
2. Systems of Linear Equations, Matrices

2.1 Gaussian Elimination

Equations of the form
∑

aixi = b, for unknowns xi with arbitrary given
numbers ai and b, are called linear, and every set of simultaneous linear
equations is called a linear system. They are generalizations of the equations
of lines and planes which we have studied in Section 1.3. In this section, we
begin to discuss how to solve them, that is, how to find numerical values
for the xi that satisfy all the equations of a given system. We also examine
whether a given system has any solutions and, if so, then how we can describe
the set of all solutions.

Linear systems arise in many applications. Examples in which they occur,
in addition to lines and planes, are least-squares fitting of lines, planes, or
curves to observed data, methods for obtaining approximate solutions of var-
ious differential equations, Kirchhoff’s equations relating currents and poten-
tials in electrical circuits, and various economic models. In many applications,
the number of equations and unknowns can be quite large, sometimes in the
hundreds or thousands. Thus it is very important to understand the struc-
ture of such systems and to apply systematic and efficient methods for their
solution. Even more important is that, as we shall see, studying such systems
leads to several new concepts and theories that are at the heart of linear
algebra.

We begin with a simple example.

Example 2.1.1. (A System of Three Equations in Three Unknowns with a
Unique Solution). Let us solve the following system:

2x + 3y − z = 8 (2.1)
4x − 2y + z = 5
x + 5y − 2z = 9.

(Geometrically this problem amounts to finding the point of intersection of
three planes.)

We want to proceed as follows: multiply both sides of the first equation
by 2 and subtract the result from the second equation to eliminate the 4x,
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42 2. Systems of Linear Equations, Matrices

and subtract 1/2 times the first equation from the third equation to eliminate
the x. The system is then changed into the new, equivalent1 system:

2x + 3y − z = 8 (2.2)
−8y + 3z = −11
7
2
y − 3

2
z = 5.

As our next step we want to get rid of the 7y/2 term in the last equation.
We can achieve this elimination by multiplying the middle equation by −7/16
and subtracting the result from the last equation. Then we get

2x + 3y − z = 8 (2.3)
−8y + 3z = −11

−3
16

z =
3
16

.

At this point we can easily find the solution by starting with the last
equation and working our way back up. First, we find z = −1, and second,
substituting this value into the middle equation we get −8y−3 = −11, which
yields y = 1. Last, we enter the values of y and z into the top equation and
obtain 2x + 3 + 1 = 8, hence x = 2.

Substituting these values for x, y, z into Equations 2.1 indeed confirms
that they are solutions. �

The method of solving a linear system used in the example above is called
Gaussian elimination,2 and it is the foremost method of solving such systems.
However, before discussing it more generally, let us mention that the way the
computations were presented was the way a computer would be programmed
to do them. For people, slight variations are preferable. We would rather avoid
fractions, and if we want to eliminate, say, x from an equation beginning with
bx by using an equation beginning with ax, with a and b nonzero integers,
then we could multiply the first equation by a and the other by b to get abx
in both. Also, we would sometimes add and sometimes subtract, depending
on the signs of the terms involved, where computers always subtract. Last,
we might rearrange the equations in a different order, if we see that doing
so would result in simpler arithmetic.3 For example, right at the start of the
example above, we could have put the last equation on top because it begins
1 Equivalence of systems will be discussed in detail on page 46.
2 Named after Carl Friedrich Gauss (1777–1855). It is ironic that in spite of his

many great achievements he is best remembered for this simple but widely used
method and for the so-called Gaussian distribution in probability and statistics,
which was mistakenly attributed to him but had been discovered by Abraham
de Moivre in the 1730s.

3 Computer programs have to reorder the equations sometimes but for different
reasons, namely to avoid division by zero and to minimize roundoff errors.
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with x rather than 2x, and used that equation the way we have used the one
beginning with 2x.

The essence of the method is to subtract multiples of the first equation
from the others so that the leftmost term in the first equation eliminates
all the corresponding terms below it. Then we continue by similarly using
the leftmost term in the new second equation to eliminate the corresponding
term (or terms if there are more equations) below that, and so on, down
to the last equation. Next, we work our way up by solving the last equa-
tion first, then substituting its solution into the previous equation, solving
that, and so on. The two phases of the method are called forward elimi-
nation and back substitution. As will be seen shortly, a few complications
can and do frequently arise, which make the theory that follows even more
interesting and necessary. First, however, we introduce a crucial notational
simplification.

Notice that in the forward elimination computations of Example 2.1.1
the variables x, y, z were not really used; they were needed only in the back
substitution steps used to determine the solution. All the forward elimination
computations were done on the coefficients only. In computer programs there
is not even a way (and no need either) to enter the variables. In writing, the
coefficients are usually arranged in a rectangular array enclosed in parentheses
or brackets, called a matrix (plural: matrices) and designated by a capital
letter, as in

A =

⎡
⎣2 3 − 1

4 − 2 1
1 5 −2

⎤
⎦ . (2.4)

This matrix contains the coefficients on the left side of system 2.1 in the
same arrangement, and is therefore referred to as the coefficient matrix or
just the matrix of that system. We may include the numbers on the right
sides of the equations as well:

B =

⎡
⎣2 3 − 1 8

4 − 2 1 5
1 5 −2 9

⎤
⎦ . (2.5)

This is called the augmented matrix of the system. It is often written with a
vertical line before its last column as

B =

⎡
⎣2 3 − 1

4 − 2 1
1 5 −2

∣∣∣∣∣∣
8
5
9

⎤
⎦ . (2.6)

Example 2.1.2. (Solving the 3×3 System of Example 2.1.1, Using Augmented
Matrix Notation). We write the computations of Example 2.1.1 as
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⎣2 3 −1

4 − 2 1
1 5 − 2

∣∣∣∣∣∣
8
5
9

⎤
⎦→

⎡
⎣2 3 −1

0 −8 3
0 7/2 − 3/2

∣∣∣∣∣∣
8

−11
5

⎤
⎦

→
⎡
⎣2 3 −1

0 − 8 3
0 0 − 3/16

∣∣∣∣∣∣
8

−11
3/16

⎤
⎦ . (2.7)

The arrows between the matrices above do not designate equality, they just
indicate the flow of the computation. For two matrices to be equal, all the
corresponding entries must be equal, and here they are clearly not equal.

Next, we change from the last augmented matrix to the corresponding
system

2x + 3y − z = 8 (2.8)
−8y + 3z = −11

−3
16

z =
3
16

,

which we solve as in Example 2.1.1. �

The matrix A in Equation 2.4 is a 3 × 3 (read: “three by three”) matrix,
and in Equation 2.5, B is a 3 × 4 matrix. Similarly, if a matrix has m rows
and n columns, we call it an m×n matrix. In describing matrices, we always
say rows first, then columns.

The general form of an m × n matrix is

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦ , (2.9)

where the a11, a12, . . . , amn (read “a sub one-one, a sub one-two,” etc.) are
arbitrary real numbers. They are called the entries of the matrix A, with aij

denoting the entry at the intersection of the ith row and jth column. Thus
in the double subscript ij the order is important. Also, the matrix A is often
denoted by [aij ] or (aij).

Two matrices are said to be equal if they have the same shape, that is,
the same numbers of rows and columns, and their corresponding entries are
equal.

A matrix consisting of a single row is called a row vector, and that of
a single column, a column vector , and, if we want to emphasize the size n,
a row n-vector or a column n-vector.

By definition, a system of m linear equations for n unknowns x1, x2, . . . , xn

has the general form
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a11x1 + a12x2 + · · · + a1nxn = b1 (2.10)
a21x1 + a22x2 + · · · + a2nxn = b2

...
am1x1 + am2x2 + · · · + amnxn = bm

with the coefficient matrix A given in Equation 2.9 having arbitrary entries
and the bi denoting arbitrary numbers as well.4 We shall frequently find it
useful to collect the xi and the bi values into two column vectors and write
such systems as⎡

⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ (2.11)

or abbreviated as

Ax = b. (2.12)

The expression Ax will be discussed in detail in Section 2.3 and generalized
in Section 2.4. For now, we shall just use Ax = b as a compact reference to
the system.

The augmented matrix of this general system is written as

[A|b] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ . (2.13)

The reason for using column vectors x and b will be explained at the end
of Section 2.3, although for b at least, the choice is rather natural since then
the right sides of Equations 2.10 and 2.11 match.

Henceforth all vectors will be column vectors unless explicitly designated
otherwise, and also Rn, for every n, will be regarded as a space of column
vectors.

In general, if we want to solve a system given as Ax = b, we reduce the
corresponding augmented matrix [A|b] to a simpler form [U |c] (details will
follow), which we change back to a system of equations, Ux = c. We then
solve the latter by back substitution, that is, from the bottom up.
4 Writing any quantity with a general subscript, like the i here in bi, is general

mathematical shorthand for the list of all such quantities, for all possible values
of the subscript i, as in this case for the list b1, b2, . . . , bm. Also, it is customary
to say “the bi” instead of “the bi’s” to avoid any possible confusion.
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Let us review the steps of Example 2.1.2. We copied the first row, then we
took 4/2 times the entries of the first row in order to change the 2 into a 4,
and subtracted those multiples from the corresponding entries of the second
row. (We express this operation more briefly by saying that we subtracted
4/2 times the first row from the second row.) Then we took 1/2 times the
entries of the first row to change the 2 into a 1 and subtracted them from
the third row. In all this computation the entry 2 of the first row played a
pivotal role and is therefore called the pivot for these operations. In general,
a pivot is an entry whose multiples are used to obtain zeros below it, and the
first nonzero entry remaining in the last nonzero row after the reduction is
also called a pivot. (The precise definition will be given on page 55.) Thus,
in this calculation the pivots are the numbers 2, −8, −3/16.

The operations we used are called elementary row operations.

Definition 2.1.1. (Elementary Row Operations). We call the following
three types of operations on the augmented matrix of a system elementary
row operations:
1. Multiplying a row by a nonzero number.
2. Exchanging two rows.
3. Changing a row by subtracting a nonzero multiple of another row from it.

Definition 2.1.2. (Equivalence of Systems and of Matrices). Two
systems of equations are called equivalent if their solution sets are the same.
Furthermore, the augmented matrices of equivalent systems are called equiv-
alent to each other as well.

All elimination steps in this section, like the ones above, have been de-
signed to produce equivalent, but simpler, systems.

Theorem 2.1.1. (Row Equivalence). Each elementary row operation
changes the augmented matrix of every system of linear equations into the
augmented matrix of an equivalent system.

Proof. Consider any two rows of the augmented matrix of the m × n sys-
tem 2.10, say the ith and the jth row:

ai1x1 + ai2x2 + · · · + ainxn = bi (2.14)

and

aj1x1 + aj2x2 + · · · + ajnxn = bj . (2.15)

1. If we form a new augmented matrix by multiplying the ith row of the
augmented matrix 2.13 by any c 	= 0, then the ith row of the corresponding
new system is

cai1x1 + cai2x2 + · · · + cainxn = cbi, (2.16)
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which is clearly equivalent to Equation 2.14. Furthermore, since all the other
equations of the system 2.10 remain unchanged, every solution x of the old
system is also a solution of the new system and vice versa.
2. If we form a new augmented matrix by exchanging the ith row of the
augmented matrix 2.13 by its jth row, then the corresponding system of
equations remains the same, except that equations 2.14 and 2.15 are switched.
Clearly, changing the order of equations does not change the solutions.
3. If we change the jth row of the augmented matrix 2.13 by subtracting c
times the ith row from it, for any c 	= 0, then the jth row of the corresponding
new system becomes

(aj1 − cai1) x1 + (aj2 − cai2) x2 + · · · + (ajn − cain) xn = bj − cbi. (2.17)

The other equations of the system, including the ith one, remain unchanged.
Clearly, every vector x that solves the old system, also solves Equation 2.17,
and so it solves the whole new system as well. Conversely, if a vector x solves
the new system, then it solves Equation 2.14, and hence also Equation 2.16,
as well as Equation 2.17. Adding the latter two together, we find that it solves
Equation 2.15, that is, it solves the old system. �

Hence any two matrices obtainable from each other by a finite number
of successive elementary row operations are equivalent, and to indicate that
they are related by such row operations, they are said to be row equivalent.
Column operations would also be possible, but they are rarely used, and we
shall not discuss them at all.

We have used only the third type of elementary row operation so far. The
first kind is not necessary for Gaussian elimination but will be used later
in further reductions. The second kind must be used if we encounter a zero
where we need a pivot, as in the following example.

Example 2.1.3. (A 4×3 System with a Unique Solution and Requiring a Row
Exchange). Let us solve the following system of m = 4 equations in n = 3
unknowns:

x1 + 2x2 = 2 (2.18)
3x1 + 6x2 − x3 = 8
x1 + 2x2 + x3 = 0

2x1 + 5x2 − 2x3 = 9.

We do the computations in matrix form. We indicate the row operations
in the rows between the matrices by arrows, which may be read as “becomes”
or “is replaced by.” For example, r2 ← r2 − 3r1 means that row 2 is replaced
by the old row 2 minus 3 times row 1. (The rows may be considered to be
vectors, and so we designate them by boldface letters.)
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⎢⎢⎣

1 2 0
3 6 − 1
1 2 1
2 5 −2

∣∣∣∣∣∣∣∣
2
8
0
9

⎤
⎥⎥⎦

r1 ← r1
r2 ← r2 − 3r1
r3 ← r3 − r1
r4 ← r4 − 2r1

⎡
⎢⎢⎣

1 2 0
0 0 − 1
0 0 1
0 1 −2

∣∣∣∣∣∣∣∣
2
2

−2
5

⎤
⎥⎥⎦

r1 ← r1
r2 ← r4
r3 ← r3
r4 ← r2

⎡
⎢⎢⎣

1 2 0
0 1 − 2
0 0 1
0 0 −1

∣∣∣∣∣∣∣∣
2
5

−2
2

⎤
⎥⎥⎦

r1 ← r1
r2 ← r2
r3 ← r3
r4 ← r4 + r3

⎡
⎢⎢⎣

1 2 0
0 1 − 2
0 0 1
0 0 0

∣∣∣∣∣∣∣∣
2
5

−2
0

⎤
⎥⎥⎦ .

