
Chapter 2
Basics of Game Theory

Abstract This chapter provides a brief overview of basic concepts in game theory.
These include game formulations and classifications, games in extensive vs. in nor-
mal form, games with continuous action (strategy) sets vs. finite strategy sets, mixed
vs. pure strategies, and games with uncoupled (orthogonal) vs. coupled action sets.
The next section reviews basic solution concepts, among them Nash equilibria being
of most relevance. The chapter is concluded with some remarks on the rationality
assumption and learning in classical games. The following chapters will introduce
these concepts formally.

2.1 Introduction

Game theory is a branch of applied mathematics concerned with the study of situ-
ations involving conflicting interests. Specifically game theory aims to mathemat-
ically capture behavior in strategic situations, in which an individual’s success in
making choices depends on the choices of others. The field was born with the work
of John von Neumann and Oskar Morgenstern [159], although the theory was de-
veloped extensively in the 1950s by many among whom John Nash [95, 96].

In this chapter we shall introduce the game-theoretic notions in simplest terms.
Our goal will be later on to study and formalize mathematically various game prob-
lems, by which we understand problems of conflict with common strategic features.
While initially developed to analyze competitions in which one individual does bet-
ter at another’s expense (zero-sum games), it has been expanded to treat a wide
class of interactions, which are classified according to several criteria, one of these
being cooperative versus noncooperative interactions. Typical classical games are
used to model and predict the outcome of a wide variety of scenarios involving a
finite number of players (or agents) that seek to optimize some individual objective.
Noncooperative game theory studies the strategic interaction among self-interested
players.

Historically, game theory developments were motivated by studies in economics,
but many interesting game theory applications have emerged in fields as diverse as
biology [141], computer science [54], social science and engineering [74]. In engi-
neering, the interest in noncooperative game theory is motivated by the possibility
of designing large scale systems that globally regulate their performance in a dis-
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tributed, and decentralized manner. Modeling a problem within a game-theoretic
setting is particularly relevant to any practical application consisting of separate
subsystems that compete for the use of some limited resource. Examples of such
applications include most notably congestion control in network traffic (i.e. Inter-
net, or transportation), problems of optimal routing [11, 13, 14], power allocation in
wireless communications and optical networks [118, 133].

The chapter is organized as follows. We present basic concepts and game formu-
lations, then we review some classifications: games in extensive vs. in normal form,
games with continuous (infinite) action (strategy) set vs. finite action (finite strategy
games), mixed vs. pure strategy games, and games with uncoupled (orthogonal) vs.
coupled action sets. We follow with a discussion of basic solution concepts, among
them Nash equilibria being of most relevance herein. We conclude with some re-
marks on the rationality assumption and learning in classical games.

2.2 Game Formulations

Game theory involves multiple decision-makers and sees participators as competi-
tors (players). In each game players have a sequence of personal moves; at each
move, each player has a number of choices from among several possibilities, also
possible is the chance or random move. At the end of the game there is some payoff
to be gained (cost to be paid) by the players which depends on how the game was
played. Noncooperative game theory [96] studies the strategic interaction among
self-interested players. A game is called noncooperative if each player pursues its
own interests which are partly conflicting with others’. It is assumed that each player
acts independently without collaboration or communication with any of the oth-
ers [96].

This is in contrast to a standard optimization where there is only one decision-
maker who aims to minimize an objective function by choosing values of variables
from a constrained set such that the system performance is optimized (see the ap-
pendix for a review of basic results, mainly drawn from [24]).

So far we have mentioned three elements: alternation of moves (individual or ran-
dom (chance)), a possible lack of knowledge and a payoff or cost function. A game
G consists of a set of players (agents) M = {1, . . . ,m}, an action set denoted Ωi

(also referred to as a set of strategies Si ) available for each player i and an individ-
ual payoff (utility) Ui or cost function Ji for each player i ∈M.

