n-dimensional.
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After all, a mathematical square or cube doesn’t exist phys-
ically any more than a hypercube. Yet all three are interesting
and useful.)

Videotape Resources
Banchoff, Thomas and Strauss, Charles: “The Hypercube” (Chicago: In-
ternational Film Bureau, Inc., 1978).

Apostol, Tom: “The Theorem of Pythagoras” (MATHEMATICS!: Pasadena:
California Institute of Technology, 1988).

Freeman, W.: “Measurement: It Started in Greece” (For All Practical Pur-
poses, New York: W.H. Freeman, 1988)

IL Discussion Topic: Why Should I Believe
a Computer?

1. What role does the computer play in mathematical
proof?

2. Can the computer be considered a tool of mathemati-
cal proof? Discuss the role that different tools have played in
establishing mathematical results. For example, certain prob-
lems (the trisection of an angle) are unsolvable using only
Euclidean tools (straightedge and a compass), but solvable
when Euclidean tools and the conchoid are utilized. The four
color theorem is unsolvable (as yet) without the computer, yet
accessible with the computer.
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Sample Syllabus

What follows is a sample syllabus for a three-unit general ed-
ucation course, “Mathematical Ideas.” Prerequisites for the
course are measurement geometry and intermediate algebra.
Students are generally those in non~mathematics related ma-
jors and number 30 per class. Classes are scheduled for 15
weeks, 3 hours weekly.

First Day Handout

MATHEMATICS 131: MATHEMATICAL IDEAS
SPRING, 1995 TUESDAY/ THURSDAY 11:00-12:1§
Text: The Mathematical Experience

Course Objectives

The goal of this course is to give you a sense of what mathe-
matics is and what mathematicians do. Course topics include
history and philosophy of mathematics as well as mathematics.

Basis for Grading
Homework Assignments: 15%
Midterm: 20%
Final: 25%
Paper: 25%
Class Participation: 15%
Homework Assignments

Homework assignments will consist of problem sets, readings,
and essays. No late homework will be accepted. Some assign-
ments will require use of the Mathematics Resource Library
which is located in the Learning Resource Center, Room 610,
Engineering Field. This library was especially designed for
this course. The library is open M—F 8 A.M. to 5 P.M.

Paper

You are asked to write a 5-page expository research paper as
a class project. We will have class discussions about possible
topics. The following are deadlines for this project:
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February 23:  Topic Selection

March 7: Bibliography due
March 16: Outline due
March 30: First Draft due
April 27: Final Paper due
Class Participation

This is a student-centered, rather than instructor-centered,
class. To that end, we will form small groups to work on as-
signed problems or discuss assigned reading. Grade will be
based on your preparedness and participation in these activi-
ties, and performance on group projects.

Syllabus

INsTRUCTOR: One of the benefits of using The Mathematical
Experience is that material from chapters can be introduced
in different orders. This syllabus demonstrates one possible
sequence.

Rationale

We begin this class with a discussion of what mathematics is
and what mathematicians do. The first focus is “The Mathe-
matician as Prover.” This enables the instructor to introduce
the student to the distinctions between evidence and proof,
to understand the role of conjecture and counterexample
in creating mathematics, and to experience different ways of
proving. A discussion of Abstraction, Generalization, and For-
malization leads very nicely into the second focus, “The Math-
ematician as Pattern Finder.” For example, when students try
to discover a generating formula for Pythagorean triples, they
collect evidence, abstract information and generalize to make
conjectures about their generating formula. The final step is
proof that their conjectures are valid.

Week I
Day One
In Crass:

1. Getting acquainted, distribute class syllabus.
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2. Classroom Discussion: The alien has landed. Chapter 1,
Question 1, page 11 in this Companion Guide.

3. Have the students write a brief mathematical autobiogra-
phy during class.

HOMEWORK:

Read the text to page 4. Due next class meeting.

Day Two
IN CLass:

1. Discuss research paper, going over deadlines listed on
handout. Visit library.

2. Group Work Activity: In your own words, describe the task
or goal the authors envision for the text. What is Gian-
Carlo Rota’s observation about oversimplification as it re-
lates to mathematics? What, in your opinion, would be an

oversimplified view of mathematics? Instructor: see page
89 of this guide.

HOMEWORK:
Read Chapter 1. Due next class meeting.

Essay Assignment: Chapter 1, Number 1 (page 31 in the
text). Due in one week. Typed.

Theme, Weeks II to IV: The Mathematician as Prover

Week II
Day One
In Crass:

1. Group Work Activity: Whatis Ulam’s dilemma? If you were
Ulam, and areporter from Newsweek was interviewing you
regarding this dilemma, how would you explain it? Is there
anything that can be done about Ulam’s dilemma? Will

the Information Superhighway help solve this dilemma?
Explain. Instructor: see page 90 of this guide.
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2.

Class discussion: Proof, verification, conjecture, evidence,
intuition. What do these words mean and how do they re-
late to one another? Goldbach Conjecture. Fermat’s Last
Theorem.

HoMeEwORK:

Read pages 36—48. Due next class meeting.

Go to the Mathematics Media Lab and view the videotape
“The Theorem of Pythagoras.”

Day Two

In Crass:

1.

Classroom Discussion: Different types of proof. Proof by
mathematical induction; proof by infinite descent (Fer-
mat); counterexample (see this Companion Guide, pages
12-13 in the guidelines for Chapter 2).

. Group Work Activity: In The Ideal Mathematician what

particular “difficulties of communication emerge vividly”
from the exchange between the ideal mathematician and
the public relations officer? Can you find any specific evi-
dence of contradiction between what the ideal mathemati-
cian believes and what he can explain to the student? See
page 91 of this guide.

