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Applied Mathematics Old 
and New 

PHILIP J. DAVIS 

LONG WITH NATURAL LANGUAGES, mathematics is 
part of the symbolic infrastructure of civilization. Build a 
bridge, conduct an election, study the galaxies and in some 
way you will engage mathematics. Make an investment; take 

out a loan or an insurance policy, and mathematics turns up. Consider 
DNA profiling and you enter the field of mathematical genetics. 

Mathematics is a subject that is one of the finest, most profound in-
tellectual creations, a subject full of splendid architectures of thought 
most of which, sadly, require specialist training. This has resulted in a 
popular view of the subject that hardly goes beyond the multiplication 
table and despite the ubiquity of hand held computers, has given rise to 
the frequent admonition “Now you do the math!” 

Despite the indifference, the world is being mathematized, comput-
erized, chipified at an increasing rate and the public is hardly aware that 
this is going on. Mathematics is a method and a language employed in 
increasing amounts to probe, to predict, to create order and to format our 
social, economic and political lives. It is a method and an attitude that has 
diffused into medicine, cognitive science, war, entertainment, art, aes-
thetics, law, sports; it is a mode of thought that has created schools of 
philosophy, and has given support to views of cosmology, mysticism, 
and theology. 

Allied to mathematics is the computer, a physical device whose in-
ner logic is based on mathematical symbolisms. The products of the 
computer and their infusion (or intrusion) into our daily lives represent 
the greatest social triumph of the mathematical spirit since the ancient 
Chinese computed with colored rods or since the Babylonians toted up 
the prices of goats and onions on clay tablets. The ACM’s (Association 
for Computer Machinery) classification system for research in computer 
science gives us a vivid understanding of its tremendous scope. Under 
the main heading “Applied computing,” it lists as its secondary headings, 
“Enterprise information systems,” “Physical sciences and engineering,” 
“Life and medical sciences.” “Law, social and behavioral sciences,” 
“Arts and humanities,” “Computers in other domains [Publishing, gov-
ernment, military, etc.],” “Operations research,” “Education,” “Docu-
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ment management and text processing” and “Electronic commerce.” 
Moreover there are tertiary headings. 

Broadly speaking, the applications of mathematics at the time of the 
first edition of the Mathematical Experience fall into the category of 
mathematical physics or engineering. New developments in these disci-
plines have been pursued vigorously and recent natural events such as 
earthquakes, tsunamis, tornados, floods, will bring forth new theoretical 
material as well as experience with computer models. Practically any 
technological innovation, e.g., cell phones, has some mathematical ele-
ment in it. We are indeed living in an increasingly techno-mathematized 
world. A recent hospitalization for a minor complaint drove this home to 
me. I was subjected to a battery of tests carried out on a variety of de-
vices each of which produced either numbers or a waveform. The medi-
cal attendant marked down all the numbers and perhaps a fast Fourier 
transform was applied to the waveform to obtain more numbers. As a 
patient, I was transfigured—some might say dehumanized—into a mul-
ticomponented vector. 

Since the appearance of The Mathematical Experience, a number of 
new applications of mathematics of a variety of natures and of different 
mathematical depths or complexity have become prominent. In what fol-
lows, I will list a few and comment on one of them. Search engines, 
product striping, bioinformatics (such as DNA sequencing, indentifying 
and interpreting), jurimath (i.e., probability applied to legal evidence), 
pattern recognition and computer vision, interactive military training via 
computer images, epidemiological data mining for causes of diseases. 
Computational finance (some of which, of course, may have contributed 
to the crash three years ago), designer drugs, interpretation of all manner 
of radiological scans, programs dealing with security and privacy, game 
and auction theory. The latter feeds into search engines in that, e.g., 
whenever Google answers a query, it carries out a virtual auction among 
sponsors who have bid to place ads on the results pages. The pursuit of 
computational finance involves, at the very least, linear algebra, multi-
variable calculus, differential equations, and probability and statistics. 

Every technological innovation has its down side. This is the mes-
sage of the Myth of Prometheus who stole fire from the gods and gave it 
to the humans. Mathematics and its applications have a downside. It 
tends to replace experience by logic. In the name of logic, mathematics 
can create seeming impossibilities and nonsense. It frequently transforms 
what are subjective opinions into so-called objective conclusions that 
bear the cachet of absolute truth. 