In a game, each player individually takes an optimal action which optimizes its
own objective function and each player’s success in making decisions depends on
the decisions of the others. We define a noncooperative game G as an object specified
by the triplet (M, S,Ω,J), where

S = S1 × S2 × · · · × Sm

is known as the strategy space,

Ω = Ω1 × Ω2 × · · · × Ωm
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is the action space, and J : Ω → Rm, defined as

J(u) = [
J1(u), . . . , Jm(u)

]T
, u ∈ Ω

is the vector of objective functions associated to each of the m players, or agents
participating in the game. In some cases (see Chap. 12) a graph notation might be
more appropriate than the set M notation. Conventionally J represents a vector of
cost functions to be minimized by the agents. An alternative formulation is to use
a vector of utility functions (payoff functions) U to be maximized by the agents.
Without loss of generality we assume that each agent aims to minimize its cost so
we will use J throughout. Since usually we shall identify each player’s action set
and cost function we shall use the notation G(M, Si,Ωi, Ji), where the subscript is
associated to each player i, i ∈ M. In some cases we shall identify strategies with
actions (one-shot games) and drop one of the arguments. The properties of the sets
Ωi and the functions Ji(u), i ∈M depend on the modeling scenario, and hence the
type of game under consideration.

Each player’s success in making decisions depends on the decisions of the oth-
ers. Let Ωi denote the set of actions available to player i, which can be finite or
infinite. This leads to either finite actions set games, also known as matrix games, or
infinite (continuous action set) games. In the latter case each player can choose its
action from a continuum of (possibly vector-valued) alternatives. A strategy can be
regarded as a rule for choosing an action, depending on external conditions. Once
such a condition is observed, the strategy is implemented as an action. In the case of
mixed strategies, this external condition is the result of some randomization process.
Briefly, a mixed strategy for agent i is a probability distribution xi over its action
set Ωi . In some cases actions are pure, or independent of any external conditions,
and the strategy space coincides with the action space. In discussing games in pure
strategies we shall use the term “strategy” and “action” interchangeably to refer to
some u ∈ Ω , and the game G can simply be specified as the pair G(M,Ωi, Ji).

In the introduction we have already distinguished between cooperative and non-
cooperative games. There are numerous other classifications of games, but only a
few are relevant to our purposes in this monograph. We will briefly review the dis-
tinctions between these types of game and introduce these concepts for possible
forms of a game as well as what we understand by various solution concepts.

2.3 Games in Extensive Form

The extensive form of a game amounts to a translation of all the rules into technical
terms of a formal system designed to describe all games.

Extensive-form games generally involve several acts or stages, and each player
chooses a strategy at each stage. The game’s information structure, i.e., how much
information is revealed to which players concerning the game’s outcomes and their
opponents’ actions in the previous stages, significantly affects the analysis of such
games. Extensive-form games are generally represented using a tree graph. Each
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node (called a decision node) represents every possible state of play of the game
as it is played [20]. Play begins at a unique initial node, and flows through the tree
along a path determined by the players until a terminal node is reached, where play
ends and cost s are assigned to all players. Each non-terminal node belongs to a
player; that player chooses among the possible moves at that node, each possible
move is an edge leading from that node to another node. Their analysis becomes
difficult with increasing numbers of players and game stages.

A formal definition is as follows.

Definition 2.1 An m-player game G in an extensive form is defined as a graph
theoretic tree of vertices (states) connected by edges (decisions or choices) with
certain properties:

1. G has a specific vertex called the starting point of the game,
2. a function called the cost function which assigns an m-vector (tuple) J1, . . . , Jm

to each terminal vertex (outcome) of the game G, where Ji denotes the cost of
player i, M = {1, . . . ,m},

3. each non-terminal vertex of G is partitioned into m + 1 possible sets,
S0,S1, . . . ,Sm called the player sets, where S0 stands for the choice of chance
(nature),

4. each vertex of S0 has a probability distribution over the edges leading from it,
5. the vertices of each player Si , i = 1, . . . ,m are partitioned into disjoint subsets

known as information sets, Si,j , such that two vertices in the same information
set have the same number of immediate (choices/edges) followers and no vertex
can follow another vertex in the same information set.

As a consequence of (5) a player knows which information set he is in but not
which vertex of the information set.

A player i is said to have perfect information in a game G is each information
set for this player consists of one element. The game G in extensive form is said
to have perfect information if every player has perfect information. A pure strategy
for player i denoted by ui is defined as a function which assigns to each of player’s
i information sets Si,j , one of the edges leading from a representative vertex in
this set Si,j . As before we denote by Ωi the set of all pure strategies of player i,
ui ∈ Ωi and by u = (u1, . . . , um) the m-tuple of all players strategies, with u ∈ Ω =
Ω1 ×· · ·×Ωm. A game in extensive form is finite if it has a finite number of vertices,
hence each player has only a finite number of strategies. Let us look at a couple of
examples.