HoMEWORK:

Read pages 59-69. Due next class meeting.

Week III
Day One
In Crass:
1. Classroom Discussion: Proof by contradiction. Dissection

78

proofs of Pythagorean theorem. (Students had observed
these in the videotape assigned last week.)

. Group Work Activity: Create “pieces” for a dissection proof

of the Pythagorean theorem and give each group the
pieces, asking them to recreate the proof of the Pythago-
rean theorem.
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HOMEWORK:

Read pages 87-97. Due next class meeting

Day Two

In CLaASs:

1.

Classroom Discussion: Direct proof (algebraic) of the Py-
thagorean theorem (students had observed this in the
videotape assigned in Week II).

. Group Work Activity: Dissection experiment in regards to

square/rectangle (see Chapter Guidelines TopicII, Ques-
tion 2, page 13).

HOMEWORK:
Read pages 138-167.
Week IV
Day One
In Crass:
1. Classroom Discussion: Abstraction, Generalization, For-

malization (Chapter 4). Euclid’s proof of the Pythagorean
theorem compared to other proofs we have discussed.

. Group Work Activity: Generalize this statement in two dif-

ferent ways: If the sides of a rectangle have length a and
b, its area is ab. Consider the following two statements and
decide whether B is a generalization of A. Explain your
reasoning.

Let A be the statement: The medians of any triangle inter-
sect in a single point.

Let B be the statement: The angle bisectors of any triangle
intersect in a single point. (See page 93 of this guide.)

HoOMEWORK:

Read pages 188-195.

Essay assignment: Chapter 4, page 218 in the text, Ques-
tion 3: Mathematicsis the subject in which there are proofs.
Explain to your younger sister different types of proofs that
mathematicians use, and try to give her a sense of which,
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if any, have been most convincing from your perspective.
Use specific examples. Due in one week.

Day Two
In CLass:

1. Classroom Discussion: Prove the bisectors of the angles
of a triangle are concurrent. This follows from the group
activity of day one.

HOMEWORK:
Extra Credit Assignment: Prove the medians of a triangle
are concurrent.

Theme, Weeks V to IX: The Mathematician as Pattern Finder

Week V
Day One
In Crass:

1. Classroom Discussion: Give examples of order out of or-
der, chaos out of order, order out of chaos, chaos out of
chaos. Instructor: see page 188 in the text.

2. Discussion of Research Papers

HOMEWORK:

Work on the Research Paper. Bibliography due next class
meeting.

Day Two
INn CLass:

1. Classroom Discussion: Try to determine a generating for-
mula for primitive Pythagorean triples. (See “The Pythag-
orean Problem” in Invitation to Number Theory by Oystein
Ore; see page 133 in the text.)

HoMEWORK:

Go to the media lab and look at the videotape For All Prac-
tical Purposes: “On Shape and Size” (30-minute videotape).
The Introduction includes a discussion of Fibonacci num-
bers and the golden ratio.
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Week VI
Day One
IN CLass:
1. Classroom Discussion: Review the students’ conjectures
for generating formula for Pythagorean triples.

2. Group Work Activity: Use the conjectures to determine
generating formulas. See page 95 of this Guide.

HoMEWORK:

Work on the Research Paper. Check out books, articles
suggested by instructor.

Day Two
In Crass:

1. Classroom Discussion: Chapter 3, Topic III, Question 2,
page 33 in this Guide. Leonardo of Pisa (c. 1202) devel-
oped the Fibonacci sequence in trying to answer the fol-
lowing question: If someone places a pair of rabbits in a
certain place enclosed on all sides by a wall, how many pairs
of rabbits will be born there in the course of one year, it be-
ing assumed that every month a pair of rabbits produces
another pair, and that rabbits begin to bear young two
months after their own birth? Describe how the Fibonacci
sequence answers this question.

2. Classroom Activity: Make a conjecture about the sum of
the the first n Fibonacci numbers.

HOMEWORK:

Make a conjecture about the sum of Fibonacci numbers
with even subscripts. Make another conjecture about the
sum of Fibonacci numbers with odd subscripts. Give evi-
dence to support your conjectures.

Week VII
Day One
In Crass:

1. Classroom Discussion: Prove the students’ conjectures
about the Fibonacci numbers using mathematical induc-
tion.
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HOMEWORK:
Read pages 97-116.

Long-term Essay Assignment: Chapter 3, question 19, page
130 in the text. Due at close of discussion of Fibonacci
numbers.

Day Two
In CLAss:

1. Classroom Discussion: Revisit the dissection proof with re-
gards to the square/rectangle from Week 3. Show how
Fibonacci numbers can be used to describe the one unit
discrepancy when you dissect an 8-inch square and try to
form itinto a 5 X 13-inch rectangle.

2. Group Work Activity: Golden Rectangle (Problem 4 of
Chapter 3, page 131 in the text.

HoMEWORK:
Read pages 184-187.

Week VIII
Day One
In CLass:

1. Classroom Discussion: The Golden Ratio and Fibonacci
Numbers.

2. Group Activity: The Golden Ratio and Fibonacci numbers.
See page 97 of this Guide.
HoMEWORK:

Work on Research Paper.

Day Two

In Crass:

1. Classroom Discussion: Fibonacci Numbers and Pythago-
rean triples.

HOMEWORK:

Work on Research Paper.
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Week IX
Day One
IN CLass:
1. Classroom Discussion: Pascal’s triangle.
2. Group Activity: Pascal’s triangle. See page 96 of this Guide.

HoMEWORK:
Work on Research Paper.

First Draft due next class meeting.

