
2. Convex Sets and Convex
Functions

We have encountered convex sets and convex functions on several occa-
sions. Here we would like to discuss these notions in a more systematic
way. Among nonlinear functions, the convex ones are the closest ones to
the linear, in fact, functions that are convex and concave at the same time
are just the linear affine functions.

Although convex figures appear since the beginning of mathematics
— Archimedes, for instance, observed and made use of the fact that the
perimeter of a convex figure K is larger than the perimeter of any other
convex figure contained in K, more recently convexity played a relevant
role in the study of the thermodynamic equilibrium by J. Willard Gibbs
(1839–1903) — the systematic study of convexity began in the early years
of the twentieth century with Hermann Minkowski (1864–1909), continued
with the treatise of T. Bonnesen and Werner Fenchel (1905–1986) in 1934
and developed after 1950 both in finite and infinite dimensions due to its
relevance in several branches of mathematics. Here we shall deal only with
convexity in finite-dimensional spaces.

2.1 Convex Sets

a. Definitions

2.1 Definition. A set K ⊂ Rn is said to be convex if either K = ∅
or, whenever we take two points in K, the segment that connects them is
entirely contained in K, i.e.,

λx1 + (1− λ)x2 ∈ K ∀ λ ∈ [0, 1], ∀ x1, x2 ∈ K.

The following properties, the proof of which we leave to the reader,
follow easily from the definition.

2.2 ¶. Show the following:

(i) A linear subspace of Rn is convex.
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68 2. Convex Sets and Convex Functions

Figure 2.1. Hermann Minkowski (1864–
1909) and the frontispiece of the trea-
tise by T. Bonnesen and Werner Fenchel
(1905–1986) on convexity.

(ii) Let � : Rn → R be linear and α ∈ R. Then the sets{
x ∈ Rn

∣∣∣ �(x) < α
}
,

{
x ∈ Rn

∣∣∣ �(x) ≤ α
}
,{

x ∈ Rn
∣∣∣ �(x) ≥ α

}
,

{
x ∈ Rn

∣∣∣ �(x) > α
}

are convex.
(iii) The intersection of convex sets is convex; in particular, the intersection of any

number of half-spaces is convex.
(iv) The interior and the closure of a convex set are convex.
(v) If K is convex, then cl(int(K)) = cl(K), int(cl(K)) = int(K).
(vi) If K is convex, then for x0 ∈ Rn and t ∈ R the set

tx0 + (1 − t)K :=
{
x ∈ Rn

∣∣∣ x = tx0 + (1 − t)y, y ∈ K
}
,

i.e., the cone with vertex x0 generated by K, is convex.

A linear combination of points (x1, x2, . . . , xk) ∈ Rn,
∑k

i=1 λixi, with

coefficients λ1, λ2, . . . , λk such that
∑k

i=1 λi = 1 and λi ≥ 0 ∀i, is called a
convex combination of x1, . . . , xk. The coefficients λ1, λ2, . . . , λk are called

the barycentric coordinates of x :=
∑k

i=1 λixi.
Noticing that

k∑
i=1

λixi = (1− λk)

k−1∑
i=1

λi

1− λk
xi + λkxk,

whenever 0 < λk < 1, we infer at once the following.

2.3 Proposition. The set K is convex if and only if every convex combi-
nation of points in K is contained in K.
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Figure 2.2. A support plane.

2.4 ¶. Show that the representation of a point x as convex combination of points
x1, x2, . . . , xk is unique if and only if the vectors x2 − x1, x3 − x1, . . . , xk − x1 are
linearly independent.

b. The support hyperplanes

We prove that every proper, nonempty, closed and convex subset of Rn,
n ≥ 2, is the intersection of closed half-spaces. To do this, we first introduce
the notions of separating and supporting hyperplanes.

2.5 Definition. Let � : Rn → R be a linear function, α ∈ R and P the
hyperplane

P :=
{
x ∈ Rn

∣∣∣ �(x) = α
}
,

and let

P+ :=
{
x ∈ Rn

∣∣∣ �(x) ≥ α
}
, P− :=

{
x ∈ Rn

∣∣∣ �(x) ≤ α
}

be the corresponding half-spaces that are the closed convex sets of Rn for
which P+ ∪ P− = Rn and P+ ∩ P− = P. We say that

(i) two nonempty sets A,B ⊂ Rn are separated by P if A ⊂ P+ and
B ⊂ P−;

(ii) two nonempty sets A,B ⊂ Rn are strongly separated by P if there is
ε > 0 such that

�(x) ≤ α− ε ∀ x ∈ A and �(x) ≥ α+ ε ∀ x ∈ B.

(iii) Let K ⊂ Rn, n ≥ 2. We say that P is a supporting hyperplane for
K if P ∩K �= ∅ and K is a subset of one of the two closed half-spaces
P+ and P− that is called a supporting half-space for K.

2.6 Theorem. Let K1 andK2 be two nonempty closed and disjoint convex
sets. If either K1 or K2 is compact, then there exists a hyperplane that
strongly separates K1 and K2.



70 2. Convex Sets and Convex Functions

B

A

Figure 2.3. Two disjoint and closed convex sets that are not strongly separated.

Proof. Assume for instance that K1 is compact and let d := inf{|x− y| |x ∈ K1, y ∈
K2}. Clearly d is finite and, for R large,

d = inf
{
|x− y|

∣∣∣ x ∈ K1, y ∈ K2 ∩ B(0, R)
}
.

The Weierstrass theorem then yields x0 ∈ K1 and y0 ∈ K2 ∩B(0, R) such that

d = |x0 − y0| > 0.

The hyperplane through x0 and perpendicular to y0 − x0,

P ′ :=
{
x ∈ Rn

∣∣∣ (x− x0) • (y0 − x0) = 0
}
,

is a supporting hyperplane for K1. In fact, for x ∈ K1, the function

φ(λ) := |y0 − (x0 + λ(x− x0))|2, λ ∈ [0, 1],

has a minimum at zero, hence

φ′(0) = 2 (y0 − x0) • (x− x0) ≤ 0. (2.1)

Similarly, the hyperplane through y0 and perpendicular to x0 − y0,

P ′′ :=
{
x ∈ Rn

∣∣∣ (x− y0) • (x0 − y0) = 0
}
,

is a supporting hyperplane for K2. The conclusion then follows since dist(P ′,P ′′) =
d > 0. ��

2.7 Theorem. We have the following:

(i) Every boundary point of a closed and convex set K ⊂ Rn, n ≥ 2, is
contained in at least a supporting hyperplane.

(ii) Every closed convex set K �= ∅,Rn of Rn is the intersection of all its
supporting half-spaces.

(iii) Let K ⊂ Rn be a closed set with nonempty interior. Then K is con-
vex if and only if at each of its boundary point there is a supporting
hyperplane.

Proof. (i) Assume ∂K �= ∅, i.e., K �= ∅,Rn, let x0 ∈ ∂K, and let {yk} ⊂ Rn \ K be a
sequence with yk → x0 as k → ∞. Let xk be a point of K nearest to yk and

ek :=
yk − xk

|yk − xk|
.
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Figure 2.4. Illustration of the proof of (iii) Theorem 2.7.

Then |ek| = 1, xk → x0 as k → ∞ and, as in the proof of Theorem 2.6, we see that the
hyperplane through xk and perpendicular to ek is a supporting hyperplane for K,

K ⊂
{
x ∈ Rn

∣∣∣ ek • (x− xk) ≤ 0
}
.

Possibly passing to a subsequence {ek} and {xk} converge, ek → e and xk → x0. It
follows that

K ⊂
{
x ∈ Rn

∣∣∣ e • (x− x0) ≤ 0
}
,

i.e., the hyperplane through x0 perpendicular to e is a supporting hyperplane for K.

(ii) Since K �= ∅,Rn, the boundary of K is nonempty; in particular, the intersection K ′
of all its supporting half-spaces is closed, nonempty by (i), hence it contains K. Assume
by contradiction that there is x′ ∈ K ′ \ K. Since K is closed, there is a nearest point
x0 ∈ K to x′ and, as in the proof of Theorem 2.6,

K ⊂ S :=
{
x ∈ Rn

∣∣∣ (x′ − x0) • (x− x0) ≤ 0
}
.

On the other hand, from the definition of K ′, it follows that K ′ ⊂ S, hence x′ ∈ S,
which is a contradiction since (x′ − x0) • (x′ − x0) > 0.

(iii) Let K be convex. By assumption K �= ∅, if K = Rn, we have ∂K = ∅ and nothing
has to be proved. If K �= Rn, then through every boundary point there is a supporting
hyperplane because of (i).

Conversely, suppose that K is not convex, in particular, K �= ∅,Rn and ∂K �= ∅. It
suffices to show that through a point of ∂K there is no supporting hyperplane. Since
K is not convex, there exists x1, x2 ∈ K and x on the segment Σ connecting x1 and
x2 with x /∈ K. Let x′ be a point in the interior of K and Σ′ be the segment joining x
with x′. At a point x0 ∈ ∂K ∩ Σ′ we claim that there is no supporting hyperplane. In
fact, let π be such a hyperplane and let H be the corresponding supporting half-space.
Since x′ ∈ int(K), x′ does not belong to π, thus Σ′ is not contained in π. It follows that
x′ ∈ int(H) and x /∈ H, hence x1 and x2 cannot both be in H since otherwise x also
belongs to H. However, this contradicts the fact that H is a supporting half-space. ��

2.8 ¶. In (iii) of Theorem 2.7 the assumption that int(K) �= ∅ is essential; think of a
curve without inflection points in R2.

2.9 ¶. Let K be a closed, convex subset of Rn with K �= ∅,Rn.

(i) Prove that K is the intersection of at most a denumerable supporting half-spaces.
(ii) Moreover, if K is compact, then for any open set A ⊃ K there exists finitely

many supporting half-spaces such that

K ⊂
N⋂

k=1

Hk ⊂ A.

[Hint. Remember that Rn has a denumerable basis.]
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2.10 ¶. Using Theorem 2.7, prove the following, compare Proposition 9.126 and The-
orem 9.127 of [GM3].

Proposition. Let C ⊂ Rn be an open convex subset and let x /∈ C. Then there exists
a linear map � : Rn → R such that �(x) < �(x) ∀x ∈ C. In particular, C and x are
separated by the hyperplane {x | �(x) = �(x)}.
Consequently,

Theorem. Let A and B be two nonempty disjoint convex sets. Suppose A is open.
Then A and B can be separated by a hyperplane.

2.11 Definition. We say that K is polyhedral if it is the intersection of
a finite number of closed half-spaces. A bounded polyhedral set is called a
polyhedron.

c. Convex hull

2.12 Definition. The convex hull of a set M ⊂ Rn, co(M), is the inter-
section of all convex subsets in Rn that contain M .

2.13 Proposition. The convex hull of M ⊂ Rn is convex, indeed the
smallest convex set that contains M . Moreover, co(M) is the set of all
convex combinations of points of M ,

co(M) :=
{
x ∈ Rn

∣∣∣∃x1, x2, . . . , xN ∈ M such that x =

N∑
i=1

λixi,

for some λ1, λ2, . . . , λN , where λi ≥ 0 ∀i,
N∑
i=1

λi = 1
}
.

2.14 ¶. Prove Proposition 2.13.

2.15 ¶. Prove that

(i) co(M) is open, if M is open,
(ii) co(M) is compact, if M is compact.

2.16 ¶. Give examples of sets M ⊂ R2 so that

(i) M is closed but co(M) is not,

(ii) co(M) �= co(M) although co(M) ⊂ co(M).

If M ⊂ Rn, then the convex combinations of at most n + 1 points in
M are sufficient to describe co(M). In fact, the following holds.

2.17 Theorem (Carathéodory). Let M ⊂ Rn. Then

co(M) :=
{
x ∈ Rn

∣∣∣ x =

n+1∑
i=1

λixi, xi ∈ M, λi ≥ 0 ∀i,
n+1∑
i=1

λi = 1
}
.
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Proof. Let x be a convex combination of m points x1, x2, . . . , xm of M with m > n+1,

x =
m∑

j=1

λjxj ,
m∑

j=1

λj = 1, λj > 0.

We want to show that x can be written as convex combinations of m− 1 points of M .
Since m − 1 > n, there are numbers c1, c2, . . . , cm−1 not all zero such that∑m−1

i=1 ci(xi − xm) = 0. If cm := −∑m−1
i=1 ci, we have

m∑
i=1

cixi = 0 and
m∑
i=1

ci = 0.

Since at least one of the ci’s is positive, we can find t > 0 and k ∈ {1, . . . ,m} such that

1

t
= max

( c1

λ1
,
c2

λ2
, . . . ,

cm

λm

)
=

ck

λk
> 0.

The point x is then a convex combination of x1, x2, . . . , xk−1, xk+1, . . . , xm; in fact, if

γj :=

⎧⎨⎩λj − tcj if j �= k,

0 if j = k,

we have
∑

j 	=k γj =
∑m

j=1 γj =
∑m

j=1(λj − tcj) =
∑m

j=1 λj = 1 and

x =
m∑

j=1

λjxj =
m∑

j=1

(γj + tcj)xj =
∑
j 	=k

γjxj .

We then conclude by backward induction on m. ��

2.18 ¶. Prove the following:

(i) In Theorem 2.17 the number n+ 1 is optimal.
(ii) IfM is convex, then co(M) = M and every point in co(M) is a convex combination

of itself.
(iii) If M = M1 ∪ · · · ∪ Mk, k ≤ n, where M1, . . . ,Mk are convex sets, then every

point of co(M) is a convex combination of at most k points of M .

d. The distance function from a convex set

We conclude with a characterization of a convex set in terms of its distance
function.

Let C ⊂ Rn be a nonempty closed set. For every x ∈ Rn we define

dC(x) := dist(x,C) := inf
{
|x− y|

∣∣∣ y ∈ C
}
.

It is easily seen that indeed the infimum is a minimum, i.e., there is (at
least) a point y ∈ C of least distance from x. Moreover, the function dC is
Lipschitz-continuous with Lipschitz constant 1,

|dC(x) − dC(y)| ≤ |x− y| ∀x, y ∈ Rn.
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2.19 Lemma. If x /∈ C, then

dC(x+ h) = dC(x) + L(h;x) + o(|h|) as h → 0, (2.2)

where

L(h;x) := min
{
h •

x− z

|x− z|
∣∣∣ z ∈ C, |x− z| = dC(x)

}
is the minimum among the lengths of the projections of h into the lines
connecting x to its nearest points z ∈ C. In particular, dC is differentiable
at x if and only if h → L(h;x) is linear, i.e., if and only if there is a unique
minimum point z ∈ C of least distance from x.

Proof. We prove (2.2), the rest easily follows. We may and do assume that x = 0.
Moreover, we deal with the function

f(h) := d2C(h) = min
z∈C

|h− z|2.

It suffices to show that

f(h) = f(0) + f ′(h, 0) + o(|h|), h → 0, (2.3)

where

f ′(h; 0) := min
{
−2h • z

∣∣∣ z ∈ C, |z| = dC(0)
}
.

First, we remark that the functions qε(h) defined for ε ≥ 0 as

qε(h) := inf
{
−2h • z

∣∣∣ |z| ≤ f(0)1/2 + ε
}

are homogeneous of degree 1 and that qε → q0 increasingly as ε → 0. By Dini’s theorem,
see [GM3], {qε} converges uniformly to q0 in B(0, 1). Therefore, for every ε > 0 there
is cε such that

q0(h) ≥ qε(h) ≥ q0(h)− cε|h| ∀h (2.4)

and cε → 0 as ε → 0.
Now, let us prove (2.3). Since |y − z|2 = |z|2 − 2 y • z + |y|2, we have

f(h) ≤ min
z∈C

|z|=dC(0)

|h− z|2 = |h|2 + f(0) + min
z∈C

|z|=dC(0)

(−2 h • z )

= f(0) + q0(h) + |h|2. (2.5)

On the other hand, if |h| < ε/2, the minimum of z → |z − h|2, z ∈ C, is attained at

points zh such that |zh| ≤ f(0)1/2 + ε/2, hence by (2.4)

f(h) = min
z∈C

|z − h|2 = min
z∈C

|z|<f(0)1/2+ε

|z − h|2

= min
z∈C

|z|<f(0)1/2+ε

(
|z|2 + |h|2 − 2h • z

)
≥ f(0) + |h|2 + qε(h) ≥ f(0) + q0(h)− cε|h|+ |h|2.

Therefore
f(h) ≥ f(0) + q0(h) + o(|h|) as h → 0,

which, together with (2.5), proves (2.3). ��
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2.20 ¶. Using (2.2), prove that, in general, if there are in C more than one nearest
point to x, then

lim
t→0±

dC(x+ th)− dC(x)

t
= min

{
h •

x− z

|x− z|
∣∣∣ z ∈ C, |x− z| = dC(x)

}
.

2.21 Theorem (Motzkin). Let C ⊂ Rn be a nonempty closed set. The
following claims are equivalent:

(i) C is convex.
(ii) For all x /∈ C there is a unique nearest point in C to x.
(iii) dC is differentiable at every point in Rn \ C.

Proof. The equivalence of (ii) and (iii) is the content of Lemma 2.19.

(i) ⇒ (ii). If z is the nearest point in C to x /∈ C, then x− z − ε(y − z) ∈ C if y ∈ C,
therefore

|x− z|2 ≤ |x− z − ε(y − z)|2 = |x− z|2 − 2 ε (y − z) • (x− z) + ε2|y − z|2 (2.6)

for all 0 ≤ ε ≤ 1. For ε → 0 we get (x− z) • (y− z) ≤ 0 and, because of (2.6) with ε = 1

|x− y|2 = |x− z|2 − 2 (x− z) • (y − z) + |y − z|2 > |x− z|2 ∀y ∈ C.

(ii) ⇒ (i). Suppose C is not convex. It suffices to show that there is a ball B such

that B ∩ C = ∅ and B ∩ C has more than a point. Since C is not convex, there exist
x1, x2 ∈ C, x1 �= x2, such that the open segment connecting x1 to x2 is contained
in Rn \ C. We may suppose that the middle point of this segment is the origin, i.e.,

x2 = −x1, and let ρ be such that B(0, ρ) ∩ C = ∅. We now consider the family of balls
{B(w, r)} such that

B(w, r) ⊃ B(0, ρ), B(w, r) ∩C = ∅ (2.7)

and claim that the corresponding set {(w, r)} ⊂ Rn+1 is bounded and closed, hence
compact. In fact, since xj /∈ B(w, r), j = 1, 2, we have r ≥ |w|+ ρ and |w ± x1|2 ≥ r2,
hence

(|w|+ ρ)2 ≤ r2 ≤ 1

2
(|w + x1|2 + |w − x1|2) ≤ |w|2 + r2

from which we infer

|w| ≤ |x1|2 − ρ2

2ρ
, r ≤ (|x1|2 + ρ2)

2ρ
.

Consider now a ball B(w0, r0) with maximal radius r0 among the family (2.7). We
claim that ∂B(w0, r0)∩C contains at least two points. Assuming on the contrary that
∂B(w0, r0)∩C contains only one point y1, for all θ such that θ • (y1 −w0) < 0 and for

all ε > 0 sufficiently small, B(w0 + θε, r0) ∩ C = ∅, consequently, by maximality there
exists yε such that

yε ∈ ∂B(w0 + εθ, r0) ∩ ∂B(0, ρ). (2.8)

From (2.8) we infer, as ε → 0, that there is a point y2 ∈ ∂B(w0, r0) ∩ ∂B(0, ρ), which

is unique since r0 > ρ. However, if we choose θ := y2 − y1, we surely have ∂B(w0 +

εθ, r0) ∩ ∂B(0, ρ) = ∅, for sufficiently small ε. This contradicts (2.8). ��
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e. Extreme points

2.22 Definition. Let K ⊂ Rn be a nonempty convex set. A point x0 ∈ K
is said to be an extreme point for K if there are no x1, x2 ∈ K and λ ∈]0, 1[
such that x0 = λx1 + (1− λ)x2.

The extreme points of a cube are the vertices; the extreme points of a
ball are all its boundary points. The extreme points of a set, if any, are
boundary points; in particular, an open convex set has no extreme points.
Additionally, a closed half-space has no extreme points.

2.23 Theorem. Let K ⊂ Rn be nonempty closed and convex.

(i) If K does not contains lines, then K has extreme points.
(ii) If K is compact, then K is the convex hull of its extreme points.

Proof. Let us prove (ii) by induction on the dimension of the smallest affine subspace
containing K. We leave then to the reader the task of proving (i), still by induction.
If n = 1, K is a segment and the claim is trivial. Suppose that the claim holds for
convex sets contained in an affine subspace of dimension n− 1. For x0 ∈ ∂K, let P be
a supporting hyperplane to K at x0. The set K ∩ P is compact and convex, hence by
the inductive assumption, x0 is a convex combination of extreme points of K ∩P, that
are also extreme points of K. If x0 is an interior point of K, every line through x0 cuts
K into a segment of extremes x1 and x2 ∈ ∂K, hence x0 is a convex combination of
extreme points, since so are x1, x2 ∈ ∂K. ��

2.2 Proper Convex Functions

a. Definitions

We have already introduced convex functions of one variable, discussed
their properties and illustrated a few estimates related to the notion of
convexity, see [GM1] and Section 5.3.7 of [GM4]. Here we shall discuss
convex functions of several variables.

2.24 Definition. A function f : K ⊂ Rn → R defined on a convex set
K, is said to be convex in K if

f(λx+(1−λ)y) ≤ λf(x)+(1−λ)f(y) ∀x, y ∈ K, ∀λ ∈ [0, 1]. (2.9)

The function f is said to be strictly convex if the inequality in (2.9) for
x �= y and 0 < λ < 1 is strict.

We say that f : K → R is concave if K is convex and −f : K → R is
convex.

The convexity of K is needed to ensure that the segment {z ∈ Rn | z =
λx + (1 − λ)y, λ ∈ [0, 1]} belongs to the domain of definition of f . The
geometric meaning of the definition is clear: The segment PQ connecting
the point P = (x, f(x)) to Q = (y, f(y)) lies above the graph of the
restriction of f to the segment with extreme points x, y ∈ K.
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2.25 ¶. Prove the following.

(i) Linear functions are both convex and concave; in fact, they are the only functions
that are at the same time convex and concave.

(ii) If f and g are convex, then f+g, αf, α > 0, max(f, g) and λf+(1−λ)g, λ ∈ [0, 1],
are convex.

(iii) If f : K → R is convex and g : I ⊃ f(K) → R is convex and not decreasing, then
g ◦ f is convex.

(iv) The functions |x|p, (1 + |x|2)p/2, p ≥ 1, eθ|x|, θ > 0, and x log x− x, x > 0, are
convex.

b. A few characterizations of convexity

We recall that the epigraph of a function f : A ⊂ Rn → R is the subset of
Rn × R given by

Epi(f) :=
{
(x, z)

∣∣∣x ∈ A, z ∈ R, z ≥ f(x)
}
.

2.26 Proposition. Let f : K ⊂ Rn → R. The following claims are equiv-
alent:

(i) K is convex, and f : K → R is convex.
(ii) The epigraph of f is a convex set in Rn+1.
(iii) For every x1, x2 ∈ K the function ϕ(λ) := f(λx1 + (1 − λ)x2), λ ∈

[0, 1], is well-defined and convex.
(iv) (Jensen’s inequality) K is convex and for any choice of m points

x1, x2, . . . , xm ∈ K, and nonnegative numbers α1, α2, . . . , αm such
that

∑m
i=1 αi = 1, we have

f

( m∑
i=1

αixi

)
≤

m∑
i=1

αif(xi).

Proof. (i) =⇒ (ii) follows at once from the definition of convexity.

(ii) =⇒ (i). Let π : Rn+1 → Rn be the projection map into the first factor, π((x, t)) := x.
Since linear maps map convex sets into convex sets and K = π(Epi(f)), we infer that
K is a convex set, while the convexity of f follows just by definition.

(i)⇒(iii). For λ, t, s ∈ [0, 1] we have

ϕ(λt + (1 − λ)s) = f
(
[λt+ (1− λ)s]x1 + [1− λt− (1 − λ)s]x2

)
= f

(
λ[tx1 + (1 − t)x2] + (1 − λ)[sx1 + (1− s)x2]

)
≤ λϕ(t) + (1− λ)ϕ(s).