Example 2.2 In the game of Matching Pennies (see Fig. 2.1) player 1 chooses
“heads” (H) or “tails” (T), player 2, not knowing this choice, also chooses between
H or T. If the two choose alike (matching) than player 2 wins 1 cent from player 1
(hence +1 for player 2 and −1 for player 1); else player 1 wins 1 cent from player
2 (reverse case). The game tree is shown below with vectors at the terminal vertices
indicating the cost function, while the number near vertices denote the player to
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Fig. 2.1 Game of matching
pennies in extensive form

Fig. 2.2 Game of matching
pennies in extensive form

Fig. 2.3 Game of matching
pennies in extensive form

whom the move corresponds. The dotted (shaded) area indicates moves in the same
information set.

The next two figures show other two zero-sum game examples which differ by the
information available to player 2 at the time of its play (information set), denoted
by the shaded area (dotted). In the first case, Fig. 2.2, the two possible nodes of
player 2 are in the same information set, implying that even though player 1 acts
before player 2 does, player 2 does not have access to it s opponent decision. This
means that at the time of its play, player 2 does not know at which node (vertex)
he is. This is as saying that both players act simultaneously. The extensive form in
the second case Fig. 2.3, admits a different matrix game in normal form. In this
case each node of player 2 is included in a separate information set, i.e., has perfect
information as to which branch of the tree player 1 has chosen.
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2.4 Games in Normal Form

Games in normal form (strategic form) model scenarios in which two or more play-
ers must make a one-time decision simultaneously. These games are sometimes re-
ferred to a one-shot game, simultaneous move games. The normal form is a more
condensed form of the game, stripped of all features but the choice of each player’s
pure strategies, and it is more convenient to analyze. The fact that all players make
their choice of strategy simultaneously has nothing to do with a temporal constraint,
but rather with a constraint on the information structure particular to this type of
game. The information structure of a game is a specification of how much each
player knows at the time he chooses his strategy. For example, in Stackelberg games
[20], where there are leaders and followers, some players (followers) choose their
strategies only after the strategic choices made by the leaders have already been
revealed.

In order to describe a normal-form game we need to specify players’ strategy
spaces and cost functions. A strategy space for a player is the set of all strategies
available to that player, where a strategy is a complete plan of action for every stage
of the game, regardless of whether that stage actually arises in play. A cost function
of a player is a mapping from the cross-product of players’ strategy spaces to that
player’s set of costs (normally the set of real numbers). We will be mostly concerned
with these type of normal-form games herein.

For any strategy profile u ∈ Ω , where u = (u1, . . . , um) ∈ Ω is the m-tuple of
players’ pure strategies and Ω = Ω1 ×· · ·×Ωm is the overall pure strategy space, let
Ji(u) ∈ R denote the associated cost for player i that depends on all players’ strate-
gies.These costs depend on the context: in economics they represent a firm’s profits
or a consumer’s (von Neumann–Morgenstern) utility, while in biology they repre-
sent the fitness (expected number of surviving offspring). All these real numbers
Ji(u), i ∈ M, form the combined pure strategy vector cost function of the game,
J : Ω → Rm. A normal-form game G(M,Ωi, Ji) is defined by specifying Ωi and
Ji . It is possible to tabulate functions Ji for all possible values of u1, . . . , um ∈ Ω

either in the form of a relation (easier for continuous or infinite games when Ω is
a continuous set), or, as an m-dimensional array (table) in the case of finite games
(when Ω is finite set). In this latter case and when m = 2 this reduces to a ma-
trix whose size is given by the number of available choices for the two players and
whose elements are pairs of real numbers corresponding to outcomes (costs) for the
two players. Let us look at a few examples for m = 2, where we shall use rows for
player 1 as the columns for player 2. Hence entry (j, k) indicates the outcome of
player 1 using the j pure strategy and player 2 using k strategy.