(2.19)

The back substitution phase should start with the third row of the last
matrix, since the fourth row just expresses the trivial equation 0 = 0. The
third row gives x3 = −2, the second row corresponds to x2 − 2x3 = 5 and so
x2 = 1, and the first row yields x1 + 2x2 = 2, from which x1 = 0. �

As the example above shows, the number m of equations and the num-
ber n of unknowns need not be the same. In this case the four equations
described four planes in three-dimensional space, having a single point of
intersection given by the unique solution we have found. Of course, in gen-
eral, four planes need not have a point of intersection in common or may
have an entire line or plane as their intersection (in the latter case the four
equations would each describe the same plane). Systems with solutions are
called consistent. On the other hand, if there is no intersection, then the
system has no solution, and it is said to be inconsistent. Inconsistency of
the system can happen with just two or three planes as well, for instance
if two of them are parallel, and also in two dimensions with parallel lines.
So before attacking the general theory, we discuss examples of inconsistent
systems and systems with infinitely many solutions. Systems with more equa-
tions than unknowns are called overdetermined, and are usually (though not
always, see Example 2.1.3) inconsistent. Systems with fewer equations than
unknowns are called underdetermined, and they usually (though not always)
have infinitely many solutions. For example, two planes in R3 would usually
intersect in a line, but exceptionally they could be parallel and have no inter-
section. On the other hand, a system with the same number of equations as
unknowns is called determined and usually (though not always) has a unique
solution. For instance, three planes in R3 would usually intersect in a point,
but by exception they could be parallel and have no intersection or intersect
in a line or a plane.

Example 2.1.4. (A 3×3 Inconsistent System). Consider the system given by
the matrix

[A|b] =

⎡
⎣1 2 0

3 6 − 1
1 2 1

∣∣∣∣∣∣
2
8
4

⎤
⎦ . (2.20)
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Subtracting 3r1 from r2, and r1 from r3, we get

[A′|b′] =

⎡
⎣1 2 0

0 0 − 1
0 0 1

∣∣∣∣∣∣
2
2
2

⎤
⎦ . (2.21)

The last two rows of [A′|b′] represent the contradictory equations −x3 = 2
and x3 = 2. These two equations describe parallel planes. Thus [A|b] had to
represent an inconsistent system.

The row operations above have produced two equations of new planes,
which have turned out to be parallel to each other. The planes corresponding
to the rows of the original [A|b] are, however, not parallel. Instead, only the
three lines of intersection of pairs of them are (see Exercise 2.1.16), like the
three parallel edges of a prism; that is why there is no point of intersection
common to all three planes.

We may carry the matrix reduction one step further and obtain, by adding
the second row to the third one,

[A′′|b′′] =

⎡
⎣1 2 0

0 0 − 1
0 0 0

∣∣∣∣∣∣
2
2
4

⎤
⎦ . (2.22)

This matrix provides the single self-contradictory equation 0 = 4 from its
last row. There is no geometrical interpretation for such an equation, but
algebraically it is the best way of establishing the inconsistency. Thus, this is
the typical pattern we shall obtain in the general case whenever there is no
solution. �

Next we modify the matrix of the last example so that all three planes
intersect in a single line.

Example 2.1.5. (A 3 × 3 System with a Line for Its Solution Set). Let

[A|b] =

⎡
⎣1 2 0

3 6 − 1
1 2 1

∣∣∣∣∣∣
2
8
0

⎤
⎦ . (2.23)

We can reduce this matrix to

[A′|b′] =

⎡
⎣1 2 0

0 0 − 1
0 0 0

∣∣∣∣∣∣
2
2
0

⎤
⎦ . (2.24)

The corresponding system is

x1 +2x2 = 2
−x3 = 2

0 = 0,
(2.25)
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which represents just two planes, since the last equation has become the
trivial identity 0 = 0. Algebraically, the second row gives x3 = −2, and the
first row relates x1 to x2. We can choose an arbitrary value for either x1 or x2
and solve the first equation of the system 2.25 for the other. In some other
examples, however, we have no choice, as between x1 and x2 here. However,
since the pivot cannot be zero, we can always solve the pivot’s row for the
variable corresponding to the pivot, and that is what we always do. Thus, we
set x2 equal to a parameter t and solve the first equation for x1, to obtain
x1 = 2 − 2t. We can write the solutions in vector form as (remember: the
convention is to use column vectors)⎡

⎣x1
x2
x3

⎤
⎦ =

⎡
⎣ 2

0
−2

⎤
⎦+ t

⎡
⎣−2

1
0

⎤
⎦ . (2.26)

This is a parametric vector equation of the line of intersection L of the three
planes defined by the rows of [A|b]. The coordinates of each of L’s points
make up one of the infinitely many solutions of the system. �

Example 2.1.6. (A 3×4 System with a Line for its Solution Set). Let us solve
the system

2x1 + 3x2 − 2x3 + 4x4 = 4 (2.27)
−6x1 − 8x2 + 6x3 − 2x4 = 1
4x1 + 4x2 − 4x3 − x4 = −7.

These equations represent three hyperplanes in four dimensions.5 We can
proceed as before:⎡

⎣ 2 3 − 2 4
−6 − 8 6 − 2

4 4 −4 −1

∣∣∣∣∣∣
4
1

−7

⎤
⎦ r1 ← r1

r2 ← r2 + 3r1
r3 ← r3 − 2r1

⎡
⎣2 3 − 2 4

0 1 0 10
0 − 2 0 − 9

∣∣∣∣∣∣
4

13
−15

⎤
⎦

r1 ← r1
r2 ← r2
r3 ← r3 + 2r2

⎡
⎣2 3 − 2 4

0 1 0 10
0 0 0 11

∣∣∣∣∣∣
4

13
11

.

⎤
⎦ . (2.28)

The variables that have pivots as coefficients, x1, x2, x4 in this case, are
called basic variables. They can be obtained in terms of the other, so-called
free variables that correspond to the pivot-free columns. The free variables
are usually replaced by parameters, but this is just a formality to show that
they can be chosen freely.

Thus, we set x3 = t, and find the solutions again as the points of a line,
now given by
5 A hyperplane in R

4 is a copy of R
3, just as a plane in R

3 is a copy of R
2.
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⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−9/2
3
0
1

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦ . (2.29)

�

Example 2.1.7. (A 3 × 4 System with a Plane for Its Solution Set). Consider
the system

2x1 + 3x2 − 2x3 + 4x4 = 2 (2.30)
−6x1 − 9x2 + 7x3 − 8x4 = −3

4x1 + 6x2 − x3 + 20x4 = 13.

We solve this system as follows:⎡
⎣ 2 3 − 2 4

−6 − 9 7 − 8
4 6 −1 20

∣∣∣∣∣∣
2

−3
13

⎤
⎦ r1 ← r1

r2 ← r2 + 3r1
r3 ← r3 − 2r1

⎡
⎣2 3 − 2 4

0 0 1 4
0 0 3 12

∣∣∣∣∣∣
2
3
9

⎤
⎦

r1 ← r1
r2 ← r2
r3 ← r3 − 3r2

⎡
⎣2 3 − 2 4

0 0 1 4
0 0 0 0

∣∣∣∣∣∣
2
3
0

⎤
⎦ . (2.31)

Since the pivots are in columns 1 and 3, the basic variables are x1 and x3
and the free variables x2 and x4. Thus we use two parameters and set x2 = s
and x4 = t. Then the second row of the last matrix leads to x3 = 3−4t and the
first row to 2x1+3s−2(3−4t)+4t = 2, that is, to 2x1 = 8−3s−12t. Putting
all these results together, we obtain the two-parameter set of solutions⎡

⎢⎢⎣
x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
0
3
0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

−3/2
1
0
0

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

−6
0

−4
1

⎤
⎥⎥⎦ , (2.32)

which is also a parametric vector equation of a plane in R4. �

Exercises

In the first four exercises, find all solutions of the systems by Gaussian elim-
ination.

Exercise 2.1.1. 2x1+ 2x2− 3x3 = 0
x1+ 5x2+ 2x3 = 1

−4x1+ 6x3 = 2

Exercise 2.1.2. 2x1+ 2x2− 3x3 = 0
x1+ 5x2+ 2x3 = 0

−4x1+ 6x3 = 0
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Exercise 2.1.3. 2x1+ 2x2− 3x3 = 0
x1+ 5x2+ 2x3 = 1

Exercise 2.1.4. 2x1+ 2x2− 3x3 = 0

In the next nine exercises use Gaussian elimination to find all solutions
of the systems given by their augmented matrices.

Exercise 2.1.5.

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

∣∣∣∣∣∣
0
0
0

⎤
⎦

Exercise 2.1.6.

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

∣∣∣∣∣∣
1
0

−2

⎤
⎦

Exercise 2.1.7.

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

∣∣∣∣∣∣
1
0
0

⎤
⎦

Exercise 2.1.8.

⎡
⎣ 3 −6 −1 1

−1 2 2 3
6 − 8 − 3 − 2

∣∣∣∣∣∣
12
1
9

⎤
⎦

Exercise 2.1.9.

⎡
⎣1 4 9 2

2 2 6 − 3
2 7 16 3

∣∣∣∣∣∣
0
0
0

⎤
⎦

Exercise 2.1.10.

⎡
⎢⎢⎣

2 4 1
0 1 3
3 3 − 1
1 2 3

∣∣∣∣∣∣∣∣
7
7
9

11

⎤
⎥⎥⎦

Exercise 2.1.11.

⎡
⎣ 3 −6 −1 1 5

−1 2 2 3 3
4 − 8 − 3 − 2 1

∣∣∣∣∣∣
0
0
0

⎤
⎦

Exercise 2.1.12.

⎡
⎣ 3 −6 −1 1

−1 2 2 3
4 − 8 − 3 − 2

∣∣∣∣∣∣
7
1
6

⎤
⎦

Exercise 2.1.13.

⎡
⎣ 3 −6 −1 1

−1 2 2 3
6 − 8 − 3 − 2

∣∣∣∣∣∣
5
3
1

⎤
⎦
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Exercise 2.1.14. What is wrong with the following way of “solving” Exer-
cise 2.1.13?⎡

⎣ 3 −6 −1 1
−1 2 2 3

6 − 8 − 3 − 2

∣∣∣∣∣∣
5
3
1

⎤
⎦ r1 ↔ r2

⎡
⎣−1 2 2 3

3 −6 −1 1
6 − 8 − 3 − 2

∣∣∣∣∣∣
3
5
1

⎤
⎦

r1 ← r1
r2 ← 2r2 − r3
r3 ← r3 − 2r2

⎡
⎣−1 2 2 3

0 − 4 1 4
0 4 − 1 − 4

∣∣∣∣∣∣
3
9

−9

⎤
⎦

r1 ← r1
r2 ← r2
r3 ← r3 + r2

⎡
⎣−1 2 2 3

0 − 4 1 4
0 0 0 0

∣∣∣∣∣∣
3
9
0

⎤
⎦ ,

x3 = s, x4 = t, −4x2 + s+4t = 9, x2 = − 9
4 + 1

4s+ t, −x1 +2x2 +2s+3t = 3,
x1 = −3 + 2

(− 9
4 + 1

4s + t
)

+ 2s + 3t = 5
2s + 5t − 15

2 , and so

x =

⎡
⎢⎢⎣

−15/2
−9/4

0
0

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

5/2
1/4
1
0

⎤
⎥⎥⎦ s +

⎡
⎢⎢⎣

5
1
0
1

⎤
⎥⎥⎦ t.

Exercise 2.1.15. Show that each pair of the three planes defined by the rows
of the matrix in Example 2.1.5 on page 49 has the same line of intersection.

Exercise 2.1.16. Show that the three planes defined by the rows of the
matrix in Equation 2.20 on page 48 have parallel lines of intersection.

2.2 The Theory of Gaussian Elimination

We are now at a point where we can summarize the lessons from our examples.
Given m equations for n unknowns, we consider their augmented matrix,

[A|b] =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
am1 am2 · · · amn

∣∣∣∣∣∣∣∣∣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ , (2.33)

and reduce it using elementary row operations according to the following
algorithm:

1. Search the first column from the top down for the first nonzero entry. If all
the entries in the first column are zero, then search the second column from
the top down, then the third column for the first nonzero entry. Repeat
with succeeding columns if necessary, until a nonzero entry is found. The
entry thus found is called the current pivot. Stop, if no pivot can be found.

2. Put the row containing the current pivot on top (unless it is already there).
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3. Subtract appropriate multiples of the first row from each of the lower
rows to obtain all zeros below the current pivot in its column (unless
there are all zeros there or no lower rows are left).

4. Repeat the previous steps on the submatrix6 consisting of all those ele-
ments of the last matrix that lie lower than and to the right of the last
pivot. Stop if no such submatrix is left.

These steps constitute the forward elimination phase of Gaussian elim-
ination (the second phase will be discussed following Definition 2.2.2), and
they lead to a matrix of the form described below.

Definition 2.2.1. (Echelon Matrix). A matrix is said to be in echelon
form7 or an echelon matrix if it has a staircase-like pattern characterized by
the following properties:
a. The all-zero rows (if any) are at the bottom.
b. The leftmost nonzero entry of each nonzero row, called a leading entry, is
in a column to the right of the leading entry of every row above it.