Day Two
In CLass:

1. Classroom Discussion: Fibonacci numbers and Pascal’s tri-
angle (Problem 9 of Chapter 4, page 221 in the text). Essay
Assignment: Fibonacci numbers (question 19 of Chapter
3, page 130 in text.) Due in two weeks.

Week X
Day One

Review for Midterm Exam.

Day Two

Midterm Exam.

Theme, Weeks XI to XV: Geometry, An Ever Fruitful Product

of the Mathematician’s Curiosity and Imagination

Week XI
Day One
First draft of research paper due; return midterm exami-
nation.
In Crass:

Classroom Discussion: Platonism, formalism, constructiv-
ism; Chapter 7.
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HOMEWORK:

Read pages 356-368. Look atvideotape: “Measurement: It
Started in Greece” (For All Practical Purposes). This has nice
illustrations of models of Riemannian and Lobachevskian
geometries.

Essay Assignment: The destruction of the Euclid myth
gives evidence of mathematics as process and not a mere
collection of facts or “eternal truths.” Write an essay for the
Atlantic Monthly alerting the world to the view of mathe-
matics as an evolving discipline and give specific examples
to support this view. Due in one week.

Day Two
In CLass:

1. Classroom Discussion: Geometry and Intuition. Freewrite:
What is the Euclid Myth? Chapter 7.

2. Group Work Activity: Platonism, formalism, constructiv-
ism. See page 98 of this Guide.

HOMEWORK:
Read pages 241-247; 433-441.

Week XII
Day One
In CLass:

1. Classroom Discussion of non-Euclidean geometries. De-
monstrate in hyperbolic geometry that there exists a tri-
angle with angle sum less than 180 degrees; Chapter 5.

HoMEWORK:
Read pages 85-87, “Mathematical Models.”

Day Two
In CLass:

Classroom Discussion: Finite Geometries and Models. For
reference, see for example A Course in Modern Geometries by
Judith N. Cederberg (New York: Springer-Verlag, 1989).
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Axioms for a four-point geometry:

Primitives: point, line, on.

Axiom 1: There exist exactly four points.

Axiom 2: Two distinct points are on exactly one line.
Axiom 3: Each line is on exactly two points.

HoMEWORK:

Read pages 377-397. Create two models for a three-point
geometry based on the following undefined terms and
axioms:

Primitives: point, line, on.

Axiom 1: there exist exactly three points.

Axiom 2: two distinct points are on exactly one line.
Axiom 3: not all points are on the same line.

Axiom 4: two distinct lines are on at least one common
point.

How many lines exist in this geometry? Discover and prove
two theorems for this geometry.

‘Week XIIT
Day One
IN Crass:

Show and discuss videotape: The Hypercube (Banchoff and
Strauss).

Group Work Activity on the Hypercube (see page 99 of
this Guide).

HoMEWORK:
Read pages 442-453.

Day Two
IN Crass:

Begin Project: “A Round Trip to the Fourth Dimension”
(Instructor: see Chapter Guidelines for Chapter 8 in this
guide).
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HoMEWORK
As required by Project.

Week XIV
Day One
Research Paper due; complete Project.

Day Two
Sample Final distributed.

Week XV

Review for Final Examination.
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Sample Group Activities

Introduction and Ch. 1: The Mathematical Experience

Names:

1. Inyour own words, describe the task or goal the authors
envision for The Mathematical Experience.

2. (a) What is Gian-Carlo Rota’s point about oversimplifi-
cation as it relates to mathematics ?

2. (b) What, in your opinion, would be an oversimplified
view of mathematics?
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Ch. 1: The Mathematical Landscape

Names:

1. What is Ulam’s dilemma? If you were Ulam, and a re-
porter from Newsweek was interviewing you regarding this di-
lemma, how would you explain it?

2. Is there anything that can be done about Ulam’s di-
lemma?

3. Will the Information Superhighway help solve this di-
lemma? Explain.
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Ch. 2: Varieties of Mathematical Experience

Names:

1. In The Ideal Mathematician, what particular “difficulties
of communication emerge vividly” from the exchange be-

tween the ideal mathematician and the public relations of-
ficer?

2. Can you find any specific evidence of contradiction be-
tween what the ideal mathematician believes and what he can
explain to the student?

3. Describe the tone of this essay.

91



Companion Guide to The Mathematical Experience

Ch. 3: Outer Issues: Utility
Names:
1. When we talk about the utility of mathematics to math-
ematics, what do we mean? Give two examples that we have

discussed in class, demonstrating the utility of mathematics to
mathematics.

2. What do the authors mean by common utility of math-
ematics? Give an example demonstrating this phenomenon.

3. What is the difference between Hardyism and Mathe-
matical Maoism?
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Ch. 4; Inner Issues

Names:

1. Generalize this statement in two different ways:

If the sides of a rectangle have length a and b, its area is ab.

2. Consider the following two statements and decide
whether B is a generalization of A. Explain your reasoning.
Hint: Draw a picture.

Let A be the statement: The medians of any triangle intersect
in a single point. (Note: a median of a triangle is a line joining
a vertex to the midpoint of the side opposite the vertex. )

Let B be the statement: The angle bisectors of any triangle in-
tersect in a single point. (Note: An angle bisector of a triangle is
the line that divides the angle into two equal angles.)

93



Companion Guide to The Mathematical Experience

Ch. 3: The Pythagorean Theorem

Names:

1. What are Pythagorean triples?

2. Describe to a student who has not attended this class
the concept of a dissection proof.

3. The videotape “The Theorem of Pythagoras” uses a
shearing process in the dissection proofs. What is the effect
of shearing a triangle on the calculation of its area ?

4. The Pythagorean theorem states a fact about a right
triangle in a plane. Where does the Pythagorean theorem not
hold, and why does it not work in that environment?