Example 2.3 (Matching Pennies) Consider the game of Matching Pennies above,
where each player has two strategies “Heads” (H) or “Tail” (T). The normal form of
this game is described by the matrix

player 2
H T

player 1 H (−1,1) (1,−1)
T (1,−1) (−1,1)
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or given as the matrix

M =
[
(−1,1) (1,−1)

(1,−1) (−1,1)

]

Most of the times instead of M we shall use a pair of cost matrices (A,B) to indicate
the outcome for each player separately, matrix A for player 1 and matrix B for
player 2. For the above game this simply means the pair of matrices (A,B) where

A =
[−1 1

1 −1

]
, B =

[
1 −1

−1 1

]

One can transform any game in extensive form into an equivalent game in normal
form, so we shall restrict most of our theoretical development to games in normal
form only.

2.5 Game Features

Depending of various features of the game one could classify them in different cat-
egories. Below we briefly discuss such classification depending on the competitive
nature of the game, the knowledge/information available to the players, and the
number of times the game is repeated.

2.5.1 Strategy Space: Matrix vs. Continuous Games

In a matrix game with m players, each player i has a finite number of discrete
options to choose from, i.e., there are ni possible actions, so that the set of its actions
is simply identified with a set of indices Mi = {1, . . . , ni} corresponding to these
possible actions. Then one considers the action ui ∈ Ωi with the action sets being
defined as Ωi = {e1, . . . , eni

}, and ej being the j th unit vector in R
ni . Given the

action u ∈ Ω chosen by all players, player i has a cost matrix Ai ∈ R
n1×···×nm ,

∀i ∈M, that defines his cost by

Ji(u) = [Ai]u1,...,um ∈ R, i ∈M
This is easiest seen in the case of a matrix game when we can explicitly write the
cost functions as

J1(u) = uT
1 Au2, J2(u) = uT

1 B u2 (2.1)

Such as two-player matrix game is the Matching Pennies game in Example 2.3.
A symmetric game is a game where the payoffs for playing a particular strategy
depend only on the other strategies employed, not on who is playing them. If the
identities of the players can be changed without changing the payoff to the strate-
gies, then a game is symmetric and this corresponds to B = AT . Many of the com-
monly studied 2 × 2 games are symmetric. The standard representations of the
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Chicken game, Prisoner’s Dilemma game, and the Stag Hunt game are all symmet-
ric games [20].

Unlike matrix games, where players have a finite set of actions, in a continuous
game each player can choose its action from a continuum of (possibly vector-valued)
alternatives, that is, Ωi ⊂ R

ni . We shall review results for both matrix games and
continuous games in the next two chapters, but most of the games we shall consider
afterwards are continuous games.

2.5.2 Mixed vs. Pure Strategy Games

A strategy can be regarded as a rule for choosing an action, depending on external
conditions. Once such a condition is observed, the strategy is implemented as an
action. In the case of mixed strategies, this external condition is the outcome of some
randomization process. Consider an m-player matrix game and denote by xi,j the
probability that player i will choose action j from ni his available alternatives in Ωi .
Then a mixed strategy xi is defined as the vector composed of the probabilities
associated with available actions, i.e., xi = [xi,j ], j = 1, . . . , ni , xi ∈ Δi , i ∈ M
where

Δi :=
{

xi ∈R
ni | xi,j ≥ 0,

ni∑

j=1

xi,j = 1

}

, ∀i ∈M

is a simplex. In some cases actions are pure, or independent of any external condi-
tions, and the strategy space coincides with the action space. In discussing games in
pure strategies we shall use the term “strategy” and “action” interchangeably to refer
to some u ∈ Ω , and the game G can simply be specified as the pair G(M,Ωi, Ji).
This will be the case considered throughout most of the monograph.

2.5.3 Competitive Versus Cooperative

A cooperative game is one in which there can be cooperation between the players
and/or they have the same cost (also called team games). A noncooperative game
is one where an element of competition exists and among these we can mention
coordination games, constant-sum games, and games of conflicting interests. We
give below a few such examples.

2.5.3.1 Coordination Games

In coordination games, what is good for one player is good for all players. An ex-
ample coordination game in normal form is described by

M =
[

(−3,−3) (0,0)

(0,0) (−4,−4)

]
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In this game, players try to coordinate their actions. The joint action (j, k) = (2,2)

is the most desirable (least cost), but the joint action (j, k) = (1,1) also produces
negative costs to the players. This particular game is called a pure coordination game
since the players always receive the same payoff.