Natural languages are symbolic systems that have raised humans 
from the level of Caliban brutes; the same is true of mathematics. It is a 
language that has transformed our lives for good but it can go hog wild 
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when it becomes an adjunct of new and unprecedented dimensions of 
human cruelty. The ethical issues raised by science and technology are in 
the daily papers. The ethical issues involved in mathematical thinking 
should also be recognized and pondered so as—in the words of the 
mathematician/philosopher Bertrand Russell—“to tip the balance on the 
side of hope against vast forces.” 

Acknowledgment 
I wish to thank Ernest S. Davis for suggesting a number of striking 
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Philosophical Afterword 
REUBEN HERSH 

INCE WE WROTE The Mathematical Experience (ME) thirty 
years ago, professional academic philosophy of mathematics has 
begun to recognize actual mathematical practice as a legitimate 
philosophical topic (see, e.g., [Mancosu 2008]). A major phi-

losophical dilemma was presented in ME—“fic-tionalism” vs. “realism” 
with regard to the nature of mathematical entities. But this had actually 
already found a resolution by the famous anthropologist Leslie White (in 
[Hersh 2006). Alongside two traditional philosophical realms—
subjective (private or interior) and physical (material or exterior), there 
exists a third major realm: the “cultural” (or “public” or “intersubjec-
tive”). This social or historical–cultural realm was long ago excluded 
from philosophy by Plato, because it is transient and ephemeral, whereas 
he considered that true knowledge must be eternal and unchanging. But 
of course knowledge of social reality is possible; indeed, it is crucially 
important in everyone’s daily life. It has long since become recognized as 
a valid realm of scientific study (anthropology, history, sociology, eco-
nomics, etc.). It can’t be ignored, and it can’t be reduced to either the 
mental or the physical. It is in this public or intersubjective realm that 
mathematical entities are present, and open to coherent, empirically veri-
fiable analysis. White’s insight that this is the realm of existence of 
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mathematical entities was adopted by one of us, and developed and ex-
tended in [Hersh 1997] and also in [Hersh 2006]. 
        Recently, remarkable studies of the nature of mathematical practice 
have been made by the mathematicians William Byers and Alexandre 
Borovik, and by the linguists George Lakoff and Rafael Núñez. 
Reuben Hersh, What Is Mathematics, Really?, Oxford University Press, New 
York, 1997. 

Reuben Hersh, ed., 18 Unconventional Essays on the Nature of Mathematics, 
Springer, New York, 2006. 

Paolo Mancosu, The Philosophy of Mathematical Practice, Oxford University 
Press, New York, 2008. 

William Byers, How Mathematicians Think, Princeton University Press, Prince-
ton, 2007. 

Alexandre Borovik, Mathematics Under the Microscope, American Mathematical 
Society,Providence, 2010. 

George Lakoff and Rafael Núñez, Where Mathematics Comes From, Basic 
Books, New York, 2000. 

New Mathematics 
From the tremendous outflow of new mathematics in the last few 

decades, we can only briefly mention a few famous instances that are 
directly related to topics in this book. These are Andrew Wiles’ proof of 
Fermat’s last theorem; Grisha Perelman’s proof of the Poincaré conjec-
ture and the “Thurston program” in four-dimensional topology; wavelets 
as a generalization of Fourier analysis; fractals and the Mandelbrot set as 
a new kind of non-Euclidean geometry; and random matrices, in connec-
tion with Riemann’s hypothesis on the zeroes of the zeta function. 

Fermat’s Last Theorem 
Fermat’s last theorem was proved by the English mathematician An-

drew Wiles, who had become fascinated by the problem at the age of ten, 
after reading about it in E. T. Bell’s Men of Mathematics. He worked on 
it secretly and privately for seven years, and then, after announcing suc-
cess, had to go back to work to fill a major gap. This took another year to 
accomplish, with help from Richard Taylor. 
Simon Singh, Fermat’s Last Theorem, 1997, Fourth Estate, London 
C. J.Mozzochi, The Fermat Diary, 2000, The American Mathematical 
Society, Providence 
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The Poincaré Conjecture 
        The Poincaré conjecture was a famous open problem in topology: 
“any three-manifold (which can be thought of as embedded in four-
space) which satisfies a certain simple and natural condition, is homeo-
morphic to the 3-sphere.” This conjecture had been extended by the U.S. 
mathematician William Thurston to a general conjecture that all 3-
manifolds are topologically equivalent to combinations of eight funda-
mental types, each of which can be represented within three-dimensional 
non-Euclidean (hyperbolic) geometry. The proof of this program of 
Thurston’s was sensationally completed by a young Russian, Grigori 
(Grisha) Perelman. 
Masha Gessen, Perfect Rigor, Houghton–Mifflin–Harcourt, Boston, 2009. 