5. Describe two reallife situations that model the Pythago-
rean theorem.

6. You are a professor trying to decide whether or not to
show the videotape “The Theorem of Pythagoras” to your
class. Make your decision, and then support it. That is, if you
decided to show it, describe at least one mathematical fact
that you hope your students will learn from it. If you decided
not to show it, criticize its treatment of at least one specific
topic.
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Ch. 3: Pythagorean Triples

Names:

We have made the following conjectures for triples (a, b, c)
wherea < b < c:

Dawn: Every primitive Pythagorean triple has only one even
number.

Amy:Whenaisodd,c—b=1.

Rob: All primitive contain at least one prime number.

Denise: b is divisible by 4.

Rick: Every odd number a is in a Pythagorean triple.

Steve: When a is odd, we can generate a subsequent triple:

(6+2,2a+c+1,2a+c+2)

We were attempting to prove that Steve’s conjecture was
true. We discovered it would be, under the given conditions,
if it is always the case that 2c = a2 + 1. Consider the triple
(5,12, 3). Does 2(13) = 52+1? The list of triples we discovered:

8,4,5)  (8,15,17) (5,12,18)  (7,24,25)
(9,40,41) (11, 60,61)

1. Can you simplify Steve’s conjecture? Hint: In addition to
what we’ve proved, use the conjectures made by Rick and Amy.

2. Try to generate a formula for triples where a is even.
This may even turn out to be a generating formula for all
triples. Hint: Since we conjecture (thanks to Rob) that every
triple contains an even number, try rearranging your triples
as follows: (a, b, c) where a is even and b < c. Try to write a, b,
and c in terms of two other integers m and n.
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Ch. 4: Pascal’s Triangle

Names :

Perform the following tasks:

1. We have solved several problems using Pascal’s triangle.
Try to describe what “type” of problem lends itself to solution
by Pascal’s triangle.

2. Create your own problem that can be solved by Pascal’s
triangle, and demonstrate its solution.

96



Sample Group Activities

Ch. 3: Connections: The Golden Ratio and
Fibonacci Numbers

Names:

The Fibonaccisequence appearsin patterns connected with
the Golden Ratio ¢. Conjecture: When ¢ is raised to a positive
integer power, the result can be written as A + B¢ where A
and B are Fibonacci numbers

For example ¢2 = [1/2+ (1/2)v/51[1/2+ (1/2)v5] =3/2 +
(1/2) v/5. I want to find two Fibonacci numbers, A and B so
that

¢* = A+ B¢
3/2+(1/2)V5=A+B[1/2+ (1/2)V5]
=A+(1/2)B+(1/2)BV5.

If A=1and B =1 (the first two Fibonacci numbers), we get

3/2+(1/2)v5=1+1[1/2+ (1/2)V5]
=1+ (1/2)(1) + (1/2) (V5
=3/2+(1/2)V5

Find ¢%; ¢4 to gather more evidence for this conjecture.

Can you determine a pattern emerging from your calcula-
tions? That is, try to generalize this result for ¢™, using the
Fibonacci sequence and writing A and B as u, for some n.
Hint: Begin by writing ¢%, ¢%, ¢* in terms of the following:

1, 1, 2, 3, 5, 8, 13,21,34,55,89,...,up,...

u1, ug, Us, Ug, Us, Ug, U7, Ug, U9, U10, ULl - - -, Un,--.
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Ch. 7: From Certainty to Fallibility

Names:

Write a short paragraph in response to each of these ques-
tions. Assume that your audience has read Platonism, Formal-
ism, and Constructivism, has attended class and seen “The Story
of w,” and “The Pythagorean Theorem.”

1. Platonism views mathematics as a study about eternally
given objects which therefore impose their nature upon
the results of Mathematics. Mathematics thus deals with ab-
stract or ideal “objects” which have beingindependent of our
thought about them. How would the Platonist talk about 7?
That is, how would the Platonist explain why 7 can be found
in number theory, probability, geometry, etc.?

2. Constructivists admit only the existence of mathemat-
ical objects and theories that can be constructed. Construc-
tivists emphasize the algorithmic aspects of mathematics. Why
do constructivists deny Cantor’s continuum hypothesis?

3. Formalists say there are no mathematical objects—just
formulas. What would the formalist say about the fact that the
Pythagorean theorem has applications in the physical world?
Does their response have some connection with the view of
mathematics by fiat?
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Ch. 8: Mathematical Reality

Names:

Now that you have seen the videotape “The Hypercube,” answer the
Jollowing questions.

Different pictures of a 4-dimensional cube are mutually
contradictory if we think of it as a 3-dimensional object. In
4-dimensional space, the different 3-dimensional projections
fit together.

1. (a) Describe the revolving door illusion when you rotate a
3-cube in 3-space.

1. (b) Describe the revolving door illusion when you rotate
a 4-cube in 4-space.

2. (a) How many corners does a square have?
2. (b) How many corners does a 3-cube have?
2. (c) How many corners does a 4-cube have?

3. (a) Describe what we mean by perspective distortions of a
3-cube.

3. (b) Describe what we mean by perspective distortions of a
4-cube.

4. (a) How many square faces does a 3-cube have?
4. (b) How many cubical faces does a 4-cube have?

4. (c) How many edges come out of each corner of a 3-
cube

4. (d) How many edges come out of each corner of a 4-
cube

5. (a) What geometric figures do you obtain when you slice
a square, corner first, with a one-dimensional knife?

5. (b) What geometric figures do you obtain when you slice
a 3-cube, corner first, with a two-dimensional knife?

5. (c) What geometric figures do you obtain when you slice
a 4-cube, corner first, with a three-dimensional knife?