(iii)⇒(i). We have

f(λx1 + (1− λ)x2) = ϕ(λ) = ϕ(λ · 1 + (1− λ) · 0)
≤ λϕ(1) + (1− λ)ϕ(0) = λf(x1) + (1− λ)f(x2).

(iv)⇒(i). Trivial.
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(i)⇒(iv). We proceed by induction on m. If m = 1, the claim is trivial. For m > 1, let
α := α1 + · · ·+ αm−1, so that αm = 1− α. We have

m∑
i=1

αixi = α

m−1∑
i=1

αi

α
xi + (1− α)xm,

with 0 ≤ αi/α ≤ 1 and
∑m−1

i=1 (αi/α) = 1. Therefore we conclude, using the inductive
assumption, that

f
( m∑

i=1

αixi

)
≤ αf

(m−1∑
i=1

αi

α
xi

)
+ (1− α)f(xm)

≤ α

m−1∑
i=1

αi

α
f(xi) + (1− α)f(xm) =

m∑
i=1

αixi.

��

From (ii) of Proposition 2.26 and Carathéodory’s theorem, Theo-
rem 2.17, we infer at once the following.

2.27 Corollary. Let K ⊂ Rn be a convex set. The function f : K ⊂
Rn → R is convex if and only if

f(x) := inf
{ n+1∑

i=1

λif(xi)
∣∣∣∀x1, x2, . . . , xn+1 ∈ K such that x =

n+1∑
i=1

λixi,

with λi ≥ 0,

n+1∑
i=1

λi = 1
}
.

Of course, the level sets {x ∈ K | f(x) ≤ c} and {x ∈ K | f(x) < c} of a
convex function f : K → R are convex sets; however, there exist nonconvex
functions whose level sets are convex; for instance, the function x3, x ∈ R,
or, more generally, the composition of a convex function f : K → R with
a monotone function ϕ : R → R.

2.28 Definition. A function with convex level sets is called a quasiconvex
function.1

c. Support function

Let f : K ⊂ Rn → R be a function. We say that a linear function � : Rn →
R is a support function for f at x ∈ K if

f(y) ≥ f(x) + �(y − x) ∀y ∈ K.

1 We notice that “quasiconvex” is used with different meanings in different contexts.
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Figure 2.5. Convex functions and supporting affine hyperplanes.

2.29 Definition. Let f : K → R be a convex function. The set of linear
maps � : Rn → R such that y → f(x) + �(y − x) is a support function for
f at x is called the subdifferential of f at x and denoted by ∂f(x).

Trivially, if � ∈ ∂f(x), then the graph of y �→ f(x)+�(y−x) at (x, f(x))
is a supporting hyperplane for the epigraph of f at (x, f(x)). Conversely, on
account of Proposition 2.30, every affine supporting hyperplane to Epi(f)
is the graph of a linear map belonging to the subdifferential to f at x
provided it contains no vertical vectors. This is the case if f is convex on
an open set, as shown by the following proposition.

2.30 Proposition. Let f : Ω ⊂ Rn → R be a function, where Ω is convex
and open. Then f is convex if and only if for every x ∈ Ω there is a linear
support function for f at x.

Proof. Let f be convex and x ∈ Ω. The epigraph of f is convex and its closure is convex;
moreover, (x, f(x)) ∈ ∂ Epi(f). Consequently, there is a supporting hyperplane P of
Epi(f) at (x, f(x)) that does not contain vertical vectors, otherwise it would divide Ω in
two parts and, as a consequence, the epigraph of f . We then conclude that there exist
a linear map ϕ : Rn → R and constants α, β ∈ R such that P = {(x, y) |ϕ(x)+αy = β}
and

ϕ(x− x) + α(y − f(x)) ≥ 0 ∀(x, y) ∈ Epi(f), α �= 0. (2.10)

Moreover, we have α ≥ 0 since in (2.10) we can choose y arbitrarily large. Thus, α > 0
and, if we set �(x) := −ϕ(x)/α, from (2.10) with y = f(x), we infer

f(x) ≥ f(x) + �(x− x) ∀x ∈ Ω.

Conversely, let us prove that f : Ω → R is convex if it has at every point a linear
support function. Let x1, x2 ∈ Ω, x1 �= x2, and λ ∈]0, 1[, set x0 := λx1 + (1 − λ)x2,

h := x1 − x0, so that x2 = x0 − λ
1−λ

h. Let � be the linear support function for f at x0.

We have

f(x1) ≥ f(x0) + �(h), f(x2) ≥ f(x0)− λ

1− λ
�(h).

Multiplying the first inequality by λ/(1 − λ) and summing to the second, we get

λ

1− λ
f(x1) + f(x2) ≥

(
λ

1− λ
+ 1

)
f(x0),

i.e., f(x0) ≤ λf(x1) + (1− λ)f(x2). ��
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2.31 Remark. A consequence of the above is the following claim that
complements Jensen’s inequality. With the same notation of Proposi-
tion 2.26, if f is strictly convex and αi > 0 ∀i, then the equality

f

( m∑
i=1

αixi

)
=

m∑
i=1

αif(xi) (2.11)

implies that xj = x0 ∀j = 1, . . . ,m where x0 :=
∑m

i=1 αixi. In fact, if
�(x) := f(x0)+ m • (x−x0) is a linear affine support function for f at x0,
the function

ψ(x) := f(x)− f(x0)− m • (x− x0) , x ∈ K

is nonnegative and, because of (2.11),

m∑
i=1

ψ(xi) = 0.

Hence ψ(xj) = 0 ∀j = 1 . . . ,m. Since ψ is strictly convex, we conclude
that xj = x0 ∀j = 1, . . . ,m.

d. Convex functions of class C1 and C2

We now present characterizations of smooth convex function in an open
set.

2.32 Theorem. Let Ω be an open and convex set in Rn and let f : Ω → R
be a function of class C1. The following claims are equivalent:

(i) f is convex.
(ii) For all x0 ∈ Ω, the graph of f lies above the tangent plane to the

graph of f at (x0, f(x0)),

f(x) ≥ f(x0) + ∇fx0 • (x− x0) ∀x0, x ∈ Ω. (2.12)

(iii) The differential of f is a monotone operator, i.e.,(
∇f(y)−∇f(x)

)
• (y − x) ≥ 0 ∀x, y ∈ Ω. (2.13)

Notice that in one dimension the fact that ∇f is monotone means simply
that f ′ is increasing. Actually, we could deduce Theorem 2.32 from the
analogous theorem in one dimension, see [GM1], but we prefer giving a
self-contained proof.
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Proof. (i)=⇒(ii). Let x0, x ∈ Ω and h := x−x0. The function t �→ f(x0 + th), t ∈ [0, 1],
is convex, hence f(x0 + th) ≤ tf(x0 + h) + (1 − t)f(x0), i.e.,

f(x0 + th) − f(x0) ≤ t[f(x0 + h)− f(x0)].

We infer

f(x0 + th)− f(x0)

t
− ∇f(x0) •h ≤ f(x0 + h)− f(x0)− ∇f(x0) •h .

Since for t → 0+ the left-hand side converges to zero, we conclude that the right-hand
side, which is independent from t, is nonnegative.

(ii)=⇒ (i). Let us repeat the argument in the proof of Proposition 2.30. For x ∈ Ω the
map h → f(x) + ∇f(x) •h is a support function for f at x. Let x1, x2 ∈ Ω, x1 �= x2,

and let λ ∈]0, 1[. We set x0 := λx1 + (1 − λ)x2, h := x1 − x0, hence x2 = x0 − λ
1−λ

h.

From (2.12) we infer

f(x1) ≥ f(x0) + ∇f(x0) •h , f(x2) ≥ f(x0)− λ

1− λ
∇f(x0) •h .

Multiplying the first inequality by λ/(1 − λ) and summing to the second we get

λ

1− λ
f(x1) + f(x2) ≥

(
λ

1− λ
+ 1

)
f(x0),

i.e., f(x0) ≤ λf(x1) + (1− λ)f(x2).

(ii)⇒(iii). Trivially, (2.12) yields

f(x) − f(y) ≤ ∇f(x) • (x− y) , f(x)− f(y) ≥ ∇f(y) • (x− y) ,

hence
∇f(y) • (x− y) ≤ f(x) − f(y) ≤ ∇f(x) • (x− y) ,

i.e., (2.13).

(iii)⇒(ii). Assume now that (2.13). For x0, x ∈ Ω we have

f(x) − f(x0) =

∫ 1

0

d

dt
f(tx+ (1− t)x0) dt =

(∫ 1

0
∇f(tx + (1 − t)y) dt

)
• (x− x0)

and (
∇f(tx+ (1− t)y)

)
• (x− x0) ≥ ∇f(x0) • (x− x0) ,

hence

f(x)− f(x0) ≥
(∫ 1

0
∇f(x0) dt

)
• (x− x0) = ∇f(x0) • (x− x0) .

��

Let f belong to C2(Ω). Because of (iii) of Proposition 2.26, f : Ω → R
is convex if and only if for every x1, x2 ∈ Ω the function

ϕ(λ) := f((1− λ)x1 + λx2) λ ∈ [0, 1]

is convex and C2([0, 1]). By Theorem 2.32 ϕ is convex if and only if ϕ′ is
increasing in [0, 1], i.e., if and only if ϕ′′ ≥ 0. Since

ϕ′′(0) =
(
Hf(x1)(x2 − x1)

)
• (x2 − x1) ,

we conclude the following.
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2.33 Theorem. Let Ω ⊂ Rn be an open and convex set of Rn and let
f : Ω → R be a function of class C2(Ω). Then f is convex if and only if
the Hessian matrix of f is nonnegative at every point in Ω,

Hf(x)h •h ≥ 0 ∀x ∈ Ω, ∀h ∈ Rn.

Similarly, one can prove that f is strictly convex if the Hessian matrix of
f is positive at every point in Ω.

Notice that f(x) = x4, x ∈ R, is strictly convex, but Hf(0) = 0.

2.34 ¶. Let f : K ⊂ Rn → R be a convex function, K being convex and bounded.
Prove the following:

(i) In general, f has no maximum points.
(ii) If f is not constant, then f has no interior maximum point; in other words, if f

is not constant, then

f(x) < sup
y∈K

f(y) ∀x ∈ int(K);

possible maximum points lie on ∂K if K is closed.
(iii) if K has extremal points, possible maximum points lie on the extremal points of

K; in the case that K has finite many extremal points, then f has a maximum
point and

max
x∈K

f(x) = max
i=1,N

f(xi).

(iv) In general, f has no minimum points.
(v) The set of minimum points is convex and reduces to a point if f is strictly convex.
(vi) Local minimum points are global minimum points.

In particular, from (iii) it follows that if f : Q → R is convex, Q being a closed cube in
Rn, then f has maximum and the maximum points lie on the vertices of Q.

e. Lipschitz continuity of convex functions

Let f : Q ⊂ Rn → R be a convex function defined on a closed cube Q.
Then it is easy to see that f(x) ≤ sup∂Q f for every x ∈ Q. Moreover,
one sees by downward induction that f has maximum and the maximum
points lie on the vertices of Q, see Exercise 2.34.

2.35 Theorem. Let Ω ⊂ Rn be an open and convex set and let f : Ω → R
be convex. Then f is locally Lipschitz in Ω.

Proof. Let x0 ∈ Ω and let Q(x0, r) be a sufficiently small closed cube contained in Ω
with sides of length 2r parallel to the axes. Since f is convex, f|Q(x0,r) has maximum

value at one of the vertices of Q(x0, r). If

Lr := sup
x∈∂B(x0,r)

f(x),

then Lr < +∞ since ∂B(x0, r) ⊂ Q(x0, r). Let us prove that

|f(x)− f(x0)| ≤ Lr − f(x0)

r
|x− x0| ∀x ∈ B(x0, r). (2.14)

Without loss in generality, we may assume x0 = 0 and f(0) = 0. Let x �= 0 and let
x1 := r

|x|x and x2 := − r
|x|x. Since x1 ∈ ∂B(x0, r) and x = λx1 + (1 − λ)0, λ := |x|/r,

the convexity of f yields



2.2 Proper Convex Functions 83

f(x) ≤ |x|
r

f(x1) ≤ Lr

r
|x|,

whereas, since x2 ∈ ∂B(x0, r) and 0 = λx + (1 − λ)x2, λ := 1/(1 + |x|/r), we have
0 = f(0) ≤ λf(x) + (1 − λ)f(x2) ≤ (1− λ)Lr , i.e.,

−f(x) ≤ 1− λ

λ
Lr =

Lr

r
|x|.

Therefore, |f(x)| ≤ (Lr/r)|x| for all x ∈ B(0, r), and (2.14) is proved.
In particular, (2.14) tells that f is continuous in Ω.
Let K and K1 be two compact sets in Ω with K ⊂⊂ K1 ⊂ Ω and let δ :=

dist(K, ∂K1) > 0. Let M1 denote the oscillation of f in K1,

M1 := sup
x,y∈K1

|f(x)− f(y)|,

which is finite by the Weierstrass theorem. For every x0 ∈ K, the cube centered at x0

with sides parallel to the axes of length 2r, r = δ/
√
n, is contained in K1. It follows

from (2.14) that

|f(x)− f(x0)| ≤ Lr − f(x0)

r
|x− x0| ≤ M1

r
|x− x0| ∀x ∈ K ∩B(x0, r).

On the other hand, for x ∈ K \B(x0, r) we have |x− x0| ≥ r, hence

|f(x)− f(x0)| ≤ M1 ≤ M1

r
|x− x0|.

In conclusion, for every x ∈ K

|f(x)− f(x0)| ≤ M1

r
|x− x0|

and, x0 being arbitrary in K (and M1 and r independent from r and x0), we conclude
that f is Lipschitz-continuous in K with Lipschitz constant smaller than M1/r. ��

Actually, the above argument shows more: A locally equibounded family
of convex functions is also locally equi-Lipschitz.

f. Supporting planes and differentiability

2.36 Theorem. Let Ω ⊂ Rn be open and convex and let f : Ω → R be
convex. Then f has a unique support function at x0 if and only if f is
differentiable at x0.

In this case, of course, the supporting function is the linear tangent map
to f at x0,

y �→ ∇f(x0) •y .

As a first step, we prove the following proposition.

2.37 Proposition. Let Ω ⊂ Rn be open and convex, let f : Ω → R be
convex and let x0 ∈ Ω. For every v ∈ Rn the right and left derivatives
defined by

∂f

∂v+
(x) := lim

t→0+

f(x+ tv)− f(v)

t
,

∂f

∂v−
(x) := lim

t→0−

f(x+ tv)− f(v)

t
,
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exist and ∂f
∂v− (x0) ≤ ∂f

∂v+ (x0). Moreover, for any m ∈ R such that
∂f
∂v− (x) ≤ m ≤ ∂f

∂v− (x), there exists a linear map � : Rn → R such that
f(x) ≥ f(x0) + �(x− x0) ∀x ∈ Ω and �(v) = m.

Proof. Without loss in generality we assume x0 = 0 and f(0) = 0.
The function ϕ(t) := f(tv) is convex in an interval around zero; thus, compare

[GM1], ϕ has right-derivative ϕ′
+(0) and left-derivative ϕ′

−(0) and φ′
−(0) ≤ ϕ′

+(0).

Since ∂f
∂v− (0) = ϕ′−(0) and ∂f

∂v+ (0) = ϕ′
+(0), the first part of the claim is proved.

(ii) If ∂f
∂v− (0) ≤ m ≤ ∂f

∂v+ (0), the graph of the linear map t → mt is a supporting line

for Epi(ϕ) at (0, 0), i.e., for Epi(f)∩V0×R, V0 := Span{v}. We now show that the graph
of the linear function �0 : V0 → R, �0(tv) := mt, extends to a supporting hyperplane to
Epi(f) at (0, f(0)), which is in turn the graph of a linear map � : Rn → R.

Choose a vector w ∈ Rn with w �∈ V0, and remark that for x, y ∈ V0 and r, s > 0
we have

r

r + s
�0(x) +

s

r + s
�0(y) = �0

( r

r + s
x+

s

r + s
y
)

≤ f
( r

r + s
x+

s

r + s
y
)
= f

( r

r + s
(x− sw) +

s

r + s
(y + rw)

)
≤ r

r + s
f(x− sw) +

s

r + s
f(y + rw);

so that multiplying by r + s we get

r�0(x) + s�0(y) ≤ rf(x− sw) + sf(x+ rw),

i.e.,

g(x, s) :=
�0(x) − f(x− sw)

s
≤ f(y + rw)− �0(y)

r
=: h(y, r).

For x ∈ V0 ∩ Ω and s sufficiently small so that x + sw and x − sw ly in Ω, the values
g(x, s) and h(x, s) are finite, hence

−∞ < g(x, s) ≤ sup
V0×R

g(x, s) ≤ inf
V0×R

h(x, s) ≤ h(x, s) < +∞.

Consequently, there exists α ∈ R such that

�0(x) − f(x− sw)

s
≤ −α ≤ f(x+ rw)− �0(x)

r
for all x ∈ V0, r, s ≥ 0 with x− sw, x+ rw ∈ Ω. This yields

�0(x) + αt ≤ f(x+ tw) ∀x ∈ V0, ∀t ∈ R with x+ tw ∈ Ω.

In conclusion, �0 has been extended to the linear function �1 : Span{v, w} → R defined
by �1(v) := �0(v), �1(w) := α for which �1(z) ≤ f(z) for all z ∈ Span{v, w}. Of course,
repeating the argument for finite many directions concludes the proof. ��
Proof of Theorem 2.36. Without loss in generality, we assume x0 = 0 and f(0) = 0.

Suppose that Epi(f) has a unique supporting hyperplane at 0. The restriction of f
to any of the straight lines Span v through 0 has a unique support line since otherwise,
as in Proposition 2.37, we could construct two different hyperplanes supporting Epi(f)

at (0, 0). In particular, ∂f
∂v− (0) = ∂f

∂v+ (0), i.e., f is differentiable in the direction v at
0. Then, from Proposition 2.38, we conclude that f is differentiable at 0.

Conversely, suppose that f is differentiable in any direction and let � : Rn → R be
a linear function, the graph of which is a supporting hyperplane for Epi(f) at (0, 0).
Then �(x) ≤ f(x) for all x ∈ Ω and, for every v ∈ Rn and t > 0 small,

�(v) =
�(tv)

t
≤ f(tv)

t
.

For t → 0+ we get �(v) ≤ ∂f
∂v

(0); replacing v with −v we also have �(−v) ≤ ∂f
∂(−v)

(0),

thus �(v) = ∂f
∂v

(0), i.e., � is uniquely defined. ��
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2.38 Proposition. Let Ω ⊂ Rn be open and convex and let f : Ω → R
be convex. Then f is differentiable at x0 ∈ Ω if and only if f has partial
derivatives at x0.

Proof. We may and do assume that x0 = 0 and f(0) = 0. Therefore, assume f is convex
and has partial derivatives at 0. Additionally,

φ(h) := f(h)− f(0) − ∇f(0) •h , h ∈ Ω,

is convex and has zero partial derivatives at 0. Writing h =
∑n

i=1 h
iei, we have for

every i = 1, . . . , n

φ(nhiei)

nhi
= o(1), hi → 0;

additionally, Jensen’s inequality yields

φ(h) = φ
( 1

n

n∑
i=1

hinei
)
≤ 1

n

n∑
i=1

φ(nhiei).

Using Cauchy’s inequality we then get

φ(h) ≤
n∑

i=1

hi φ(h
inei)

nhi
≤ |h|

( n∑
i=1

∣∣∣φ(hinei)

hin

∣∣∣2)1/2

= |h|ε(h)

where

ε(h) :=

( n∑
i=1

∣∣∣φ(hinei)

hin

∣∣∣2)1/2

.

Notice that ε(h) ≥ 0, and ε(h) → 0 as h → 0. Replacing h with −h we also get

φ(−h) ≤ |h|ε(−h) with ε(−h) ≥ 0, and ε(−h) → 0 as h → 0.

Since φ(h) ≥ −φ(−h) (in fact, 0 = φ((h− h)/2) ≤ φ(h)/2 + φ(−h)/2) we obtain

−|h|ε(−h) ≤ φ(−h) ≤ φ(h) ≤ |h|ε(h)

and conclude that∣∣∣φ(h)
h

∣∣∣ ≤ max(ε(h), ε(−h)), therefore lim
h→0

φ(h)

|h| = 0,

i.e., φ and, consequently, f , is differentiable at 0. ��

2.39 ¶. For f : Ω ⊂ Rn → R and v ∈ Rn set

∂f

∂v+
(x) := lim

t→0+

f(x+ tv) − f(v)

t
.

Assuming that Ω is open and convex and f : Ω ⊂ Rn → R is convex, prove the following:

(i) For all x ∈ Ω and v ∈ Rn, ∂f
∂v+ (x) exists.

(ii) v → ∂f
∂v+ (x), v ∈ Rn, is a convex and positively 1-homogeneous function.

(iii) f(x + v) − f(x) ≥ ∂f
∂v+ (x) for all x ∈ Ω and all v ∈ Rn.

(iv) v → ∂f
∂v+ (x) is linear if and only if f is differentiable at x.
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g. Extremal points of convex functions

The extremal points of convex functions have special features. In Exer-
cise 2.34, for instance, we saw that a convex function f : K → R need
not have a minimum point even when K is compact; moreover, minimizers
form a convex subset of K. We also saw that local minimizers are in fact
global minimizers and that, assuming f ∈ C1(K) and x0 interior to K, the
point x0 is a minimizer for f if and only if Df(x0) = 0. When a minimizer
x0 is not necessarily an interior point, we have the following proposition.

2.40 Proposition. Let Ω be an open set of Rn, K a convex subset of Ω
and f : Ω → R a convex function of class C1(Ω). The following claims are
equivalent:

(i) x0 is a minimum point of f in K.
(ii) Df(x0) • (x− x0) ≥ 0 ∀x ∈ K.
(iii) Df(x) • (x− x0) ≥ 0 ∀x ∈ K.

Proof. (i) ⇔ (ii). If x0 is a minimizer in K, for all x ∈ K and λ ∈]0, 1[ we have

f(x0) ≤ f((1 − λ)x0 + λx),

hence
f(x0 + λ (x− x0))− f(x0)

λ
≥ 0.

When λ → 0, the left-hand side converges to Df(x0) • (x− x0) , hence (ii). Conversely,
since f is convex and of class C1(Ω) we have

f(x) ≥ f(x0) + Df(x0) • (x− x0) ≥ f(x0) ∀x ∈ K,

thus x0 is a minimizer of f in K.

(ii) ⇔ (iii). From Theorem 2.32 we know that Df is a monotone operator

(Df(x) −Df(x0)) • (x− x0) ≥ 0.

Thus (ii) implies (iii) trivially.

(iii) ⇔ (ii). For any x ∈ K and λ ∈]0, 1[ (iii) yields

Df(x0 + λ(x− x0)) • (λ(x− x0)) ≥ 0,

hence for λ > 0
Df(x0 + λ(x− x0)) • (x− x0) ≥ 0.

Since λ → Df(x0 +λ(x−x0)) • (x−x0) is continuous at 0, for λ → 0+ we get (ii). ��

The analysis of maximum points is slightly more delicate. In the 1-
dimensional case a convex function f : [a, b] → R has a maximum point in
a or b. However, in higher dimensions the situation is more complicated.

2.41 Example. The function

f(x, y) :=

⎧⎪⎨⎪⎩
x2

y
if y > 0,

0 if (x, y) = (0, 0)

is convex in {(x, y) | y > 0} ∪ {(0, 0)}, as the reader can verify. Notice that f is discon-
tinuous at (0, 0) and (0, 0) is a minimizer for f .
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Consider the closed convex set

K1 :=
{
(x, y)

∣∣∣ x4 ≤ y ≤ 1
}
.

We have sup∂K1
f(x, y) = +∞ since f(x, x4) = 1/x2 → ∞ as x → 0. Hence the function

f : K1 → R is convex, K1 is compact but f is unbounded on K1.
Consider the compact and convex set

K2 :=
{
(x, y)

∣∣∣x2 + x4 ≤ y ≤ 1
}
.