George G. Szpiro, Poincaré’s PrizePenguin Group, New York, 2008. 

Wavelets 
        Wavelets are a powerful new tool in applied mathematics, discov-
ered and developed by engineers. Mathematicians noticed what the engi-
neers were up to, and followed up with sophisticated theories. Ingrid 
Daubechies of Belgium was a leader in this work. 

Wavelets are defined as having three of the simple properties that are 
possessed by the sines and cosines of classical Fourier analysis. One of 
these essential properties is closure under addition (forming a complete 
linear space. We can add or subtract any sine or cosine function to any 
other.) Secondly, when a sine or cosine function is shifted to the right or 
left, the shifted function is still a member of the space of sines and co-
sines. Thirdly, the set of sine and cosine functions is preserved under 
change of scale: sin (nx) or cos (mx), where m or n is any real number, is 
again a member of the space of sines and cosines. A wavelet space is 
simply a space of functions built up from some carefully chosen basic 
function, by including all expansions and contractions of scale, along 
with all shifts and linear combinations. One can start with a very simple 
basic function—just a single “sawtooth,” made of two connected line 
segments, one rising from height 0 to height 1, and the second descend-
ing back down to 0. Then from this define a space of “wavelets”—all 
linear combinations of functions obtained by shifting, blowing up or 
shrinking this single saw tooth. Such a wavelet space turns out to be a 
powerful, convenient way to approximate functions arising in engineer-
ing and applied mathematics. 
Ingrid Daubechies, Ten Lectures on Wavelets, Society for Industrial and Applied 
Mathematics, Philadelphia, 1992. 
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Michael Frazier, An Introduction to Wavelets through Linear Algebra, Springer, 
New York, 1999. 

Fractals 
        Fractals have become very widely known as a computer-produced 
art form. Their graphs yield fascinating pictures that are sometimes use-
ful in motion pictures—for instance, for creating a synthetic landscape on 
an unknown planet. Two old examples of fractals have often been taught 
to undergraduates. One example is Brownian motion (or “a sample path 
of the Wiener measure”). It can be described intuitively as the path of a 
particle that follows a continuous trajectory, but at every instant ran-
domly and discontinuously changes direction, having a speed that is (al-
most always) infinite. This intuitive description is not easy to make 
mathematically clear, but this model has important physical and technical 
applications, and is a central concept in modern probability theory. A 
second example is the “Cantor middle-thirds set,” which is obtained from 
the unit interval by first deleting the “middle third” (all numbers greater 
than 1/3 but less than 2/3), then from each of the remaining two pieces 
again deleting the middle third, and so on to infinity. What’s left after all 
these middle thirds have been removed, the so-called “Cantor dust,” turns 
out to be an interesting object; for instance, while it is uncountably infi-
nite, it has measure zero. We mention together these two “anti-intuitive” 
mathematical creatures because they both have the property of “self-
similarity.” If you take a tiny piece of the Cantor middle-third set, or of a 
Brownian trajectory, and then scale it up, you get back the whole original 
set. Under change of scale, the original set is identical to an arbitrarily 
small subset! 

The Franco-American mathematician Benoit Mandelbrot used com-
puter simulations to discover many interesting mathematical structures 
having self-similarity, and he used them to describe real-world phenom-
ena which have a “rough” or “uneven” boundary between two sets. A 
famous example is “the seashore of England,” which is very, very wig-
gly, no matter how closely you look at it. The human circulatory system, 
with its ever-tinier capillary veins, and the lungs of humans or other 
mammals, can be studied using notions from fractal geometry. Simple 
iteration procedures in the complex plane generate the fascinating fractal 
set called “the Mandelbrot set,” which is universal, in the sense that it 
contains within itself all the fractals generated by all such iterations. 
Benoit B. Mandelbrot, Fractals Form, Chance, and Dimension, W. H. Freeman, 
San Francisco, 1977. 
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Heinz-Otto Peitgen, Hartmut Jurgens, and Dietmar Saupe, Chaos and Fractals, 
Springer, New York, 2004. 