These properties imply that in an echelon matrix U all the entries of
a column below a leading entry are zero. If U arises from the reduction of a
matrix A by the forward elimination algorithm above, then the pivots of A
become the leading entries of U . Also, if we were to apply the algorithm to
an echelon matrix, then it would not be changed and we would find that its
leading entries are its pivots.

Note that while a given matrix is row equivalent to many different ech-
elon matrices (just multiply any nonzero row of an echelon matrix by 2, for
example), the algorithm above leads to a single well-defined echelon matrix
in each case. Furthermore, it will be proved in Section 3.3 that the number
and locations, although not the values, of the pivots are unique for all echelon
matrices obtainable from the same A. Consequently, the results of Theorem
2.2.1 below, even though they depend on the pivots, are valid unambiguously.

Here is a possible m × (n + 1) echelon matrix obtainable from the matrix
[A|b] above:

[U |c] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 ∗ ∗ ∗ · · · ∗ ∗
0 p2 ∗ ∗ · · · ∗ ∗
0 0 0 p3 ∗ ∗
...
0 0 0 0 · · · pr ∗
0 0 0 0 · · · 0 0
0 0 0 0 · · · 0 0
...
0 0 0 0 · · · 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

c1
c2
c3
...
cr

cr+1
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.34)

6 A submatrix of a given matrix A is a matrix obtained by deleting any number
of rows and/or columns of A.

7 “Echelon” in French means “rung of a ladder,” and in English it is used for some
ladder-like military formations and rankings.
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The first n columns constitute the echelon matrix U obtained from A,
and the last column is the corresponding reduction of b. The pi denote the
pivots of A, while the entries denoted by ∗ and by ci denote numbers that
may or may not be zero. The number r is very important, since it determines
the character of the solutions, and has a special name.

Definition 2.2.2. (Rank). The number r of nonzero rows of an echelon
matrix U obtained by the forward elimination phase of the Gaussian elimi-
nation algorithm from a matrix A is called the rank of A and will be denoted
by rank (A).8,9

We can now describe the back substitution phase of Gaussian elimination,
in which we change the augmented matrix [U |c] back to a system of equations
Ux = c :

5. If r < m and cr+1 	= 0 hold, then the row containing cr+1 corresponds to
the self-contradictory equation 0 = cr+1, and so the system has no solu-
tions or, in other words, it is inconsistent. (This case occurs in Example
2.1.4, where m = 3, r = 2 and cr+1 = c3 = 4.)

6. If r = m or cr+1 = 0, then the system is consistent and, for every i such
that the ith column contains no pivot, the variable xi is a free variable
and we set it equal to a parameter si. (In Example 2.1.6, for instance,
r = m = 3 and x3 is free. In Example 2.1.7 we have m = 3, r = 2
and cr+1 = c3 = 0 and the free variables are x2 and x4.) We need to
distinguish two subcases here:
a. If r = n, then there are no free variables and the system has a unique
solution. (In Example 2.1.2, for instance, r = m = n = 3.)
b. If r < n, then the system has infinitely many solutions. (In Exam-
ples 2.1.6 and 2.1.7, for instance, r = 3 and n = 4.)

7. In any of the cases of Part 6, we solve for the basic variables xi corre-
sponding to the pivots pi, starting in the rth row and working our way
up row by row.

The Gaussian elimination algorithm proves the following theorem:

Theorem 2.2.1. (Summary of Gaussian Elimination). Consider the
m × n system with A an m × n matrix and b an n-vector:

Ax = b. (2.35)

Suppose the matrix [A|b] is reduced by the algorithm above to the echelon
matrix [U |c] with rank (U) = r.

8 Of course, r is also the rank of U , since the algorithm applied to U would leave
U unchanged.

9 Some books call this quantity the row rank of A until they define the column
rank and show that the two are equal.
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If r = m, that is, if U has no zero rows, then the system 2.35 is consistent.
If r < m, then the system is consistent if and only if cr+1 = 0.

For a consistent system,
a. there is a unique solution if and only if there are no free variables, that is,
if r = n;
b. if r < n, then there is an (n − r)-parameter infinite set of solutions of the
form

x = x0 +
n−r∑
i=1

sivi. (2.36)

We may state the uniqueness condition r = n in another way by saying
that the pivots are the diagonal entries u11, u22, . . . , unn of U , that is, that
U has the form

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p1 ∗ ∗ · · · ∗
0 p2 ∗ · · · ∗
0 0 p3 ∗
...

...
...

...
0 0 0 · · · pr

0 0 0 · · · 0
...

...
...

...
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.37)

A matrix of this form is called an upper triangular matrix and the pi its
diagonal entries. (The pivots are never 0, but in general, an upper triangular
matrix is allowed to have 0 diagonal entries as well.)

Note that for every m × n matrix we have 0 ≤ r ≤ min(m, n), because r
equals the number of pivots and there can be only one pivot in each row and
in each column. We have r = 0 only for zero matrices. At the other extreme,
if, for a matrix A, r = min(m, n) holds, then A is said to have full rank. If
r < min(m, n) holds, then A is said to be rank deficient.

Exercises

Exercise 2.2.1. List all possible forms of 2×2 echelon matrices in a manner
similar to Equation 2.37, with pi for the pivots and ∗ for the entries that may
or may not be zero.

Exercise 2.2.2. List all possible forms of 3×3 echelon matrices in a manner
similar to Equation 2.37, with pi for the pivots and ∗ for the entries that may
or may not be zero. (Hint : There are eight distinct forms.)
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In the next four exercises find conditions on a general vector b that would
make the equation Ax = b consistent for the given matrix A. (Hint : Reduce
the augmented matrix using undetermined components bi of b, until the A
in it is changed to echelon form, and set cr+1 = cr+2 = · · · = 0.)

Exercise 2.2.3. A =

⎡
⎣ 1 0 −1

−2 3 − 1
−6 6 0

⎤
⎦ .

Exercise 2.2.4. A =

⎡
⎣ 1 −2

2 − 4
−6 12

⎤
⎦ .

Exercise 2.2.5. A =
[

1 2 − 6
−2 − 4 12

]
.

Exercise 2.2.6. A =

⎡
⎢⎢⎣

1 0 −1
−2 3 − 1

3 − 3 0
2 0 −2

⎤
⎥⎥⎦ .

Exercise 2.2.7. Prove that the system Ax = b is consistent if and only if
A and [A|b] have the same rank.

2.3 Homogeneous and Inhomogeneous Systems,
Gauss–Jordan Elimination

In the sequel, we need to consider the expression Ax as a new kind of
product.10

Definition 2.3.1. (Matrix-Vector Product). For every m × n matrix A
and every column n-vector x, we define Ax as the column m-vector given by

Ax =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
am1 am2 · · · amn

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1
x2
...

xn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11x1 + a12x2 + · · · + a1nxn

a21x1 + a22x2 + · · · + a2nxn

...
am1x1 + am2x2 + · · · + amnxn

⎤
⎥⎥⎥⎦ .

(2.38)

10 The product Ax is always written just by juxtaposing the two letters; we never
use any multiplication sign in it.
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Notice that, on the right, the components of the column vector x show up
across every row of Ax; they are “flipped.” Actually, the rows on the right are
the dot products of the row vectors of A with the vector x. It is customary
to write ai (with a superscript i) for the ith row of A, and aix (without a
dot) for the ith dot product on the right. Thus Equation 2.38 can also be
written as

Ax =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦x =

⎡
⎢⎢⎢⎣

a1x
a2x

...
amx

⎤
⎥⎥⎥⎦ . (2.39)

We also need the following simple properties of Ax.

Theorem 2.3.1. (Properties of the Matrix-Vector Product). If A is
an m × n matrix, x and y column n-vectors, and c a scalar, then

A(x + y) = Ax + Ay and A(cx) = c(Ax). (2.40)

Proof. Using Equation 2.39 and the properties of vectors and dot products,
we have

A(x + y) =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ (x + y) =

⎡
⎢⎢⎢⎣

a1(x + y)
a2(x + y)

...
am(x + y)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1x + a1y
a2x + a2y

...
amx + amy

⎤
⎥⎥⎥⎦ (2.41)

=

⎡
⎢⎢⎢⎣

a1x
a2x

...
amx

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

a1y
a2y

...
amy

⎤
⎥⎥⎥⎦ = Ax + Ay. (2.42)

Similarly,

A(cx) =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ (cx) =

⎡
⎢⎢⎢⎣

a1(cx)
a2(cx)

...
am(cx)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c(a1x)
c(a2x)

...
c(amx)

⎤
⎥⎥⎥⎦ = c

⎡
⎢⎢⎢⎣

a1x
a2x

...
amx

⎤
⎥⎥⎥⎦ = c(Ax).

(2.43)

�
If the solutions of Ax = b are given by Equation 2.36, the latter is called

the general solution of the system, as opposed to a particular solution, which
is obtained by substituting particular values for the parameters into Equa-
tion 2.36.

It is customary and very useful to distinguish two types of linear systems
depending on the choice of b.
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Definition 2.3.2. (Homogeneous Versus Inhomogeneous Systems).
A system of linear equations Ax = b is called homogeneous if b = 0, and
inhomogeneous if b 	= 0.

We may restate part of Theorem 2.2.1 for homogeneous systems as follows.

Theorem 2.3.2. (Solutions of Homogeneous Systems). For any m×n
matrix A, the homogeneous system

Ax = 0 (2.44)

is always consistent: it always has the trivial solution x = 0. If r = n, then it
has only this solution; and if m < n or, more generally, if r < n holds, then
it has nontrivial solutions as well.

There is an important relationship between the solutions of corresponding
homogeneous and inhomogeneous systems, the analog of which is indispens-
able for solving many differential equations.

Theorem 2.3.3. (General and Particular Solutions). For any m × n
matrix A and any column m-vector b, if x = xb is any particular solution of
the inhomogeneous equation

Ax = b, (2.45)

with b 	= 0, then

x = xb + v (2.46)

is its general solution if and only if

v =
n−r∑
i=1

sivi (2.47)

is the general solution of the corresponding homogeneous equation

Av = 0. (2.48)

Proof. Assume first that 2.47 is the general solution of Equation 2.48. (Cer-
tainly, the Gaussian elimination algorithm would give it in this form.) Then
applying A to both sides of Equation 2.46, we get

Ax = A(xb + v) = Axb + Av = b + 0 = b. (2.49)

Thus, every solution of the homogeneous Equation 2.48 leads to a solution
of the form 2.46 of the inhomogeneous equation 2.45.
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Conversely, assume that 2.46 is a solution of the inhomogeneous equa-
tion 2.45. Then

Av = A(x − xb) = Ax − Axb = b − b = 0. (2.50)

This equation shows that the v given by Equation 2.47 is indeed a solution
of Equation 2.48, or, in other words, that a solution of the form 2.46 of
the inhomogeneous equation 2.45 leads to a solution of the form 2.47 of the
homogeneous equation 2.48. �

This theorem establishes a one-to-one pairing of the solutions of the
two equations 2.45 and 2.48. Geometrically this means that the solutions
of Av = 0 are the position vectors of the points of the hyperplane through
the origin given by Equation 2.47, and the solutions of Ax = b are those of a
parallel hyperplane obtained from the first one by shifting it by the vector xb.
(See Figure 2.1.) Note that we could have shifted by the coordinate vector
of any other point of the second hyperplane, that is, by any other particular
solution x′

b of Equation 2.45 (see Figure 2.2), and we would have obtained
the same new hyperplane.

Ax = b

Av = 0xb

v

x

Fig. 2.1. The solution vector x of the inhomogeneous equation equals the sum of
a particular solution and a solution of the corresponding homogeneous equation:
x = xb + v

Sometimes the forward elimination procedure is carried further so as to
obtain leading entries in the echelon matrix that equal 1, and to obtain 0
entries in the basic columns not just below but also above the pivots. This
method is called Gauss–Jordan elimination and the final matrix a reduced
echelon matrix or a row–reduced echelon matrix. We give one example of this
method.
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Fig. 2.2. The same solution vector x of the inhomogeneous equation also equals
the sum of another particular solution and another solution of the corresponding
homogeneous equation: x = x′

b + v′

Example 2.3.1. (Solving Example 2.1.7 by Gauss–Jordan Elimination). Let
us continue the reduction of Example 2.1.7, starting with the echelon matrix
obtained in the forward elimination phase:⎡

⎣2 3 − 2 4
0 0 1 4
0 0 0 0

∣∣∣∣∣∣
2
3
0

⎤
⎦ r1 ← r1/2

r2 ← r2
r3 ← r3

⎡
⎣1 3/2 − 1 2

0 0 1 4
0 0 0 0

∣∣∣∣∣∣
1
3
0

⎤
⎦

r1 ← r1 + r2
r2 ← r2
r3 ← r3

⎡
⎣1 3/2 0 6

0 0 1 4
0 0 0 0

∣∣∣∣∣∣
4
3
0

⎤
⎦ . (2.51)

From here on we proceed exactly as in the Gaussian elimination algorithm:
we assign parameters s and t to the free variables x2 and x4, and solve for
the basic variables x1 and x3. The latter step is now trivial, since all the work
has already been done. The equations corresponding to the final matrix are

x1 +
3
2
s + 6t = 4 (2.52)

x3 + 4t = 3.