We have

f(x, y) ≤ x2

x2 + x4
< 1 ∀(x, y) ∈ K2 and sup

(x,y)∈K2

f(x, y) = 1.

Therefore, the function f : K2 → R is convex, defined on a compact convex set, bounded
from above, but has no maximum point.

2.42 Proposition. Let K ⊂ Rn be a convex and closed set that does not
contain straight lines and let f : K → R be a convex function.

(i) If f has a maximum point x, then x is an extremal point of K.
(ii) If f is bounded from above and K is polyhedral, then f has a maxi-

mum point in K.

Proof. The proof is by induction on the dimension. For n = 1, the unique closed convex
subsets of R are the closed and bounded intervals [a, b] or the closed half-lines, and in
this case (i) and (ii) hold. We now proceed by induction on n.

(i) If f has a maximizer in K, then there exists x ∈ ∂K where f attains its maximum
value. Denoting by L the supporting hyperplane of K at x, then f attains its maximum
in L ∩ K that is closed, convex and of dimension n − 1. By the inductive assumption
there exists x̂ ∈ L ∩K which is both an extremal point of L ∩K and a maximizer for
f . Since x needs to be also an extremal point for K, (i) holds in dimension n.

(ii) Let
M := sup

x∈K
f(x) = sup

x∈∂K
f(x).

Since K is polyhedral, we have ∂K = (K ∩L1)∪ · · ·∪ (K ∩LN ), where L1, L2, . . . , LN

are the hyperplanes that define K. Hence

M = sup
x∈K∩Li

f(x) for some i.

However, K ∩Li is polyhedral and dim(K ∩Li) < n. It follows that there is x̂ ∈ K ∩Li

such that f(x̂) = M . ��

2.3 Convex Duality
a. The polar set of a convex set

A basic construction when dealing with convexity is convex duality. Here
we see it as the construction of the polar set.

Let K ⊂ Rn be an arbitrary set. The polar of K is defined as

K∗ :=
{
ξ
∣∣∣ ξ •x ≤ 1 ∀x ∈ K

}
.
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2.43 Example. (i) If K = {x}, x �= 0, then its polar

K∗ =
{
ξ
∣∣∣ ξ •x ≤ 1

}
,

is the closed half-space delimited by the hyperplane ξ •x = 1 and containing the
origin. Notice that ξ •x = 1 is one of the two hyperplanes orthogonal to x at
distance 1/|x| from the origin.

(ii) If K := {0}, then trivially K∗ = Rn,

(iii) If K = B(0, r), then

K∗ = B(0, 1/r).

In fact, if ξ ∈ B(0, 1/r), then ξ •x ≤ ||ξ|| ||x|| ≤ 1
r
r = 1, i.e., B(0, 1/r) ⊂ K∗. On

the other hand, x •y = ||x|| ||y|| if and only if either y = 0 or x is a nonnegative

multiple of y. For all ξ ∈ K∗, if x := r ξ
|ξ| ∈ B(0, r), we have r ||ξ|| = ξ •x =

||x|| ||ξ|| ≤ 1; hence K∗ ⊂ B(0, 1/r).

Since the polar set is characterized by a family of linear inequalities, we
infer the following.

2.44 Proposition. We have the following:

(i) For every nonempty set K, the polar set K∗ is convex, closed and
contains the origin.

(ii) If {Kα}α∈A is a family of nonempty sets of Rn, then( ⋃
α∈A

Kα

)∗
=
⋂
α∈A

K∗
α.

(iii) If K1 ⊂ K2 ⊂ Rn, then K∗
1 ⊃ K∗

2 .
(iv) If λ > 0 and K ⊂ Rn, then (λK)∗ = 1

λK
∗.

(v) If K ⊂ Rn, then (co(K))∗ = K∗.
(vi) (K ∪ {0})∗ = K∗.

Proof. (i) By definition K∗ is the intersection of a family of closed half-spaces containing
0, hence it is closed, convex and contains the origin.

(ii) From the definition( ⋃
α∈A

Kα

)∗
=
{
ξ
∣∣∣ ξ •x ≤ 1 ∀x ∈ ∪α∈AKα

}
=
⋂

α∈A

{
ξ
∣∣∣ ξ •x ≤ 1 ∀x ∈ Kα

}
=
⋂

α∈A
K∗

α.

(iii) Writing K2 = K1∪(K2\K1), it follows from (ii) that K∗
2 ⊂ K∗

1 ∩(K2 \K1)∗ ⊂ K∗
1 .

(iv) ξ ∈ (λK)∗ if and only if ξ •x ≤ 1 ∀x ∈ λK, equivalently, if and only if ξ •λx ≤ 1
∀x ∈ K, i.e., (λξ) •x ≤ 1 ∀x ∈ K, that is, if and only if λξ ∈ K∗.
(v) It suffices to notice that ξ satisfies ξ •x1 ≤ 1 and ξ •x2 ≤ 1 if and only if ξ •x ≤ 1
for every x that is a convex combination of x1 and x2.

(vi) Trivial. ��

2.45 Corollary. Let K ⊂ Rn. Then the following hold.

(i) If 0 ∈ int(K), then K∗ is closed, convex and compact.
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(ii) If K is bounded, then 0 ∈ int(K∗).

Proof. If 0 ∈ int(K), there is B(0, r) ⊂ K, hence, K∗ ⊂ B(0, r)∗ = B(0, 1/r) and K is

bounded. Similarly, if K is bounded, K ⊂ B(0,M), then B(0, 1/M) = B(0,M)∗ ⊂ K∗
and 0 ∈ int(K∗). ��

A compact convex set with interior points is called a convex body. From
the above the polar set of a convex body K with 0 ∈ int(K) is again a
convex body with 0 ∈ intK∗.

The following important fact holds.

2.46 Theorem. Let K be a closed convex set of Rn with 0 ∈ K. Then
K∗∗ = K where K∗∗ := (K∗)∗.

Proof. If x ∈ K, then ξ •x ≤ 1 ∀ξ ∈ K∗, hence x ∈ K∗∗ and K ⊂ K∗∗. Conversely, if
x0 /∈ K, then there is a supporting hyperplane of K

P =
{
x
∣∣∣ η •x = 1

}
that strongly separates K from x, see Theorem 2.6, and, since 0 ∈ K,

η •x < 1 ∀x ∈ K and η •x0 > 1.

The first inequality states that η ∈ K∗, whereas the second states that x0 /∈ K∗.
Consequently, K∗∗ ⊂ K. ��

Later, in Section 2.4, we shall see a few applications of polarity.

b. The Legendre transform for functions of one variable

In Paragraph a. we introduced the notion of convex duality for bodies. We
now discuss a similar notion of duality for convex functions: the Legendre
transform. We begin with functions of one real variable.

Let I be an interval of R and f : I → R be a convex function. Suppose
that f is of class C2 and that f ′′ > 0 in I. Then f ′ : I → R is strictly
increasing and we may describe f in terms of the slope p by choosing for
every p ∈ f ′(I) the unique x ∈ I such that f ′(x) = p and defining the
Legendre transform of f as

Lf (p) := xp− f(x), x := x(p) = (f ′)−1(p), p ∈ f ′(I),

see Figure 2.6. In this way we have a description of f in terms of the
variable p that we say is dual of the variable x. It is easy to prove that
Lf (p) is of class C2 as f and that Lf is strictly convex. In fact, writing
x = x(p) for x = (f ′)−1(p), we compute

(Lf )
′(p) = x(p) + px′(p)− f ′(x(p))x′(p) = x(p), (2.15)

(Lf )
′′(p) = D(x(p)) =

1

D(f ′)(x(p))
=

1

f ′′(x(p))
. (2.16)
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xx(ξ)

y = ξx

y

Lf (ξ)

y = f(x)

ξ

Lf (ξ))

xξ − f(x)

Figure 2.6. A geometric description of the Legendre transform.

c. The Legendre transform for functions of several variables

The previous construction extends to strictly convex functions of several
variables giving rise to the Legendre transform that is relevant in several
fields of mathematics and physics.

Let Ω be an open convex subset of Rn and let f : Ω → R be a function
of class Cs s ≥ 2 with strictly positive Hessian matrix at every point x ∈ Ω.
Denote by Df : Ω → Rn the Jacobian map of f , with Ω∗ := Df(Ω) ⊂ Rn

and ξ the variable in Ω∗. The Jacobian map, or gradient map, is clearly of
class Cs−1, and since

detD(Df)(x) = detHf(x) > 0,

the implicit function theorem tells us that Ω∗ is open and the gradient
map is locally invertible. Actually, the gradient map is a diffeomorphism
from Ω onto Ω∗ of class Cs−1, since it is injective: In fact, if x1 �= x2 ∈ Ω
and γ(t) := x1 + tv, t ∈ [0, 1], v := x2 − x1, we have

(Df(x2)−Df(x1)) •v =

(∫ 1

0

d

ds
(Df(γ(s))) ds

)
•v

=

∫ 1

0

Hf(γ(s))v •v ds > 0,

i.e., Df(x1) �= Df(x2).
Denote by x(ξ) : Ω∗ → Ω the inverse of the gradient map

x(ξ) := [Df ]−1(ξ) or ξ = Df(x(ξ)) ∀ξ ∈ Ω∗.

2.47 Definition. The Legendre transform of f is the function Lf : Ω∗ →
R given by

Lf (ξ) := ξ •x(ξ) − f(x(ξ)), x(ξ) := (Df)−1(ξ). (2.17)

2.48 Theorem. Lf : Ω∗ → R is of class Cs, and the following formulas
hold:
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DLf (ξ) = x(ξ) = (Df)−1(ξ), HLf (ξ) =
(
Hf(x(ξ))

)−1

, (2.18)

Lf (ξ) = ξ •x(ξ) − f(x(ξ)), x(ξ) := Df−1ξ = DLf (ξ), (2.19)

f(x) = ξ(x) •x − Lf (ξ(x)), ξ(x) = Df(x). (2.20)

In particular, if Ω∗ is convex, the Legendre transform f → Lf is involutive,
i.e., LLf

= f .

Proof. Lf is of class Cs−1, s ≥ 1; let us prove that it is of class Cs as f . From
ξ = Df(x(ξ)) we infer

dLf (ξ) = xα(ξ) dξα + ξα dxα − ∂f

∂xα
(x(ξ)) dxα = xα(ξ) dξα,

i.e.,
∂Lf

∂ξα
(ξ) = xα(ξ). Since x(ξ) is of class Cs−1, then Lf (ξ) is also of class Cs, and

DLf (ξ) = x(ξ). Also from Df(x(ξ)) = ξ for all ξ ∈ Ω∗ we infer Hf(x(ξ))Dx(ξ) = Id,
hence

HLf (ξ) = Dx(ξ) =
(
Hf(x(ξ))

)−1
.

In particular, the Hessian matrix of ξ → Lf (ξ) is positive definite. The other claims
now follow easily. ��

If f : Ω ⊂ Rn → R has a positive definite Hessian matrix and Ω is con-
vex, as previously, then f is strictly convex. However, if n ≥ 2, the Legendre
transform of f , Lf : Ω∗ → R, need not be convex since its domain Ω∗ in
general may not be convex as for the Legendre transform of the function
exp(|x|2) defined on the unit cube Ω := {x = (x1, x2, . . . , xn) | maxi |xi| ≤
1}. However, Lf has a strictly positive Hessian matrix, in particular, Lf

is locally convex.
Finally, the following characterization of the Legendre transform holds.

2.49 Proposition. Let f ∈ Cs(Ω), Ω be open and convex, s ≥ 2, and
Hf > 0 in Ω. Then

Lf (ξ) = max
{
ξ •x − f(x)

∣∣∣ x ∈ Ω
}
. (2.21)

Proof. Fix ξ ∈ Ω∗, and consider the concave function g(x) := ξ •x − f(x), x ∈ Ω. The
function x → Dg(x) := ξ −Df(x) vanishes exactly at ξ = Df(x). It follows that g(x)
has an absolute maximum point at x = Df−1(ξ) and the maximum value is Lf (ξ). ��

Later we shall deal with (2.21).

2.4 Convexity at Work

2.4.1 Inequalities

a. Jensen inequality

Many inequalities find their natural context and can be conveniently
treated in terms of convexity. We have already discussed in [GM1] and
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Chapter 4 of [GM4] some inequalities as consequences of the convexity of
suitable functions of one variable. We recall the discrete Jensen’s inequal-
ity.

2.50 Proposition. Let φ : [a, b] → R be a convex function, x1, . . . , xm ∈
[a, b] and αi ∈ [0, 1] ∀i = 1, . . . ,m with

∑m
i=1 αi = 1. Then

φ
( m∑

i=1

αixi

)
≤

m∑
i=1

αiφ(xi).

Moreover, if φ is strictly convex and αi > 0 ∀i, then φ
(∑m

i=1 αixi

)
=∑m

i=1 αiφ(xi) if and only if x1 = · · · = xm.

We now list some consequences of Jensen’s inequality:

(i) (Young inequality) If p, q > 1, 1
p + 1

q = 1, then

ab ≤ ap

p
+

bq

q
∀a, b ∈ R+

with equality if and only if ap = bq.
(ii) (Geometric and arithmetic means) If x1, x2, . . . , xn ≥ 0, then

n
√
x1x2 . . . xn ≤ 1

n

n∑
i=1

xi

with equality if and only if x1 = · · · = xn = 1
n

∑n
i=1 xi.

(iii) (Hölder inequality) If p, q > 1 and 1/p + 1/q = 1, then for all
x1, x2, . . . , xn ≥ 0 and y1, y2, . . . , yn ≥ 0 we have

n∑
i=1

xiyi ≤
( n∑

i=1

xp
i

)1/p( n∑
i=1

yqi

)1/q
,

with equality if and only if either xi = λyi ∀i for some λ ≥ 0 or
y1 = · · · = yn = 0.

(iv) (Minkowski inequality) If p, q > 1 and 1/p+1/q = 1, then for all
x1, x2, . . . , xn ≥ 0 and y1, y2, . . . , yn ≥ 0 we have( n∑

i=1

(xi + yi)
p
)1/p

≤
( n∑

i=1

xp
i

)1/p
+
( n∑

i=1

ypi

)1/p
with equality if and only if either xi = λ yi ∀i for some λ ≥ 0 or
y1 = · · · = yn = 0.

(v) (Entropy inequality) The function f(p) :=
∑n

i=1 pi log pi defined

on K := {p ∈ Rn
∣∣∣ pi ≥ 0,

∑n
i=1 pi = 1} has a unique strict minimum

point at p = (1/n, . . . , 1/n).
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(vi) (Hadamard’s inequality) Since the determinant and the trace of
a square matrix are respectively the product and the sum of the
eigenvalues, the inequality between geometric and arithmetic means
yields

detA ≤
( trA

n

)n
for every matrix A that is symmetric and with nonnegative eigen-
values. Moreover, equality holds if and only if A is a multiple of the
identity matrix. A consequence is that for every A ∈ Mn,n(R) the
following Hadamard’s inequality holds:

(detA)2 ≤
n∏

i=1

|Ai|2

where A1, A2, . . . , An are the columns of A and |Ai| is the length of
the column vector Ai; moreover, equality holds if and only if A is a
multiple of an orthogonal matrix.

b. Inequalities for functions of matrices

Let A ∈ Mn,n(R) be symmetric and let Ax =
∑n

i=1 λi(x •ui )ui be its
spectral decomposition. Recall that for f : R → R, the matrix f(A) is
defined as the n× n symmetric matrix

f(A)(x) :=
n∑

i=1

f(λi)(x •ui )ui.

Notice that A and f(A) have the same eigenvectors with corresponding
eigenvalues λ and f(λ), respectively.

2.51 Proposition. Let A ∈ Mn,n(R) be symmetric and let f : R → R be
convex. For all x ∈ Rn we have

f(x •Ax ) ≤ x •f(A)x .

In particular, if {v1, v2, . . . , vn} is an orthonormal basis of Rn, we have

n∑
j=1

f( vj •Avj ) ≤ tr(f(A)).

Proof. Let u1, u2, . . . , un be an orthonormal basis of Rn of eigenvectors of A with
corresponding eigenvalues λ1, λ2, . . . , λn. Then

x •Ax =
n∑

i=1

λi| x •ui |2, x • f(A)x =
n∑

i=1

f(λi)| x •ui |2,

and, since
∑n

i=1 |x •ui |2 = |x|2, the discrete Jensen’s inequality yields
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f( x •Ax ) = f
( n∑

i=1

λi|x •ui |2
)
≤

n∑
i=1

f(λi)|x •ui |2 = x • f(Ax) .

The second part of the claim then follows easily. In fact, from the first part of the claim,

n∑
j=1

f
(
vj •Avj

)
≤

n∑
j=1

vj • f(A)vj ,

and, since {vj} is orthonormal, there exists an orthogonal matrix R such that vj = Ruj ,
and the spectral theorem yields

n∑
j=1

vj • f(A)vj =
n∑

j=1

uj •RT f(A)Ruj =
n∑

j=1

f(λj ) = tr f(A).

��

2.52 ¶. Show that( N∏
i=1

xi

)1/N

+

( N∏
i=1

yi

)1/N

[ N∏
i=1

(xi + yi)

]1/N =

( N∏
i=1

xi

xi + yi

)1/N

+

( N∏
i=1

yi

xi + yi

)1/N

≤ 1

N

N∑
i=1

xi

xi + yi
+

1

N

N∑
i=1

yi

xi + yi
= 1.

2.53 ¶. Show that if p, q > 1, 1/p + 1/q = 1, then for all x1, x2, . . . , xn ≥ 0,( n∑
i=1

xp
i

)1/p
= max

{ n∑
i=1

xiyi

∣∣∣ yi ≥ 0,
n∑

i=1

yqi = 1
}
.

c. Doubly stochastic matrices

A matrix A = (ajk) ∈ Mn,n(R) is said to be doubly stochastic if

ajk ≥ 0,
n∑

i=1

aik = 1,
n∑

i=1

aji = 1, ∀j, k = 1, . . . , n. (2.22)

Important examples are given by the matrix that in each row and in
each column contains exactly an element equal to 1. They are characterized
by a permutation σ of {1, . . . , n} such that ajk = 1 if k = σ(j) and ajk = 0
if k �= σ(j); for this reason they are called permutation matrices. Clearly,
if (ajk) is a permutation matrix, then ajkxk = xσ(j).

Condition (2.22) defines the space Ωn of doubly stochastic matrices as

the intersection of closed half-spaces and affine hyperplanes of Rn2

, hence
as a closed convex subset of the space Mn,n of n× n matrices.

2.54 Theorem (Birkhoff). The set Ωn of doubly stochastic matrices is a
compact and convex subset of an affine subspace of dimension (n−1)2, the
extremal points of which are the permutation matrices. Consequently, every
doubly stochastic matrix is the convex combination of at most (n− 1)2 +1
permutation matrices.



2.4 Convexity at Work 95

Proof. Since ajk ≤ 1, ∀A = (ajk) ∈ Ωn, the set Ωn is bounded, hence compact being
closed. Conditions (2.22) writes as aij ≥ 0 and⎧⎪⎪⎨⎪⎪⎩

ank = 1−∑j<n ajk k < n,

ajn = 1−∑k<n ajk j < n,

ann = 2− n+
∑

j,k<n ajk ,

hence Ωn is the image of the subset P defined by⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ajk ≥ 0 j, k < n,∑

j<n ajk ≤ 1 k < n,∑
k<n ajk ≤ 1 j < n,∑
ij ajk ≥ n− 2

(2.23)

through an affine and injective map from R(n−1)2 into Mn,n. Moreover, P has interior
points as, for instance, ajk := A/(n − 1), 1 ≤ j, k < n with (n − 2)/(n − 1) < A < 1,

hence Ωn has dimension (n− 1)2.
Of course, the permutation matrices are extremal points of Ωn. We now prove that

they are the unique extremal points. We first observe that if A = (ajk) is an extremal

point of Ωn, then it has to satisfy at least (n − 1)2 equations of the n2 conditions in
(2.22). Otherwise we could find B := (bjk) �= 0 such that ajk±εbjk , ε small, still satisfies

(2.22); moreover, ajk = 1
2
(ajk + εbjk)+

1
2
(ajk − εbjk) and A would not be an extremal

point. This means that A = (ajk) has at most n2 − (n− 1)2 = 2n− 1 nonzero elements
implying that at least one column has to have one nonzero element, hence 1, and, of
course, the row corresponding to this 1 will have all other elements zero. Deleting this
row and this column we still have an extremal point of Ωn−1; by downward induction
we then reduce to prove the claim for 2× 2 matrices where it is trivially true. ��

We shall now discuss an extension of Proposition 2.51.

2.55 Proposition. Let A be an n×n symmetric matrix, let {u1, . . . , un}
be an orthonormal basis of eigenvectors of A with corresponding eigenval-
ues λ1, λ2, . . . , λn and let v1, v2, . . . , vn be any other orthonormal basis of
Rn. For λ ∈ Rn, set

Kλ :=
{
x ∈ Rn

∣∣∣x = Sλ, S ∈ Ωn

}
.

Then Kλ is convex and we have

( v1 •Av1 , v2 •Av2 , . . . , vn •Avn ) ∈ Kλ.

Moreover, for any convex function f : U ⊃ Kλ → R the following inequal-
ity holds:

f(Av1 •v1 , . . . , Avn •vn ) ≤ f(λσ1 , . . . λσn)

for some permutation σ ∈ Pn.

Proof. The matrix S = (sij), sij := |ui •vj |2 is doubly stochastic. Moreover, on ac-
count of the spectral theorem, vj •Avj =

∑n
i=1 λi| vj •ui |2. Hence Avj •vj = Sj •λ ,

where Sj is the jth column of the matrix S. We then conclude that

( v1 •Av1 , v2 •Av2 , . . . , vn •Avn ) ∈ Kλ.

It is easily seen that g(S) := f(Sλ) : Kλ → R is convex. Therefore g attains its
maximum value at the extremal points of Kλ, which are permutation matrices because
of Birkhoff’s theorem, Theorem 2.54. ��
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Different choices of f now lead to interesting inequalities.

(i) Choose f(t1, t2, . . . , tk) :=
∑k

i=1 ti, so that both f and −f are con-
vex, and, as before, let A be a symmetric n × n matrix and let
{v1, v2, . . . , vn} be an orthonormal basis of Rn. Then for 1 ≤ k ≤ n

the following estimates for
∑k

j=1 Avj •vj holds:

k∑
j=1

λn−j+1 ≤
k∑

j=1

Avj •vj ≤
k∑

j=1

λj , (2.24)

λ1, λ2, . . . , λn being the eigenvalues of A ordered so that λ1 ≥ λ2 ≥
· · · ≥ λn.

(ii) Choose f(t) := (
∏k

i=1 ti)
1/k, k ≥ 1, that is concave on {t ∈ Rn | t ≥

0}, and let A be a symmetric positively semidefinite n × n ma-
trix. Applying Proposition 2.55 to −f , for every orthonormal basis
{v1, v2, . . . , vn} we find for every k, 1 ≤ k ≤ n,( k∏

i=1

λn−i+1

)1/k
≤
( k∏

j=1

Avj •vj
)1/k

(2.25)

λ1, λ2, . . . , λn being the eigenvalues of A ordered so that λ1 ≥
λ2 · · · ≥ λn ≥ 0.
Using the inequality between the geometric and arithmetic means
and (2.24) we also find( k∏

j=1

Avj •vj
)1/k

≤ 1

k

k∑
j=1

Avj •vj ≤ 1

k

k∑
j=1

λj . (2.26)

When k = n we find again

detA =

n∏
j=1

λj ≤
n∏

j=1

Avj •vj ≤
( trA

n

)n
. (2.27)

2.56 Theorem (Brunn–Minkowski). Let A and B be two symmetric
and nonnegative matrices. Then(

det(A+B)
)1/n

≥ (detA)1/n + (detB)1/n,

det(A+B) ≥ detA+ detB.