Random Matrices and the Riemann Hypothesis 
In 1972 a lucky accident at lunch at the Institute for Advanced Study 

revealed an amazing connection between the zeroes of Riemann’s zeta 
function and the energy levels of atomic nuclei of heavy elements. Hugh 
Montgomery, a number theorist from the University of Michigan, had 
been introduced to the famous physicist Freeman Dyson, and was telling 
Dyson about his work, studying the statistical distribution of the gaps 
between zeros of the zeta function, on the critical line Re z = 1/2. Dyson 
saw with astonishment that they matched a distribution he was familiar 
with from quantum mechanics, that of the eigenvalues of random matri-
ces that are used to model the interaction of elementary particles inside 
the nuclei of heavy atoms. Subsequently, numerical calculations by An-
drew Odlyzko and others confirmed the match, out to billions of zeta 
zeroes and billions of random matrix eigenvalues. The more accurate the 
numerical calculations, the closer the two sets of numbers matched—one 
from analytic number theory, the other from quantum physics. The rea-
sons for this astonishing relationship remain a mystery. A great amount 
of numerical and theoretical work was stimulated by this discovery, in 
search of a proof of Riemann’s hypothesis, that all the nontrivial zeroes 
of the zeta function lie on the critical line. But decades have passed, and 
the hoped-for proof is still missing. 
Francesco Mezzadri and Nina C. Snaith, Recent Perspectives in Random Matrix 
Theory and Number Theory, Cambridge University Press, Cambridge, UK, 2005. 

Dan Rockmore, Stalking the Riemann Hypothesis, Pantheon Books, New York, 
2005. 
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Pedagogical Afterword 
ELENA ANNE CORIE MARCHISOTTO 

N THE MID-1990S, I was invited to join Reuben Hersh and Philip 
J. Davis in writing a sequel to The Mathematical Experience in-
tended for use in “mathematics appreciation” general education 
classes, as well as in “capstone” courses for students majoring in 

mathematics, science, and philosophy of science, and for prospective 
teachers of these subjects. The sequel, the Study Edition, was reviewed 
by Ken Millett in the notices of the American Mathematical Society 
(“The Mathematical Experience: A Book Review”: http://www. 
ams.org/notices/199710/comm-millett.pdf). 

At California State University Northridge (CSUN), the study edition 
has been used continuously, since it was published in 1995, in different 
versions of the above-mentioned courses. In recent years it has served as 
the text in a freshman general education course for nonmajors delivered 
in “hybrid” format (half online and half in the classroom) and in an upper 
division general education course for majors and nonmajors that is deliv-
ered totally online. The chapters of the Study Edition are partitioned into 
the following themes on websites designed to support these courses:  
1. The Mathematical Landscape: What and Where is Mathematics? 
2. The Course of Mathematical Evolution: The Role of the Individual 

and the Culture. 
3. The Growth of Mathematics: Invention vs. Discovery. 
4. The Aesthetic Appeal of Mathematics: Mathematicians as Pattern 

Finders. 
5. Cognitive Styles and the Learning and Practice of Mathematics. 
6. Mathematical Realities. 

Lower Division General Education Course 
The design of the online course is similar to the lower division 

course, but increases the coverage of materials from the Study Edition 
and includes more complex assignments. It confronts the challenge to 
motivate students who are anxious about mathematics and the need for 
teachers themselves to become more comfortable about teaching the sub-
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ject. but for the graduate student instructors teaching it as well. In par-
ticular, the goals for the course included (but were not limited to) the 
following: 
• that students will benefit from the greater flexibility in scheduling 

“learning” (online instruction is not “real time”), and from working on 
the projects at their own pace, but within a certain time frame. The hy-
brid design exposes students to the vast supply of online resources that 
involve the application of mathematics to their fields. The activities 
structured through the course website are designed to encourage stu-
dents to take individual responsibility for learning (via individual as-
signment, self-tests, etc.), as well as experience the power of collabora-
tive work (online chat rooms, group responses to discussion questions, 
etc.). The web activities are intended to provide the context for the 
classroom experience so that there is a shared responsibility for learn-
ing among the individual student, the students groups, and the instruc-
tor. 

• that hybrid course will strengthen the experience and teaching prepara-
tion of Mathematics graduate student instructors by familiarizing them 
with the expository and popular literature that invites contemplation of 
the interaction between mathematics and different aspects of their cho-
sen discipline (e.g., the history and philosophy of mathematics). They 
will be exposed to applications of mathematics that they will not gen-
erally encounter in traditional classes. They will develop valuable 
skills in explaining mathematics to audiences of nonmathematicians. 