Thus we find the same general solution as before:

x1 = 4 − 3
2
s − 6t (2.53)

x2 = s

x3 = 3 − 4t

x4 = t
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or in vector form as⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
0
3
0

⎤
⎥⎥⎦+ s

⎡
⎢⎢⎣

−3/2
1
0
0

⎤
⎥⎥⎦+ t

⎡
⎢⎢⎣

−6
0

−4
1

⎤
⎥⎥⎦ . (2.54)

Notice how the numbers in the first and third rows of this solution correspond
to the entries of the last matrix in 2.51, which is in reduced echelon form. �

As can be seen from this example, the reduced echelon form combines
the results of both the forward elimination and back substitution phases of
Gaussian elimination, and the general solution can simply be read from it. In
general, if [R|c] is the reduced echelon matrix corresponding to the system
Ax = b, then we assign parameters sj to the free variables xj ; and if rik is a
pivot of R, that is, a leading entry 1 in the ith row and kth column, then xk

is a basic variable, and the ith row of the reduced system Rx = c is

xk +
∑
j>k

rijsj = ci. (2.55)

Thus the general solution is given by

xj = sj if xj is free, and
xk = ci −∑j>k rijsj if xk is basic and is in the ith row. (2.56)

Gauss–Jordan elimination is rarely used for the solution of systems, be-
cause a variant of Gaussian elimination, which we shall study in Section 8.1,
is usually more efficient. However, Gauss–Jordan elimination is the pre-
ferred method for inverting matrices, as we shall see in Section 2.3. Also,
it is sometimes helpful that the reduced echelon form of a matrix is unique
(see Theorem 3.4.2), and that the solution of every system is immediately
visible in it.

We conclude this section with an application.

Example 2.3.2. (An Electrical Network). Consider the electrical network
shown in Figure 2.3. Here the Rk are positive numbers denoting resistances
(unit: ohm (Ω)), the ik are currents (unit: ampere (A)), and V1 and V2 are
the voltages (unit: volt (V)) of two batteries represented by the circles. These
quantities are related by three laws of physics:

1. Kirchhof’s first law. The sum of the currents entering a node equals
the sum of the currents leaving it.

2. Kirchhof’s second law. The sum of the voltage drops or potential
differences around every loop equals zero.

3. Ohm’s law. The voltage drop across a resistor R equals Ri, where i is
the current flowing through the resistor.
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R2

R3

R4

R1 R6

V1 V2

i5

i4

i3

i1

i2

i6+

-

+

-

R5

Fig. 2.3. An electrical network with resistors and two voltage sources

By convention, outside a battery the current that it generates flows from
the positive terminal to the negative one.11 However, in a multiloop circuit
the directions of the currents are not so obvious. In the circuit above, for
instance, the current i6 is generated by both batteries, and although V2 would
make it flow from right to left, it is possible that the contribution of V1
would make it flow as the arrow shows. In fact, the arrows for the direction
of the currents can be chosen arbitrarily, and if the equations result in a
negative value for an ik, then the current flows in the direction opposite the
arrow.

For the circuit of Figure 2.3, Kirchhof’s laws give the following six equa-
tions for the six unknown currents:12

i1 − i2 − i5 = 0
− i4 + i5 − i6 = 0

i3 + i4 + i6 = 0
R1i1 + R2i2 = V1

R2i2 + R3i3 − R4i4 − R5i5 = 0
R4i4 − R6i6 = V2

(2.57)

Assume that R1 = 4 Ω, R2 = 24 Ω, R3 = 1 Ω, R4 = 3 Ω, R5 = 2 Ω,
R6 = 8 Ω, V1 = 80 V, and V2 = 62 V. Then the augmented matrix of the
system becomes⎡

⎢⎢⎢⎢⎢⎢⎣

1 − 1 0 0 − 1 0
0 0 0 − 1 1 − 1
0 0 1 1 0 1
4 24 0 0 0 0
0 24 1 −3 −2 0
0 0 0 3 0 −8

∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0

80
0

62

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2.58)

11 This convention was established before the discovery of electrons, which actually
make up the flow by carrying a negative charge around the loop in the opposite
direction.

12 Actually, Kirchhof’s laws give more equations than these six. In Example 3.5.7
we shall examine how to select a sufficient set.
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and Gaussian elimination gives the solution i1 = 8 A, i2 = 2 A, i3 = −6 A,
i4 = 10 A, i5 = 6 A, i6 = −4 A .

In order to give a transparent illustration of Kirchhof’s laws, we show this
solution in Figure 2.4, with the arrows pointing in the correct directions for
the currents.

62V

6 A8 A

2 A

4 A+

-

+

-6 A

 24 ohm 10 A 

4 ohm 2 ohm 8 ohm

3 ohm

1 ohm

80V

Fig. 2.4. The same circuit as in Figure 2.3, solved

The system above was obtained by what is called the branch method.
Another possibility is to use the loop method, which we are now going to
illustrate for the same circuit.

R2

R3

R4

R1 R6

V1 V2

iBiA iC+

-

+

-

R5

Fig. 2.5. The same circuit with loops shown

We consider only three unknown currents: iA, iB , iC , one for each of
the three small loops (see Figure 2.5), with arbitrarily assigned directions.
Then, for the resistors shared by two loops, we must use the appropriate
superposition of the currents of those loops. Thus the loop equations are

R1iA + R2 (iA − iB) = V1
R2 (iB − iA) + R3iB + R4 (iB − iC) + R5iB = 0

R4 (iC − iB) + R6iC = −V2

(2.59)

or, equivalently,

(R1 + R2) iA − R2iB = V1
−R2iA + (R2 + R3 + R4 + R5) iB − R4iC = 0

−R4iB + (R4 + R6) iC = −V2

(2.60)
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For the given numerical values, the augmented matrix of this system becomes⎡
⎣ 28 − 24 0

−24 30 −3
0 −3 11

∣∣∣∣∣∣
80
0

−62

⎤
⎦ , (2.61)

whose solution is iA = 8 A, iB = 6 A, and iC = −4 A . From these loop
currents we can easily recover the earlier branch currents as i1 = iA = 8 A,
i2 = iA − iB = 2 A, i3 = −iB = −6 A, i4 = iB − iC = 10 A, i5 = iB = 6 A,
i6 = iC = −4 A . �

Exercises

Exercise 2.3.1. List all possible forms of 2 × 2 reduced echelon matrices.

Exercise 2.3.2. List all possible forms of 3 × 3 reduced echelon matrices.

Exercise 2.3.3. Solve Exercise 2.1.5 by Gauss–Jordan elimination.

Exercise 2.3.4. Solve Exercise 2.1.8 by Gauss–Jordan elimination.

Exercise 2.3.5. Solve Exercise 2.1.11 by Gauss–Jordan elimination.

Exercise 2.3.6. Solve Exercise 2.1.12 by Gauss–Jordan elimination.

In each of the next two exercises find two particular solutions xb and x′
b

of the given system and the general solution v of the corresponding homoge-
neous system. Write the general solution of the given system as xb + v and
also as x′

b + v, and show that the two forms are equivalent; that is, that the
set of vectors of the form xb + v is identical with the set of vectors of the
form x′

b + v.

Exercise 2.3.7. 2x1+ 3x2− 1x3 = 4
3x1+ 5x2+ 2x3 = 1

Exercise 2.3.8. 2x1+ 2x2− 3x3− 2x4 = 4
6x1+ 6x2+ 3x3+ 6x4 = 0

MATLAB Exercises

In MATLAB, linear systems are entered in matrix form. We can enter a
matrix by writing its entries between brackets, row by row from left to right,
top to bottom, and separating row entries by spaces or commas, and rows by
semicolons. For example the command A = [2, 3; 1, −2] would produce the
matrix

A =
[

2 3
1 −2

]
.
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(The size of a matrix is automatic; no size declaration is needed or possible,
unlike in most other computer languages.) The entry aij of the matrix A is
denoted by A(i, j) in MATLAB, the ith row by A(i, :) and the jth column
by A(:, j).

The vector b must be entered as a column vector. This can be achieved
either by separating its entries by semicolons or by writing a prime after the
closing bracket, as in b = [1, 2]′. This would result in the column vector

b =
[

1
2

]
.

The augmented matrix can be formed by the command [A b]. Sometimes
we may wish to name it as, say, A−b = [A b] or simply as C = [A b]. The
command rref(C) returns the reduced echelon form of C.

The command x =A\b always returns a solution of the system Ax = b.
This is the unique solution if there is only one; it is a certain particular
solution with as many zeros as possible for components of x with the low-
est subscripts, and is the least-squares “solution” (to be discussed in Sec-
tion 5.1) if the system is inconsistent. This command is the most efficient
method of finding a solution and is the one you should use whenever possi-
ble. On the other hand, to find the general solution of an underdetermined
system this method does not work, and you should use rref([A b]) to ob-
tain the reduced echelon matrix, and proceed as in Example 2.3.1 or Equa-
tions 2.56.

Exercise 2.3.9.
a. Write MATLAB commands to implement elementary row operations on a
3 × 6 matrix A.
b. Use these commands to reduce the matrix

A =

⎡
⎣ 3 − 6 − 1 1 5 2

−1 2 2 3 3 6
4 −8 −3 − 2 1 0

⎤
⎦

to reduced echelon form and compare your result to rref(A).
c. Write MATLAB commands to compute a matrix B with the same rows as
the matrix A, but the first two rows switched.
d. Compare rref(B) with rref(A). Explain your result.

Exercise 2.3.10. Use MATLAB to find the general solution of Ax = 0 for

A =

⎡
⎢⎢⎣

−1 − 2 − 1 − 1 1
−1 −2 0 3 − 1

1 2 1 1 1
0 0 2 8 2

⎤
⎥⎥⎦ .
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Exercise 2.3.11. Let A be the same matrix as in the previous exercise
and let

b =

⎡
⎢⎢⎣

9
1

−5
−4

⎤
⎥⎥⎦ .

a. Find the general solution of Ax = b using rref([A b]).
b. Verify that x =A\b is indeed a particular solution by computing Ax
from it.
c. Find the parameter values in the general solution obtained in Part (a),
that give the particular solution of Part (b).
d. To verify the result of Theorem 2.3.3 for this case, show that the general
solution of Part (a) equals x =A\b plus the general solution of the homoge-
neous equation found in the previous exercise.

Exercise 2.3.12. Let A and b be the same as in the last exercise. The com-
mand x = pinv(A) ∗ b gives another particular solution of Ax = b. (This
solution will be explained in Section 5.1.) Verify Theorem 2.3.3 for this par-
ticular solution, as in Part (d) of the previous exercise.

Exercise 2.3.13. Let A be the same matrix as in Exercise 2.3.10 and let

b =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦. Compute x =A\b and substitute this into Ax. Explain how your

result is possible. (Hint : Look at rref([A b]).)

2.4 The Algebra of Matrices

Just as for vectors, we can define algebraic operations for matrices, and these
operations will vastly extend their utility.

In order to motivate the forthcoming definitions, it is helpful to interpret
matrices as functions or mappings. Thus if A is an m×n matrix, the matrix-
vector product Au may be regarded as describing a mapping TA : Rn → Rm

of every u ∈ Rn to Au ∈ Rm, that is, as TA (u) = Au. This is also reflected in
the terminology: We frequently read Au as A being applied to u instead of A
times u. If m = n, we may consider TA as a transformation of the vectors of
Rn to corresponding vectors in the same space.

Example 2.4.1. (Rotation Matrix). The matrix

Rθ =
[

cos θ − sin θ
sin θ cos θ

]
(2.62)
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x2

x1

v

u

O
φ

Fig. 2.6. Rotation of u ∈ R
2 by the angle θ

represents the rotation Tθ of R2 around O by the angle θ, as can be seen in
the following way. (See Figure 2.6.) Let

u =
[ |u| cos φ

|u| sin φ

]
(2.63)

be any nonzero vector in R2 (see Exercise 1.2.15 on page 26). Then, by
Definition 2.3.1,

Tθ (u) = Rθu =
[

cos θ − sin θ
sin θ cos θ

] [ |u| cos φ
|u| sin φ

]
= |u|

[
cos θ cos φ − sin θ sin φ
sin θ cos φ + cos θ sin φ

]
,

(2.64)

and so

Tθ (u) = Rθu = |u|
[

cos (φ + θ)
sin (φ + θ)

]
. (2.65)

This is indeed a vector of the same length as u and it encloses the angle φ+θ
with the x1-axis. �

Such transformations will be discussed in detail in Chapter 4. Here we
just present the concept briefly, in order to lay the groundwork for the defi-
nitions of matrix operations. These definitions are analogous to the familiar
definitions for functions of real variables, where, given functions f and g, their
sum f + g is defined as the function such that (f + g)(x) = f(x) + g(x) for
every x, and, for any real number c, the product cf is defined as the function
such that (cf)(x) = cf(x) for every x.

Definition 2.4.1. (Sum and Scalar Multiple of Mappings). Let TA

and TB be two mappings of Rn to Rm, for any positive integers m and n.
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We define their sum TA + TB as the mapping that maps every x ∈ Rn to
TA (x) + TB (x) ∈ Rm or, in other words, as the mapping given by

(TA + TB) (x) = TA (x) + TB (x) for all x ∈ Rn. (2.66)

Furthermore, for any scalar c, the mapping cTA is defined as the mapping
that maps every x to c (TA(x)) ∈ Rm, that is, the mapping for which

(cTA) (x) = c (TA(x)) for all x ∈ Rn. (2.67)

Now, let TA and TB be two mappings that correspond to two matrices A
and B respectively, that is, such that TA (x) = Ax and TB (x) = Bx for all
appropriate x. Then we can use Definition 4.2.4 to define A + B and cA.