Proof. Let {v1, v2, . . . , vn} be an orthonormal basis of eigenvectors of A+B. Then(
det(A +B)

)1/n
=
( n∏

i=1

(A +B)vj • vj
)1/n

≥
( n∏

j=1

Avj • vj
)1/n

+
( n∏

j=1

Bvj •vj
)1/n

≥ (detA)1/n + (detB)1/n,
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Figure 2.7. Frontispieces of two volumes about calculus of variations.

where we used Exercise 2.52 in the first estimate and (2.27) in the second one. The
second inequality follows by taking the power n of the first. ��

2.4.2 Dynamics: Action and energy

Legendre’s transform has a central role in the dual description of the dy-
namics of mechanical systems, the Lagrangian and the Hamiltonian mod-
els.

According to the Hamilton or minimal action principle, see Chapter 3,
a mechanical system is characterized by a function L(t, x, v), L : R×RN ×
RN → R called its Lagrangian, and its motion t → x(t) ∈ RN satisfies the
following condition: If at times t1 and t2, t1 < t2, the system is at positions
x(t1) and x(t2) respectively, then the motion in the interval of time [t1, t2]
happens in such a way as to make the action

A(x) :=

∫ t2

t1

L(t, x(t), x′(t)) dt

stationary. More precisely, x(t) is the actual motion from x(t1) to x(t2)
if and only if for any arbitrary path γ(t) with values in RN such that
γ(t1) = γ(t2) = 0, we have

0 =
d

dε
A(x + εγ)

∣∣∣∣
ε=0

=
d

dε

∫ t2

t1

L
(
t, x(t) + εγ(t), x′(t) + εγ′(t)

)
dt

∣∣∣∣
ε=0

.

Differentiating under the integral sign, we find
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0 =

∫ t2

t1

N∑
i=1

(
Lxiγi(t) + Lviγi′(t)

)
dt

=

∫ t2

t1

N∑
i=1

(
Lxi − d

dt
Lvi

)
γi(t) dt+

N∑
i=1

Lviγi(t)

∣∣∣∣t2
t1

=

∫ t2

t1

N∑
i=1

(
Lxi − d

dt
Lvi

)
γi(t) dt

for all γ : [t1, t2] → RN , γ(t1) = γ(t2) = 0, where

Lxi :=
∂L

∂xi
(t, x(t), x′(t)), Lvi :=

∂L

∂vi
(t, x(t), x′(t)).

As a consequence of the fundamental lemma of the Calculus of Variations,
see Lemma 1.51, the motion of the system is a solution of the Euler–
Lagrange equations

d

dt
Lvi(t, x(t), x′(t)) = Lxi(t, x(t), x′(t)) ∀i = 1, . . . , N. (2.28)

This is an invariant way (with respect to changes of coordinates) of ex-
pressing Newton’s law of dynamics. We notice that (2.28) are N ordinary
differential equations of second order in the unknown x(t).

There is another equivalent way of describing the law of dynamics at

least when the Lagrangian L is of class C2 and det ∂2L
∂v2 > 0, i.e., L ∈

C2(R×RN ×RN ) and v → L(t, x, v) is strictly convex for all (t, x). As we
have seen, in this case the function

v −→ p := Lv(t, x, v) =
∂

∂v
L(t, x, v)

is globally invertible with inverse function v = ψ(t, x, p) of class C2 and
we may form the Legendre transform of L with respect to v

H(t, x, p) := p •v − L(t, x, v), v := ψ(t, x, p),

called the Hamiltonian or the energy of the system. For all (t, x, p) we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p =

∂L

∂v
(t, x, v),

L(t, x, v) +H(t, x, p) = p •v ,

Ht(t, x, p) + Lt(t, x, v) = 0,

Hx(t, x, p) + Lx(t, x, v) = 0,

v = ψ(t, x, p)

and, as we saw in (2.18),

Hp(t, x, p) = v = ψ(t, x, p).
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For a curve t → x(t), if we set v(t) = x′(t) and p(t) := Lv(t, x(t), x
′(t)),

we have ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
v(t) = x′(t) = ψ(t, x(t), p(t)),

L(t, x(t), v(t)) +H(t, x(t), p(t)) = p(t) •v(t) ,

Ht(t, x(t), p(t)) + Lt(t, x(t), v(t)) = 0,

Hx(t, x(t), p(t)) + Lx(t, x(t), v(t)) = 0.

Consequently, t → x(t) solves Euler–Lagrange equations (2.28), that can
be written as ⎧⎪⎪⎨⎪⎪⎩

dx

dt
= v(t),

d

dt
Lv(t, x(t), v(t)) = Lx(t, x(t), v(t))

if and only if⎧⎪⎨⎪⎩
x′(t) = Hp(t, x(t), p(t)),

p′(t) =
d

dt
Lv(t, x(t), v(t)) = Lx(t, x(t), v(t)) = −Hx(t, x(t), p(t)).

Summing up, t → x(t) solves the Euler–Lagrange equations if and only
if t → (x(t), p(t)) ∈ R2N solves the system of 2N first order differential
equations, called the canonical Hamilton system{

x′(t) = Hp(t, x(t), p(t)),

p′(t) = −Hx(t, x(t), p(t)).

We emphasize the fact that, if the Hamiltonian does not depend explic-
itly on time (autonomous Hamiltonians), H = H(x, p), then H is constant
along the motion,

d

dt
H(x(t), p(t)) =

∂H

∂x
•x′ +

∂H

∂p
•p′ = p′ •x′ − x′ •p′ = 0.

We shall return to the Lagrangian and Hamiltonian models of mechan-
ics in Chapter 3.

2.4.3 The thermodynamic equilibrium

Here we briefly hint at the use of convexity in the discussion of the ther-
modynamic equilibrium by J. Willard Gibbs (1839–1903).

For the sake of simplicity we consider a quantity of N moles of a simple
fluid, i.e., of a fluid in which equilibrium points may be described in terms
of the following six thermodynamic variables:
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Figure 2.8. J. Willard Gibbs (1839–1903)
and the frontispiece of Gibbs Sympo-
sium at Yale.

(i) V , the volume,
(ii) p, the pressure,
(iii) T , the absolute temperature,
(iv) U , the internal energy,
(v) S, the entropy,
(vi) μ, the chemical potential,
(vii) N , the number of moles.

For simple fluids, Gibbs provided a description of the thermodynamic equi-
librium which is compatible with the thermodynamic laws established a
few years earlier by Rudolf Clausius (1822–1888). In modern terms and
freeing our presentation from experimental discussions, Gibbs assumed
the following:

(i) The balance law, called the fundamental equation,

TdS = dU + p dV + μ dN (2.29)

in the variable domains T > 0, V > 0, U > 0, p > 0, N > 0, μ ∈ R
and S ∈ R.

(ii) The equilibrium configurations can be parametrized either by the
independent variables S, V and N or by the independent variables
U, V and N , and, at equilibrium, the other thermodynamic quantities
are functions of the chosen independent variables.

(iii) The entropy function S = S(U, V,N) is of class C1 and positively
homogeneous of degree 1,

S(λU, λV, λN) = λS(U, V,N), ∀λ > 0.
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(iv) The entropy function S = S(U, V,N) is concave.
(v) The free energy function U = U(S, V,N) is of class C1, convex and

positively homogeneous of degree 1.

A few comments on (i), (ii), . . . , (v) are appropriate:

(i) The fundamental equation (2.29) contains the first principle of ther-
modynamics : the elementary mechanic work done on a system plus
the differential of the heat furnished to the system plus the variation
of moles is an exact differential p dV − T dS + μ dN = −dU .

(ii) The homogeneity of S amounts, via (2.29), to the invariance at equi-
librium of temperature, pressure and chemical potential when moles
change.

(iii) The assumption of C1-regularity of the entropy function, in addition
to being useful, is essential in order to deduce the Gibbs necessary
condition for the existence of coexisting phases.

(iv) If we choose as independent variables the internal energy U , the vol-
ume V and the number of moles N , then S, T and V are functions of
(U, V,N). The fundamental equation then allows us to compute the
absolute temperature and the chemical potential as partial deriva-
tives of the entropy function S = S(U, V,N), that thus describes the
whole system, finding2

1

T
=
( ∂S
∂U

)
V,N

,
p

T
=
( ∂S
∂V

)
U,N

,
μ

T
=
( ∂S
∂N

)
U,V

. (2.30)

(v) The function U → S(U, V,N) is strictly increasing. Therefore, we
can replace the independent variables (U, V,N) with the variables
(S, V,N) and obtain an equivalent description of the equilibrium of
the fluid in terms of the internal energy function U = U(S, V,N),
concluding that

T =
(∂U
∂S

)
V,N

, −p =
(∂U
∂V

)
S,N

, μ =
( ∂U
∂N

)
S,V

.

(vi) The concavity of the entropy function is a way to formulate the second
principle of thermodynamics. Consider, in fact, two quantities of the
same fluid with parameters at the equilibrium x1 := (U1, V1, N1) and
x2 := (U2, V2, N2), and a quantity of N1 + N2 moles of the same
fluid with volume V1 + V2 and internal energy U1 + U2. The second
principle of thermodynamics states that the entropy has to increase

S(x1 + x2) ≥ S(x1) + S(x2).

Because of the arbitrariness of x1 and x2 and the homogeneity of S,
we may infer

2 Here we use the symbolism of physicists. For instance, by
(

∂S
∂U

)
V,N

we mean that

the function S is seen as a function of the independent variables (U, V,N) and that
it is differentiated with respect to U and, consequently, the resulting function is a
function of (U, V,N).
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S((1−α)x1 +αx2) ≥ (1−α)S(x1)+αS(x2) ∀x1, x2, ∀α ∈ [0, 1],

i.e., S(x) = S(U, V,N) is a concave function.
(vii) Similar arguments may justify the homogeneity and convexity of the

internal energy function.

Gibbs’s conclusion is that a simple fluid is described by a 3-dimensional
surface which is at the same time the graph of S(x), x = (U, V,N) ∈
R+×R+×R+ (concave, positively homogeneous of degree one and of class
C1) and the graph of the function U(y), y = (S, V,N) ∈ R × R+ × R+,
convex, positively homogeneous of degree one and of class C1.

Since S is positively homogeneous, it is determined by its values when
restricted to a “section”, i.e., by its values when the energy, the volume
or the number of moles is prescribed. For instance, assuming N = 1 and
denoting by (u, v) the internal energy and the volume per mole, the entropy
function per mole

s(u, v) := S(u, v, 1),

describes the equilibrium of a mole of the matter under scrutiny and from
(2.30)

1

T (u, v)
=
( ∂s
∂u

)
v
,

p(u, v)

T (u, v)
=
(∂s
∂v

)
u
. (2.31)

Clearly, s(u, v) is concave and the entropy S for N moles by homogeneity
is given by

S(U, V,N) = NS
(U
N

,
V

N
, 1
)
= N s

(U
N

,
V

N

)
.

In particular, differentiating we get

1

T (U, V,N)
=

∂s

∂u

(U
N

,
V

N

)
,

p(U, V,N) =
∂s

∂v

(U
N

,
V

N

)
,

μ(U, V,N) = s
(U
N

,
V

N

)
− 1

T

U

N
− p

V

N
,

and (2.29) transforms into

T ds = du+ p dv.

a. Pure and mixed phases

Gibbs also provided a description of the coexistence of different phases
in terms of an analysis of the graph of a convex function. Let s(x), x ∈
R+×R+, be a convex function in the variables x := (u, v). We say that the
phase x is pure for a liquid if (x, s(x)) is an extreme point of the epigraph
of f . The other points are called points of coexistent phases : These are
points x for which (x, f(x)) is a convex combination of the extreme points
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(xi, f(xi)) of the epigraph Epi(f) of f . Since Epi(f) has dimension 3,
Corollary 2.27 tells us that the boundary of Epi(f) splits into three sets

Σ0 :=
{
extreme points of Epi(f)

}
,

Σ1 :=
{
linear combinations of two points in Σ0

}
,

Σ2 :=
{
linear combinations of three points of Σ0

}
corresponding to equilibrium with pure phases, with two mixed phases and
three mixed phases, respectively.

A typical situation is the one in which the pure phases are of three
different types, as for water: solid, liquid and gaseous states. Then Σ1

corresponds to the situation in which two states of the liquid coexist, and
Σ3 corresponds to states in which the three states are present at the same
time.

2.57 Proposition. Let f : Ω ⊂ Rn → R be a convex function of class
C1 and let x1, x2, . . . , xk be k points in Ω. A necessary and sufficient
condition for the existence of x ∈ Ω, x �= xi ∀i, such that

(x, f(x)) =
k∑

i=1

αi(xi, f(xi)) with
k∑

i=1

αi = 1, αi ∈ [0, 1] (2.32)

is that the supporting hyperplanes to f at the points x1, x2, . . . , xk are the
same plane. In particular, Df(x) is then constant in the convex envelope
of x1, x2, . . . , xk.

Proof. Let M := co({x1, x2, . . . , xk}). The convexity of f(x) implies that f is linear
affine in M ,

(x, f(x)) =
k∑

i=1

αi(xi, f(xi)),
k∑

i=1

αi = 1, αi ∈]0, 1[,

for all x ∈ M if and only if (2.32) holds. In this case the segment joining any two points
a, b ∈ M is contained in the support hyperplanes of f at a and at b. On the other hand,
a support hyperplane to f at b that contains the segment joining (a, f(a)) with (b, f(b))
is also a supporting hyperplane to f at a. Since f is of class C1, f has a unique support
hyperplane at a, z = ∇f(a)(x−a)+ f(a), hence the support hyperplanes to f at a and
b must coincide, and ∇f(x) is constant in M . ��

In the context of thermodynamics of simple fluids, the previous propo-
sition when applied to the entropy function, see (2.31), yields the following
statement.

2.58 Proposition (Gibbs). In a simple fluid with entropy function of
class C1 two or three phases may coexists at the equilibrium only if they
are at the same temperature and the same pressure.
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In principle, we may describe the thermodynamic equilibrium in terms
of entropy function in the dual variables of the energy and volume, i.e., in
terms of the absolute temperature and pressure. However, first we need to
write s = s(T, p) and V = V (T, p). The Legendre duality formula turns
out to be useful. In fact, starting from the internal energy U := U(S, V,N)
that can be obtained inverting the entropy function S = S(U, V,N), we
consider the internal energy per mole, u(s, v) := U(s, v, 1), for which we
have

du = T ds− p dv.

The dual variables of (u, v) are then (T,−p): the absolute temperature T
and minus the pressure p. At this point, we introduce Gibbs’s energy as

G(T, p) := sup
s,v

{
u(s, v) + pv − Ts

}
and observe that G(−T, p) is the Legendre transform of the concave func-
tion −u,

G(T, p) = Lu(T,−p).

Therefore, at least in the case where u is strictly convex, we infer

s = −
(∂G
∂T

)
p
, v =

(∂G
∂p

)
T
.

2.4.4 Polyhedral sets
a. Regular polyhedra

We recall that a set K is said to be polyhedral if it is the intersection
of finitely many closed half-spaces. A bounded polyhedral set is called a
polyhedron.

Consider a convex polygon K containing the origin with vertices
A1, A2, . . . , AN . The vertices are the extreme points of K ⊂ Rn and
K = co({A1, A2, . . . , AN}), hence, compare Proposition 2.44,

K∗ = {A1, A2, . . . , AN}∗ =

N⋂
i=1

{Ai}∗

and, compare Theorem 2.46,K = (K∗)∗. Accordingly,K∗ is a polyhedron,
the intersection of the N half-spaces containing the origin and delimited
by the hyperplanes {ξ | ξ •Ai = 1} in Rn, see Figure 2.9.

2.59 ¶. The reader is invited to compute the polar sets of various convex sets of the
plane.

The construction works in the same way in all Rn’s, n ≥ 2. Though
difficult to visualize, and cumbersome to check, in R3, the polar set of a
regular tetrahedron centered at the origin is a regular tetrahedron centered
at the origin, the polar set of a cube centered at the origin is an octahedron
centered at the origin, and the polar set of a dodecahedron centered at the
origin is an icosahedron centered at the origin.
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(−1, 1) (1, 1)

(1,−2)(−1,−2)

(1, 1)

(1,−2)

(−1, 1)

(−1,−2)

Figure 2.9. The polar set of a rectangle that contains the origin.

b. Implicit convex cones

Polyhedral sets that are cones play an important role. Let us start with
cones defined implicitly by a matrix A ∈ Mn,N (R) and a vector b ∈ Rn as

K :=
{
x ∈ RN

∣∣∣ x ≥ 0, Ax = b
}

(2.33)

where if x = (x1, x2, . . . , xN ), x ≥ 0 stands for xi ≥ 0 ∀i = 1, . . . , N . In
this case, K is a convex polyhedral closed set of Rn that does not contain
straight lines, hence, see Theorem 2.23, K does have extreme points. They
are characterized as follows.

2.60 Definition. Let K be as in (2.33). We say that x ∈ K is a base
point of K if either x = 0 (in this case 0 ∈ K) or, if α1, α2, . . . , αk are
the indices of the nonzero components of x, the columns Aα1 , . . . Aαk

of A
are linearly independent.

2.61 Theorem. Let K be as in (2.33). Extreme points of K are all and
only the base points of K.

Proof. Clearly, if 0 ∈ K, then 0 is an extreme point of K. Suppose that x =
(x1 . . . , xk, 0,. . . ,0) ∈ K, xi > 0 ∀i = 1, . . . , k, is a base point for K, and, contrary
to the claim, x is not an extreme point for K. Then there are y, z ∈ K, y �= z, such that
x = (y + z)/2. Since x, y, z ∈ K, it would follow that y = (y1, y2, . . . , yk , 0, . . . , 0),

z = (z1, z2, . . . , zk, 0, . . . , 0) and b =
∑k

i=1 y
iAi =

∑k
i=1 z

iAi. Since A1, A2, . . . , Ak

are linearly independent, we would then have y = z, a contradiction.
Conversely, suppose that x is a nonzero extreme point of K and that x =

(x1, x2, . . . , xk, 0, . . . , 0) with xi > 0 ∀i = 1, . . . , k. Then

x1A1 + · · ·+ xkAk = b.

We now infer that A1, A2, . . . , Ak are linearly independent. Suppose they are not in-
dependent, i.e., there is a nonzero y = (y1, y2, . . . , yk , 0, . . . , 0) such that

y1A1 + · · ·+ ykAk = 0.

Now we choose θ > 0 in such a way that u := x + θ y and v := x − θ y still have
nonnegative coordinates and u, v ∈ K. Then x = (u+ v)/2, u �= v, and x would not be
an extreme point. ��
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2.62 Remark. Actually, Theorem 2.61 provides us with an algorithm for
computing the extreme points of a polyhedral convex set as base points.
Since base points correspond to a choice of linearly independent columns,
Theorem 2.61 shows that K has finitely many extreme points.

The next proposition shows the existence of a base point without any ref-
erence to the convex set theory. We include it for the reader’s convenience.

2.63 Proposition. Let K �= ∅ be as in (2.33). Then K has at least one
base point.

Proof. Of course, there is a point x with minimum, say k, nonzero components such
that Ax = b and no x′ ≥ 0 with Ax′ = b and number of components nonzero < k.

Let α1, . . . , αk be the indices of nonzero components of x. We now prove that
the columns Aα1 , . . . , Aαk are linearly independent, i.e., that x is a base point of K.
Suppose they are not independent, i.e.,

k∑
i=1

θiAαi = 0

where θ1, θ2, . . . , θk are not all zero. We may assume that at least one of the θi is
positive. Then

b =
k∑

i=1

Aαixi =
k∑

i=1

Aαi(xi − λθi)

for all λ ∈ R. However, for

λ := min
{xi

θi

∣∣∣ θi > 0
}

=:
xi0

θi0

we have xi0 − λθi0 = 0. It follows that x′ := x− λθ ≥ 0, b = A′x′ and x′ has a number
of nonzero components less than k, a contradiction. ��

c. Parametrized convex cones

Particularly useful are the finite cones, i.e., cones generated by finitely
many points, A1, A2, . . . , AN ∈ Rn. They have the form

C :=
{ N∑

i=1

xiAi

∣∣∣xi ≥ 0, i = 1, . . . , N
}

and with the notation rows by columns, they can be written in a compact
form as

C := {y ∈ Rn
∣∣∣ y = Ax, x ≥ 0}

where A ∈ Mn,N is the n×N matrix

A = [A1 |A2 | . . . |AN ].

Trivially, a finite cone is a polyhedral set that does not contain straight
lines, hence has extreme points. We say that a finite cone is a base cone if
it is generated by linearly independent vectors.
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2.64 Proposition. Every finite cone C is convex, closed and contains the
origin.

Proof. Trivially, C is convex and contains the origin. so it remains to prove that C is

closed. Let A ∈ Mn,N be such that C =
{
y = Ax | x ≥ 0

}
. C is surely closed if A

has linearly independent columns, i.e., if A is injective. In fact, in this case the map
x → Ax has a linear inverse, hence it is a closed map and C = A({x ≥ 0}). For the
general case, consider the cones C1, . . . , Ck associated to the submatrices of A that
have linearly independent columns. As we have already remarked C1, . . . , Ck are closed
sets. We claim that

C = C1 ∪ C2 ∪ · · · ∪ Ck , (2.34)

hence C is closed, too. In order to prove (2.34), observe that since every cone generated
by a submatrix of A is contained in C, we have Ci ⊂ C ∀i. On the other hand, if b ∈ C,
Proposition 2.63 yields a submatrix A′ of A with linearly independent columns such
that b = A′x′ for some x′ ≥ 0, i.e., b ∈ ∪iCi. ��

The following claims readily follow from the results of Paragraph a.

2.65 Corollary. Let C1 and C2 be two finite cones in Rn. Then

(i) if C1 ⊂ C2, then C∗
2 ⊂ C∗

1 ,
(ii) C∗

1 ∪ C∗
2 = (C1 ∩C2)

∗,
(iii) C1 = C∗∗

1 .

Finally, let us compute the polar set of a finite cone.

2.66 Proposition. Let C = {Ax |x ≥ 0}, A ∈ Mn,N (R). Then

C∗ =
{
ξ
∣∣∣AT ξ ≤ 0

}
(2.35)

and

C∗∗ :=
{
x
∣∣∣ x • ξ ≤ 0 ∀ξ such that AT ξ ≤ 0

}
. (2.36)

Proof. Since C is a cone, we have

C∗ =
{
ξ
∣∣∣ ξ • b ≤ 1 ∀b ∈ C

}
=
{
ξ
∣∣∣ ξ • b ≤ 0 ∀b ∈ C

}
.

Consequently,

C∗ =
{
ξ
∣∣∣ ξ •Ax ≤ 0 ∀x ≥ 0

}
=
{
ξ
∣∣∣ AT ξ •x ≤ 0 ∀x ≥ 0

}
=
{
ξ
∣∣∣AT ξ ≤ 0

}
and

C∗∗ =
{
x | x • ξ ≤ 1 ∀ξ ∈ C∗

}
=
{
x | x • ξ ≤ 0 ∀ξ ∈ C∗

}
=
{
x | x • ξ ≤ 0 ∀ξ such that AT ξ ≤ 0

}
.

��
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d. Farkas–Minkowski’s lemma

2.67 Theorem (Farkas–Minkowski). Let A ∈ Mn,N (R) and b ∈ Rn.
One and only one of the following claims holds:

(i) Ax = b has a nonnegative solution.
(ii) There exists a vector y ∈ Rn such that AT y ≥ 0 and y • b < 0.

In other words, using the same notations as in Theorem 2.67, the claims

(i) x is a nonnegative solution of Ax = b,
(ii) if AT y ≤ 0, then y • b ≤ 0

are equivalent.

Proof. The claim is a rewriting of the equality C = C∗∗ in the case of finite cones,
and, ultimately, a direct consequence of the separation property of convex sets. Let
C := {Ax |x > 0}. Claim (i) rewrites as b ∈ C, while, according to (2.36), claim (ii)
rewrites as b /∈ C∗∗. ��

2.68 Example (Fredholm alternative theorem). The Farkas–Minkowski lemma,
equivalently the equality C = C∗∗ for finite cones, can be also seen as a generalization
of the Fredholm alternative theorem for linear maps: Im(A) = (kerAT )⊥. In fact, if
b = Ax, A ∈ Mn,N , and if we write x = u − v with u, v ≥ 0, the equation Ax = b
rewrites as

b =

⎛⎝ A −A

⎞⎠
⎛⎜⎜⎝
u

v

⎞⎟⎟⎠ , u, v ≥ 0.