Other coordination games move more toward the domain of games of conflicting
interest. For example, consider the Stag Hunt game: stag hare (we shall come back
to this example)

M =
[

(−4,−4) (0,−1)

(−1,0) (−1,−1)

]

In this game, each player can choose to hunt stag (first row or first column) or hare
(second row or second column). In order to catch a stag (the biggest animal, hence
the bigger payoff or lowest cost of −4), both players must choose to hunt the stag.
However, a hunter does not need help to catch a hare, which yields a cost of −1.
Thus, in general, it is best for the hunters to coordinate their efforts to hunt stag, but
there is considerable risk in doing so (if the other player decides to hunt hare). In
this game, the costs (payoffs) are the same for both players when they coordinate
their actions, but their costs are not equal when they do no coordinate their actions.

2.5.3.2 Constant-Sum Games

Constant-sum games are games in which the sum of the players’ payoffs sum to the
same number. These games are games of pure competition of the type “my gain is
your loss”. Zero-sum games are particular example of these games, which in terms
of the two-players cost matrices can be described by B = −A. An example of such
game is the Rock, Paper, and Scissors game with the matrix form

M =
⎡

⎣
(0,0) (1,−1) (−1,1)

(−1,1) (0,0) (1,−1)

(1,−1) (−1,1) (0,0)

⎤

⎦

2.5.3.3 Games of Conflicting Interests

These fall in between constant-sum games and coordination games and cover a large
class, whereby the players have somewhat opposing interests, but all players can
benefit from making certain compromises. One can say that people (and learning
algorithms) are often tempted to play competitively in these games (both in the real
world and in games), though they can often hurt themselves by doing so. However,
on the other hand, taking an extreme cooperative approach (same actions) can lead
to similarly bad (or worse) payoffs (high costs). One of the most celebrated games
of this type is the Prisoners’ Dilemma game, with the choices of to “Confess” (co-
operate) or “Don’t Confess” (defect) as the actions of two prisoners (players) put in
separate cells. If they both confess each they each receive 3 years in prison. If only
one confesses, he will be freed, used as witness, and the other will be convicted
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and receive 8 years in prison. If neither confesses they will be convicted of a minor
offense and receive each only 1 year. The normal form (strategic form) of this game
is described by the matrix

M =
[

(−3,−3) (0,−8)

(−8,0) (−1,−1)

]

or, as pair of cost matrices (A,B) for the two players,

A =
[−3 0
−8 −1

]
, B =

[−3 −8
0 −1

]

2.5.4 Repetition

Any of the previously mentioned kinds of game can be played any number of times
between the same players, and the game can be the same at each play or can be
state-dependent.

2.5.4.1 One-Shot Games

In one-shot games, players interact for only a single round (or stage). Thus, in these
situations there is no possible way for players to reciprocate (by inflicting punish-
ment or rewards) thereafter.

2.5.4.2 Repeated Games

In repeated games, players interact with each other for multiple rounds (playing the
same game). In such situations, players have opportunities to adapt to each others’
behaviors (i.e., “learn”) in order to try to become more successful. There can be
finite-horizon repeated games where the same game is repeated a fixed number of
times by the same players, or infinite-horizon games in which the play is repeated
indefinitely.

2.5.4.3 Dynamic Games

The case where the game changes when players interact repeatedly is what can be
called a repeated dynamic game, characterized by a state. These are also called dif-
ferential games. Unlike a repeated game where the agents play the same game every
time, in a dynamic game the state of the game influences the play and the outcome.
Important in this class are the so called stochastic games, which are extensions of
Markov decision processes to the scenario with m multiple players, where prob-
abilistic transitions are modeled. We shall not cover these types of game in this
monograph.
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2.5.5 Knowledge Information

Depending on the amount of information a player has different plays and outcomes
may be possible. For example, does an player know the costs (or preference order-
ings) of other players? Does the player know its own cost (payoff) matrix? Can he
view the actions and costs of other players? All of these (and other related) questions
are important as they can help determine how the player should learn and act. The-
oretically, the more information an player has about the game, the better he should
be able to do. In short, the information an player has about the game can vary along
the following dimensions: knowledge of the player’s own actions; knowledge of the
player’s own costs; knowledge of the existence of other players; knowledge of the
other players’ actions; knowledge of the other players’ costs and in case learning is
used, knowledge of the other players’ learning algorithms.