Definition 2.4.2. (Sum and Scalar Multiple of Matrices). Let A and
B be two m×n matrices, for any positive integers m and n. We define their
sum A+B as the matrix that corresponds to TA +TB , or, in other words, as
the matrix for which we have

(A + B)x = Ax + Bx for all x ∈ Rn. (2.68)

Similarly, for any scalar c, the matrix cA is defined as the matrix that cor-
responds to cTA, that is, as the matrix for which

(cA)x = c(Ax) for all x ∈ Rn. (2.69)

The mappings TA + TB and cTA both clearly exist, but the existence of
corresponding matrices A + B and cA requires proof. Their existence will be
proved by Theorem 2.4.1 below, where they will be computed explicitly.

Definition 2.4.2 can be paraphrased as requiring that the order of the
operations be reversible: On the right-hand side of Equation 2.68 we first
apply A and B separately to x and then add, and on the left we first add
A to B and then apply the sum to x. Similarly, on the right-hand side of
Equation 2.69 we first apply A to x and then multiply by c, while on the left
this is reversed: A is first multiplied by c and then cA is applied to x. We
may also regard Equation 2.68 as a new distributive rule and Equation 2.69
as a new associative rule. Note that Equation 2.69 enables us to drop the
parentheses, that is, to write cAx for c(Ax).

Example 2.4.2. (A Matrix Sum). Let

A =
[

3 5
4 2

]
and B =

[
2 3
4 7

]
. (2.70)

Then, applying Definition 2.3.1, for any x we have

Ax =
[

3 5
4 2

] [
x1
x2

]
=
[

3x1 + 5x2
4x1 + 2x2

]
, (2.71)
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and

Bx =
[

2 3
4 7

] [
x1
x2

]
=
[

2x1 + 3x2
4x1 + 7x2

]
. (2.72)

Hence

Ax+Bx =
[

3x1 + 5x2
4x1 + 2x2

]
+
[

2x1 + 3x2
4x1 + 7x2

]
=
[

5x1 + 8x2
8x1 + 9x2

]
=
[

5 8
8 9

] [
x1
x2

]
.

(2.73)

Thus, by Equation 2.68,

(A + B)x =
[

5 8
8 9

] [
x1
x2

]
(2.74)

and so,

A + B =
[

5 8
8 9

]
. (2.75)

Here we see that A + B is obtained from A and B by adding corresponding
entries. That this addition rule is true in general, and not just for these
particular matrices, will be part of Theorem 2.4.1. �

Example 2.4.3. (A Scalar Multiple of a Matrix). Let c = 2 and

A =
[

3 4
4 2

]
. (2.76)

Then, applying Definition 2.3.1, for every x we have

Ax =
[

3 4
4 2

] [
x1
x2

]
=
[

3x1 + 4x2
4x1 + 2x2

]
, (2.77)

and so,

c (Ax) = 2
[

3x1 + 4x2
4x1 + 2x2

]
=
[

6x1 + 8x2
8x1 + 4x2

]
=
[

6 8
8 4

] [
x1
x2

]
. (2.78)

Thus, by Equation 2.69,

(2A)x =
[

6 8
8 4

] [
x1
x2

]
(2.79)

and so,

2A =
[

6 8
8 4

]
. (2.80)

Here we see that 2A is obtained by multiplying every entry of A by 2. The
next theorem generalizes this multiplication rule to arbitrary c and A. �
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Theorem 2.4.1. (The Sumand ScalarMultiple of Matrices inTerms
of Entries). For any two matrices A = [aik] and B = [bik] of the same
shape, we have

(A + B)ik = aik + bik for all i, k, (2.81)

and for any scalar c, we have

(cA)ik = caik for all i, k. (2.82)

Proof. To write Equations 2.68 and 2.69 in terms of components, let us first
recall from Definition 2.3.1 that, for all appropriate x, the product Ax is a
column m-vector whose ith component is given, for each i, by

(Ax)i = ai1x1 + ai2x2 + · · · + ainxn, (2.83)

which can be abbreviated as

(Ax)i =
n∑

j=1

aijxj . (2.84)

Applying the same principle to B and A + B, we also have, for all i,

(Bx)i =
∑

j

bijxj (2.85)

and

[(A + B)x]i =
∑

j

(A + B)ijxj . (2.86)

From Equation 2.68, the definition of vector addition, and the last three
equations,

[(A + B)x]i = (Ax + Bx)i = (Ax)i + (Bx)i

=
∑

j

aijxj +
∑

j

bijxj =
∑

j

(aij + bij)xj . (2.87)

Comparing the two evaluations of [(A+B)x]i in Equations 2.86 and 2.87, we
obtain∑

j

(A + B)ijxj =
∑

j

(aij + bij)xj . (2.88)

Equation 2.88 must hold for every choice of x. Choosing xk = 1 for any
fixed k, and xj = 0 for all j 	= k, yields the first statement of the theorem:

(A + B)ik = aik + bik for all i, k. (2.89)

Equation 2.82 can be obtained similarly, and its proof is left as
Exercise 2.4.2. �
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This theorem can be paraphrased as: Every entry of a sum of matrices
equals the sum of the corresponding entries of the summands; and we multi-
ply a matrix A by a scalar c, by multiplying every entry by c. Notice again,
as for vectors, the reversal of operations: “every entry of a sum = sum of cor-
responding entries” and “every entry of cA = c × corresponding entry of A.”

Let us emphasize that only matrices of the same shape can be added to
each other, and that the sum has the same shape, in which case we call them
conformable for addition. However, for matrices of differing shapes there is
no reasonable way of defining a sum.

We can also define multiplication of matrices in certain cases and this
will prove to be an enormously fruitful operation. For real-valued functions f
and g, their composite f ◦ g was defined by (f ◦ g) (x) = f(g(x)) for all x,
and we first define the composite of two mappings similarly, to represent the
performance of two mappings in succession.

Definition 2.4.3. (Composition of Mappings). Let TB be a mapping of
Rn to Rp and TA be a mapping of Rp to Rm, for any positive integers m, p,
and n. We define the composite TA ◦ TB as the mapping that maps every
x ∈ Rn to TA (TB (x)) ∈ Rm or, in other words, as the mapping given by

(TA ◦ TB) (x) = TA (TB (x)) for all x ∈ Rn. (2.90)

Next, we define the product of two matrices as the matrix that corresponds
to the composite mapping.

Definition 2.4.4. (Matrix Multiplication). Let A be an m×p matrix and
B a p×n matrix, for any positive integers m, p, and n. Let TA and TB be
the corresponding mappings. That is, let TB map every x ∈ Rn to a vector
TB (x) = Bx of Rp and TA map every y ∈ Rp to TA (y) = Ay of Rm. We
define the product AB as the m×n matrix that corresponds to the composite
mapping TA ◦ TB , that is, by the formula

(AB)x = (TA ◦ TB) (x) = A(Bx) for all x ∈ Rn. (2.91)

These mappings and Definition 2.4.4 are illustrated symbolically in Fig-
ure 2.7.

That such a matrix always exists will be proved by Theorem 2.4.2, where
it will be computed explicitly.

Let us emphasize that only for matrices A and B such that the number
of columns of A (the p in the definition) equals the number of rows of B
can the product AB be formed, in which case we call them conformable for
multiplication. Also, we never use any sign for this multiplication, we just
write the factors next to each other.

Furthermore, Equation 2.91 can also be viewed as a new associative law
or as a reversal of the order of the two multiplications (but not of the factors).
Hence, we can drop the parentheses, that is, we can write ABx for A(Bx).
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Rp

Rm

Rn

x  Bx

(AB)x = A(Bx)

TAB TA

TB

 

Fig. 2.7. The product of two matrices corresponding to two mappings in succession

Example 2.4.4. (A Matrix Multiplication). Let

A =

⎡
⎣3 5

1 2
2 4

⎤
⎦ and B =

[
2 1
0 3

]
. (2.92)

Then, applying Equation 2.85, for every x we have

Bx =
[

2 1
0 3

] [
x1
x2

]
=
[

2x1 + x2
3x2

]
, (2.93)

and similarly

A(Bx) =

⎡
⎣3 5

1 2
2 4

⎤
⎦[2x1 + x2

3x2

]
=

⎡
⎣ 6x1 + 18x2

2x1 + 7x2
4x1 + 14x2

⎤
⎦ =

⎡
⎣6 18

2 7
4 14

⎤
⎦[x1

x2

]
. (2.94)

Thus

AB =

⎡
⎣6 18

2 7
4 14

⎤
⎦ . (2.95)

�
From the definition we can easily deduce the following rule that gives the

entries of AB and shows that the vector x can be dispensed with in their
computation.
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Theorem 2.4.2. (Matrix Multiplication in Terms of Entries). Let A
be an m × p matrix and B a p × n matrix. Then the product AB is an m × n
matrix whose entries are given by the formula

(AB)ik =
p∑

j=1

aijbjk for i = 1, . . . , m and k = 1, . . . , n. (2.96)

Proof. The components of Bx can be written as

(Bx)j =
n∑

k=1

bjkxk for j = 1, . . . , p. (2.97)

Also,

(Ay)i =
p∑

j=1

aijyj for i = 1, . . . , m. (2.98)

Substituting from Equation 2.97 into 2.98, we get

(A(Bx))i =
p∑

j=1

aij

(
n∑

k=1

bjkxk

)
=

n∑
k=1

⎛
⎝ p∑

j=1

aijbjk

⎞
⎠xk. (2.99)

On the other hand, we have

((AB)x)i =
n∑

k=1

(AB)ikxk. (2.100)

In view of Definition 2.4.4 the left-hand sides of Equations 2.99 and 2.100
must be equal, and since the vector x can be chosen arbitrarily, the coefficients
of xk on the right-hand sides of Equations 2.99 and 2.100 must be equal. This
proves the theorem. �

The special case of Theorem 2.4.2, in which m = n = 1, which is also
a special case of the definition of Ax (Definition 2.3.1), is worth stating
separately:

Corollary 2.4.1. (Matrix Products with Row and Column Vectors).
If A is a 1 × p matrix, that is, a row p-vector

a = (a1, a2, . . . , ap) (2.101)

and B a p × 1 matrix, that is, a column p-vector

b =

⎡
⎢⎢⎢⎣

b1
b2
...
bp

⎤
⎥⎥⎥⎦ , (2.102)
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then their matrix product ab is a scalar and is equal to their dot product as
vectors, namely

ab =
p∑

j=1

ajbj . (2.103)

Also, if B = (b1,b2, . . . ,bn) is a p × n matrix, where the bi stand for the
column p-vectors of B, then

aB = (ab1,ab2, . . . ,abn), (2.104)

which is a row n-vector.

It is very important to observe that matrix multiplication is not com-
mutative. This will be seen by direct computations, but it also follows from
the definition as two mappings in succession, since mappings are generally
not commutative. The latter is true even in the case of transformations in
the same space. Consider, for instance, the effect of a north-south stretch
followed by a 90-degree rotation on a car facing north, and of the same op-
erations performed in the reverse order. In the first case we end up with a
longer car facing west, and in the second case with a wider car facing west.

In case of the two vectors in Corollary 2.4.1, the product ba is very
different from ab. The latter is a scalar, as given by Equation 2.103. However,
if the column vector comes first, then a and b do not even have to have the
same number of entries. Changing b in Corollary 2.4.1 to a column m-vector
and a to a row n-vector we get, by Theorem 2.4.2 with p = 1,

ba =

⎡
⎢⎢⎢⎣

b1
b2
...

bm

⎤
⎥⎥⎥⎦ (a1, a2, . . . , an) =

⎡
⎢⎢⎢⎣

b1a1 b1a2 · · · b1an

b2a1 b2a2 · · · b2an

...
...

...
...

bma1 bman · · · bman

⎤
⎥⎥⎥⎦ . (2.105)

If m 	= n, then ab does not exist. On the other hand, the ba above is called
the outer product of the two vectors, in contrast to the much more important
inner product given by Equation 2.103, presumably because the outer product
is in the space of m×n matrices, which contains the spaces Rm and Rn of the
factors, and those spaces, in turn, contain the space R1 of the inner product.

Even if the product AB is defined, often the product BA is not. For
example, if A is 2 × 3, say, and B is 3 × 1, then AB is, by Definition 2.4.4, a
2× 1 matrix, but BA is not defined since the inside numbers 1 and 2 in 3× 1
and 2 × 3 do not match, as required by Definition 2.4.4.

The interpretation of the product in Corollary 2.4.1 as a dot product
suggests that the formula of Theorem 2.4.2 can also be interpreted similarly.

Corollary 2.4.2. (Product of Two Matrices in Terms of Their Row
and Column Vectors). Let A be an m × p matrix and B a p × n matrix
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and let us denote the ith row of A by ai and the kth column of B by bk, that
is, let13

ai = (ai1, ai2, . . . , aip) (2.106)

and

bk =

⎡
⎢⎢⎢⎣

b1k

b2k

...
bpk

⎤
⎥⎥⎥⎦ . (2.107)

Then we have

(AB)ik = aibk for i = 1, . . . , m and k = 1, . . . , n. (2.108)

This result may be paraphrased as saying that the entry in the ith row and
kth column of AB equals the dot product of the ith row of A with the kth
column of B. Consequently, we may write out the entire product matrix as

AB =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ (b1,b2, . . . ,bn) =

⎡
⎢⎢⎢⎣

a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
...

amb1 amb2 · · · ambn

⎤
⎥⎥⎥⎦ . (2.109)

The last formula is analogous to the outer product in Equation 2.105, but
the entries on the right are inner products of vectors rather than ordinary
products of numbers. This corollary is very helpful in the evaluation of matrix
products, as will be seen below.