Therefore, b ∈ ImA if and only if the previous system has a nonnegative solution. This
is equivalent to saying that the alternative provided by the Farkas lemma is not true;
consequently,

if

⎛⎜⎜⎜⎜⎜⎜⎝
AT

−AT

⎞⎟⎟⎟⎟⎟⎟⎠ ξ ≤ 0, then b • ξ ≤ 0

i.e.,
b • ξ ≤ 0 for all ξ such that AT ξ = 0

and, in conclusion,
b • ξ = 0 for all ξ such that AT ξ = 0,

i.e., b ∈ (kerAT )⊥.

2.69 ¶. Let A ∈ Mm,n(R) and b ∈ Rm and let K be the closed convex set

K := {x ∈ Rn
∣∣∣Ax ≥ b, x ≥ 0}.

Characterize the extreme points of K.
[Hint. Introduce the new variables, called slack variables x′ ≥ 0, so that the constraints
Ax ≥ b become

A′
(

x

x′

)
= b, A′ :=

⎛⎝ A − Id

⎞⎠ .

Set K ′ := {z
∣∣∣A′z ≥ b, z ≥ 0}. Show that x is an extreme point for K if and only if

z := (x, x′) with x′ := Ax− b is an extreme point for K ′.]
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Figure 2.10. Gaspard Monge (1746–
1818) and the frontispiece of the
Principes de la théorie des richesses di
Antoine Cournot (1801–1877).

2.70 ¶. Prove the following variants of the Farkas lemma.

Theorem. Let A ∈ Mn,N (R) and b ∈ Rn. One and only one of the following alterna-
tives holds:

◦ Ax ≥ b has a solution x ≥ 0.
◦ There exists y ≤ 0 such that AT y ≥ 0 and b •y < 0.

Theorem. Let A ∈ Mn,N (R) and b ∈ Rn. One and only one of the following alterna-
tives holds:

◦ Ax ≤ b has a solution x ≥ 0.
◦ There exists y ≥ 0 such that AT y ≥ 0 and b •y < 0.

[Hint. Introduce the slack variables, as in Example 2.68.]

2.4.5 Convex optimization

Let f and ϕ1, ϕ2, . . . , ϕm : Rn → R be functions of class C1. Here we
discuss the constrained minimum problem

f(x) → min in F :=
{
x ∈ Rn

∣∣∣ϕj(x) ≤ 0, j = 1, . . . ,m
}

(2.37)

and, in particular, we present necessary and sufficient conditions for its
solvability, compare also Section 4.

Let ϕ := (ϕ1, . . . , ϕm) : Rn → Rm and let x0 be a minimum point
for f in F . If ϕj(x0) < 0 ∀j, ϕ(x0) < 0 for short, then x0 is interior to
F and Fermat’s theorem implies Df(x0) = 0. If ϕ(x0) = 0, then x0 is a
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minimum point constrained to ∂F := {x ∈ Rn |ϕ(x) = 0}. Consequently,
if the Jacobian matrix Dϕ(x0) has maximal rank so that ∂F is a regular
submanifold in a neighborhood of x0, we have

Df(x0)(v) = 0 ∀v ∈ Tanx0 ∂F ,

i.e.,
∇f(x0) ⊥ Tanx0 ∂F ,

and, from Lagrange’s multiplier theorem (or Fredholm’s alternative the-
orem) we infer the existence of a vector λ0 = (λ0

1, . . . , λ
0
m) ∈ Rm such

that

Df(x0) =

m∑
j=1

λ0
jDϕj(x0).

In general, it may happen that ϕj(x0) = 0 for some j and ϕj(x0) < 0
for the others. For x ∈ F , denote by J(x) the set of indices j such that
ϕj(x) = 0. We say that the constraint ϕj is active at x if j ∈ J(x).

2.71 Definition. We say that a vector h ∈ Rn is an admissible direction
for F at x ∈ F if there exists a sequence {xk} ⊂ F such that

xk �= x ∀k, xk → x as k → ∞ and
xk − x

|xk − x| →
h

|h| .

The set of the admissible directions for F at x is denoted by Γ(x). It is
easily seen that Γ(x) is a closed cone not necessarily convex. Additionally,
it is easy to see that Γ(x) is the set of directions h ∈ Rn for which there is
a regular curve r(t) in F with r(0) = x and r′(0) = h.

Denote by Γ̃(x) the cone with vertex at zero, this time convex, of the
directions that “point to F”,

Γ̃(x) :=
{
h ∈ Rn

∣∣∣ ∇ϕj(x) •h ≤ 0 ∀j ∈ J(x)
}
;

it is not difficult to prove that Γ(x) ⊂ Γ̃(x).

2.72 Definition. We say that the constraints are qualified at x ∈ F if

Γ(x) = Γ̃(x).

Not always are the constraints qualified, see Example 2.76. The fol-
lowing proposition gives a sufficient condition which ensures that the con-
straints are qualified.

2.73 Proposition. Let ϕ = (ϕ1, ϕ2, . . . , ϕm) : Rn → Rm be of class C1,
F := {x ∈ Rn |ϕ(x) ≤ 0} and x0 ∈ F . If there exists h ∈ Rn such that for
all j ∈ J(x0) we have

(i) either ∇ϕj(x0) •h < 0
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(ii) or ϕj is affine and ∇ϕj(x0) •h ≤ 0,

then the constraints {ϕj} are qualified at x0. Consequently, the constraints
are qualified at x0 if one of the following conditions holds:

(i) There exists x ∈ F such that ∀j ∈ J(x0), either ϕj is convex and
ϕj(x) < 0, or ϕj is affine and ϕj(x) ≤ 0.

(ii) The vectors ∇ϕj(x0), j ∈ J(x0), are linearly independent.

Proof. Step 1. Let us prove that Γ̃(x0) ⊂ Γ(x0). Let h be such that ∇ϕj(x0) •h ≤ 0.

We claim that for every δ > 0 we have h+ δh ∈ Γ(x0), thus concluding that h ∈ Γ(x0),
Γ(x0) being closed.

Choose a positive sequence {ek} such that εk → 0 and consider the sequence {xk}
defined by xk := x0 + εk(h + δh). Trivially xk → x0 and xk−x0

|xk−x0| = h+δh

|h+δh| , thus

h+ δh ∈ Γ(x0) if we prove that xk ∈ F for k large. Let j ∈ J(x0). If ∇ϕj(x0) •h < 0,
then

∇ϕj(x0) • (h+ δh) < 0

and, since
ϕj(xk) = ϕj(x0) + εk ∇ϕj(x0) • (h+ δh) + o(εk),

we conclude that ϕj(xk) < 0 for k large. If ϕj is affine and ∇ϕj(x0) •h ≤ 0, then

ϕj(xk) = ϕj(x0) + εk ∇ϕj(x0) •h+ δh ≤ 0.

Step 2. Let us now prove the second part of the claim. Let h := x− x0 and j ∈ J(x0).
If ϕj is convex, we have

∇ϕj(x0) •h ≤ ϕ(x) < 0,

whereas if ϕj is affine, we have

∇ϕj(x0) •h = ϕ(x) ≤ 0.

Therefore, (i) follows from Step 1.
We now assume that J(x0) = {1, 2 . . . , p}, 1 ≤ p ≤ n, and let ϕ := (ϕ1, . . . , ϕp). Let

b := (−1,−1, . . . ,−1) ∈ Rp. Then the linear system Dϕ(x0)x = b, x ∈ Rn is solvable

since RankDϕ(x0) = p. If h is any such solution, then ∇ϕj(x0) •h = Dϕ(x0)h = −1
for all j ∈ J(x0), and (ii) follows from Step 1. ��

2.74 Theorem (Kuhn–Tucker). Let x0 be a solution of (2.37). Suppose
that the constraints are qualified at x0. Then the following Kuhn–Tucker
equilibrium condition holds: For all j ∈ J(x0) there exists λ0

j ≥ 0 such
that

∇f(x0) +
∑

j∈J(x0)

λ0
j∇ϕj(x0) = 0. (2.38)

Theorem 2.74 is a simple application of the following version of the
Farkas lemma.

2.75 Lemma (Farkas). Let v and v1, v2, . . . , vp be vectors of Rn. There
exist λj ≥ 0 such that

v =

p∑
j=1

λjvj (2.39)

if and only if{
h ∈ Rn

∣∣∣ h •vj ≤ 0, ∀j = 1, . . . , p
}
⊂
{
h ∈ Rn

∣∣∣ h •v ≤ 0
}
. (2.40)
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Proof. In fact, if A := [v1|v2| . . . |vn], (2.39) states that Aλ = v has a nonnegative
solution λ ≥ 0. This is equivalent to saying that the second alternative of the Farkas
lemma is false, i.e., ∀h ∈ Rn such that AT h ≥ 0, we have h • v ≥ 0, that is, if h ∈ Rn

satisfies h • vj ≥ 0 for all j, then h •v ≤ 0. This is precisely (2.40). ��
Proof of Theorem 2.74. For any h ∈ Γ(x0), let r : [0, 1] → F be a regular curve with

r(0) = x0 and r′(0) = h. Since 0 is a minimum point for f(r(t)), we have d
dt
f(r(t))|t=0

≥
0, i.e.,

−Df(x0) •h ≤ 0 ∀h ∈ Γ(x0),

i.e., h ∈
{
h ∈ Rn

∣∣∣ h • v ≤ 0
}
. Recalling the definition of Γ(x0), the claim follows by

applying Lemma 2.75 with v := −∇f(x0) and vj = ∇ϕj(x0). ��

2.76 Example. Let P be the problem of minimizing −x1 with the constraints x1 ≥ 0
and x2 ≥ 0, (1−x1)3−x2 ≥ 0. Clearly the unique solution is x0 = (1, 0). Show that the
constraints are not qualified at x0 and that the Kuhn–Tucker theorem does not hold.

2.77 Remark. In analogy with Lagrange’s multiplier theorem we may
rewrite the Kuhn–Tucker equilibrium conditions (2.38) as⎧⎪⎪⎨⎪⎪⎩

Df(x0) +
∑m

j=1 λ
0
jDϕj(x0) = 0,

λ0
j ≥ 0 ∀j = 1, . . . ,m,∑m
j=1 λ

0
jϕ

j(x0) = 0,

or, using the vectorial notation,⎧⎪⎪⎨⎪⎪⎩
Df(x0) + λ0 •Dϕ(x0) = 0,

λ0 ≥ 0,

λ0 •ϕ(x0) = 0,

(2.41)

where λ0 = (λ0
1, . . . , λ

0
m) ∈ Rm and ϕ = (ϕ1, . . . , ϕm) : Rn → Rm. In

fact, the equation
∑m

j=1 λ
0
jϕ

j(x0) = 0 implies λ0
h = 0 if the corresponding

constraint ϕh is not active. If (2.41) holds for some λ0, we call it a Lagrange
multiplier of (2.37) at x0.

2.4.6 Stationary states for discrete-time

Markov processes

Suppose that a system can be in one of n possible states, denote by p
(k)
j

the probability that it is in the state j at the discrete time k and set

p(k) := (p
(k)
1 , p

(k)
2 , . . . , p

(k)
n ). A homogeneous Markov chain with values in

a finite set is characterized by the fact that the probabilities of the states
at time k + 1 are a linear function of the probabilities at time k and that
such a function does not depend on k, that is, there is a n × n matrix
P ∈ Mn,n(R) such that
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p(k+1) = p(k)P ∀k, (2.42)

where the product is the usual row by column product of linear algebra.
The matrix P = (pij) is called the transition matrix, or Markov matrix

of the system.

Since
∑n

j=1 p
(k)
j = 1 for every k, the matrix P has to be stochastic or

Markovian, meaning that

P = (pij),

n∑
j=1

pij = 1, pij ≥ 0.

According to (2.42), the evolution of the system is then described by the
powers of P,

p(k) = p(0)Pk ∀k. (2.43)

A stationary state is a fixed point of P i.e., x ∈ Rn such that

x = PTx,

n∑
j=1

xj = 1, x ≥ 0. (2.44)

The Perron–Frobenius theorem, see [GM3], ensures the existence of a
stationary state.

2.78 Theorem (Perron–Frobenius). Every Markov matrix has a sta-
tionary state.

Proof. This is just a special case of the fact that every continuous map from a compact
convex set into itself has a fixed point, see [GM3]. However, since here we deal with a
linear map x → Px, we give a direct proof which uses compactness.

Let S := {x ∈ Rn | x ≥ 0,
∑n

j=1 x
j = 1}. S is a convex closed and bounded set of

Rn, and P maps S into S and is stochastic. Fix x0 ∈ S and consider the sequence {xk}
given by

xk :=
1

k

k−1∑
i=0

x0P
i.

xk is a convex combination of points in S and therefore xk ∈ S. The sequence {xk}
is then bounded and, by the Bolzano–Weierstrass theorem, there exists a subsequence
{xnk} of {xk} and x ∈ S such that xnk → x. On the other hand, for any k we have

xk − xkP =
1

k

( k−1∑
i=0

x0P
i −

k−1∑
i=0

x0P
i+1
)
=

1

k
(x0 − x0P

k+1)

so that

|xk − xkP| ≤ 1

k
.

Passing to the limit along the subsequence {xkn}, we then get x− xP = 0. ��
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Another proof of Theorem 2.78. We give another proof of this claim which uses only
convexity arguments, in particular, the Farkas–Minkowski theorem. Let P be a stochas-
tic n× n matrix. Define

u := (1, 1, . . . , 1) ∈ Rn, b := (0, 0, . . . , 0, 1) ∈ Rn+1

and

A =

⎛⎜⎜⎜⎝ PT− Id

uT

⎞⎟⎟⎟⎠ in M(n+1),n(R).

The existence of a stationary point x for P is then equivalent to

Ax = b has a nonnegative solution x ≥ 0. (2.45)

Now, we show that Farkas’s alternative does not hold, i.e., the system AT y ≥ 0, b •y <
0 has no solution. Suppose it holds; then there is a y such that b •y = yn+1 < 0. If we
write y as y = (z1, z2, . . . , zn,−λ) =: (z,−λ), λ > 0, we then have

0 ≤ AT y = yTA = (z,−λ)

⎛⎜⎜⎜⎝ PT− Id

uT

⎞⎟⎟⎟⎠ = z(PT − Id)− λuT ,

i.e.,
zT (PT − Id) ≥ λuT .

Thus
n∑

j=1

zjpji − zi ≥ λ > 0 ∀i = 1, . . . , n. (2.46)

On the other hand, if m is the index such that zm = maxj z
j , we have

n∑
j=1

zjpjm ≤ max
j

zj = zm,

hence
n∑

j=1

zjpmj − zm ≤ 0,

and this contradicts (2.46). ��

2.4.7 Linear programming

We shall begin by illustrating some classical examples.

2.79 Example (Investment management). A bank has 100 million dollars to in-
vest: a part L in loans at a rate, say, of 10% and a part S in bonds, say at 5%, with the
aim of maximizing its profits 0.1L+0.05S. Of course, the bank has trivial restrictions,
L ≥ 0, S ≥ 0 and L + S ≤ 100, but also needs some cash of at least 25% of the total
amount, S ≥ 0.25(L + S), i.e., 3S ≥ L and needs to satisfy requests for important
clients which on average require 30 million dollars, i.e., L ≥ 30. The problem is then
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L+ S = 100

L = 3S

S

L

L = 30

P

R

Q

Figure 2.11. Illustration for Example 2.79.

⎧⎪⎪⎨⎪⎪⎩
0.10L+ 0.05S → max,

L+ S ≤ 100, L ≤ 3S, L ≥ 30,

L ≥ 0, S ≥ 0.

With reference to Figure 2.11, the shaded triangle represent the admissible values (L, S);
on the other hand, the gradient of the objective function C = 0, 1L+0.05S is constant
∇C = (0.1, 0.05) and the level lines of C are straight lines. Consequently, the optimal
portfolio is to be found among the extreme points P,Q and R of the triangle, and, as
it is easy to verify, the optimal configuration is in R.

2.80 Example (The diet problem). The daily diet of a person is composed of a
number of components j = 1, . . . , n. Suppose that component j has a unitary cost cj
and contains a quantity aij of the nourishing i, i = 1, . . . ,m, that is required in a daily
quantity bi. We want to minimize the cost of the diet. With standard vectorial notation
the problem is

c •x → min in
{
x
∣∣∣Ax ≥ b, x ≥ 0

}
.

2.81 Example (The transportation problem). Suppose that a product (say oil)
is produced in quantity si at places i = 1, 2, . . . , n (Arabia, Venezuela, Alaska, etc.)
and is requested at the different markets j, j = 1, 2, . . . , m (New York, Tokyo, etc.)
in quantity dj . If cij is the transportation cost from i to j, we want to minimize the
cost of transportation taking into account the constraints. The problem is then finding
x = (xij) ∈ Rnm such that ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
i,j cijxij → min,∑n
i=1 xij = dj , ∀j,∑m
j=1 xij ≤ si ∀i,

x ≥ 0.

Here x is a vector with real-valued components, but for other products, for instance
cars, the unknown would be a vector with integral components.

2.82 Example (Maximum profit). Suppose we are given s1, . . . , sn quantities
of basic products (resources) from which we may produce goods that sell at prices
p1, p2, . . . , pm. If aij is the quantity of product i, i = 1, . . . , n, to produce j,
j = 1, . . . ,m, our problem is finding the quantities xj of goods j in order to maxi-
mize profits, i.e.,
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Figure 2.12. A classical textbook on linear programming and economics.

⎧⎪⎪⎨⎪⎪⎩
∑m

j=1 pjxj → max,∑n
j=1 aijxj ≤ si,

x ≥ 0.

In the previous examples, one wants to minimize or maximize a func-
tion, called the objective function, which is linear, in a set of admissible or
feasible solutions, defined by a finite number of constraints defined by lin-
ear equalities or inequalities: This is the generic problem of linear program-
ming. By possibly changing the sign of the objective function and/or of
the inequalities constraints, observing that an equality constraint is equiv-
alent to two inequalities constraints and replacing the variable x whose
components are not necessarily nonnegative with x = u− v, u, v ≥ 0, the
linear programming problem can always be transformed into

f(x) := c •x → min in P :=
{
x
∣∣∣Ax ≥ b, x ≥ 0

}
, (2.47)

where c, x ∈ Rn, A ∈ Mm,n and b ∈ Rm.
One of the following situations may, in principle, happen to hold:

(i) P is empty,
(ii) P is nonempty and the objective function in not bounded from below

on P ,
(iii) P is nonempty and f is bounded from below.

In the last case, f has (at least) a minimizer and all the minimizers are ex-
treme points of the convex set P by Proposition 2.42. We say that problem
(2.47) has an optimal solution.

The problem transforms then into the problem of deciding in which of
the previous cases we find ourselves and of possibly finding the optimal ex-
treme points. In the real applications, where the number of constraints may
be quite high, the effectiveness of the algorithm is also a further problem.
Giving up efficiency, we approach the first two problems as follows.
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We introduce the slack variables x′ := Ax − b ≥ 0 and transform the
constraint Ax ≥ b into

A′
(
x

x′

)
= b, A′ :=

(
A − Id

)
.

Writing z = (x, x′) and F (z) :=
∑n

i=1 c
ixi +

∑m
i=1 0 · x′

i, problem (2.47)
transforms into

F (z) → min in F :=
{
z
∣∣∣A′z = b, z ≥ 0

}
. (2.48)

It is easily seen that F is nonempty if P is nonempty and that F is bounded
from below on F if and only if f is bounded from below on P . Therefore,
F attains its minimum in one of the extreme points of F if and only if f
has a minimizer in P . All extreme points of F can be found by means of
Theorem 2.61; the minimizers are then detected by comparison.

a. The primal and dual problem

Problem (2.47) is called the primal problem of linear programming, since
one also introduces the dual problem of linear programming as

g(y) := b •y → max in P∗ =
{
y
∣∣∣AT y ≤ c, y ≥ 0

}
. (2.49)

Of course, (2.49) can be rephrased as the minimum problem

h(y) := − b •y → min in P∗ =
{
y
∣∣∣ −AT y ≥ −c, y ≥ 0

}
(2.50)

which is similar to (2.47): Just exchange −b and c, and replace A with
−AT , and the following holds.

2.83 Proposition. The dual problem of linear programming (2.49) has a
solution if and only if P∗ �= ∅ and g is bounded from above.

The next theorem motivates the notation primal and dual problems of
linear programming.

2.84 Theorem (Kuhn–Tucker equilibrium conditions). Let f and
P be as in (2.47) and let g and P∗ be as in (2.49). We have the following:

(i) g(y) ≤ f(x) for all x ∈ P and all y ∈ P∗.
(ii) f has a minimizer x ∈ P if and only if g has a maximizer y ∈ P∗

and, in this case, f(x) = g(y).
(iii) Let x ∈ P and y ∈ P∗. The following claims are equivalent:

a) (c−AT y) •x = 0.
b) (Ax− b) •y = 0.
c) f(x) = g(y).
d) x is a minimizer for f and y ∈ P∗ is a maximizer for g.
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Proof. If x ∈ P, then x ≥ 0 and Ax ≥ b. For y ∈ P∗ we then get

f(x) = x • c ≥ x •AT y = Ax • y ≥ b •y = g(y),

i.e., (i).

(ii) Let x be a minimizer for the primal problem. Then f is bounded from below. We
introduce the slack variables x′ = Ax− b ≥ 0 and set z = (x, x′). Then x is a solution

of the primal problem (2.47) if and only if z := (x, x′)T minimizes

F (z) := c •x in F :=
{
z
∣∣∣A′z = b, z ≥ 0

}
where

A′ :=

⎛⎝ A Id

⎞⎠ .

We may also assume that z is an extreme point of F . As we saw in the proof of
Theorem 2.61, if α1, α2, . . . , αk are the indices of the nonzero components of z, the
submatrix B of A′ made of the columns of indices α1, α2, . . . , αk has maximal rank. If
xB denotes the vector with components the nonzero components of x, then BxB = b,
and if we set cB := (cα1 , cα2 , . . . , cαk ) and choose y such that BT y = cB, we have

g(y) = y • b = y •BxB = BT yxB = cB •xB = f(x).

Then (i) yields that y is a maximizer of the dual problem.

(iii) (a) or (b) ⇒ (c). If (c−AT y) •x = 0 with x ∈ P and y ∈ P∗, then

f(x) = c •x = AT y •x = y •Ax ≤ b •y = g(y),

thus f(x) = g(y) because of (i).
(c) ⇒ (a) and (b). If f(x) = g(y) and we set γ := b−Ax, we have

0 = f(x) − g(y) = c •x − b • y = c •x − Ax •y + γ • y = (c−AT y) •x + γ • y .

Since the addenda are nonnegative, we conclude

(c−AT x) •x = 0 and (Ax− b) •y = 0.

(c) ⇒ (d). If f(x) = g(y), then (i) yields f(x′) ≥ g(y) = f(x) for all x′ ∈ P, hence x is
a minimizer of f . Similarly y is a maximizer of g in P∗.
(d) ⇒ (c). This follows trivially from (ii). ��

A consequence of the previous theorem is the following duality theorem
of linear programming.

2.85 Corollary (Duality theorem). Let (2.47) and (2.49) be the pri-
mal and the dual problems of linear programming. One and only one of the
following alternatives arises:

(i) There exist a minimizer x ∈ P for f and a maximizer y ∈ P∗ for
g and f(x) = g(y). This arises if and only if P and P∗ are both
nonempty.

(ii) P �= ∅ and f is not bounded from below in P.
(iii) P∗ �= ∅ and g is not bounded from above in P∗.
(iv) P and P∗ are both empty.
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Proof. Trivially, (iv) is inconsistent with any of (i), (ii) or (iii); (iii) is inconsistent with
(ii) because of (i) of Theorem 2.84, and (iii) is inconsistent with (i). Similarly (ii) is
inconsistent with (i). Therefore, the four alternatives are disjoint. If (ii), (iii) and (iv)
do not hold, we therefore have⎧⎪⎪⎨⎪⎪⎩

P = ∅ or (P �= ∅ and f is bounded from below),

P∗ = ∅ or (P∗ �= ∅ and g is bounded from above),

P or P∗ are nonempty,

that is, one of the following alternatives holds:

P �= ∅ and f is bounded from below,

P∗ �= ∅ and g is bounded from above,

P �= ∅, P∗ �= ∅, f is bounded from below and g is bounded from above.