In a game with complete information each player has knowledge of the payoffs
and possible strategies of other players. Thus, incomplete information refers to situ-
ations in which the payoffs and strategies of other players are not completely known.
The term perfect information refers to situations in which the actual actions taken by
associates are fully observable. Thus, imperfect information implies that the exact
actions taken by associates are not fully known.

2.6 Solution Concepts

Given a game’s specification G(M,Ωi, Ji) an important issue is to predict how the
game will be played, i.e., to determine its outcome. These predictions are called
solutions, and describe which strategies will be adopted by players, therefore pre-
dicting the result of the game. A solution concept briefly describes how to use a
certain set of mathematical rules to decide how to play the game. Various solution
concepts have been developed, in trying to indicate/predict how players will behave
when they play a generic game. Herein we only introduce these solution concepts
in short.

2.6.1 Minimax Solution

One of the most basic properties of every game is the minimax solution (or minimax
strategy), also called security strategy. The minimax solution is the strategy that
minimizes a player’s maximum expected loss (cost). There is an alternate set of
terminology we can use (often used in the literature as we mentioned before). Rather
than speak of minimizing our maximum expected loss, we can talk of maximizing
our minimum expected payoff. This is known as the maximin solution. Thus, the
terms minimax and maximin can be used interchangeably. The minimax solution is
an essential concept for zero-sum games.
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Let us look at the Prisoner’s Dilemma matrix game above. In the prisoner’s
dilemma, both players are faced with the choice of cooperating or defecting. If both
players cooperate, they both receive a relatively low cost (which is −3 in this case).
However, if one of the players cooperates and the other defects, the defector receives
a very low cost (−8 in this case) (called the temptation cost), and the cooperator re-
ceives a relatively high cost (0 in this case). If both players defect, then both receive
a higher cost (which is −1 in this case). So what should you do in this game? Well,
there are a lot of ways to look at it, but if you want to play conservatively, you might
want to invoke the minimax solution concept, which follows from the following rea-
soning. If you play cooperate, the worst you can do is get a cost of 0 (thus, we say
that the security of cooperating is 0). Likewise, if you play defect, the worst you
can do is get a cost of −1 (security of defecting is −1). Alternately, we can form a
mixed strategy over the two actions. However, it just so happens in this game that
no mixed strategy has higher security than defecting, so the minimax strategy in this
game is to defect. This means that the minimax value (which is the maximum cost
one can incur when plays the minimax strategy) is −1.

However, even though the minimax value is the lowest cost you can guarantee
yourself without the cooperation of your associates, you might be able to do much
better on average than the minimax strategy if you can either outsmart your asso-
ciates or get them to cooperate or compromise with you (in a game that is not fully
competitive). So we need other solution concepts as well.

2.6.2 Best Response

Another basic solution concept in multi-player games is to play the strategy that
gives you the lowest cost given your opponents’ strategies. That is exactly what
the notion of the best response suggests. Suppose that you are player i, and your
opponents’ play u−i . Then the your best response in terms of pure strategies is u∗

i

such that

Ji

(
u−i , u

∗
i

) ≤ Ji(u−i , ui), ∀ui ∈ Ωi

In the case of mixed strategies, assuming your opponents’ play the strategy x−i ,
your best response is the strategy x∗

i such that

Ji

(
x−i , x

∗
i

) ≤ Ji(x−i , xi), ∀xi ∈ Δi

where Δi is the probability simplex. The best-response idea has had a huge impact
on learning algorithms. If you know what your other players are going to do, why not
get the lowest cost (highest payoff) you can get (i.e., why not play a best response)?
Taking this one step further, you might reason that if you think you know what other
players are going to do, why not play a best response to that belief? While this
obviously is not an unreasonable idea, it has two problems. The first problem is that
your belief may be wrong, which might expose you to terrible risks. Secondly, this
“best-response” approach can be quite unproductive in a repeated game when other
players are also learning/adapting [48].
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2.6.3 Nash Equilibrium Solution

We now introduce briefly a most celebrated solution concept for a N -player nonco-
operative game G. John Nash’s identification of the Nash equilibrium concept has
had perhaps the single biggest impact on game theory. Simply put, in a Nash equi-
librium, no player has an incentive to unilaterally deviate from its current strategy.
Put another way, if each player plays a best response to the strategies of all other
players, we have a Nash equilibrium.