At CSUN, the freshman course had always been one that gave pro-
fessors considerable flexibility in the choice of topics to be covered. In 
creating the hybrid, the design team was able retain that aspect of the 
course by adopting the Study Edition of The Mathematical Experience. 
Each theme associated with the book is addressed on the class website 
with a variety of activities (reading, problem and essay assignments, self-
quizzes, and group discussion forums) that are timed to both precede and 
concur with the exploration of specific mathematics topics in the class-
room. Some of the topics coordinated with the above described themes 
have been the following: 
Theme 1: The real number system; the Pythagorean theorem; Pythago-
rean triples, Fermat’s last theorem; Euclidean geometry and taxicab ge-
ometry; the Monty Hall problem. 
Theme 2: Sequences, recursion, Fibonacci numbers. 
Theme 3: Fibonacci sequences; the golden rectangle; Frieze patterns, 
tessellations, patterns of primes. 
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Theme 4: Pi (its “faces” (geometric ratio, irrational number) and its “ap-
pearance” in number theory, geometry, astronomy and engineering); the 
prisoner’s dilemma; dice games and coin tosses; statistical inference and 
clinical trials; similarity and self-similarity. 
Theme 5: The language of randomness and selected topics in probability 
(e.g., applying probability theory to solving traffic problems); equivalent 
and nonequivalent definitions (e.g., different definitions of “dimension”); 
determining one’s learning style (North Carolina State University self-
test) and applications of Polya’s heuristics. 
Theme 6: Fractals, chaos theory, hypercubes (using the geometer sketch-
pad), the role of technology in mathematics. 

The choice of these specific topics reflects the interests of the current 
instructors teaching the course. But the themes can easily suggest other 
topics. For example, theme 6 would surely embrace a discussion of 
mathematics in the workplace. 

One goal of the hybrid, as designed, is to help students understand 
applications of mathematics to their major fields. To that end, the stu-
dents in the course are partitioned into groups according to major. Their 
final project involves researching the expository literature to find connec-
tions between their majors and mathematics. They are asked to write a 
paper on their research and give a short report in the classroom with their 
group. The website provides detailed lists of suggested connections and 
an extensive bibliography that provides access to journal articles from the 
expository literature for each. 

Upper Division General Education Course 
Students who enroll in the upper division general education course, 

delivered totally online at CSUN, are both mathematics majors and non-
mathematics majors. A large number of the nonmajors are planning to 
teach mathematics in K–12. 

It is perhaps not surprising that students who have not chosen sci-
ence or mathematics-related majors, often exhibit some anxiety about 
mathematics. In some cases such anxiety often precludes the student 
from choosing major fields for which mathematics is a requirement. 
They frequently viewed themselves as “mathematically disabled,” and 
fail to acquire even the most minimal mathematical skills necessary in 
today’s technological world. Perhaps more serious is that many maintain 
an aversion to mathematics (and science) for life, and perpetuate such 
views to their children. Most prospective teachers encounter such stu-
dents who are anxious about mathematics, so any course that addresses 
this issue will be beneficial to them. What was surprising to me in teach-
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ing the upper division general education course at CSUN was to discover 
that the future K–12 teachers themselves often have poor attitudes to-
wards mathematics, and are often anxious about the prospect of teaching 
the subject. 

The design of the online course is similar to the lower division 
course, but increases the coverage of materials from the Study Edition 
and includes more complex assignments. It confronts the challenge to 
motivate students who are anxious about mathematics and the need for 
teachers themselves to become more comfortable about teaching the sub-
ject. It not only seeks to demonstrate how mathematics relates to differ-
ent fields and hobbies in order to give students a greater appreciation of 
how mathematics relates to daily life, but it also incorporates activities 
which expose prospective teachers to strategies that will motivate their 
future students to learn it. Students learn how to research the professional 
and popular literature for resources and collaborate with their colleagues 
on joint research. 

The Wider Audience 
The use of the Study Edition of The Mathematical Experience is not 

only applicable for the populations addressed above, but can be modeled 
for university and science courses, as well as some senior high school 
classes. The Study Edition as well as the materials developed for these 
courses can also be made accessible to the general public, to provide ac-
cess for lifelong learning. 

 The intention is not only to open a dialogue regarding what might 
be some new perspectives on the teaching of mathematics and science. 
The use of the Study Edition and the component website also teaches 
subject content, encourages the use of technology, and enables the under-
standing of procedures for conducting library research. 

 In my experience, the Study Edition of The Mathematical Experi-
ence provides concrete ways to further the intentions of the original book 
in ways that open a window on mathematics and those who practice it, 
that encourage the learning of interesting mathematics, and that seek to 
foster improved attitudes toward mathematics. 
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