In any case, both the primal and the dual problem of linear programming have solutions
and, according to (iii) of Theorem 2.84, the alternative (i) holds. ��

Corollary 2.85 is actually a convex duality theorem: Here we supply a
direct proof by duality, using Farkas’s alternative.

A proof of Corollary 2.85 which uses convex duality. Set

Â :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A 0

0 AT

cT −b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

x̂ =

(
x

y

)
, b̂ =

⎛⎜⎝−b

c

0

⎞⎟⎠ .

Then (i) is equivalent to

Âx̂ ≤ b̂ has a solution x̂ ≥ 0.

Farkas’s alternative then yields the following: If (i) does not hold, then there exists
ŷ = (u, v, λ) such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
uT vT λ

)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−A 0

0 AT

cT −bT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
≥ 0,

(
uT vT λ

)⎛⎜⎜⎝
−b

c

0

⎞⎟⎟⎠ < 0,

(
uT vT λ

)
≥ 0,
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or, after a simple computation, the problem

Au ≥ λ b, AT v ≤ λ c, c •u ≤ b • v (2.51)

has a solution (u, v, λ) with u ≥ 0, v ≥ 0 and λ ≥ 0.
Now, we claim that λ = 0. In fact, if λ �= 0, then u/λ ∈ P, v/λ ∈ P∗, consequently,

c •u/λ < b •v/λ : a contradiction because of (i) of Theorem 2.84. Thus, (2.51) reduces
to the following claim: The problem

Au ≥ 0, AT v ≤ 0, c •u < b • v
has a solution (u, v) with u ≥ 0 and v ≥ 0.

We notice that the inequality c •u < b •v implies that either c •u < 0 or b • v > 0
or both. In the case c •u < 0, we have P∗ = ∅, since otherwise if y ≥ 0 and AT y ≤ c,
then fromAu ≥ 0, u ≥ 0 we would infer 0 ≤ y •Au = AT y •u ≤ c •u , a contradiction.
If, moreover, P = ∅, the alternative (iv) holds; otherwise, if x ∈ P, then A(x + θu) ≥
b + θ0 = b, x + θu ≥ 0 for some θ ≥ 0, and c •x + θu = c •x + θ c •u → −∞ as
θ → +∞, that is, the alternative (ii) holds.

In the case b •v > 0, as in the case c •u < 0, we see that P = ∅. If also P∗ = ∅,
then (iv) holds; while, if there exists y ∈ P∗, then v + θy ∈ P∗ and v + θy → +∞ as
θ → +∞, and (iii) holds. ��

2.86 Example. Let us illustrate the above discussing the dual of the transportation
problem. Suppose that crude oil is extracted in quantities si, i = 1, . . . , n in places
i = 1, . . . , n and is requested in the markets j = 1, . . . ,m in quantity dj . Let cij be
the transportation cost from i to j. The optimal transportation problem consists in
determining the quantities of oil to be transported from i to j minimizing the overall
transportation cost ∑

i,j

cijxij → min, (2.52)

and satisfying the constraints, in our case, the markets requests and the capability of
production ⎧⎪⎪⎨⎪⎪⎩

∑m
j=1 xij ≤ si ∀i,∑n
i=1 xij = dj ∀j,

x ≥ 0.

(2.53)

Of course, a necessary condition for the solvability is that the production be larger than
the markets requests

m∑
j=1

dj =
∑

i=1,n
j=1,m

xij ≤
n∑

i=1

si.

Introducing the matrix notation⎧⎪⎪⎨⎪⎪⎩
x := (x11, . . . , x1m, x21, . . . , x2m, . . . , xn1, . . . , xnm) ∈ Rnm,

c := (c11, . . . , c1m, c21, . . . , c2m, . . . , cn1, . . . , cnm) ∈ Rnm,

b := (s1, s2, . . . , sn, d1, . . . , dm)

and setting A ∈ Mn+m,nm(R),

A :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u 0 0 . . . 0

0 u 0 . . . 0

0 0 0 . . . u

. . .

e1 e1 e1 . . . e1

e2 e2 e2 . . . e2

. . .

em em em . . . em

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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where u := (1, 1, . . . , 1) ∈ Rm and 0 = (0, 0, . . . , 0) ∈ Rm, we may formulate our problem
as ⎧⎪⎪⎨⎪⎪⎩

c •x → min,

Ax ≤ b,

x ≥ 0.

The dual problem is then ⎧⎪⎪⎨⎪⎪⎩
b •y → max,

AT y ≤ c,

y ≥ 0,

that is, because of the form of A and setting

y := (u1, u2, . . . , un, v1, v2, . . . , vm),

the maximum problem ⎧⎪⎪⎨⎪⎪⎩
∑n

i=1 siui +
∑m

j=1 djvj → max,

ui + vj ≤ cij ∀i, j,
u ≥ 0, v ≥ 0.

If we interpret ui as the toll at departure and vi as the toll at the arrival requested
by the shipping agent, the dual problem may be regarded as the problem of maximizing
the profit of the shipping agent. Therefore, the quantities ui and vi which solve the
dual problem represent the maximum tolls one may apply in order not to be out of the
market.

2.87 Example. In the primal problem of linear programming one minimizes a linear
function on a polyhedral set ⎧⎨⎩ c •x → min,

Ax ≤ b, x ≥ 0,

or, equivalently, ⎧⎨⎩−c •x → max,

Ax ≤ b, x ≥ 0.

Since the constraint is qualified at all points, the primal problem has a minimum x ≥ 0
if and only if the Kuhn–Tucker equilibrium condition holds, i.e., there exists λ ≥ 0 such
that

(c−ATλ)x = 0.

This way we find again the optimality conditions of linear programming.

2.4.8 Minimax theorems and the theory of
games
The theory of games consists in mathematical models used in the study
of processes of decisions that involve conflict or cooperation. The modern
origin of the theory dates back to a famous paper by John von Neumann
(1903–1957) published in German in 1928 with the title “On the Theory of
Social Games”3 and to the very well-known book by von Neumann and the

3 J. von Neumann, Theorie der Gesellschaftsspiele, Math. Ann. 100 (1928) 295–320.



122 2. Convex Sets and Convex Functions

Figure 2.13. John von Neumann (1903–1957) and Oskar Morgenstern (1902–1976).

economist Oskar Morgenstern, Theory of Games and Economic Behavior
published in 1944. There one can find several types of games with one or
more players, with zero or nonzero sum, cooperative or non-cooperative,
. . . . For its relevance in economy, social sciences or biology the theory has
greatly developed4. Here we confine ourselves to illustrating only a few
basic facts.

a. The minimax theorem of von Neumann

In a game with two players P andQ, each of them relays on a set of possible
strategies, say respectively A and B; also, two utility functions UP (x, y)
and UQ(x, y) are given, representing for each choice of the strategy x ∈ A
of P and y ∈ B of Q the gain for P and Q resulting from the choices of
the strategies x and y.

Let us consider the simplest case of a zero sum game in which the
common value K(x, y) := UP (x, y) = −UQ(x, y) is at the same time the
gain for P and minus the gain for Q resulting from the choices of the
strategies x and y.

4 The interested reader is referred for classical literature to

◦ J. von Neumann, O. Morgenstern, Theory of Games and Economic Behavior,
Princeton University Press, Princeton, NJ, 1944, that follows a work of Ernst Zer-
melo (1871–1951), Über eine Anwendung der Mengenlehre auf die Theorie des
Schachspiels, 1913 and a work of Emile Borel (1871–1956) La théorie du jeu et les
équations intégrales à noyau symmétrique, 1921.

◦ R. Luce, H. Raiffa, Games and Decisions: Introduction and Critical Survey, Wiley,
New York, 1957.

◦ S. Karlin, Mathematical Methods and Theory in Games, Programming and Eco-
nomics, 2 vols., Addison–Wesley, Reading, MA, 1959.

◦ W. Lucas, An overview of the mathematical theory of games, Manage. Sci. 18 (1972),
3–19.

◦ M. Shubik, Game Theory in the Social Sciences: Concepts and Solutions, MIT Press,
Boston, MA, 1982.
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Each player tries to do his best against every strategy of the other
player. In doing that, the expected payoff or, simply, payoff, i.e., the remu-
neration that P and Q can expect not taking into account the strategy of
the other player, are

Payoff(P ) := inf
y∈B

sup
x∈A

UP (x, y) = inf
y∈B

sup
x∈A

K(x, y),

Payoff(Q) := inf
x∈A

sup
y∈B

UQ(x, y) = inf
x∈A

sup
y∈B

−K(x, y) = − sup
x∈A

inf
y∈B

K(x, y).

Although the game has zero sum, the payoffs of the two players are not
related, in general, we trivially only have

sup
x∈A

inf
y∈B

K(x, y) ≤ inf
y∈B

sup
x∈A

K(x, y), (2.54)

i.e.,

Payoff(P ) + Payoff(Q) ≥ 0.

Of course, if the previous inequality is strict, there are no choices of strate-
gies that allow both players to reach their payoff.

The next proposition provides a condition for the existence of a couple
of optimal strategies, i.e., of strategies that allow each players to reach their
payoff.

2.88 Proposition. Let A and B be arbitrary sets and K : A × B → R.
Define f : A → R and g : B → R respectively as

f(x) := inf
y∈B

K(x, y), g(y) := sup
x∈A

K(x, y).

Then there exists (x, y) ∈ A×B such that

K(x, y) ≤ K(x, y) ≤ K(x, y) ∀x, y ∈ A×B (2.55)

if and only if f attains its maximum in A, g attains its minimum in B
and supx∈A f(x) = infy∈B g(y). In this case,

sup
x∈A

inf
y∈B

K(x, y) = K(x, y) = inf
y∈B

sup
x∈A

K(x, y).

Proof. If (x, y) satisfies (2.55), then

K(x, y) = inf
y∈B

K(x, y) = f(x) ≤ sup
x∈A

f(x),

K(x, y) = sup
x∈A

K(x, y) = g(y) ≥ inf
y∈B

g(y),

hence supx∈A f(x) = infy∈B g(y) if we take into account (2.54). We leave the rest of
the proof to the reader. ��
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A point (x, y) with property (2.55) is a saddle point for K. Therefore,
in the context of games with zero sum, the saddle points ofK yield couples
of optimal strategies. The value of K on a couple of optimal strategies is
called the value of the play. Answering the question of when there exists
a saddle point is more difficult and is the content of the next theorem.

We recall that a function f : Rn → R is said to be quasiconvex if its
sublevel sets are convex, and quasiconcave if −f is quasiconvex.

2.89 Theorem (Minimax theorem of von Neumann). Let A ⊂ Rn

and B ⊂ Rn be two compact convex sets and let K : A × B → R be a
function such that

(i) x → K(x, y) is quasiconvex and lower semicontinuous ∀y ∈ B,
(ii) y → K(x, y) is quasiconcave and upper semicontinuous ∀x ∈ A.

Then K has a saddle point in A×B.

Proof. According to Proposition 2.88 it suffices to prove that numbers

a := min
x∈A

max
y∈B

K(x, y) and b := max
y∈B

min
x∈A

K(x, y)

exist and are equal. Fix y ∈ B, the function x → K(x, y) attains its minimum at
z(y) ∈ A being A compact, and K(z(y), y) = minx∈A K(x, y). Set

h(y) := −K(z(y), y), y ∈ B.

We now show that h is quasiconvex and lower semicontinuous, thus there is

b := −min
y∈B

(
− min

x∈A
K(x, y)

)
= max

y∈B
min
y∈A

K(x, y).

Similarly, one proves the existence of a.
Let us show that h is quasiconvex and lower semicontinuous, that is, that for all

t ∈ R the set

H :=
{
y ∈ B

∣∣∣ h(y) ≤ t
}

is convex and closed. First we will show that H is convex. For any w ∈ B, consider

G(w) :=
{
y ∈ B

∣∣∣ −K(z(w), y) ≤ t
}
.

Because of (ii), G(w) is convex and closed; moreover, H ⊂ G(w) ∀w, since K(z(y), y) ≤
K((z(w), y) ∀w, y ∈ B. In particular, for x, y ∈ H and λ ∈]0, 1[ we have u ∈ G(w)
∀w ∈ B if u := (1−λ)y+λx, hence u ∈ G(u), i.e., u ∈ H. This proves that H is convex.
Let us prove now that H is closed. Let {yn} ⊂ H, yn → y in B, then y ∈ G(w) ∀w ∈ B,
in particular, y ∈ G(y), i.e., y ∈ H. Therefore, H is closed.

Let us prove that a = b. Since b ≤ a trivially, it remains to show that a ≤ b. Fix
ε > 0 and consider the function T : A× B → P(A×B) given by

T (x, y) :=
{
(u, v) ∈ A× B

∣∣∣K(u, y) < b+ ε, K(x, v) > a− ε
}
.

We have T (x, y) �= ∅ since minu∈A K(u, y) ≤ b and maxv∈B K(x, v) ≥ a; moreover,
T (x, y) is convex. Since

T−1({(u, v)}) : =
{
(x, y) ∈ A× B

∣∣∣ (u, v) ∈ T (x, y)
}

=
{
(x, y) ∈ A× B

∣∣∣K(u, y) < b+ ε, K(x, v) > a− ε
}

=
{
x ∈ A

∣∣∣K(x, v) > a− ε
}
×
{
y ∈ B

∣∣∣K(u, y) < b− ε
}
,
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T−1({(u, v)}) is also open. We now claim, compare Theorem 2.90, that there is a fixed
point for T , i.e., that there exists (x, y) ∈ A×B such that (x, y) ∈ T (x, y), i.e., a− ε <
k(x, y) < b+ ε. ε being arbitrary, we conclude a ≤ b. ��

For its relevance, we now state and prove the fixed point theorem we
have used in the proof of the previous theorem.

2.90 Theorem (Kakutani). Let K be a nonempty, convex and compact
set, and let F : K → P(K) be a function such that

(i) F (x) is nonempty and convex for each x ∈ K,
(ii) F−1(y) is open in K for every y ∈ P(K).

Then F has at least a fixed point, i.e., there exists x such that x ∈ F (x).

Proof. Clearly, the family of open sets {F−1(y)}y is an open covering of K, conse-
quently, there exist y1, y2, . . . , yn ∈ P(K) such that K ⊂ ∪n

i=1F
−1(yi). Let {ϕi} be a

partition of unity associated to {F−1(yi)}i=1,...,n and set

p(x) :=
n∑

i=1

ϕi(x)yi ∀x ∈ K0 := co({y1, y2, . . . , yn}) ⊂ K.

Obviously, p is continuous and p(K0) ⊂ K0. According to Brouwer’s theorem, see [GM3],
p has a fixed point x ∈ K0. To conclude, we now prove that p(x) ∈ F (x) ∀x ∈ K0, from
which we infer that x = p(x) ∈ F (x), i.e., x is a fixed point for F . Let x ∈ K0. For each
index j such that ϕj(x) �= 0 we have trivially x ∈ F−1(yj), thus yj ∈ F (x). Since F (x)
is convex, we see that

p(x) =
n∑

i=1

ϕi(x)yi =
∑

{j |ϕj(x) 	=0}
ϕj(x)yj ,

hence p(x) ∈ F (x). ��

We now present a variant of Theorem 2.89.

2.91 Theorem. Let K : Rn × Rm → R, K = K(x, y), be a function
convex in x for any fixed y and concave in y for any fixed x. Assume that
there exist x ∈ Rn and y ∈ Rm such that

K(x, y) → +∞ as x → +∞,

K(x, y) → −∞ as y → −∞.

Then K has a saddle point (x0, y0).

Observe that K(x, y) is continuous in each variable. Let us start with
a special case of Theorem 2.89 for which we present a more direct proof.

2.92 Proposition. Let A and B be compact subsets of Rn and Rm, re-
spectively, and let K : A × B → R, K = K(x, y) be a function that is
convex and lower semicontinuous in x for any fixed y and concave and
upper semicontinuous in y for any fixed x. Then K has a a saddle point
(x0, y0) ∈ A×B.
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Proof. Step 1. Since x → K(x, y) is lower semicontinuous and A is compact, then for
every y ∈ B there exists at least one x = x(y) such that

K(x(y), y) = inf
x∈A

K(x, y). (2.56)

Let
g(y) := inf

x∈A
K(x, y) = K(x(y), y), y ∈ B. (2.57)

The function g is upper semicontinuous, because ∀y0 and ∀ε > 0 there exists x such
that

g(y0) + ε ≥ K(x, y0) ≥ lim sup
y→y0

K(x, y) ≥ lim sup
y→y0

g(y).

Consequently, there exists y0 ∈ B such that

g(y0) := max
y∈B

g(y), (2.58)

and, therefore,
g(y0) ≤ K(x, y0) ∀x ∈ A. (2.59)

Step 2. We now prove that for every y ∈ B there exists x̃(y) ∈ A such that

K(x̃(y), y) ≤ g(y0) ∀y ∈ B. (2.60)

Fix y ∈ B. For n = 1, 2, . . . , let yn := (1−1/n)y0 +(1/n)y. Denote by xn := x(yn),
a minimizer of x �→ K(x, yn), i.e., K(xn, yn) = minx∈A K(x, yn) = g(yn). Since y �→
K(x, y) is concave, by (2.58)(

1− 1

n

)
K(xn, y0) +

1

n
K(xn, y) ≤ K(xn, yn) = g(yn) ≤ g(y0)

and, since g(y0) = K(x(y0), y0) ≤ K(xn, y0), we conclude that

K(x(yn), y) ≤ g(y0) ∀n, ∀y ∈ B. (2.61)

Since A is compact, there exist x̃(y) ∈ A and a subsequence {kn} such that xkn → x̃(y)
and K(x̃(y), y) = minn K(x(yn), y), and, in turn,

K(x̃(y), y) ≤ lim inf
n→∞ K(xkn , y) ≤ g(y0) ∀y ∈ B.

Step 3. Let us prove that

K(x̃(y), y0) = g(y0) ∀y ∈ B. (2.62)

We need to prove that K(x̃(y), y0) ≤ g(y0), as the opposite inequality is trivial. With
the notations of Step 2, from the concavity of y �→ K(x, y)(

1− 1

n

)
K(xn, y0) +

1

n
K(xn, y) ≤ K(xn, yn) = g(yn) ≤ g(y0).

Consequently,
K(x̃(y), y0) ≤ lim inf

n→∞ K(x(yn), y0) ≤ g(y0).

Step 4. Let us prove the claim when x → K(x, y) is strictly convex. By Step 3, x̃(y) is a
minimizer of the map x → K(x, y0) as x0 is. Since x �→ K(x, y0) is strictly convex, the
minimizer is unique, thus concluding x̃(y) = x0 ∀y ∈ B. The claim then follows from
(2.59), (2.60) and (2.62).

Step 5. In case x → K(x, y) is merely convex, we introduce for every ε > 0 the perturbed
Lagrangian Kε

Kε(x, y) := K(x, y) + ε||x||, x ∈ A, y ∈ B

which is strictly convex. From Step 4 we infer the existence of a saddle point (xε, yε)
for Kε, i.e.,

K(xε, y) + ε||xe|| ≤ K(xε, yε) + ε||xε|| ≤ K(x, yε) + ε||x|| ∀x ∈ A, y ∈ B.

Passing to subsequences, xε → x0 ∈ A, yε → y0 ∈ B, and from the above

K(x0, y) ≤ K(x, y0) ∀x ∈ A, y ∈ B,

that is, (x0, y0) is a saddle point for K. ��
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Proof of Theorem 2.91. For k = 1, 2, . . . , let Ak := {x | |x| ≤ k}, Bk := {y | |y| ≤ k}.
By Proposition 2.92, K(x, y) has a saddle point (xk , yk) on Ak ×Bk, i.e.,

K(xk, y) ≤ K(xk, yk) ≤ K(x, yk) ∀x ∈ Ak, y ∈ Bk . (2.63)

Choosing x = x, y := y in (2.63) we then have

K(xk, y) ≤ K(xk, yk) ≤ K(x, yk) ∀k
which implies trivially that {xk} and {yk} are both bounded. Therefore, passing even-
tually to subsequences, xk → x0, yk → y0, and from (2.63)

K(x0, y) ≤ K(x0, y0) ≤ K(x, y0) ∀x ∈ Ak, y ∈ Bk .

Since k is arbitrary, (x0, y0) is a saddle point for K on the whole Rn × Rm. ��

b. Optimal mixed strategies

An interesting case in which the previous theory applies is the case of finite
strategies. We assume that the game (with zero sum) is played many times
and that players P and Q choose their strategies, which are finitely many,
on the basis of the frequency of success or of the probability: If the strate-
gies of P and Q are respectively {E1, E2, . . . , Em} and {F1, F2, . . . , Fn}
and if U(Ei, Fj) is the utility function resulting from the choices of Ei by
P and Fj by Q, we assume that P chooses Ei with probability xi and Q
chooses Fj with probability yj . Define now

A := {x ∈ Rm
∣∣∣ 0 ≤ xi ≤ 1,

m∑
i=1

xi = 1},

B := {y ∈ Rn
∣∣∣ 0 ≤ yj ≤ 1,

n∑
j=1

yj = 1};

then the payoff functions of the two players are given by

UP (x, y) = −UQ(x, y) = K(x, y) :=
∑
i,j

U(Ei, Ej)xiyj. (2.64)

Since K(x, y) is a homogeneous polynomial of degree 2, von Neumann’s
theorem applies to get the following result.

2.93 Theorem. In a game with zero sum, there exist optimal mixed
strategies (x, y). They are given by saddle points of the expected payoff
function (2.64), and for them we have

max
x∈A

min
y∈B

K(x, y) = K(x, y) = min
y∈B

max
x∈A

K(x, y).

2.94 A linear programming approach. Theorem 2.93, although en-
suring the existence of optimal mixed strategies, gives no method to find
them, which, of course, is quite important. Notice that A and B are com-
pact and convex sets with the vectors of the standard basis e1, e2, . . . , em
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of Rm and e1, e2, . . . , en of Rn as extreme points, respectively. Since
x → K(x, y) and y → K(x, y) are linear, they attain their maximum
and minimum at extreme points, hence

f(x) := min
y∈B

K(x, y) = min
1≤j≤n

K(x, ei),

g(y) := max
x∈A

K(x, y) = max
1≤i≤m

K(ei, y).

Notice that f(x) and g(y) are affine maps. Set U := (Uij), Uij :=
U(Ei, Ej); then maximizing f in A is equivalent to maximize a real num-
ber z subject to the constraints z ≤ K(z, ei) ∀i and x ∈ A, that is, to
solve ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F (x, z) := z → max,

z

⎛⎜⎜⎝
1
...

1

⎞⎟⎟⎠ ≤ Ux,

∑m
i=1 xi = 1,

x ≥ 0.

Similarly, minimizing g in B is equivalent to solving⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
G(y, w) := w → min,

w ≥ UT y ≤ 0,∑n
i=1 yi = 1,

y ≥ 0.

These are two problems of linear programming, one the dual of the other,
and they can be solved with the methods of linear programming, see Sec-
tion 2.4.7.

c. Nash equilibria
2.95 Example (The prisoner dilemma). Two prisoners have to serve a one-year
prison sentence for a minor crime, but they are suspected of a major crime. Each of
them receives separately the following proposal: If he accuses the other of the major
crime, he will not have to serve the one-year sentence for the minor crime and, if the
other does not accuse him of the major crime (in which case he will have to serve the
relative 5-year prison sentence), he will be freed. The possible strategies are two: (a)
accusing the other and (b) not accusing the other; the corresponding utility functions
for the two prisoners P and Q (in years of prison to serve, with negative sign, so that
we have to maximize) are

UP (a, a) = −5, UP (a, n) = 0, UP (n, a) = −6, UP (n, n) = −1,

UQ(a, a) = −5, UQ(a, n) = −6, UQ(n, a) = 0, UQ(n, n) = −1.

We see at once that the strategy of accusing each other gives the worst result with
respect to the choice of not accusing the other. Nevertheless, the choice of accusing the
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Figure 2.14. The initial pages of two papers by John Nash (1928– ).

other brings the advantage of serving one year less in any case: The strategy of not
accusing, which, from a cooperative point of view is the best, is not the individual point
of view (even in the presence of a reciprocal agreement; in fact, neither of the two may
ensure that the other will not accuse him). This paradox arises quite frequently.