Let us also comment on the use of superscripts and subscripts. The nota-
tion we follow for row and column vectors is standard in multilinear algebra
(treated in more advanced courses) and will serve us well later, but we have
stayed with the more elementary standard usage of just subscripts for matrix
elements. Thus our notation is a mixture of two conventions. To be consis-
tent, we should have used ai

j instead of aij to denote an entry of A, since
then ai

j could have been properly interpreted as the jth component of the ith
row ai, and also as the ith component of the jth column aj . However, since
here we need no such sophistication, we have adopted the simpler convention.

Example 2.4.5. (A Matrix Product in Terms of Row and Column Vectors).
Let

A =
[

2 4
3 7

]
and B =

[
3 − 1
5 6

]
. (2.110)

13 The i here is a superscript to distinguish a row of a matrix from a column, which
is denoted by a subscript, and must not be mistaken for an exponent.
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Then

AB =

⎡
⎢⎢⎢⎣

(2 4)
[

3
5

]
(2 4)

[−1
6

]

(3 7)
[

3
5

]
(3 7)

[−1
6

]
⎤
⎥⎥⎥⎦ (2.111)

and so

AB =
[

2 · 3 + 4 · 5 2 · (−1) + 4 · 6
3 · 3 + 7 · 5 3 · (−1) + 7 · 6

]
=
[

26 22
44 39

]
. (2.112)

For further reference, note that we can factor out the column vectors
[

3
5

]

and
[−1

6

]
in the columns of AB as given in Equation 2.111, and write AB as

AB =
[[

2 4
3 7

] [
3
5

] [
2 4
3 7

] [−1
6

]]
=
[

A

[
3
5

]
A

[−1
6

]]
. (2.113)

Thus, in the product AB the matrix A can be distributed over the columns
of B. Similarly, we can factor out the row vectors (2 4) and (3 7) from the
rows of AB as given in Equation 2.111 and write AB also as

AB =
[

(2 4)B
(3 7)B

]
, (2.114)

that is, with the matrix B distributed over the rows of A. �

Example 2.4.6. (A Matrix Product in Terms of Entries). Let

A =
[

2 − 2 4
1 3 5

]
and B =

⎡
⎣2 − 1

4 −2
6 3

⎤
⎦ . (2.115)

Then

AB =
[

2 · 2 − 2 · 4 + 4 · 6 2 · (−1) − 2 · (−2) + 4 · 3
1 · 2 + 3 · 4 + 5 · 6 1 · (−1) + 3 · (−2) + 5 · 3

]
=
[

20 14
44 8

]
. (2.116)

�

Example 2.4.7. (The Product of Two Rotation Matrices). The matrices

R30 =
[

cos 30 ◦ − sin 30 ◦

sin 30 ◦ cos 30 ◦

]
=

1
2

[√
3 − 1

1
√

3

]
(2.117)

and

R60 =
[

cos 60 ◦ − sin 60 ◦

sin 60 ◦ cos 60 ◦

]
=

1
2

[
1 − √

3√
3 1

]
(2.118)
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represent rotations by 30◦ and 60◦ respectively, according to Example 2.4.1.
Their product

R30R60 =
[

0 − 1
1 0

]
=
[

cos 90 ◦ − sin 90 ◦

sin 90 ◦ cos 90 ◦

]
= R90 (2.119)

represents the rotation by 90◦, as it should. �

An interesting use of matrices and matrix operations is provided by the
following example, typical of a large number of similar applications involving
incidence or connection matrices.

Example 2.4.8. (A Connection Matrix for an Airline). Suppose that an air-
line has nonstop flights between cities A, B, C, D, E as described by the
matrix

M =

⎡
⎢⎢⎢⎢⎣

0 1 0 1 0
1 0 0 0 0
0 0 0 0 1
1 0 0 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦ . (2.120)

Here the entry mij is 1 if there is a nonstop connection from city i to city j,
and 0 if there is not, with the cities labeled 1, 2, . . . , 5 instead of A, B, . . . , E.
Then the entries of the matrix

M2 = MM =

⎡
⎢⎢⎢⎢⎣

2 0 0 0 1
0 1 0 1 0
0 0 1 1 0
0 1 1 2 0
1 0 0 0 2

⎤
⎥⎥⎥⎥⎦ (2.121)

show the one-stop connections. Why? Because, if we consider the entry

(M2)ik =
5∑

j=1

mijmjk (2.122)

of M2, then the jth term equals 1 in this sum if and only if mij = 1 and
mjk = 1, that is, if we have a nonstop flight from i to j and another from j
to k. If there are two such j values, then the sum will be equal to 2, showing
that there are two choices for one-stop flights from i to k. Thus, for instance,
(M2)11 = 2 shows that there are two one-stop routes from A to A: Indeed,
from A one can fly to B or D and back. The entries of the matrix14

14 In matrix expressions with several operations, the precedence rules are analo-
gous to those for numbers: first powers, then products, and last addition and
subtraction, unless otherwise indicated by parentheses.
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M + M2 =

⎡
⎢⎢⎢⎢⎣

2 1 0 1 1
1 1 0 1 0
0 0 1 1 1
1 1 1 2 1
1 0 1 1 2

⎤
⎥⎥⎥⎥⎦ (2.123)

show the number of ways of reaching one city from another with one-leg
or two-leg flights. In particular, the zero entries show, for instance, that B
and E are not so connected. Evaluating (M3)25 = (M3)52, we would similarly
find that even those two cities can be reached from each other with three-leg
flights.

What are the vectors on which these matrices act, that is, what meaning
can we give to an equation like y = Mx? The answer is that if the components
of x are restricted to just 0 and 1, then x may be regarded as representing
a set of cities and y the set that can be reached nonstop from x. Thus, for
instance,

x =

⎡
⎢⎢⎢⎢⎣

1
1
0
0
0

⎤
⎥⎥⎥⎥⎦ (2.124)

represents the set {A, B}, and then

y = Mx =

⎡
⎢⎢⎢⎢⎣

1
1
0
1
0

⎤
⎥⎥⎥⎥⎦ (2.125)

represents the set {A, B, D} that can be reached nonstop from {A, B}.
(Again, if a number greater than 1 were to show up in y, that would indicate
that the corresponding city can be reached in more than one way.) �

We present one more example, which is a simplified version of a large class
of similar applications of matrices.

Example 2.4.9. (A Matrix Description of Population Changes). We want to
describe how in a certain town two population groups, those younger than 50
and those 50 or older, change over time. We assume that over every decade,
on the one hand, there is a net increase of 10% in the under fifty population,
and on the other hand, 20% of the under fifty population becomes fifty or
older, while 40% of the initial over fifty population dies. If x1 and x2 denote
the numbers of people in the two groups at a given time, then their numbers
a decade later will be given by the product
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Ax =
[

1.1 0
0.2 0.6

] [
x1
x2

]
. (2.126)

Similarly, two decades later the two population groups will be given by

A (Ax) = A2x =
[

1.21 0
0.34 0.36

] [
x1
x2

]
, (2.127)

and so on. (In Example 7.2.1 we will examine how the two populations change
in the long run.) �

As we have seen, a matrix can be regarded as a row vector of its columns
and also as a column vector of its rows. Making full use of this choice, we
can rewrite the product of matrices two more ways, corresponding to the
particular cases shown in Equations 2.113 and 2.114. We obtain these new
formulas by factoring out the bj coefficients in the columns of the matrix on
the right of Equation 2.109 and the ai coefficients in the rows:

AB =

⎡
⎢⎢⎢⎣

a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
...

amb1 amb2 · · · ambn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦b1,

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ b2, · · · ,

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦ bn

⎤
⎥⎥⎥⎦

= (Ab1 Ab2 · · · Abn) (2.128)

and

AB =

⎡
⎢⎢⎢⎣

a1b1 a1b2 · · · a1bn

a2b1 a2b2 · · · a2bn

...
...

...
...

amb1 amb2 · · · ambn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1(b1 b2 · · · bn)
a2(b1 b2 · · · bn)

...
am(b1 b2 · · · bn)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a1B
a2B

...
amB

⎤
⎥⎥⎥⎦ .

(2.129)

We summarize these results as follows.

Corollary 2.4.3. (Product of Two Matrices in Terms of the Row or
Column Vectors of One of Them). Let A and B be as in Corollary 2.4.2.
With the same notation for the rows and columns used there, we have

AB = A(b1 b2 · · · bn) = (Ab1 Ab2 · · · Abn) (2.130)
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and

AB =

⎡
⎢⎢⎢⎣

a1

a2

...
am

⎤
⎥⎥⎥⎦B =

⎡
⎢⎢⎢⎣

a1B
a2B

...
amB

⎤
⎥⎥⎥⎦ . (2.131)

Although the matrix product is not commutative, it still has the other
important properties expected of a product, namely associativity and dis-
tributivity.

Theorem 2.4.3. (Associativity and Distributivity of Matrix Multi-
plication). Let A, B, and C be arbitrary matrices for which the expressions
below all make sense. Then we have the associative law

A(BC) = (AB)C (2.132)

and the distributive law

A(B + C) = AB + AC. (2.133)

Proof. Let A, B, and C be m × p, p × q, and q × n matrices respectively.
Then we may evaluate the left side of Equation 2.132 using Equations 2.130
and Definition 2.4.4 as follows:

A(BC) = A(B(c1 c2 · · · cn)) = A(Bc1 Bc2 · · · Bcn)
= (A(Bc1) · · · A(Bcn)) = ((AB)c1 · · · (AB)cn)
= (AB)(c1 c2 · · · cn) = (AB)C. (2.134)

We leave the proof of the distributive law to the reader as Exercise 2.4.18. �

Note that Equation 2.132 enables us to write ABC, without parentheses,
for A(BC) or (AB)C.

Once we have defined addition and multiplication of matrices, it is natural
to ask what matrices take the place of the special numbers 0 and 1 in the
algebra of numbers. Zero is easy: we take every matrix with all entries equal
to zero to be a zero matrix. Denoting it by O, regardless of its shape, we
have, for every A of the same shape,

A + O = A, (2.135)

and whenever the product is defined,

AO = O and OA = O. (2.136)

Note that the zero matrices on either side of each of Equations 2.136 may
be of different size, although they are usually denoted by the same letter O.
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While a little less straightforward, it is still easy to see how to find analogs
of 1. For every n, the n×n matrix

I =

⎡
⎢⎢⎢⎣

1 0 · · · 0
0 1 · · · 0
...
0 0 · · · 1

⎤
⎥⎥⎥⎦ (2.137)

with 1’s along its “main diagonal” and zeros everywhere else, has the prop-
erties

AI = A and IA = A, (2.138)

whenever the products are defined. This fact can be verified by direct compu-
tation in every one of the product’s forms, with A in the general form (aij).
We may do it as follows: We write I = (δij), where

δij =
{

1 if i = j
0 if i 	= j

(2.139)

is called Kronecker’s delta function and is the standard notation for the en-
tries of the matrix I. With this notation, for A and I sized m × n and n × n
respectively, Theorem 2.4.2 gives

(AI)ik =
n∑

j=1

aijδjk = aik for i = 1, . . . , m and k = 1, . . . , n, (2.140)

since, by the definition of δjk, in the sum all terms are zero except the one
with j = k and that one gives aik. This result is, of course, equivalent to
AI = A. We leave the proof of the other equation of 2.138 to the reader.

For every n the matrix I is called the unit matrix or the identity matrix
of order n. We usually dispense with any indication of its order unless it is
important and would be unclear from the context. In such cases we write it
as In. Notice that the columns of I are the standard vectors ei (regarded as
column vectors, of course), that is,

I = (e1 e2 . . . en). (2.141)

In Section 2.5 we shall see how the inverse of a matrix can be defined in
some cases.

In closing this section, we just want to present briefly the promised expla-
nation of the reason for using column vectors for x in the equation Ax = b.
In a nutshell, we used column vectors because otherwise the whole formalism
of this section would have broken down. The product Ax was used in Defini-
tion 2.4.4 of the general matrix product AB, which led to the formula of The-
orem 2.4.2 for the components (AB)ik. If we want to multiply AB by a third
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matrix C, we have no problem repeating the previous procedure, that is, form
the products (AB)ikckl and sum over k. However, had we used a row vector x
in the beginning, that would have led to the formula (AB)ik =

∑n
j=1 aijbkj

and then multiplying this result by ckl or clk, and summing over k, we would
have had to use the first subscript of b for summation in this second product,
unlike in the first one. Thus the associative law could not be maintained and
the nice formulas of Corollary 2.4.3 would also cease to hold. Basically, once
we decided to use rows of A to multiply x in the product Ax, then we had
to make x a column vector in order to end up with a reasonable formalism.

Exercises

Exercise 2.4.1. Let

A =
[

2 3
1 − 2

]
and B =

[
3 − 4
2 2

]
.

Find the matrices a. C = 2A + 3B, and b. D = 4A − 3B.

Exercise 2.4.2. Prove Equation 2.82 of Theorem 2.4.1.

In the next six exercises find the products of the given matrices in both
orders, that is, both AB and BA, if possible.

Exercise 2.4.3.

A =
[
1 − 2 3

]
and B =

⎡
⎣3

2
1

⎤
⎦ .

Exercise 2.4.4.

A =
[

2 3 5
1 − 2 3

]
and B =

⎡
⎣3 − 4

2 2
1 −3

⎤
⎦ .

Exercise 2.4.5.

A =

⎡
⎣2 3 5

1 − 2 3
3 −4 2

⎤
⎦ and B =

⎡
⎣3 − 4

2 2
1 −3

⎤
⎦ .

Exercise 2.4.6.

A =
[
1 − 2 3 − 4

]
and B =

⎡
⎣3

2
1

⎤
⎦ .
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Exercise 2.4.7.

A =
[
1 − 2 3 − 4

]
and B =

⎡
⎢⎢⎣

3 − 4
2 2
1 −3

−2 5

⎤
⎥⎥⎦ .