6. (a) How is a square related to a 3-cube?
6. (b) How is a 3-cube related to a 4-cube?
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Sample Examinations

Sample Take-Home Examination

I. (35 points) Answer each part completely. Descriptions
should be at least one paragraph. Where appropriate, cite
specific mathematical examples to support your answer.

a. What is a frieze pattern? What role does mathematics
play in categorizing frieze patterns? Be sure to define specific
mathematical terms that apply to frieze patterns. Create a
frieze pattern of your own and specify its type.

b. Whatis the difference between a conjecture and a proof?
Give an example of a mathematical conjecture. Describe two
different types of mathematical proofs.

c. Describe the real number system. Be sure to include at
least four different subsystems of numbers in the system. Give
an example of a subset with an operation that forms a group
within the real number system.

d. Without using a calculator, determine how much is 1 +
3+5+7+---+999? Explain how you found the sum.

e. Describe the symmetries of an equilateral triangle.

II. (20 points) Answer the following questions for this op-
eration table:

* a b ¢ d
a a b ¢ d
b b d a ¢
c c a d b
d d ¢ b a

1. Is this set closed under *? Why or why not?
2. Is there an identity? If so, what is it? If not, why not?

3. Does every element have an inverse? If so, list each el-
ement with its inverse. If not, show which elements have no
inverses and explain why not.
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4. Give an example to show this set has associativity un-
der *.

5. Does this table describe a group? Why or why not?

1. (15 points) Let R = {q,r, s,t} with an operation § de-
fined on R. Furthermore, assume the following properties:

g is the identity element
7 is the inverse of s
rfr=sffs=t

R, is a group

Construct an operation table for R, }}.

IV. (25 points) We have discussed patterns, groups, and
proofs in this class. Choose one of these topics'and write a
two-page (typed, double space) magazine article for a gen-
eral audience. Describe what you have learned about your
topic in this class. Give your reader a sense of what your topic
involves, by means of definitions and examples. Discuss the
beginnings of your topic or place it in a historical or con-
ceptual context if you can. Illustrate its applications. Describe
it within the framework of issues we have discussed or read
about: the growth of knowledge in mathematics; mathemat-
ics as invention or discovery; the mathematical community;
mathematics as art or science, etc. Create a banner headline
for your article that enables your reader to determine your
goals in exposition.
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Sample Examination

I. (40 points) Write any ONE of the essays specified below.
Consider your audience to be students who are planning to
enroll in this class in the Fall semester. You may assume they
have read The Mathematical Experience. However, do not assume
any knowledge of the mathematics you describe. To that end,
be sure you give thorough explanations of the mathematical
facts used in your essays.

A. Write a one-page essay based on this reading from The
Mathematical Experiencein response to the questions posed:

Confessions of a Prep School Teacher

I propose that Williams makes statements that are mislead-
ing, implying some things about mathematics that are not
so. Example: “He prefers to teach mathematics rather than
physics because it is hard to keep up with the new develop-
ments in physics.” This can be interpreted by the reader as:
there are no (or few) new developments in mathematics. As
many people believe mathematicsis a “collection offacts,” this
kind of implication feeds the fallacy. In other places, Williams
responds with platitudes about mathematics, and then when
questioned further, explains with convoluted reasoning or in-
accurate definitions.

Give an illustration of the above. Then explain what is
wrong with Williams’ explanation. Use at least one specific
mathematics fact to illustrate your point.

B. Write a one-page essay based on this reading from The
Mathematical Experience in response to the questions posed:

The Classic Classroom Crisis of Understanding and Pedagogy

Explain what the authors mean by “fiddling around” and de-
scribe under what circumstances and to what purpose should
a professor “fiddle around” in class? Based on your experi-
ence in this class, recount a specific episode of how “fiddling
around” by your or your instructor assisted you in understand-
ing a concept. Be sure your explanation describes the mathe-
matics involved in the event.
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C. Write a one-page essay based on this reading from The
Mathematical Experience in response to the questions posed:
Polya’s Craft of Discovery

Have you used, observed your instructor or your classmates
use, any of the heuristics that Polya cites? Choose one prob-
lem. Explain the mathematics involved, and what heuristics
were used to solve it.

II. (15 points) Derive a number sentence from figurate
numbers, and then use mathematical induction to prove it.

III. (15 points) Define and give an example of each of the
following:

a. A counterexample.
b. A primary Pythagorean triple.

c. A conjecture in mathematics.

IV. (30 points) Answer each of the following with a one-
paragraph response. Give a specific example for each of the
six given themes which characterize the evolution of mathe-
matics:

a. Results may be accepted before proof can be demon-
strated.

b. One proof may not be enough.
c. Problems generate new problems
d. A change in context alters an accepted result.

e. New branches of mathematics can be the consequence
of investigating familiar facts.

f. A discovery in one field can precipitate major crises in
the mathematical world and beyond.
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Sample Midterm Examination

1. (20 points) Find reasons for thinking that any brief defi-
nition of mathematics must be inadequate. Discuss your find-
ings with someone who thinks that mathematics is simply
number-crunching. Give specific examples to support your
statements.

2. (20 points) Mathematics builds on itself. Branches of
mathematics borrow from each other. Often we find discover-
iesin one branch apply to another branch. Estimating, conjec-
turing, proving, finding patterns are all activities that engage
mathematicians. Discuss either the Pythagorean theorem, the
number 7, or the Fibonacci sequence and try to show how its
history conveys specific attributes of mathematics.