The idea that individual rationality, typical of noncooperative games
(in which there is no possibility of agreement among the players), precedes
collective rationality is at the basis of the notion of the Nash equilibrium.

2.96 Definition. Let A and B be two sets and let f and g be two maps
from A×B into R. The couple of points (x0, y0) ∈ A×B is called a Nash
point for f and g if for all (x, y) ∈ A×B we have

f(x0, y0) ≥ f(x, y0), g(x0, y0) ≥ g(x0, y).

In the prisoner’s dilemma, the unique Nash point is the strategy of
the reciprocal accusation. In a game with zero sum, i.e., UP (x, y) =
−UQ(x, y) =: K(x, y), clearly (x0, y0) is a Nash point if and only if (x0, y0)
is a saddle point for K.

2.97 Theorem (of Nash for two players). Let A and B be two non-
empty, convex and compact sets. Let f, g : A × B → R be two continuous
functions such that x → f(x, y) is concave for all y ∈ B and y → g(x, y)
is concave for all x ∈ A. Then there exists a Nash equilibrium point for f
and g.

Proof. Introduce the function F : (A× B)× (A× B) → R defined by

F (p, q) = f(p1, q2) + g(q1, p2), ∀p = (p1, p2), q = (q1, q2) ∈ A×B.
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Clearly, F is continuous and concave in p for every chosen q. We claim that there is
q0 ∈ A× B such that

max
p∈A×B

F (p, q0) = F (p0, q0). (2.65)

Before proving the claim, let us complete the proof of the theorem on the basis of (2.65).
If we set (x0, y0) := q0, we have

f(x, y0) + g(x0, y) ≤ f(x0, y0) + g(x0, y0) ∀(x, y) ∈ A× B.

Choosing x = x0, we infer g(x0, y) ≤ g(x0, y0) ∀y ∈ B, while, by choosing y = y0, we
find f(x, y0) ≤ f(x0, y0) ∀x ∈ A, hence (x0, y0) is a Nash point.

Let us prove (2.65). Since the inequality ≥ is trivial, for all q0 ∈ A×B, we need to
prove only the opposite inequality. By contradiction, suppose that ∀q ∈ A×B there is
p ∈ A×B such that F (p, q) > F (q, q) and, then, set

Gq :=
{
q ∈ A×B

∣∣∣F (p, q) > F (q, q)
}
, p ∈ A× B.

The family {Gp}p∈A×B is an open covering of A× B; consequently, there are finitely

many points p1, p2, . . . , pk ∈ A×B such that A× B ⊂ ∪k
i=1Gpi . Set

ϕi(q) := max
(
F (pi, q)− F (q, q), 0

)
, q ∈ A× B, i = 1, . . . , k.

The functions {ϕi} are continuous, nonnegative and, for every q, at least one of them
does not vanish at q; we then set

ψi(q) :=
ϕi(q)∑k

j=1 ϕj(q)

and define the new map ψ : A×B → A× B by

ψ(q) :=
k∑

i=1

ψi(q)pi.

The map ψ maps the convex and compact set A× B into itself, consequently, it has a
fixed point q′ ∈ A× B, q′ =

∑
i ψ(q

′)pi. F being concave,

F (q′, q′) = F
(∑

i

ψi(q
′)pi, q′

)
≥

k∑
i=1

ψi(q
′)F (qi, q

′).

On the other hand, F (pi, q
′) > F (q′, q′) if ψi(q

′) > 0, hence

F (q′, q′) ≥
k∑

i=1

ψ(q′)F (qi, q
′) >

k∑
i=1

ψ(q′)F (q′, q′) = F (q′, q′),

which is a contradiction. ��

d. Convex duality

Let f, ϕ1, . . . , ϕm : Ω ⊂ Rn → R be convex functions defined on a convex
open set Ω. We assume for simplicity that f and ϕ := (ϕ1, ϕ2, . . . , ϕm)
are differentiable. Let

F :=
{
x ∈ Rn

∣∣∣ϕj(x) ≤ 0, ∀j = 1, . . . ,m
}
.

The primal problem of convex optimization is the minimum problem
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Figure 2.15. Two classical monographs on convexity.

Assuming F �= ∅, minimize f in F . (2.66)

The associated Lagrangian L : Ω× Rm
+ to (2.66), defined by

L(x, λ) := f(x) + λ •ϕ(x) , x ∈ Ω, λ ≥ 0, (2.67)

is convex in x for any fixed λ and linear in λ for every fixed x. Therefore,
it is not surprising that the Kuhn–Tucker conditions (2.41)⎧⎪⎪⎨⎪⎪⎩

Df(x0) + λ0 •Dϕ(x0) = 0,

λ0 ≥ 0, x0 ∈ F ,

λ0 •ϕ(x0) = 0

(2.68)

are also sufficient to characterize minimum points for f on F . Actually, the
Kuhn–Tucker equilibrium conditions (2.41) are strongly related to saddle
points for the associated Lagrangian L(x, λ).

2.98 Theorem. Consider the primal problem (2.66). Then (x0, λ
0) fulfills

(2.68) if and only if (x0, λ
0) is a saddle point for L(x, λ) on Ω×Rm

+ , i.e.,

L(x0, λ) ≤ L(x0, λ
0) ≤ cL(x, λ0)

for all x ∈ F and λ ∈ Rm, λ ≥ 0. In particular, if the Kuhn–Tucker
equilibrium conditions are satisfied at (x0, λ

0) ∈ F × Rm
+ , then x0 is a

minimizer for f on F .
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Proof. From the convexity of x �→ L(x, λ0) and (2.41) we infer

L(x, λ0) ≥ L(x0, λ0) +
n∑

i=1

(
∇f(x0) + scdλ0Dϕ(x0)

)i
(x− x0)

i = L(x0, λ
0) = f(x0)

for all x ∈ Ω. In particular,

f(x) ≥ f(x) + λ0 •ϕ(x0) = L(x, λ0) ≥ f(x0),

L(x0, λ
0) ≥ f(x0) + λ •ϕ(x0) = L(x, λ0).

Conversely, suppose that (x0, λ0) is a saddle point for L(x, λ) on Ω× Rm
+ , i.e.,

f(x0) + λ •ϕ(x0) ≤ f(x0) + λ0 •ϕ(x0) ≤ f(x) + λ0 •ϕ(x)

for every x ∈ Ω and λ ≥ 0. From the first inequality we infer

λ •ϕ(x0) ≥ λ0ϕ(x0) (2.69)

for any λ ≥ 0. This implies that ϕ(x0) ≤ 0 and, in turn, λ0 •ϕ(x0) ≤ 0. Using again
(2.69) with λ = 0, we get the opposite inequality, thus concluding that λ0 •ϕ(x0) = 0.
Finally, from the first inequality, Fermat’s theorem yields

∇f(x0) + λ0 •∇ϕ(x0) = 0.

��

Let us now introduce the dual problem of convex optimization. For
λ ∈ Rm

+ , set
g(λ) := inf

x∈F
L(x, λ),

where L(x, λ) is the Lagrangian in (2.67).
Since g(λ) is the infimum of a family of affine functions, −g is convex

and proper on
G := {λ ∈ Rm |λ ≥ 0, g(λ) > −∞}.

The dual problem of convex programming is

Assuming G �= ∅, maximize g(λ) on G (2.70)

or, equivalently,

Assuming G �= ∅, maximize g(λ) on {λ ∈ Rm |λ ≥ 0}. (2.71)

2.99 Theorem. If (x0, λ
0) ∈ F × Rm satisfies the Kuhn–Tucker equilib-

rium conditions (2.41), then x0 maximizes the primal problem, λ0 mini-
mizes the dual problem and f(x0) = g(λ0) = L(x0, λ

0).

Proof. By definition, g(λ) = supx∈F L(x, λ), and, trivially, f(x) := infλ≥0 L(x, λ).
Therefore g(y) ≤ f(x) for all x ∈ F and λ ≥ 0, so that

sup
λ≥0

g(λ) ≤ inf
x∈F

f(x).

Since (x0, λ0) is a saddle point for L on Ω×R+, Proposition 2.88 yields the result. ��
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2.5 A General Approach to Convexity

As we have seen, every closed convex set K is the intersection of all closed
half-spaces in which it is contained; in fact, K is the envelope of its sup-
porting hyperplanes. In other words, a closed convex body is given in a
dual way by the supporting hyperplanes. This remark, when applied to
closed epigraphs of convex functions, yields a number of interesting corre-
spondences. Here we discuss the so-called polarity correspondence.

a. Definitions

It is convenient to allow that convex functions take the value +∞ with the
convention t+(+∞) = +∞ for all t ∈ R and t · (+∞) = +∞ for all t > 0.
For technical reasons, it is also convenient to allow that convex functions
take the value −∞.

2.100 Definition. f : Rn → R is convex if

f(λx+ (1 − λ)y) ≤ λf(x) + (1− λ)f(y) ∀x, y ∈ Rn, ∀λ ∈ [0, 1]

unless f(x) = −f(y) = ±∞. The effective domain of f is then defined by

dom(f) :=
{
x ∈ Rn

∣∣∣ f(x) < ∞
}
.

We say that f is proper if f is nowhere −∞ and dom(f) �= ∅.
Let K ⊂ Rn be a convex set and f : K ⊂ Rn → R be a convex function.

It is readily seen that the function f : Rn → R ∪ {+∞} defined as

f(x) =

{
f(x) if x ∈ K,

+∞ if x �∈ K

is convex according to Definition 2.100 with effective domain given by K.
One of the advantages of Definition 2.100 is that convex sets and convex

functions are essentially the same object.
From one side, K ⊂ Rn is convex if and only if its indicatrix function

IK(x) :=

{
0 if x ∈ K,

+∞ if x �∈ K
(2.72)

is convex in the sense of Definition 2.100. On the other hand, f : Rn → R
is convex if and only if its epigraph, defined as usual by

Epi(f) :=
{
(x, t) ∈ Rn × R

∣∣∣x ∈ Rn, t ∈ R, t ≥ f(x)
}

is a convex set in Rn × R.
Observe that the constrained minimization problem
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{
f(x) → min,

x ∈ K,

where f is a convex function and K is a convex set, transforms into the
unconstrained minimization problem for the convex function

f(x) + IK(x), x ∈ Rn

which is defined by adding to f the indicatrix IK of K as penalty function.
One easily verifies that

(i) f is convex if and only if its epigraph is convex,
(ii) the effective domain of a convex function is convex,
(iii) if f is convex, then dom(f) = π(Epi(f)) where π : Rn × R → Rn is

the linear projection on the first factor.

We have also proved, compare Theorem 2.35, that every proper convex
function is locally Lipschitz in the interior of its effective domain. However,
in general, a convex function need not be continuous or semicontinuous at
the boundary of its effective domain, as, for instance, for the functions f
defined as f(x) = 0 if x ∈] − 1, 1[, f(−1) = f(1) = 1 and f(x) = +∞ if
x �∈ [0, 1].

b. Lower semicontinuous functions and closed epigraphs

We recall that f : Rn → R is said to be lower semicontinuous, see [GM3],
in short l.s.c., if f(x) ≤ lim infy→x f(y). If f(x) ∈ R, this means the
following:

(i) For all ε > 0 there is δ > 0 such that for all y ∈ B(x, δ) \ {x} we have
f(x)− ε ≤ f(y).

(ii) There is a sequence {xk} with values in Rn \ {x} that converges to x
such that f(xk) → f(x).

Let f : Rn → R. We already know that f is l.s.c. if and only if for every
t ∈ R the sublevel set {x | f(x) ≤ t} is closed. Moreover, the following
holds.

2.101 Proposition. The epigraph of a function f : Rn → R ∪ {+∞} is
closed if and only if f is lower semicontinuous.

Proof. Let f be l.s.c. and {(xk , tk)} ⊂ Epi(f) a sequence that converges to (x, t).
Then xκ → x, tk → t and f(xk) ≤ tk . It follows that f(x) ≤ lim infk→∞ f(xk) ≤
lim infk→∞ tk = t, i.e., (x, t) ∈ Epi(f).

Conversely, suppose that Epi(f) is closed. Consider a sequence {xk} with xk → x
and let L := lim infk→∞ f(xk). If L = +∞, then f(x) ≤ L. If L < +∞, we find a
subsequence {xnk} of {xn} such that f(xnk ) → L. Since (xnk , f(xnk )) ∈ Epi(f) and
L < +∞, we infer that (x,L) ∈ Epi(f), i.e., f(x) ≤ L = lim infk→∞ f(xk). Since the
sequence {xk} is arbitrary, we finally conclude that f(x) ≤ lim infy→x f(y). ��
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Finally, let us observe that if fα : Rn → R, α ∈ A, is a family of l.s.c.
functions, then

f(x) := sup
{
fα(x)

∣∣∣α ∈ A
}
, x ∈ Rn,

is lower semicontinuous.

2.102 Definition. Let f : Rn → R be a function. The closure of f or
its lower semicontinuous regularization, in short its l.s.c. regularization,
is the function

Γf(x) := sup
{
g(x)

∣∣∣ g : Rn → R, g is l.s.c., g(y) ≤ f(y) ∀y
}
.

Clearly, Γf(x) ≤ f(x) for every x, and, as the pointwise supremum of a
family of l.s.c. functions, Γf is lower semicontinuous. Therefore, it is the
greatest lower semicontinuous minorant of f .

2.103 Proposition. Let f : Rn → R. Then Epi(Γf) = cl(Epi(f)) and
Γf(x) = lim infy→x f(y) for every x ∈ Rn.

Consequently, Γf(x) = f(x) if and only if f is l.s.c. at x.

Proof. (i) First, let us prove that cl(Epi(f)) is the epigraph of a function g ≤ f , by
proving that if (x, t) ∈ cl(Epi(f)), then for all s > t we have (x, s) ∈ cl(Epi(f)). If
(xk , tk) ∈ Epi(f) converges to (x, t) and s > t, for some large k we have tk < s, hence
f(xk) ≤ tk < s. It follows that definitively (xk , s) ∈ Epi(f), hence (x, s) ∈ cl(Epi(f)).

By Proposition 2.101, g is l.s.c. and Γf is closed; therefore, we have g ≤ Γf and

Epi(Γf) ⊂ Epi(g) = cl(Epi(f)) ⊂ Epi(Γf).

(ii) Let x ∈ Rn. If Γf(x) = +∞, Γf = +∞ in a neighborhood of x, hence
lim infy→x f(y) = +∞, too.

If Γf(x) < +∞, then for any t ≥ f(x), (x, t) ∈ Epi(Γf). (i) yields a sequence
{(xk , tk)} ⊂ Epi(f) such that xk → x and yk → t. Therefore

lim inf
k→∞

f(xk) ≤ lim inf
k→∞

tk = t,

hence
lim inf
k→∞

f(xk) ≤ Γf(x).

On the other hand, since Γf is ls.c. and Γf ≤ f ,

Γf(x) ≤ lim inf
y→x

Γf(y) ≤ lim inf
y→x

f(y),

thus concluding that Γf(x) = lim infy→x f(y). It is then easy to check that f(x) = Γf(x)
if and only if f is l.s.c. at x. ��

Since closed convex sets can be represented as intersections of their
supporting half-spaces, of particular relevance are the convex functions
with closed epigraphs. According to the above, we have the following.

2.104 Corollary. f : Rn → R is convex and l.s.c. if and only if its epi-
graph is convex and closed.

The l.s.c. regularization Γf of a convex function f is a convex and l.s.c.
function.
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According to the above, f : Rn → R is l.s.c. and convex if and only
if its epigraph Epi(f) is closed and convex. In particular, Epi(f) is the
intersection of all its supporting half-spaces. The next theorem states that
Epi(f) is actually the intersection of all half-spaces associated to graphs
of linear affine functions, i.e., to hyperplanes that do not contain vertical
vectors.

We first state a proposition that contains the relevant property.

2.105 Proposition. Let f : Rn → R be convex and l.s.c. and let x ∈ Rn

be such that f(x) > −∞. Then the following hold:

(i) For every y < f(x) there exists an affine map � : Rn → R such that
f(x) > �(x) for every x ∈ Rn and y < �(x).

(ii) If x ∈ int(dom(f)), then there exists an affine map � : Rn → R such
that f(x) > �(x) for every x ∈ Rn and �(x) = f(x).

Proof. Since f is lower semicontinuous at x, there exist ε > 0 and δ > 0 such that
y ≤ f(x) − ε ∀x ∈ B(x, δ), in particular, (x, y) /∈ cl(Epi(f)). Therefore, there exists a
hyperplane P ⊂ Rn+1 that strongly separates Epi(f) from (x, y), i.e., there are a linear
map m : Rn → R and numbers α, β ∈ R such that

P :=
{
(x, y)

∣∣∣m(x) + αy = β
}

(2.73)

with
m(x) + αy > β ∀(x, y) ∈ Epi(f) and m(x) + αy < β. (2.74)

Since y may be chosen arbitrarily large in the first inequality, we also have α ≥ 0. We
now distinguish four cases.

(i) If f(x) < +∞, then α �= 0 since, otherwise, choosing (x, y) with y > f(x) in (2.74),
we get m(x) > β and m(x) < β, a contradiction. By choosing � as the linear affine map
�(x) := (β −m(x))/α, from the first of (2.74) with y = f(x) it follows �(x) < f(x) for
all x, while from the second we get y ≤ �(x).

(ii) If f(x) = +∞ and the function takes value +∞ everywhere, the claim is trivial.

(iii) If f(x) = +∞ and α > 0 in (2.74), then one chooses � as the linear affine map
�(x) := (β −m(x))/α, as in (i).

(iv) Let us consider the remaining case where f(x) = +∞. There exists x0 such that
f(x0) ∈ R and α = 0 in (2.74). By applying (i) at x0, we find an affine linear map φ
such that

f(x) ≥ φ(x) ∀x ∈ Rn.

For all c > 0 the function �(x) := φ(x) + c(β−m(x)) is then a linear affine minorant of
f(x) and, by choosing c sufficiently large, we can make �(x) = φ(x) + c(β −m(x)) > y.
This concludes the proof of the first claim.

Let us now prove the last claim. Since x ∈ int(dom(f)) and f(x) > −∞, a support
hyperplane P ′ of Epi(f) at (x, f(x)) does not contain vertical vectors: otherwise none
of the two subspaces associated to P ′ could contain Epi(f). Hence P ′ := {(x, y) |m(x)+
αy = β} for some linear map m and numbers α, β ∈ R with

m(x) + αy ≥ β ∀(x, y) ∈ Epi(f), m(x) + αf(x) = β,

and α > 0. If �(x) := −m(x)/α, we see at once that

f(x) ≥ f(x) + �(x− x) ∀x ∈ Rn.

��
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2.106 Remark. The previous proof yields the existence of a nontrivial
lower affine minorant for f which is arbitrarily close to f(x) at x when f
is l.s.c. at x ∈ Rn, f(x) > −∞ and one the following conditions hold:

◦ f(x) ∈ R,
◦ f = +∞ everywhere,
◦ f(x) = +∞ and there exists a further point x0 ∈ Rn such that f(x0) ∈ R
and f is l.s.c. at x0.

Notice also that if f is convex, then f(x) > −∞ and x ∈ int(dom(f))
if and only if f is continuous at x, see Theorem 2.35.

2.107 Corollary. If f : Rn → R is convex and l.s.c. and f(x) > −∞ at
some point x, then f > −∞ everywhere.

2.108 Definition. Let f : Rn → R be a function. Its linear l.s.c. envelope
ΓL f : Rn → R is defined by

ΓL f(x) := sup
{
�(x)

∣∣∣ � : Rn → R, � affine, � ≤ f
}
. (2.75)

and, of course, ΓL f(x) = −∞ ∀x if no affine linear map � below f exists.

2.109 Theorem. Let f : Rn → R.

(i) ΓL is convex and l.s.c.
(ii) f is convex and l.s.c. if and only if f(x) = ΓL f(x) ∀x ∈ Rn.
(iii) Assume f is convex. If at some point x ∈ Rn we have f(x) < +∞,

then f(x) = ΓL f(x) if and only if f is l.s.c. at x.
(iv) If x is an interior point of the effective domain of f and f(x) > −∞,

then the supremum in (2.75) is a maximum, i.e., there exists ξ ∈ Rn

such that
f(y) ≥ f(x) + ξ • (y − x) ∀y.

Proof. Since the supremum of a family of convex and l.s.c. functions is convex and l.s.c.,
(2.75) implies that ΓL f(x) is convex and l.s.c.. If ΓL f(x) = −∞ for all x, then, trivially,
ΓL is convex and l.s.c.. This proves (i), (ii) and (iii) are trivial if f is identically −∞,
and easily follow from the above and (i) of Proposition 2.105, taking also into account
Remark 2.106. Finally, (iv) rephrases (ii) of Proposition 2.105. ��

The following observation is sometimes useful.

2.110 Proposition. Let f : Rn → R be convex and l.s.c. and let r(t) =
(1− t)x+ tx, t ∈ [0, 1], be the segment joining x to x. Suppose f(x) < +∞.
Then

f(x) = lim
t→0+

f(r(t)).

Proof. Since f(x) < +∞,

f(x) ≤ lim inf
t→0+

f(tx + (1 − t)x) ≤ lim
t→0

(
t f(x) + (1− t)f(x)

)
= f(x).

��
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c. The Fenchel transform

2.111 Definition. Let f : Rn → R. The polar or Fenchel transform of f
is the function f∗ : Rn → R defined by

f∗(ξ) := sup
x∈Rn

(
ξ •x − f(x)

)
= − inf

x∈Rn

(
f(x)− ξ •x

)
. (2.76)

As we will see, the Fenchel transform rules the entire mechanism of
convex duality.

2.112 Proposition. Let f : Rn → R be a function and f∗ : Rn → R its
polar. Then we have the following:

(i) f(x) ≥ ξ •x − η ∀x if and only if f∗(ξ) ≤ η;
(ii) f∗(ξ) = −∞ for some ξ if and only if f(x) = +∞ for all x;
(iii) if f ≤ g, then g∗ ≤ f∗;
(iv) f∗(0) = − infx∈Rn f(x);
(v) the Fenchel inequality holds

ξ •x ≤ f∗(ξ) + f(x) ∀x ∈ Rn ∀ξ ∈ Rn,

with equality at (x, ξ) if and only if f(x) ≥ f(x) + ξ • (x− x) .
(vi) f∗ is l.s.c. and convex.

Proof. All of the claims follow immediately from the definition of f∗. ��

The polar transform generalizes Legendre’s transform.

2.113 Proposition. Let Ω be an open set in Rn, let f : Ω → R be a
convex function of class C2 with positive definite Hessian matrix and let
ΓL f be the l.s.c linear envelope of f . Then

Lf (ξ) = (ΓL f)∗(ξ) ∀ξ ∈ Df(Ω).

Proof. According to Theorem 2.109, f(x) = ΓL f(x) for all x ∈ Ω, while Theorem 2.109
yields for all ξ ∈ Df(Ω)

Lf (ξ) = max
Ω

( x • ξ − f(x)) ≤ sup
x∈Rn

(x • ξ − ΓL f(x)) = (ΓL f)∗(ξ).

On the other hand,

(ΓL f)∗(ξ) = sup
x∈Ω

( x • ξ − ΓL f(x)) =: L.

Given ε > 0, let x ∈ Ω be such that L < x • ξ − ΓL f(x) + ε. There exists {xk} ⊂ Ω

such that f(xk) = ΓL f(xk) → ΓL f(x), hence for k > k

L ≤ xk • ξ − f(xk) + 2ε ≤ sup
x∈Ω

(x • ξ − f(x)) + 2ε.

Since ε > 0 is arbitrary, L ≤ supx∈Ω(x • ξ − f(x)) and the proof is completed. ��
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The polar of a closed convex set is subsumed to the Fenchel transform,
too. In fact, if K is a closed convex set, its indicatrix function, see (2.72),
is l.s.c. and convex; hence

(IK)∗(ξ) := sup
x∈Rn

(
ξ •x − IK(x)

)
= sup

x∈K
ξ •x . (2.77)

Therefore,

K∗ =
{
ξ
∣∣∣ x • ξ ≤ 1 ∀x ∈ K

}
=
{
ξ
∣∣∣ (IK)∗(ξ) ≤ 1

}
.