Exercise 2.4.8.

A =
[

2 3 5
1 − 2 3

]
and B =

⎡
⎢⎢⎣

3 − 4
2 2
1 −3

−2 5

⎤
⎥⎥⎦ .

Exercise 2.4.9. Verify the associative law for the product of the matrices

A = [1 − 2], B =
[

3 − 4
2 2

]
, and C =

[
1 − 3
3 0

]
.

Exercise 2.4.10. With the notation of Example 2.4.1, prove that for every
two rotation matrices Rα and Rβ we have RαRβ = Rα+β .

Exercise 2.4.11. Find two nonzero 2 × 2 matrices A and B such that
AB = O.

Exercise 2.4.12. Show that the cancellation law does not hold for matrix
products: Find nonzero 2 × 2 matrices A, B, C such that AB = AC but
B 	= C.

Exercise 2.4.13. * Let A be an m × p matrix and B a p × n matrix. Show
that the product AB can also be written in the following alternative forms:
a. AB = a1b1+a2b2+ · · · + apbp,
b. AB = (

∑p
i=1 aibi1,

∑p
i=1 aibi2, . . . ,

∑p
i=1 aibin) or (AB)j =

∑p
i=1 aibij ,

c. AB =

⎡
⎢⎢⎢⎣
∑p

j=1 a1jbj∑p
j=1 a2jbj

...∑p
j=1 amjbj

⎤
⎥⎥⎥⎦ or (AB)i =

∑p
j=1 aijbj .

Exercise 2.4.14. Let A be any n×n matrix. Its powers, for all nonnegative
integer exponents k, are defined by induction as A0 = I and Ak = AAk−1.
Show that the rules AkAl = Ak+l and (Ak)l = Akl hold, just as for real
numbers.

Exercise 2.4.15. Find a nonzero 2 × 2 matrix A such that A2 = O.

Exercise 2.4.16. Find a 3 × 3 matrix A such that A2 	= O but A3 = O.

Exercise 2.4.17. Find the number of three-leg flights connecting B and D
in Example 2.4.8 by evaluating (M3)24 = (M3)42.
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Exercise 2.4.18. Prove Equation 2.133 of Theorem 2.4.3.

The next five exercises deal with block multiplication.

Exercise 2.4.19. Show that

[
1 − 2
3 4

∣∣∣∣ 1 0
0 1

]⎡⎢⎢⎣
0 0
0 0
3 2
1 −1

⎤
⎥⎥⎦

=
[

1 − 2
3 4

] [
0 0
0 0

]
+
[

1 0
0 1

] [
3 2
1 −1

]
=
[

3 2
1 −1

]
.

Exercise 2.4.20. Show that if two conformable matrices of any size are
partitioned, as in the previous exercise, so that the products make sense,
then

[A B]
[

C
D

]
= [AC + BD].

Exercise 2.4.21. Show that if two conformable matrices of any size are
partitioned into four submatrices each, so that the products and sums make
sense, then[

A B
C D

] [
E F
G H

]
=
[

AE + BG AF + BH
CE + DG CF + DH

]
.

Exercise 2.4.22. Compute the product by block multiplication, using the
result of the previous exercise:⎡

⎢⎢⎣
1 − 2
3 4

−1 0
0 − 1

∣∣∣∣∣∣∣∣
1 0
0 1
0 0
0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 − 2
2 0
0 0
0 0

∣∣∣∣∣∣∣∣
1 0

−3 1
2 3
7 4

⎤
⎥⎥⎦ .

Exercise 2.4.23. Partition the first matrix of the previous exercise as⎡
⎢⎢⎣

1 − 2
3 4

−1 0

∣
∣
∣
∣
∣
∣
∣
∣

0 − 1
∣
∣
∣

1 0
0 1
0 0
0 0

⎤
⎥⎥⎦ .

Find the appropriate corresponding partition of the second matrix, and eval-
uate the product by using these blocks.

MATLAB Exercises

In MATLAB, the product of matrices is denoted by ∗, and a power like Ak by
Aˆk; both the same as for numbers. The unit matrix of order n is denoted by
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eye(n), and the m×n zero matrix by zeros(m, n). The command rand(m, n)
returns an m × n matrix with random entries uniformly distributed between
0 and 1. The command round(A) rounds each entry of A to the nearest
integer.

Exercise 2.4.24. As in Example 2.4.1, let v denote the vector obtained from
the vector u by a rotation through an angle θ.

a. Compute v for u =
[

2
5

]
and each of θ = 15 ◦, 30 ◦, 45 ◦, 60 ◦, 75 ◦, and 90 ◦ .

(MATLAB will compute the trig functions if you use radians.)
b. Use MATLAB to verify that R75 ◦ = R25 ◦ ∗ R50 ◦ .

Exercise 2.4.25. Let

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0
1 0 0 0 1 1
0 0 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

be the connection matrix of an airline network as in Example 2.4.8.
a. Which cities can be reached from A with exactly two stops?
b. Which cities can be reached from A with two stops or less?
c. What is the number of stops needed to reach all cities from all others?

Exercise 2.4.26. Let a = 10 ∗ rand(1, 4) − 5 and b = 10 ∗ rand(1, 4) − 5.
a. Compute C = a ∗ b′ and rank(C) for ten instances of such a and b. (Use
the up-arrow key.)
b. Make a conjecture about rank(C) in general.
c. Prove your conjecture.

Exercise 2.4.27. Let A = 10 ∗ rand(2, 4) − 5 and B = 10 ∗ rand(4, 2) − 5.
a. Compute C = A∗B, D = B ∗A, rank(C), and rank(D) for ten instances
of such A and B.
b. Make a conjecture about rank(C) and rank(D) in general.

Exercise 2.4.28. In MATLAB you can enter blocks in a matrix in the same
way as you enter scalars. Use this method to solve a. Exercise 2.4.19, and b.
Exercise 2.4.22.

2.5 The Inverse and the Transpose of a Matrix

While for vectors it is impossible to define division, for matrices it is possible
in some very important cases.
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We may try to follow the same procedure as for numbers. The fraction
b/a has been defined as the solution of the equation ax = b, or as b times
1/a, where 1/a is the solution of ax = 1. For matrices we mimic the latter
formula: To find the inverse of a matrix A, we look for the solution of the
matrix equation

AX = I, (2.142)

where I is the n×n unit matrix and X an unknown matrix. In terms of map-
pings, because I represents the identity mapping or no change, this equation
means that if a mapping is given by the matrix A, we are looking for the
matrix X of the (right) inverse mapping, that is, of the mapping that is un-
done if followed by the mapping A. (As it turns out, and as should be evident
from the geometrical meaning, the order of the factors does not matter if A
represents a mapping from Rn to itself.)

By the definition of the product, if I is n × n, then A must be n × p
and X of size p × n for some p. Then Equation 2.142 corresponds to n2

scalar equations for np unknowns. Thus, if p < n holds, then we have fewer
unknowns than equations and generally no solutions apart from exceptional
cases. On the other hand, if p > n holds, then we have more unknowns than
equations, and so generally infinitely many solutions. Since we are interested
in finding unique solutions, we restrict our attention to those cases in which
p = n holds, or in other words to n×n or square matrices A. (Cases of p 	= n
are left to Exercises 2.5.8–2.5.11.) For a square matrix, n is called the order
of A. For such A, Equation 2.142 may be written as

A(x1 x2 . . . xn) = (e1 e2 . . . en) (2.143)

and by Equation 2.130 we can decompose this equation into n separate
systems

Ax1= e1, Ax2= e2, . . . , Axn= en (2.144)

for the n unknown n-vectors x1, x2, . . . , xn.
Before proceeding further with the general theory, let us consider an

example.

Example 2.5.1. (Finding the Inverse of a 2 × 2 Matrix by Solving Two Sys-
tems). Let

A =
[

1 2
3 4

]
(2.145)

and so let us solve[
1 2
3 4

] [
x11 x12
x21 x22

]
=
[

1 0
0 1

]
(2.146)
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or equivalently the separate systems[
1 2
3 4

] [
x11
x21

]
=
[

1
0

]
and

[
1 2
3 4

] [
x12
x22

]
=
[

0
1

]
. (2.147)

Subtracting 3 times the first row from the second in both systems, we get[
1 2
0 − 2

] [
x11
x21

]
=
[

1
−3

]
and

[
1 2
0 − 2

] [
x12
x22

]
=
[

0
1

]
. (2.148)

Adding the second row to the first and dividing the second row by –2, again
in both systems, we obtain[

1 0
0 1

] [
x11
x21

]
=
[ −2

3/2

]
and

[
1 0
0 1

] [
x12
x22

]
=
[

1
−1/2

]
. (2.149)

Hence

x11 = −2, x21 = 3/2, x12 = 1, x22 = −1/2 (2.150)

or in matrix form

X =
[ −2 1

3/2 − 1/2

]
. (2.151)

It is easy to check that this X is a solution of AX = I, and in fact of XA = I,
too. Furthermore, since the two systems given by Equations 2.147 have the
same matrix A on their left sides, the row reduction steps were exactly the
same for both, and can therefore be combined into the reduction of a single
augmented matrix with the two columns of I on the right, that is, of [A|I]
as follows:[

1 2
3 4

∣∣∣∣ 1 0
0 1

]
→
[

1 2
0 − 2

∣∣∣∣ 1 0
−3 1

]
→[

1 0
0 − 2

∣∣∣∣ −2 1
−3 1

]
→
[

1 0
0 1

∣∣∣∣ −2 1
3/2 − 1/2

]
. (2.152)

�

We can generalize the results of this example in part as a definition and
in part as a theorem.

Definition 2.5.1. (The Inverse of a Matrix). A matrix A is called in-
vertible if it is a square matrix and there exists a unique square matrix X of
the same size such that AX = I and XA = I hold. Such an X, if one exists,
is called the inverse of A and is denoted by A−1.

Theorem 2.5.1. (Inverting a Matrix by Row Reduction). A square
matrix is invertible if and only if the augmented matrix [A|I] can be reduced
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by elementary row operations to the form [I|C], and in that case C is the
inverse A−1 of A.

Proof. The augmented matrix corresponding to the equation AX = I is [A|I].
If the reduction of [A|I] produces the form [I|C], then the matrix equation
corresponding to the latter augmented matrix is IX = C or, equivalently,
X = C. By Theorem 2.1.1, IX = C has the same solution set as AX = I,
and so C is the unique solution of AX = I.

By reversing the elementary row operations, we can undo the above re-
duction; that is, we can change [I|C] back to [A|I]. But then the same steps
would change [C|I] into [I|A], which corresponds to solving the matrix equa-
tion CY = I for an unknown matrix Y uniquely as IY = A, or Y = A.
Hence, CA = I. Thus, if C solves AX = I, then it also solves XA = I, and
it is the only solution of both equations. Thus A is invertible, with C as its
inverse A−1.

On the other hand, if [A|I] cannot be reduced to the form [I|X], then
the system AX = I has no solution for the following reason: In this case the
reduction of A must produce a zero row at the bottom of every corresponding
echelon matrix U , because if U had no zero row, then it could be further
reduced to I. The last row of every reduction of [A|I] that reduces A to an
echelon matrix U with a zero bottom row must be a sum of nonzero multiples
of some rows (or maybe just a single row). Suppose this sum contains c times
the ith row (with c 	= 0). Then the submatrix [A|ei] (see footnote 6 on
page 54) will be reduced to [U |cen]: Since the zero entries of the ei column
cannot affect the single 1 of it, c times this 1 ends up at the bottom. The
matrix [U |cen], however, represents an inconsistent system, because the last
row of U is zero, but the last component of cen is not. �

Example 2.5.2. (Finding the Inverse of a 2 × 2 Matrix by Row Reduction).
Let us find the inverse of the matrix

A =
[

2 3
1 − 2

]
(2.153)

if it exists.
We form the augmented matrix [A|I] and reduce it as follows:[

2 3
1 − 2

∣∣∣∣ 1 0
0 1

]
r1 ← r2
r2 ← r1

[
1 − 2
2 3

∣∣∣∣ 0 1
1 0

]
r1 ← r1
r2 ← r2 − 2r1

[
1 − 2
0 7

∣∣∣∣ 0 1
1 − 2

]
r1 ← r1
r2 ← r2/7

[
1 − 2
0 1

∣∣∣∣ 0 1
1/7 − 2/7

]
r1 ← r1 + 2r2
r2 ← r2

[
1 0
0 1

∣∣∣∣ 2/7 3/7
1/7 − 2/7

]
. (2.154)
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Thus we can read off the inverse of A as

A−1 =
1
7

[
2 3
1 − 2

]
. (2.155)

It is easy to check that we do indeed have AA−1 = A−1A = I. �
Example 2.5.3. (Showing Noninvertibility of a 2 × 2 Matrix by Row Reduc-
tion). Here is an example of a noninvertible square matrix. Let us try to
compute the inverse of

A =
[

1 2
2 4

]
. (2.156)

We form the augmented matrix [A|I] and reduce it as follows:[
1 2
2 4

∣∣∣∣ 1 0
0 1

]
r1 ← r1
r2 ← r2 − 2r1

[
1 2
0 0

∣∣∣∣ 1 0
−2 1

]
. (2.157)

The corresponding system is[
1 2
0 0

] [
x11 x12
x21 x22

]
=
[

1 0
−2 1

]
, (2.158)

and so the second row of [A|I] corresponds to the self-contradictory equations

0x11 + 0x21 = −2 (2.159)
0x12 + 0x22 = 1. (2.160)

Thus A has no inverse. �

Just as for numbers b/a = a−1b is the solution of ax = b, for matrix
equations we have a similar consequence of Definition 2.5.1.