3. (20 points) Answer each of the following questions and
where possible, give an example to support your answer. If
you give the name of a theorem, you must state the theorem:

a. Everyprovable statement is true but not every true state-
mentis provable. What famous mathematician discovered this
result? Give an example that possibly illustrates it.

b. Describe the role that counterexample plays in proving
or disproving a theorem. Give an example.

c. What is the difference between conjecture and proof?
Give an example of each.

d. Mathematicians try to find order out of chaos. Give an
example from mathematics of this activity.

e. When little Gauss was in kindergarten his teacher gave
him a mathematics problem to keep him busy. What was the
problem, and how did Gauss solve it in record time (i.e., de-
monstrate Gauss’ solution)?

4. While driving home from work at rush hour you must pass
through eight intersections controlled by stoplights. Assume
when you reach an intersection that the light is either green
or red. Use Pascal’s triangle to solve this problem:

a. In how many ways can you go through the intersections
catching at least four green lights?
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b. In how many ways can you go through the intersections
in which all the lights are green?

c. In how many ways can you go through the intersections
in which no more than two of the lights are green?

5. (20 points) Make a conjecture about the sum of Fibonacci
numbers with odd subscripts and prove your conjecture using
mathematical induction.

Sample Final Examination

In-class exam with one take-home problem. Each problem is
worth 20 points.

1(A). Find the sum of the ﬁfst 500 odd numbers, using the
following procedures:

a. Find the sums of the first few odd numbers, noting to-
tals, and expressing these totals in terms of exponents. Show
at least four examples.

b. Describe in words the pattern you find, i.e., use a sen-
tence to express the pattern in terms of an arbitrary num-
ber n.

c. Use your pattern to predict the sum of the first 500 odd
counting numbers. Express the sum in terms of exponents.

1(B). Using the problem-solving technique of Carl Fried-
rich Gauss, find the following sum. You may express your an-
swer as a product of two integers.

4+8+12+---4+396+400

2. Let uy, ug, ..., Un, ... be the Fibonacci sequence. Prove,
for all positive integers n, that

(Un1) (Uns2) — (un) (Unss) = (="

3. You are studying the voting record of your senator. She
voted on eight pieces of legislation. Use Pascal’s triangle to
answer the following questions.

a. How many different ways could she have voted?
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b. How many different ways could she have voted no on at
least three of the bills?

c. How many different ways could she have voted yeson no
more than six of the bills?

4(A). Use the figurate numbers of the Pythagoreans to make
a conjecture about sums of integers.

a. Describe your conjecture in words.

b. Draw the figures to support your statement.

4(B). The Fibonacci sequence appears in patterns con-
nected with the golden ratio ¢, when ¢ is raised to a positive

integer power. Find ¢?; ¢3; ¢*; etc. to determine the pattern,
i.e., write ¢” in terms of ¢ and Fibonacci numbers.

5. Are there any numbers common to the following three
arithmetic sequences? If so,

a. construct a system of simultaneous congruences;

b. indicate why this system has a solution;

c. ifit hasasolution, use the Chinese remainder theorem to find
the first three numbers common to the sequences.

If not, indicate why not.

Sequence #1:5,8,11,...
Sequence #2: 9,13,17, ...
Sequence #3: 2,7,12,...

6. Take-home problem (to be submitted with the final ex-
amination): Assume you have been the instructor in this class.
The chair of the department asks you to submit a report on
one of your themes and its objectives and how you attempted
to meet them.

Write such a report. Include:

1. The theme you would have addressed and a catalogue of each
topic under that theme.

2. Gue several examples of how you would have demonstrated
the theme with specific discussion of classroom activities and readings
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from the text. Here, you should convince the chair, by specific
examples, of how the topics helped you demonstrate the theme.

8. Indicate why you do or do not believe you have met your objective
for the theme. Here, think about whether you “grew” in your
understanding of the theme by considering specific topics.
It’s not necessary to be positive in response to this. But your
response, positive or negative, needs to be supported with
specifics.

4. Report what (if anything) you would change should you teach
this class again and why, and/or give advice to other instructors
who plan to teach the class. This report should be approximately
three to four pages. It needs to include specific mathematical
problems and citations from the text, with interpretation of “lessons
learned” by examining the solutions to the problems and the
readings from the text. Name dropping and vague statements
are discouraged. If you discuss Goldbach’s conjecture, you
must state the conjecture and give examples to demonstrate
it. If you make the connection between Pascal’s triangle and
the binomial theorem, you must demonstrate problems with
solutions! If you believe a topic appropriately demonstrated a
theme, explain why with examples. If you cite a problem from
a group project, you must give its solution and explain why,
in developing the solution, your understanding of the theme
was increased.
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Topics for Expository
Research Papers

1. “The definition of mathematics changes” (page 8 of
text). Demonstrate this phenomenon. For example, trace the
changing definition of geometry.

2. “Euclidean geometry can be defined as the science of
rulerand-compass construction” (page 13 of text). Use this
definition to explain the three famous unsolved problems of
antiquity.

3. Demonstrate how science and technology have been
“sources of new mathematical questions” (page 25 of text).

4. In Studies in the History of Mathematics (published by The
Mathematical Association of America), Esther Phillips collects
recent articles in the history of algebraic number theory, ge-
ometry, topology, logic, and the relationship between mathe-
matics and computing. Choose one of these topics and write a
paper describing the significance of the research that is being
done. Be sure to have at least two other sources to support
your description.