2.114 Definition. Let f : Rn → R be a function. Its bipolar is defined
as the function f∗∗(x) := (f∗)∗(x) : Rn → R, i.e.,

f∗∗(x) := sup
{
ξ •x − f∗(ξ)

∣∣∣ ∀ξ ∈ Rn
}
.

2.115 ¶. Let �(x) := η •x + β be a linear affine map on Rn. Prove that

�∗(ξ) =

⎧⎨⎩+∞ if ξ �= η,

−β if ξ = η,

and that (�∗)∗(x) = η •x + β = �(x).

2.116 Proposition. Let f : Rn → R be a function. Then

(i) f∗∗ ≤ f ,
(ii) f∗∗ ≤ g∗∗ if f ≤ g,
(iii) f∗∗ is the largest l.s.c. convex minorant of f ,

f∗∗(x) = ΓL f(x) = sup
{
�(x)

∣∣∣ � : Rn → R, � affine, � ≤ f
}
.

Proof. (i) From the definition of f∗ we have ξ •x − f∗(ξ) ≤ f(x), hence f∗∗(x) =
supξ∈Rn ( ξ •x − f∗(ξ)) ≤ f(x).

(ii) if f ≤ g, then g∗ ≤ f∗ hence (f∗)∗ ≤ (g∗)∗.
(iii) f∗∗ is convex and l.s.c. , hence f∗∗ = ΓL f∗∗. On the other hand, every linear affine
minorant � of f is also an affine linear minorant for f∗∗, since � = �∗∗ ≤ f∗∗. Therefore
ΓL f∗∗ = ΓL f . ��

The following theorem is an easy consequence of Proposition 2.116.

2.117 Theorem. Let f : Rn → R. Then we have the following:

(i) f is convex and l.s.c. if and only if f = f∗∗.
(ii) Assume that f is convex and f(x) < +∞ at some x ∈ Rn. Then

f(x) = f∗∗(x) if and only if f is l.s.c. at x.
(iii) f∗ is an involution on the class of proper, convex and l.s.c. functions.

Proof. Since f∗∗(x) = ΓL f(x), (i) and (ii) are a rewriting of (ii) and (iii) of Theo-
rem 2.109.

(iii) Let f be convex, l.s.c, and proper. By (ii) of Proposition 2.112 f∗(ξ) > −∞ for
every ξ if and only if f(x) < +∞ at some x, and f∗∗(x) > −∞ for every x if and only if
f∗(ξ) < +∞ at some ξ. Since f∗∗ = f by (i), we conclude that f∗ is proper. Similarly
one proves that f = f∗∗ is proper if f∗ is convex, l.s.c and proper. ��
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d. Convex duality revisited

Fenchel duality resumes the mystery of convex duality. Let f : Rn →
R ∪ {+∞} be a function and consider the primal problem

(P) f(x) → min

and let
p := inf

x
f(x).

Introduce a function φ(x, b) : Rn × Rm → R such that φ(x, 0) = f(x) and
consider the value function of problem (P) (associated to the “perturbation
φ”)

v(b) := inf
x
φ(x, b). (2.78)

We have v(0) = p.
Compute now the polar v∗(ξ), ξ ∈ Rm, of the value function v(b). The

dual problem of problem (P) by means of the chosen perturbation φ(x, b)
is the problem

(P∗) −v∗(ξ) → max.

Let d := supξ −v∗(ξ). Then v∗∗(0) = d, in fact,

v∗∗(0) = sup
ξ

{
0 • ξ − v∗(ξ)

}
= d.

The following theorem connects the existence of a maximizer of the
dual problem (P∗) with the regularity properties of the value function v
of the primal problem (P). This is the true content of convex duality.

2.118 Theorem. With the previous notations we have the following:

(i) p ≥ d.
(ii) Assume v convex and v(0) < +∞. Then p = d if and only if v is

l.s.c. at 0.
(iii) Assume v convex and v(0) ∈ R. Then v(b) ≥ η • b + v(0) ∀b if and

only if v is l.s.c. at 0 (equivalently p = d by (ii)) and η is a maximizer
for problem (P∗).

In particular, if v is convex and continuous at 0, then p = d and (P∗) has
a maximizer.

Proof. (i) Since v∗∗ ≤ v from Proposition 2.116, we get d = v∗∗(0) ≤ v(0) = p.

(ii) Since p = d means v(0) = v∗∗(0), (ii) follows from (ii) of Theorem 2.117.

(iii) Assume v convex and v(0) ∈ R. If v(b) ≥ η • b + v(0) ∀b, we infer v(0) = v∗∗(0),
hence by (ii), we conclude that v is l.s.c. at 0. Moreover, the inequality v(b) ≥ η • b+v(0)
∀b is equivalent to v(0) + v∗(η) = 0 by the Fenchel inequality. Consequently, −v∗(η) =
v(0) = v∗∗(0) = d, i.e., η is a maximizer for (P∗).

Conversely, if η maximizes (P∗) and v is l.s.c. at 0, then we have −v∗(η) = d =
v∗∗(0) and v(0) = v∗∗(0) by (ii). Therefore v(0) + v∗(η) = 0, which is equivalent to
v(b) ≥ η • b + v(0) ∀b by the Fenchel inequality. ��
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The following proposition yields a sufficient condition for applying The-
orem 2.118.

2.119 Proposition. With the previous notations, assume that φ is convex
and that there exists x0 such that p �→ φ(x0, p) is continuous at 0. Then
v is convex and 0 ∈ int(dom(v)). If, moreover, v(0) > −∞, then v is
continuous at 0.

Proof. Let us prove that v is convex since φ is convex. Choose p, q ∈ Rn and λ ∈ [0, 1].
We have to prove that v(λp + (1 − λ)q) ≤ λv(p) + (1 − λ)v(q). It is enough to assume
v(p), v(q) < +∞. For a > v(p) and b > v(q), let x and y be such that

v(p) ≤ φ(x, p) ≤ a, v(q) ≤ φ(y, q) ≤ b.

Then we have

v(λp + (1− λ)q) = inf
z

φ(z, λp+ (1 − λ)q) ≤ φ(λx+ (1− λ)y, λp + (1 − λ)q)

≤ λφ(x, p) + (1− λ)φ(y, q) ≤ λa+ (1− λ)b.

Letting a → v(p) and b → v(q) we prove the convexity inequality.

(ii) Since φ(x0, b) is continuous at 0, φ(x0, b) is bounded near 0; i.e., for some δ,M > 0,
φ(x0, b) ≤ M ∀b ∈ B(0, δ). Therefore

v(b) = inf
x

φ(x, b) ≤ M ∀b ∈ B(0, δ),

i.e., 0 ∈ int(dom(v)). If, moreover, v(0) > −∞, then v is never −∞. We then conclude
that v takes only real values near 0, consequently, v is continuous at 0. ��

A more symmetrical description of convex duality follows assuming
that the perturbed functional φ(x, b) is convex and l.s.c.. In this case, we
observe that

v∗(ξ) = φ∗(0, ξ),

where φ∗(p, ξ) is the polar of φ on Rn × Rm. In fact,

φ∗(0, ξ) = sup
x,b

{
0 •x + b • ξ − φ(x, b)

}
= sup

x,b

{
b • ξ − φ(x, b)

}
= sup

b

{
b • ξ − inf

x
φ(x, b)

}
= v∗(ξ).

The dual problem (P∗) then rewrites as

(P∗) −φ∗(0, ξ) → max,

and the corresponding value function is then −w(p), p ∈ Rm,

w(p) := inf
ξ
φ∗(p, ξ).

Since φ∗∗ = φ, the dual problem of (P∗), namely

(P∗∗) φ∗∗(x, 0) → min
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is again (P). We say that (P) and (P∗) are dual to each other. Therefore
convex duality links the equality infx φ(x, 0) = supξ φ

∗(0, ξ) and the exis-
tence of solutions of one problem to the regularity properties of the value
function of the dual problem.

There is also a connection between convex duality and min-max prop-
erties typical in game theory. Assume for simplicity that φ(x, b) is convex
and l.s.c. The Lagrangian associated to φ is the function L : Rn×Rm → R
defined by

−L(x, ξ) := sup
b∈Rm

{
b • ξ − φ(x, b)

}
,

i.e.,
L(x, ξ) = −φ∗

x(ξ)

where φx(b) := φ(x, b) for every x and b.

2.120 Proposition. Let φ be convex. Then the following hold:

(i) For any x ∈ Rn, ξ → L(x, ξ) is concave and upper semicontinuous.
(ii) For any ξ ∈ Rn, x → Lx(x, ξ) is convex.

Proof. (i) is trivial since −L is the supremum of a family of linear affine functions. For
(ii) observe that L(x, ξ) = infb{φ(x, b) − ξ • b }. Let u, v ∈ Rn and let λ ∈ [0, 1]. We
want to prove that

L(λu+ (1− λ)v) ≤ λL(u, ξ) + (1− λ)L(v, ξ). (2.79)

It is enough to assume that L(u, ξ) < +∞ and L(v, ξ) < +∞. For a > L(u, ξ) and
b > L(v, ξ) let b, c ∈ Rm be such that

L(u, ξ) ≤ φ(u, b)− ξ • b ≤ α,

L(v, ξ) ≤ φ(v, c)− ξ • c ≤ β.

Then we have

L(λu+ (1 − λ)v, ξ) ≤ φ(λu+ (1− λ)v, λb+ (1 − λ)c)− ξ •λb+ (1 − λ)c

≤ λφ(u, b) + (1− λ)φ(v, c)− λ ξ • b − (1 − λ) ξ • c
≤ λα+ (1− λ)β.

Letting α ↓ L(u, b) and β ↓ L(v, c), (2.79) follows. ��

Observe that

φ∗(p, ξ) = sup
x,b

{ p •x + b • ξ − φ(x, b)}

= sup
x
{ p •x + sup

b
{ b •ξ − φ(x, b)}}

= sup
x
{ p •x − L(x, ξ)}.

(2.80)

Consequently,
d = sup

ξ
−φ∗(0, ξ) = sup

ξ
inf
x
L(x, ξ). (2.81)

On the other hand, for every x, b → φx(b) is convex and l.s.c., hence
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φ(x, b) = φx(b) = φ∗∗
x (b) = sup

ξ
{ b •ξ − φ∗

x(ξ)} = sup
ξ
{ b •ξ + L(x, ξ)}.

Consequently,
p = inf

x
φ(x, 0) = inf

x
sup
ξ

L(x, ξ).

Therefore, the inequality d ≤ p is a min-max inequality supξ infx L(x, ξ) ≤
infx supξ L(x, ξ) for the Lagrangian, see Section 2.4.8. In particular, the
existence of solutions for both (P) and (P∗) is related to the existence of
saddle points for the Lagrangian, see Proposition 2.88.

The above applies surprisingly well in quite a number of cases.

2.121 Example. Let ϕ be convex and l.s.c. Consider the perturbed function φ(x, b) :=
ϕ(x + b). The value function v(b) is then constant, v(b) = v(0) ∀b, hence convex and
l.s.c. Its polar is

v∗(ξ) := sup
x

{ ξ • b − v(0)} =

⎧⎨⎩+∞ if ξ �= 0,

−v(0) if ξ = 0.

The dual problem has then a maximum point at ξ = 0 with maximum value d = v(0).
Finally, we compute its Lagrangian: Changing variable c := x+ b,

L(x, ξ) = − sup
b

{ ξ • b − ϕ(x+ b)} = − sup
c

{ ξ • c − ξ •x − ϕ(c)} = ξ •x − ϕ∗(ξ).

Let ϕ, ψ : Rn → R ∪ {+∞} be two convex functions and consider the
primal problem

Minimize ϕ(x) + ψ(x), x ∈ Rn. (2.82)

Introduce the perturbed function

φ(x, b) = ϕ(x + b) + ψ(x), (x, b) ∈ Rn × Rn, (2.83)

for which φ(x, 0) = ϕ(x) + ψ(x), and the corresponding value function

v(b) := inf
x
(ϕ(x) + ψ(x)). (2.84)

Since φ is convex, then the value function v is convex, whereas the La-
grangian L(x, ξ) is convex in x and concave in ξ. Let us first compute the
Lagrangian. We have

−L(x, ξ) := sup
b
{ ξ • b − ϕ(x + b)− ψ(x)} = ϕ∗(ξ)− ξ •x − ψ(x)

so that
L(x, ξ) = ψ(x) + ξ •x − ϕ∗(ξ).

Now we compute the polar of φ. We have

φ∗(p, ξ) = sup
x
{ p •x − L(x, ξ)} = sup

x
{ p •x − ξ •x − ψ(x) + ϕ∗(ξ)}

= sup
x
{ (p− ξ) •x − ψ(x)} + ϕ∗(ξ)

= ψ∗(p− ξ) + ϕ∗(ξ).
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Therefore, the polar of (2.84) is

v∗(ξ) = φ∗(0, ξ) = ϕ∗(ξ) + ψ∗(−ξ) ∀ξ ∈ Rn.

As an application of the above we have the following.

2.122 Theorem. Let ϕ and ψ be as before, and let φ and v be defined by
(2.83) and (2.84). Assume that we have ϕ continuous at x0, ψ(x0) < +∞
at some point x0 and that v(0) > −∞. Let p and d be defined by the primal
and dual optimization problems respectively, through (x, b) → ϕ(x + b) +
ψ(x), given by

p := inf
x
(ϕ(x) + ψ(x)), (2.85)

d : = sup
ξ
(−ϕ∗(ξ)− ψ∗(−ξ)). (2.86)

Then p = d ∈ R and problem (2.86) has a maximizer.

Proof. φ(x, b) := ϕ(x+ b)+ψ(x) is convex. Moreover, since ϕ is continuous at x0, then
b → φ(x0, b) is continuous at 0. From Proposition 2.119 we then infer that v is convex
and continuous at 0. Then the conclusions follow from Theorem 2.118. ��

2.123 Example. Let ϕ be convex. Choose as perturbed functional

φ(x, b) = ϕ(x+ b) + ϕ(x)

for which φ(x, 0) = 2ϕ(x). Then, by the above,

v∗(ξ) = ϕ∗(ξ) + ϕ∗(−ξ)

and the Lagrangian is
L(x, ξ) = ϕ(x) + ξ •x − ϕ∗(ξ).

Let us consider the convex minimization problem already discussed in
Paragraph d. Here we extend it a little further.

Let f, g1, . . . , gm : Rn ⊂ Rn → R∪+∞ be convex functions defined on
Rn. We assume for simplicity that either f or g := (g1, g2, . . . , gm) are
continuous. Consider the primal minimization problem

Minimize f(x) with the constraints g(x) ≤ 0. (2.87)

Let IK be the indicatrix of the closed convex set K := {x = (xi) ∈
Rn |xi ≤ 0 ∀i}. Problem (2.87) amounts to

(P) f(x) + IK(g(x)) → min.

Let us introduce the perturbed function

φ(x, b) := f(x) + IK(g(x)− b)

which is convex. Consequently, the associated value function

v(b) := sup
x
(f(x) + IK(ϕ(x) − b)), b ∈ Rm, (2.88)
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is convex by Proposition 2.119. Now, compute the polar of the value func-
tion. First we compute the polar of IK(y). We have

I∗K(ξ) = sup
b
{ ξ • b − IK(b)} =

{
0 if ξ ≥ 0,

+∞ if ξ < 0.

Therefore, changing variables, c = g(x)− b,

−L(x, ξ) = sup
b
{ ξ • b − f(x)− IK(g(x)− b)}

= −f(x) + sup
c
{ ξ •g(x) − ξ • c − Ik(c)}

= −f(x) + g(x) • ξ + (IK)∗(−ξ),

hence

L(x, ξ) =

{
f(x)− ξ •g(x) if ξ ≤ 0,

−∞ if ξ > 0.

Notice that supξ L(x, ξ) = f(x) + IK(g(x)) = φ(x, 0). Consequently,

φ∗(p, ξ) = inf
x

p •x − L(x, ξ) =

{
+∞ if ξ > 0

supx{ p •x − f(x) + g(x) • ξ } if ξ ≤ 0,

and the polar of the value function is

v∗(ξ) = φ∗(0, ξ) = sup
x
{ g(x) • ξ − f(x)}.

Consequently, the dual problem through the perturbation φ is

(P∗) −v∗(ξ) := infx{f(x)− ξ •ϕ(x) } → max on {ξ ≥ 0}.

2.124 Theorem. Let f, g1, . . . , gm : Rn ⊂ Rn → R ∪ {+∞} be convex
functions defined on Rn. Let p and d be defined by the primal and dual
optimization problems

p : = inf
x
(f(x) + IK(g(x))), (2.89)

d := sup
ξ

inf
x

L(x, ξ). (2.90)

Assume that p > −∞ and that the Slater condition holds (namely there
exists x0 ∈ Rn such that f(x0) < +∞, g(x0) < 0 and g is continuous at
x0). Then the dual problem has a maximizer.

Proof. The function φ(x, b) = f(x) + IK(g(x) − b) is convex. Moreover the Slater con-
dition implies that φ(x0, b) is continuous at 0. We then infer from Proposition 2.119
that the value function v is convex and continuous at 0. The claims then follow from
Theorem 2.118. ��



146 2. Convex Sets and Convex Functions

2.6 Exercises

2.125 ¶. Prove that the n-parallelepiped of Rn generated by the vectors e1, . . . , en with
vertex at 0,

K := {x = λ1e1 + · · ·+ λnen | 0 ≤ λi ≤ 1, i = 1, . . . , n},
is convex.

2.126 ¶. K1 + K2, αK1, λK1 + (1 − λ)K2, λ ∈ [0, 1], are all convex sets if K1 and
K2 are convex.

2.127 ¶. Show that the convex hull of a closed set is not necessarily closed.

2.128 ¶. Find out which of the following functions is convex:

3x2 + yy − 4z2, x+ x2 + y2, (x+ y + 1)p in x+ y + 1 > 0,

exp(xy), log(1 + x2 + y2), sin(x2 + y2).

2.129 ¶. Let K be a convex set. Prove that the following are convex functions:

(i) The support function δ(x) := sup{x •y | y ∈ K}.
(ii) The gauge function γ(x) := inf{λ ≥ 0 |x ∈ λK}.
(iii) The distance function d(x) := inf{|x− y| | y ∈ K}.

2.130 ¶. Prove that K ⊂ Rn is a convex body with 0 ∈ int(K) if and only if there is
a gauge function F : Rn → R such that K = {x ∈ Rn |F (x) ≤ 1}.

2.131 ¶. Let K ⊂ Rn with 0 ∈ K, and for every ξ ∈ Rn set

d(ξ) := inf
{
d ∈ R

∣∣∣ ξ •x ≤ d ∀x ∈ K
}
.

Prove that if K is convex with 0 ∈ int(K), then d(ξ) is a gauge function, i.e.,

d(ξ) := min
{
ξ •x

∣∣∣x ∈ K
}

and

K∗ :=
{
ξ ∈ Rn

∣∣∣ d(ξ) ≤ 1
}
.

2.132 ¶. Let f : R+ → R be strictly convex with f(0) = 0 and f ′(0) = 0. Write
α(s) := (f ′)−1(s) and prove that

f(x) :=

∫ x

0
f ′(s) ds, Lf (y) :=

∫ y

0
α(s) ds, y ≥ 0.

2.133 ¶. Let f : [0, 1] × [0, 1] → R be a function which is continuous with respect to
each variable separately. As we know, f need not be continuous. Prove that f(t, x) is
continuous if it is convex in x for every t.

2.134 ¶. Let C ⊂ Rn be a closed convex set. Prove that x0 ∈ C is an extreme point if
and only if C \ {x0} is convex.

2.135 ¶. Let C ⊂ Rn be a closed convex set and let f : C → R be a continuous, convex
and bounded function. Prove that supC f = sup∂C f .
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2.136 ¶. Let S be a set and C = co(S) its convex hull. Prove that supC f = supS f if
f is convex on C.

2.137 ¶. Let f : Rn → R be a convex function and let fε be its ε-mollified where k is
a regularizing kernel. Prove that fε is convex.

2.138 ¶. Let ϕ : R → R, ϕ ≥ 0. Then f(x, t) := ϕ(x)
t

is convex in R×]0,∞[ if and only
if
√
ϕ is convex.

2.139 ¶. Let f : Rn → R be a convex function. Prove the following:

(i) If Γf(x) �= f(x), then x ∈ ∂ dom(f).
(ii) If dom(f) is closed and f is l.s.c. in dom(f), then Γf = f everywhere.
(iii) inf f = inf Γf .
(iv) For all α ∈ R we have {x ∈ Rn |Γf(x) ≤ α} = ∩β>α cl({x ∈ Rn | f(x) ≤ β}).
(v) If f1 and f2 are convex functions with f1 ≤ f2, then Γf1 ≤ Γf2.

2.140 ¶. Let f be a l.s.c. convex function and denote by F the class of affine functions
� : Rn → R with �(y) ≤ f(y) ∀y ∈ Rn. From Theorem 2.109

f(x) = sup
{
�(x)

∣∣∣ � ∈ F
}
.

Prove that there exists an at most denumerable subfamily {�n} ⊂ F such that f(x) =
supn �n(x).
[Hint. Recall that every covering has a denumerable subcovering.]

2.141 ¶. Let f : Rn → R∪{+∞} be a function. Its convex l.s.c. envelope ΓC f : Rn →
R ∪ {+∞} is defined by

ΓC f(x) := sup
{
g(x)

∣∣∣ g : Rn → R ∪ {+∞}, g convex and l.s.c., g ≤ f
}
.

Prove that ΓC f = ΓL f .
[Hint. Apply Theorem 2.109 to the convex and l.s.c. minorants of f .]

2.142 ¶. Prove the following: If {fi}i∈I is a family of convex and l.s.c. functions fi :
Rn → R ∪ {+∞}, then(

inf
i∈I

fi
)∗

= sup
i∈I

f∗
i ,

(
sup
i∈I

fi
)∗ ≤ inf

i∈I
f∗
i .

2.143 ¶. Prove the following claims:

(i) Let f(x) := 1
p
|x|p, p > 1. Then f∗(ξ) = 1

q
|ξ|q, 1/p + 1/q = 1.

(ii) Let f(x) := |x|, x ∈ Rn. Then

f∗(ξ) =

⎧⎨⎩0 if |ξ| ≤ 1,

+∞ if |ξ| > 1.

(iii) Let f(t) := et, t ∈ R. Then

f∗(ξ) =

⎧⎪⎪⎨⎪⎪⎩
+∞ if y ≤ 0,

0 if y = 0,

ξ(log ξ − 1) if y > 0.
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(iv) Let f(x) :=
√

1 + |x|2. Then Lf is defined on Ω∗ := {ξ | |ξ| < 1} and

Lf (ξ) = −
√

1− |ξ|2,

consequently,

f∗(ξ) = ΓLLf (ξ) =

⎧⎨⎩−
√

1− |ξ|2 if |ξ| ≤ 1,

+∞ if |ξ| > 1.

(v) The function f(x) = 1
2
|x|2 is the unique function for which f∗(x) = f(x).

2.144 ¶. Show that the following computation rules hold.

Proposition. Let f : Rn → R be a function. Then the following hold:

(i) (λf)∗(ξ) = λf∗(ξ/λ) ∀ξ ∈ Rn and ∀λ > 0.
(ii) If we set fy(x) := f(x − y), then we have f∗

y (ξ) = f∗(ξ) + ξ •y ∀ξ ∈ Rn and
∀y ∈ Rn.

(iii) Let A ∈ MN,n(R), N ≤ n, be of maximal rank and let g(x) := f(Ax). Then

g∗(ξ) =

⎧⎨⎩+∞ if ξ �∈ kerA⊥,

f∗(A−T ξ) if ξ ∈ kerA⊥ = ImAT .

2.145 ¶. Let A ⊂ Rn and IA(x) be its indicatrix, see (2.72). Prove the following:

(i) If L is a linear subspace if Rn, then (IL)
∗ = IL⊥ .

(ii) If C is a closed cone with the origin as vertex, then (IC)∗ is the indicatrix function
of the cone generated by the vectors through the origin that are orthogonal to C.
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