Theorem 2.5.2. (Using the Inverse to Solve Matrix Equations). If
A is an invertible n × n matrix and B an arbitrary n × p matrix, then the
equation

AX = B (2.161)

has the unique solution

X = A−1B. (2.162)

Proof. That X = A−1B is a solution can be seen easily by substituting it
into Equation 2.161:

A(A−1B) = (AA−1)B = IB = B, (2.163)

and that it is the only solution can be seen in this way. Assume that Y is
another solution, so that

AY = B (2.164)
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holds. Multiplying both sides of this equation by A−1 we get

A−1(AY ) = A−1B (2.165)

and this equation reduces to

(A−1A)Y = Y = A−1B, (2.166)

which shows that Y = X. �

If p = 1 holds, Equation 2.161 becomes our old friend

Ax = b, (2.167)

where x and b are n-vectors. Thus Theorem 2.5.2 provides a new way of
solving this equation. Unfortunately, this technique has little practical sig-
nificance, since computing the inverse of A is generally more difficult than
solving Equation 2.167 by Gaussian elimination. In some theoretical consid-
erations, however, it is useful to know that the solution of Equation 2.167
can be written as

x = A−1b, (2.168)

and if we have several equations like 2.167 with the same left sides, then they
can be combined into an equation of the form 2.161 with p > 1 and profitably
solved by computing the inverse of A and using Theorem 2.5.2.

Example 2.5.4. (Solving an Equation for an Unknown 2 × 3 Matrix). Let us
solve[

1 2
3 4

]
X =

[
2 3 − 5
4 − 1 3

]
. (2.169)

From Example 2.5.1 we know that[
1 2
3 4

]−1

=
[ −2 1

3/2 − 1/2

]
. (2.170)

Hence, by Theorem 2.5.2, we obtain

X =
[ −2 1

3/2 − 1/2

] [
2 3 − 5
4 − 1 3

]
=
[

0 − 7 13
1 5 − 9

]
. (2.171)

�

As we have just seen, if A is invertible, then Equation 2.168 provides the
solution of Equation 2.167 for every n-vector b. It is then natural to ask
whether the converse is true, that is, whether the existence of a solution of
Equation 2.167 for every b implies the invertibility of A. (We know that a
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single b is not enough: Equation 2.167 may be solvable for some right-hand
sides and not for others; see, e.g., Examples 2.1.4 and 2.1.5.) The answer
is yes.

Theorem 2.5.3. (Existence of Solutions Criterion for the Invert-
ibility of a Matrix). An n×n matrix A is invertible if and only if Ax = b
has a solution for every n-vector b.

Proof. The “only if” part of this statement has already been proved; we just
included it for the sake of completeness. To prove the “if” part, let us assume
that Ax = b has a solution for every n-vector b. Then it has a solution for
each standard vector ei in the role of b; that is, each of the equations

Ax1= e1, Ax2 = e2, . . . , Axn = en (2.172)

has a solution by assumption. These equations can, however, be combined
into the single equation

A (x1,x2, . . . ,xn) = (e1, e2, . . . , en) , (2.173)

which can be written as

AX = I (2.174)

whose augmented matrix is [A|I]. From the proof of Theorem 2.5.1 we know
that the solution of this equation, if one exists, must be X = A−1, and
since we have stipulated the existence of a solution, the invertibility of A
follows. �

The condition of solvability of Ax = b for every possible right side can
be replaced by the requirement of uniqueness of the solution for a single b.

Theorem 2.5.4. (Unique-Solution Criterion for the Invertibility of
a Matrix). An n × n matrix A is invertible if and only if Ax = b has a
unique solution for some n-vector b.

Proof. If A is invertible, then, by Theorem 2.5.2, x = A−1b gives the unique
solution of Ax = b for every b. Conversely, if, for some b, Ax = b has a
unique solution, then Theorem 2.2.1 (page 55) shows that the rank of A
equals n and consequently that AX = I also has a unique solution. Of course,
this solution must be A−1. �

The vector b in Theorem 2.5.4 may be taken to be the zero vector. This
case is sufficiently important for special mention.

Corollary 2.5.1. (Trivial-Solution Criterion for the Invertibility of
a Matrix). A square matrix A is invertible if and only if Ax = 0 has only
the trivial solution.
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Definition 2.5.2. (Singular and Nonsingular Matrices). An n × n
matrix A for which the associated system Ax = b has a unique solution for
every n-vector b is called nonsingular; otherwise, it is called singular.

Let us collect some equivalent characterizations of nonsingular square
matrices that follow from our considerations up to now.

Theorem 2.5.5. (Various Criteria for a Matrix to be Nonsingular).
An n × n matrix A is nonsingular if and only if it has any (and thus all) of
the following properties:
1. A is invertible.
2. The rank of A is n.
3. A is row equivalent to I.
4. Ax = b has a solution for every b.
5. Ax = b has a unique solution for some b.
6. The homogeneous equation Ax = 0 has only the trivial solution.

For numbers, the product and the inverse are connected by the formula
(ab)−1 = a−1b−1 = b−1a−1. For matrices, we have an analogous result, but
with the significant difference that the product is noncommutative and the
order of the factors on the right must be reversed.

Theorem 2.5.6. (Inverse of the Product of Two Matrices). If A
and B are invertible matrices of the same size, then so too is AB, and

(AB)−1 = B−1A−1. (2.175)

Proof. The proof is very simple: Repeated application of the associative law
and the definition of I give

(AB)(B−1A−1) = ((AB)B−1)A−1 = (A(BB−1))A−1 = (AI) A−1

= AA−1 = I (2.176)

and similarly in the reverse order

(B−1A−1)(AB) = I. (2.177)

�

Another theorem for numbers, namely that
(
a−1
)−1 = a, also has an

analog for matrices.

Theorem 2.5.7. (Inverse of the Inverse of a Matrix). If A is an in-
vertible matrix, then so too is A−1 and

(A−1)−1 = A. (2.178)
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The proof is left as Exercise 2.5.19.
There exists another simple operation for matrices, one that has no analog

for numbers. Although we will not need it until later, we present it here since
it rounds out our discussion of the algebra of matrices.

Definition 2.5.3. (Transpose of a Matrix). For every m×n matrix A,
we define its transpose AT as the n × m matrix obtained from A by making
the jth column of A into the jth row of AT for each j; that is, by defining
the jth row of AT as (a1j , a2j , . . . , amj) . Equivalently,

(AT )ji = aij (2.179)

for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

From this definition it easily follows that the ith row of A becomes the
ith column of AT as well. Also, the transpose of a column n-vector is a row
n-vector and vice versa. This fact is often used for avoiding the inconvenient
appearance of tall column vectors by writing them as transposed rows:

Example 2.5.5. (Transpose of a Row Vector)

(x1, x2, . . . , xn)T =

⎡
⎢⎢⎢⎣

x1
x2

...
xn

⎤
⎥⎥⎥⎦ . (2.180)

�

Example 2.5.6. (Transpose of a 2 × 3 Matrix). Let

A =
[

2 3 − 5
4 − 1 3

]
. (2.181)

Then

AT =

⎡
⎣ 2 4

3 − 1
−5 3

⎤
⎦ . (2.182)

�

The transpose has some useful properties.

Theorem 2.5.8. (Transpose of the Product of Two Matrices and of
the Inverse of a Matrix). If A and B are matrices such that their product
is defined, then

(AB)T = BT AT , (2.183)
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and if A is invertible, then so too is AT and

(AT )−1 = (A−1)T . (2.184)

Proof. AB is defined when A is m × p and B is p × n, for arbitrary m, p,
and n. Then BT is n × p and AT is p × m, and so BT AT is also defined and
is n × m, the same size as (AB)T . To prove Equation 2.183, we need only
show that corresponding elements of those two products are equal. Indeed,
for every i = 1, . . . , n and j = 1, . . . , m,

((AB)T )ij = (AB)ji =
p∑

k=1

ajkbki =
p∑

k=1

(BT )ik(AT )kj = (BT AT )ij . (2.185)

Hence (AB)T = BT AT .
Next, we prove the second statement of the theorem. If A is invertible,

then there is a matrix A−1 such that AA−1 = A−1A = I. Applying Equa-
tion 2.183, with B = A−1, we obtain

(A−1)T AT = (AA−1)T = IT = I, (2.186)

and also

AT (A−1)T = (A−1A)T = IT = I. (2.187)

Hence AT is invertible and (AT )−1 = (A−1)T . �

Exercises

In the first six exercises find the inverse matrix if possible.

Exercise 2.5.1. A =
[

2 3
4 − 1

]
.

Exercise 2.5.2. A =
[

5 2
3 4

]
.

Exercise 2.5.3. A =

⎡
⎣2 3 5

4 − 1 1
3 2 − 2

⎤
⎦ .

Exercise 2.5.4. A =

⎡
⎣0 −6 2

3 − 1 0
4 3 − 2

⎤
⎦ .

Exercise 2.5.5. A =

⎡
⎣2 3 5

4 − 1 3
3 2 5

⎤
⎦ .
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Exercise 2.5.6. A =

⎡
⎢⎢⎣

1 − 1 0 0
0 1 − 1 0
0 1 1 0
1 0 −1 1

⎤
⎥⎥⎦ .

Exercise 2.5.7. Find two invertible 2 × 2 matrices A and B such that A 	=
−B and A + B is not invertible.

Exercise 2.5.8. a. Given the 2 × 3 matrix

A =
[

2 0 4
4 − 1 1

]
,

find all 3 × 2 matrices X by Gauss–Jordan elimination such that AX = I
holds. (Such a matrix is called a right inverse of A.)
b. Can you find a 3 × 2 matrix Y such that Y A = I holds?

Exercise 2.5.9. a. Given the 3 × 2 matrix

A =

⎡
⎣2 − 1

4 −1
2 2

⎤
⎦ ,

find all 2 × 3 matrices X by Gauss–Jordan elimination such that XA = I
holds. (Such a matrix is called a left inverse of A.)
b. Can you find a 2 × 3 matrix Y such that AY = I holds?

Exercise 2.5.10. * a. Try to formulate a general rule, based on the results of
the last two exercises, for the existence of a right inverse and for the existence
of a left inverse of a 2 × 3 and of a 3 × 2 matrix.
b. Same as above for an m × n matrix.
c. When would the right inverse and the left inverse be unique?

Exercise 2.5.11. * Show that if a square matrix has a right inverse X and
a left inverse Y , then Y = X must hold. (Hint : Modify the second part of
the proof of Theorem 2.5.2.)

Exercise 2.5.12. The matrix

E =

⎡
⎣1 0 0

c 1 0
0 0 1

⎤
⎦

is obtained from the unit matrix I by the elementary row operation of adding
c times its first row to its second row. Show that for every 3 × 3 matrix A
the same elementary row operation performed on A results in the product
matrix EA. Also, find E−1 and describe the elementary row operation it
corresponds to. (A matrix that produces the same effect by multiplication as
an elementary row operation, like this E and the matrices P in the next two
exercises, is called an elementary matrix.)
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Exercise 2.5.13. Find a matrix P such that, for every 3 × 3 matrix A, PA
equals the matrix obtained from A by multiplying its first row by a nonzero
scalar c. (Hint: Try A = I first.) Find P−1.

Exercise 2.5.14. Find a matrix P such that, for every 3 × 3 matrix A, PA
equals the matrix obtained from A by exchanging its first and third rows.
(Hint: Try A = I first.) Find P−1.

Exercise 2.5.15. If A is any invertible matrix and c any nonzero scalar,
what is the inverse of cA? Prove your answer.

Exercise 2.5.16. For every invertible matrix A and every positive integer n
we define A−n = (A−1)n. Show that in this case we also have A−n = (An)−1

and A−mA−n = A−m−n if m is a positive integer as well.

Exercise 2.5.17. A square matrix with a single 1 in each row and in each
column and zeros everywhere else is called a permutation matrix.
a. List all six 3 × 3 permutation matrices P and their inverses.
b. Show that, for every such P and for every 3 × n matrix A, PA equals the
matrix obtained from A by the permutation of its rows that is the same as
the permutation of the rows of I that results in P .
c. What is BP if B is n × 3?

Exercise 2.5.18. State six conditions corresponding to those of Theorem
2.5.5 for a matrix to be singular.

Exercise 2.5.19. Prove Theorem 2.5.7. (Hint : Imitate the proof of Theo-
rem 2.5.2 for the equation A−1X = I.)

Exercise 2.5.20. Prove that if A, B, C are invertible matrices of the same
size, then so is ABC, and (ABC)−1 = C−1B−1A−1.

MATLAB Exercises

In MATLAB, the transpose of A is denoted by A′. The reduction of [A|I]
can be achieved by the command rref([A eye(n)]) or rref([A eye(size(A))]).
A−1 can also be obtained by writing inv(A). These commands or the com-
mand rank(A) can be used to determine whether A is singular or not.

Exercise 2.5.21. Let A = round(10 ∗ rand(4)), B = triu(A), and C =
tril(A).
a. Find the inverses of B and C in format rat by using rref if they exist,
and verify that they are inverses indeed.
b. Repeat Part (a) five times. (Use the up-arrow key.)
c. Do you see any pattern? Make a conjecture and prove it.
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Exercise 2.5.22. Let A = round(10 ∗ rand(3, 5)).
a. Find a solution for AX = I by using rref, or show that no solution exists.
b. If you have found a solution, verify that it satisfies AX = I.
c. If there is a solution, compute A\eye(3) and check whether it is a solution.
d. If there is a solution of AX = I, try to find a solution for Y A = I by using
rref.
(Hint : Rewrite this equation as AT Y T = I first.) Draw a conclusion.
e. Repeat all of the above three times.
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