5. David Eugene Smith’s Source Book in Mathematics (Mc-
Graw Hill, 1929) attempts to present “the most significant
passages from the works of the most important contributors
to the major sciences from the 16th to the 19th centuries.”
The book is divided into sections on number theory, alge-
bra, geometry, probability, and calculus. Choose one of these
topics to explore. Include not only what Smith reports, but
add results from more current research in the field. Con-
sult other source books in mathematics, e.g., A Source Book
in Classical Analysis, Garrett Birkhoff, ed. (Cambridge: Har-
vard University Press, 1973), The World of Mathematics, James
R. Newman, ed. (New York: Simon and Schuster, 1956), A
Collection of Modern Mathematical Classics, Richard E. Bellman,
ed. (New York: Dover, 1961), The World Treasury of Physics, As-
tronomy, and Mathematics, Timothy Ferris, ed. (Boston: Little
Brown, 1991).
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6. Write a paper on a mathematician who is currently ac-
tive, reconstructing a list of her publications as well as describ-
ing the focus of her research. How does this mathematician
compare to the Ideal Mathematician of Chapter 2?

7. Imagine you are asked to add a chapter to The Mathe-
matical Experience, and do it!

8. Choose a problem that is currently unsolved. Trace its
history and describe some of the results that have been ob-
tained in the attempts to solve the problem. Discuss how ac-
tivity surrounding this problem conforms or doesn’t conform
to the views of mathematics presented in The Mathematical Ex-
perience.

9. Trace the development of trigonometry from the Greeks
to the nineteenth century. Choose one of the outer issues of
Chapter 3 and relate it to your study of trigonometry.

10. Describe elementary plane geometry as Euclid would.
Then demonstrate how this view of geometry has been in-
fluenced by (1) Platonism, (2) the Pythagorean Theorem,
(3) the discovery of non-Euclidean geometry, (4) the nine-
teenth/twentieth century research in axiomatics. Contrast
your ideas with the ideas expressed in Chapter 7.

11. Consider the following characterizations of mathemat-
ics given by Maxime Bocher in “The Fundamental Concep-
tions and Methods of Mathematics” (The American Mathemaii-
cal Monthly, December 1904, pp. 115-135):

Mathematics is the science of quantity . . . of space and number.
(p- 115)

Mathematics [is] concerned with those conceptions which
are obtained by direct intuition of time and space without the
aid of empirical intuition. (p. 116)

Select either or both of these characterizations and write
a paper that supports or challenges them. Include specific
mathematical references that you explore (not just cite!).

12. In Night Thoughts of a Classical Physicist (Cambridge: Har-
vard University Press, 1982), compare Russell McCormmach’s
physicist with the physicist you meet in The Mathematical Ex-

perience. Describe the role of mathematics in these physicists’
worlds.
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13. In Mathematicsof Great Amateurs (New York: Oxford Uni-
versity Press, 1990), Julian Coolidge describes the accomplish-
ments of men and women who did not make mathematics
their main work yet whose contributions to mathematics are
of permanent value. Choose one such figure, describe her
or his contributions to mathematics, and investigate how this
person’s work influences some area in mathematics today.
Or address this claim: The work of amateur mathematicians
can no longer be significant because of the complexity of the
subject. Be sure to consult at least two other sources in your
research.

14. There have been a number of historical periodsin which
the pursuit and production of mathematics has been at a
very low ebb. Explore this phenomenon. Discuss what rea-
sons might be found for the decline of interest in the subject.

15. Find outsomething about “virtual reality” and speculate
on the extent to which its potentialities might lead to a new
type of futuristic mathematics.

16. Historians have suggested that schools of art or litera-
ture such as mannerism, romanticism, and realistzn came to
an end because they exhausted their internal possibilities.
Discuss this with respect to particular subjects within mathe-
matics.

17. Interview a lawyer, a doctor, a store manager, a carpen-
ter, etc. Find out how and the extent to which they use math-
ematics. Ask them also whether they have in their own minds
the image of an “ideal” lawyer, etc. Then interview a mathe-
matician. Ask similar questions.

18. Write a paper on a famous axiom. Select some of the
following topics to explore:

a. Give a formal statement of the axiom. Determine if
there are different statements (i.e., versions) of the axiom.
For example, the axiom of Archimedes can be stated in terms
of numbers and in terms of line segments.

b. Trace the history of the axiom (briefly).

c. Discuss any controversies about the axiom. For exam-
ple, the axiom of choice, which is needed to establish parts of
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analysis, topology, and abstract algebra, was considered ob-
jectionable by a number of mathematicians, among them
Hadamard, Lebesgue, Borel, and Baire. Hilbert’s axiom of
completeness was the subject of controversy and was replaced
by Bernays with a linear completeness axiom.

d. Determine if the axiom is used to establish any im-
portant results or prove any famous theorems. For example,
Zermelo used the axiom of choice to prove the well-ordering
theorem. Archimedes’ postulate and the completeness axiom
endow the line and circle, for example, with the kind of struc-
ture that enables us to give a rigorous proof for the construc-
tion of an equilateral triangle.

e. Explore the possibilities that exist in denying the ax-
iom. Can new systems of mathematics be created by assuming
the negation of the axiom? For example, Max Dehn invented
(through a deliberate application of the axiomatic method)
a geometry in which the postulate of Archimedes is denied.
Dedekind’s axiom of continuity (in the environment of Eu-
clidean geometry) loosely spoken insures that a line has no
“holes” in it. If we deny this axiom, we can get a model called
the surd plane, a plane that is used to prove the impossibil-
ity of trisecting every angle with a straightedge and compass.
Bachmann has developed geometries without using axioms
of betweenness or continuity.

f. If applicable, discuss the view of the axiom by Platon-
ists, formalists, or constructivists, and what impact, if any, the
axiom had on activities of these schools. For example, the ax-
iom of reducibility drew such severe criticism that the formal-
ist school concentrated much activity in attempting to devise
some method of avoiding it.