We will discuss the extent to which this concept is satisfying by looking at a few
examples later on.

Definition 2.4 Given a game G a strategy N -tuple (profile) u∗ = (u∗
1, . . . , u

∗
N) is

said to be a Nash equilibrium (or in equilibrium) if and only if

Ji

(
u∗

1, . . . , u
∗
N

) ≤ Ji

(
u∗

1, . . . , u
∗
i−1, ui, u

∗
(i+1), . . . , u

∗
N

)
, ∀ui ∈ Ωi, ∀i ∈ M (2.2)

or, in compact notation,

Ji

(
u∗−i , u

∗
i

) ≤ Ji

(
u∗−i , ui

)
, ∀ui ∈ Ωi, ∀i ∈M

where u∗ = (u∗−i , u
∗
i ) and u∗−i denotes u∗ of all strategies except the ith one.

Thus u∗ is an equilibrium if no player has a positive incentive for unilateral
chance of his strategy, i.e., assuming the others keep their same strategies. In partic-
ular this means that once all choices of pure strategies have been revealed no player
has any cause for regret (hence the point of no regret concept). A similar definition
holds for x mixed strategies (as seen above in the best response).

Example 2.5 Consider the game with normal form

player 2
u2,1 u2,2

player 1 u1,1 (3,1) (0,0)
u1,2 (0,0) (1,3)

and note that both (u1,1, u2,1) and (u1,2, u2,2) are equilibrium pairs. For matrix
games we shall use the matrix notation and for the above we will say that (3,1)
and (1,3) are equilibria.

If we look at another game (a coordination game),

M =
[

(−3,−3) (0,0)

(0,0) (−1,−1)

]

By inspection as in the above, we can conclude that both the joint actions (j, k) =
(1,1) and (j, k) = (2,2) are Nash equilibria since in both cases, neither player can
benefit by unilaterally changing its strategy. Note, however, that this illustrates that
not all Nash equilibria are created equally. Some give better costs than others (and
some players might have different preference orderings over Nash equilibrium).



24 2 Basics of Game Theory

While all the Nash equilibria we have identified so far for these two games are
pure strategy Nash equilibrium, they need not be so. In fact, there is also a third
Nash equilibrium in the above coordination game in which both players play mixed-
strategies. The next chapter we shall formally review this extension.

Here are a couple more observations about the Nash equilibrium as a solution
concept:

• In constant-sum games, the minimax solution is a Nash equilibrium of the game.
In fact, it is the unique Nash equilibrium of constant-sum games as long is there
is not more than one minimax solution (which occurs only when two strategies
have the same security level).

• Since a game can have multiple Nash equilibrium, this concept does not tell us
how to play a game (or how we would guess others would play the game). This
poses another question: Given multiple Nash equilibria, which one should (or
will) be played? This leads to considering refinements of Nash equilibria.

Strategic dominance is another solution concept that can be used in many games.
Loosely, an action is strategically dominated if it never produces lower costs (higher
payoffs) and (at least) sometimes gives higher costs (lower payoffs) than some other
action. An action is strategically dominant if it strategically dominates all other ac-
tions. We shall formally define this later on. For example, in the Prisoner’s Dilemma
(PD) game, the action defect strategically dominates cooperate in the one-shot game.
This concept of strategic dominance (or just dominance, as we will sometimes call
it) can be used in some games (called iterative dominance solvable games) to com-
pute a Nash equilibrium.

2.6.4 Pareto Optimality

One of the features of a Nash equilibrium (NE) is that in general it does not cor-
respond to a socially optimal outcome. That is, for a given game it is possible for
all the players to improve their costs (payoffs) by collectively agreeing to choose a
strategy different from the NE. The reason for this is that a posteriori some players
may choose to deviate from such a cooperatively agreed-upon strategy in order to
improve their payoffs further at the group’s expense. A Pareto optimal equilibrium
describes a social optimum in the sense that no individual player can improve his
payoff (or lower his cost) without making at least one other player worse off. Pareto
optimality is not a solution concept, but it can be an important attribute in deter-
mining what solution the players should play (or learn to play). Loosely, a Pareto
optimal (also called Pareto efficient) solution is a solution for which there exists no
other solution that gives every player in the game a higher payoff (lower cost). A PE
solution is formally defined as follows.