g. Discuss motivations for introducing the axiom. For ex-
ample, to guarantee the existence of certain points of inter-
section (of line with circle and circle with circle), Richard
Dedekind introduced into geometry his continuity postulate:
“If all points of a horizontal straight line fall into two classes,
such that every point of the first class lies to the left of ev-
ery point of the second class, then there exists one and only
one point that produces this division of all points into two
classes—that is, this severing of the straight line into two por-
tions.”
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h. Is your axiom sometimes (often?, seldom?) taken as
a theorem? For example, Giuseppe Peano postulates mathe-
matical induction but Mario Pieri deduces it as a theorem.

i. Have axiomsbeen proposed that contradict the axiom?
For example, an axiom of determinacy (for certain games) in
its full form contradicts the axiom of choice.

j- Does the axiom play a role in distinguishing between
different branches of mathematics? For example, the paral-
lel postulate figures significantly in distinguishing Euclidean
geometry from non-Euclidean geometry.

k. You might show how the axiom is used to prove a cer-
tain theorem. For example, show how, as a consequence of
Pasch’s postulate, that one can prove if a line enters a tri-
angle at a vertex, it must cut the opposite side. You might
extend the axiom. For example: extend Dedekind’s axiom to
cover angles; restate Archimedes’ axiom for angles and indi-
cate how it might be deduced from the arithmetized form of
the postulate. You might demonstrate where the axiom does
not hold. For example, Pasch’s postulate does not always hold
for a spherical triangle cut by a great circle.

1. If applicable, determine if mathematical theories can
be built up exclusively in terms of specific axioms. For ex-
ample, Huntington devised a system based on axioms of be-
tweenness.

m. If applicable, discuss any open questions that the ax-
iom resolved, or engendered. For example, Zermelo’s axiom
of infinity guaranteed the existence certain infinite sets, but
there was nothing in his system to guarantee the existence
of the union of those sets. This was something Fraenkel later
worked on, and as a result, proposed a new axiom: the axiom
of replacement. The original axioms of Zermelo, amended
by Fraenkel, came to be known as a new theory of sets: the
Zermelo-Fraenkel axioms. Then, enter Von Neumann and
.... There are many interesting mathematical questions that
cannot be settled on the basis of the Zermelo-Fraenkel axioms
for set theory. A

n. Discuss equivalences to the axiom. For example, Pasch’s
postulate is equivalent to the separation axiom: A line m sep-
arates the points of the plane which are not on m into two
sets such that if two points X and Y are in the same set, the
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segment XY does not intersect m, and if X and Y are in dif-
ferent sets, the segment XY does not intersect m. The axiom
of choice is equivalent to Zorn’s lemma. The Archimedean
axiom is equivalent to the statement: The limit as n goes to
infinity of [/n is equal to zero.

0. What does the axiom “buy” us? For example, axioms of
betweenness assure us of the existence of an infinite number
of points on a line and that a line is not terminated in any
point. They guarantee us that the order of the points on a
line is serial rather than cyclical. Pasch’s postulate gives us
information about the plane as a whole.

p- How does a change of environment affect the axiom?
For example, are the continuity axioms for Euclidean geome-
try the same as the continuity axioms for projective geometry?
Separation axioms? Order axioms?

q. Whatis the relationship between an axiom and reality?

19. The ancient Chinese had an extensive mathematics in
which there were no proofs. Read Joseph Needham’s Science
and Civilization in China (Cambridge: Cambridge University
Press, 1954) on this point, and discuss.

20. Is mathematics discovered or invented? Research this
question with regard to different schools of thought in his-
torical and contemporary mathematics. Take a position, and
give specific examples to support your position.

21. Investigate calculus. Follow its genesis from antiquity.
Describe its importance to mathematics. What problems was
it developed to solve? What complex array of science now
depends on it?

22. Mathematicshasbeen called “the conquest of intuition.”
What is the nature and role of mathematical intuition? What
controversies surround it?

23. Mathematameans “tolearn.” Show how general methods
of learning are reflected in mathematics.

24. Investigate a case where some mathematics pursued in
the abstract as an end in itself, later turned out to have prac-
tical applications in science.

25. Do abriefhistory of mathematical pedagogy. Whatideas
have influenced its evolution? How does itrelate to mathemat-
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ical research? Is there a difference between mathematics as it
is done and how it is taught?

26. Does mathematics belong in the sciences, in the human-
ities, or in both? Discuss and support your answer with specific
examples.

27. Investigate the role of induction (not Mathematical In-
duction) in mathematical discovery. Contrast this with deduc-
tive methods of proof.

29. How has the computer influenced the face of mathe-
matics? What kinds of proof can a computer achieve? In what
directions will it lead mathematics?

30. Where do mathematical ideas originate? What is their
source and what makes them grow?

Suggestions for Grading Essays and Research Papers

As mathematicians, we approached the task of grading es-
says with some reluctance. The first few semesters we strug-
gled with the problems involved with this kind of subjective
grading.

However, we discovered a method that has made me much
more comfortable with grading essays and research papers. It
is based on the philosophy that writing (like mathematics) is
a process. This is the method:

1. Assign the essay and tell students they will have one
opportunity for a rewrite.

2. Collect the essays, and read each one without any in-
tention of assigning a grade. Simply read the essay and make
comments, indicating weaknesses. For example, note logical
lapses in the development, indicate where specific examples
are needed to prove their points, etc.

3. Return the essays to the students.

4. When the students submit the rewrites, grade them pri-
marily on how well they overcame the weaknesses in their
papers.

This sounds like it may be more time consuming because
you must read the essays twice, but we have found this not to
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be so. The first reading is very quick, because you don’t need

to worry about assigning grades.
It turns out to be what we consider a fair method. Generally,

the poorer papers have many more weaknesses that need to
be addressed. Also, it teaches the students an importantlesson
about critiquing and improving their work.
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