Definition 2.6 A solution u∗ is strictly Pareto dominated if there exists a joint ac-
tion u ∈ Ω for which Ji(u) < Ji(u∗) for all i, and weakly Pareto dominated if there
exists a joint action u 	= u∗ ∈ Ω for which Ji(u) ≤ Ji(u∗) for all i.
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Definition 2.7 A solution u∗ is weakly Pareto efficient (PE) if it is not strictly Pareto
dominated and strictly Pareto efficient (PE) if it is not weakly Pareto dominated.

Often, a Nash equilibrium (NE) is not Pareto efficient (optimal). Then one speaks
of a loss of efficiency, which is also referred to as the Price of Anarchy. An interest-
ing problem is how to design games with improved Nash efficiency, and pricing or
mechanism design is concerned with such issues.

In addition to these solution concepts other important ones include the Stackel-
berg equilibrium [20], which is relevant in games where the information structure
plays an important role, and correlated equilibria [48, 98], which case is relevant
in games where the randomization used to translate players’ mixed strategies into
actions are correlated.

2.7 The Rationality Assumption

Given the number of available solution concepts, NE refinements and the apparent
arbitrariness with which they may be applied, why would one expect that in an
actual noncooperative game players would choose any particular refined NE? This
question turns out to be a valid objection, namely the perfect rationality of all the
participating agents. In the literature rationality is often discussed, without being
precisely defined. One possible formulation is as follows: a player is rational if it
consistently acts to improve its payoff without the possibility of making mistakes,
has full knowledge of other players’ intentions and the actions available to them,
and has an infinite capacity to calculate a priori all possible refinements to NE(G)

in an attempt to find the “best one”. If a game involves only rational agents, each of
whom believe all other agents to be rational, then theoretical results offer accurate
predictions of the game outcomes.

2.8 Learning in Classical Games

Yet another game classification is related to this rationality assumption or the lack
of it. In this monograph we will be concerned with rational players and one-shot
games. A more realistic modeling scenario involves players that are less than ratio-
nal and a repeated game play. We review here very briefly the conceptual differences
for completeness. The reader is referred to extensive references on this topic such
as [48]. We will use the term bounded rationality to describe players that do not
necessarily have access to full or accurate information about the game, and who
have a limited capacity to perform calculations on the information that is available
to them. Instead of immediately playing a perfect move, boundedly rational players
adapt their strategy based on the outcomes of previous matches [48, 49, 137]. We
can refer to this modeling scenario as a classical game with learning. All solution
concepts studied in classical game theory remain important in games with learning.
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The important problem to study is not only to classify games for which equilibria
exist and have favorable properties such as uniqueness, but also, in conjunction, to
classify the strategy update laws that yield convergence to these equilibria under
repeated play. In the terminology of [158], a game with learning can be said to have
an “inner game” (i.e. the underlying classical game G) and an “outer game” (i.e. the
dynamics of the strategy update laws).

One of earliest strategy update laws to be studied is fictitious play (FP) [31]. In
FP, each player keeps a running average, known as an empirical frequency of his op-
ponent’s actions, and chooses his next move as a best response to this average. The
term “fictitious play” comes from the consideration of playing under the unrealistic
assumption that the opponent is playing a constant strategy, hence he is a fictitious
player. It has been proved that under a number of different sufficient conditions FP
is guaranteed to converge to one. One of the earlier cases studied was the class of fi-
nite, two-player, zero sum games, for which convergence of FP was proved in [127],
followed by other results [75].

A continuous time version of fictitious play can be derived by considering the
infinitesimal motions of the empirical frequencies [58]. It can be shown that if both
players are updating their strategies so that these are the best response to the other
one, we may write

u̇i = −ui + ri(u−i )

This equation known as the best-response (BR) dynamic, and clearly displays the
very convenient feature that u̇ = 0 if and only if u has reached a fixed point of the
reaction function r(u). By the characterization of NE given above (see (4.5)), we
conclude that the set of equilibria of the best-response dynamic coincides precisely
with NE(G). Most of these studies are done within the framework of evolutionary
game theory [132, 142], while this monograph is concerned only with the setup of
classical games.

2.9 Notes

As a preface to the remaining chapters, this chapter provided a brief overview of
basic game concepts.
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