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1.1.1.
−→
PR = r− p, −→PQ = q− p, and

−→
QP = p− q.

−→
QC = 1

2

−→
QP = 1

2
p−1

2
q,
−→
PC = 1

2

−→
PQ = 1

2
q−1

2
p, and

−→
OC = 1

2
r =1

2
p+1

2
q.

1.1.3. p+ q = (2, 3,−1) + (1, 2, 2) = (3, 5, 1).

1.1.5. r = p+ q, 2r = 2(p+ q) = 2p+ 2q.

2q 2r

2p

r
q

p

Figure 0.1.

1.1.7. M =
∑3
i=1mi = 2 + 3 + 5 = 10 and

r =
1

M

3∑

i=1

miri =
1

10
[2(2,−1, 4)+3(1, 5,−6)+5(−2,−5, 4)] = (− 3

10
,−6

5
, 1).
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1.1.9. The center R of the side BC has position vector r =1
2
(b+ c) and

the vector from R to A is a− r. Thus the point P , 1/3 of the way from R to

A, has position vector

p =1
2
(b+ c)+1

3
(a− r) =1

2
b+1

2
c+1

3
a−1

3
·1
2
(b+ c) =1

3
(a+ b+ c).

1.1.11. Opposite edges are those with no common vertex; for example, the

one from A to B, and the one from C to D. The midpoint of the former has

position vector p = 1
2
(a+ b) and of the latter, q = 1

2
(c+ d). The halfway

point M on the line joining those midpoints has the position vector

m = p+
1

2
(q− p) =1

2
(p+ q) =

1

2

[
1

2
(a+ b)+

1

2
(c+ d)

]

=
1

4
(a+ b+ c+ d),

which is the position vector of the centroid.
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1.2.1. Let p = (5, 5) and q = (1,−7). Then

a. p+ q = (5 + 1, 5− 7) = (6,−2), p− q = (5− 1, 5 + 7) = (4, 12).
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b.

c. |p| =
√
52 + 52 =

√
50, |q| =

√
12 + (−7)2 =

√
50,

|p+ q| =
√
62 + (−2)2 =

√
40, |p− q| =

√
42 + 122 =

√
160.

d. |p+ q|2 = 40, |p|2+|q|2 = 50 + 50 = 100, and so |p+ q|2 �= |p|2+|q|2.
1.2.3. Let S be the midpoint of

−→
QP and T the midpoint of

−→
QR. Then

−→
ST =

−→
QT −−→QS =

1

2

−→
QR− 1

2

−→
QP =

1

2
(
−→
QR−−→QP ) =

1

2

−→
PR.

5



1.2.5.

cos θ =
p · q
|p||q| =

1 · 3 + (−2) · 5 + 4 · 2√
21 ·

√
38

=
1√
798

≈ 0.0354.

Hence θ ≈ 1.535 radians ≈ 87.9 ◦

1.2.7.

The above diagram illustrates the regular octahedron inscribed in the unit

cube, joining the centers of the sides of the cube by line segments. Using the

notation from the diagram, we find four distinct types of angles formed by the

sides of the octahedron, represented, for example, by∠PAB, ∠DAB, ∠PAQ
and ∠APC. To determine those angles, first calculate the coordinates of the

relevant points:

P (
1

2
,
1

2
, 1), A(

1

2
, 0,

1

2
), B(1.

1

2
,
1

2
), D(0,

1

2
,
1

2
), Q(

1

2
,
1

2
, 0), C(

1

2
, 1,

1

2
).

Hence

−→
AP = (0,

1

2
,
1

2
) and

−→
AB = (

1

2
,
1

2
, 0),
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and thus

cos∠PAB =

−→
AP · −→AB
|−→AP ||−→AB|

=
1/4

1/2
=
1

2
; ∴ ∠PAB = 60 ◦

Also,
−−→
AD = (−1

2
, 1
2
, 0) and thus

cos∠DAB =

−→
AB · −−→AD
|−→AB||−−→AD|

= 0; ∴ ∠DAB = 90 ◦

Also
−→
AQ = (0, 1

2
,−1

2
) and

cos∠PAQ =

−→
AP · −→AQ
|−→AP ||−→AQ|

= 0; ∴ ∠PAQ = 90 ◦

Lastly,

−→
PA = (0,−1

2
,−1

2
) and

−→
PC = (0,

1

2
,−1

2
),

and so

cos∠APC =

−→
PA · −→PC

|−→PA||−→PC|
= 0; ∴ ∠APC = 90 ◦

Remark: we used vector methods in the above solution, but the angles could

also have been determined using simple geometric properties.

1.2.9. The parallel component is

p1 =
p · q
|q|2 q =

24− 9 + 4

122 + 32 + 42
(12, 3, 4) =

19

169
(12, 3, 4)

and the perpendicular component is

p2= p− p1 = (2,−3, 1)− 19

169
(12, 3, 4) = (

110

169
,−564

169
,
93

169
).

1.2.11. Call the end points of the given diameter A and B. Then, with
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the notation of Figure 1.20,

−→
AP · −−→BP = (p− r) · (p+ r) = p · p− r · r = |p|2 − |r|2 = 0.

The last equality holds because p and r are both radius vectors, and so their

lengths are equal.

1.2.13.

a. Note first that

|p+ q|2= (p+ q) · (p+ q) = p · p+2p · q+ q · q ≤ p · p+2|p · q|+q · q.

In turn, by Cauchy’s inequality,

p · p+ 2|p · q|+ q · q ≤ p · p+ 2|p||q|+ q · q.

Since p · p = |p|2 and q · q = |q|2, we have

p · p+ 2|p||q|+ q · q = |p|2 + 2|p||q|+ |q|2= (|p|+ |q|)2.

Finally, this chain of steps implies that |p+ q|2≤ (|p| + |q|)2, from which

the Triangle Inequality follows by taking square roots of both sides.

b. In Cauchy’s inequality, equality occurs when q = 0 or p = λq, for any

λ, but the first inequality above becomes an equality for p = λq only if

λ ≥ 0. Thus, the chain of steps above remains true with equality replacing

the inequalities if and only if the vectors p and q are parallel and point in the

same direction.

1.2.15.

a.

p = p1+p2= |p| cosφi+|p| sinφj = (|p| cosφ, |p| sinφ) = |p|(cosφ, sinφ).

b.

up =
p

|p| =
|p|(cosφ, sinφ)

|p| = (cosφ, sinφ).
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1.2.17. If p = (3,−4, 12), then |p| =
√
9 + 16 + 144 = 13 and therefore

cosα1 =
p · i
|p| =

p1
|p| =

3

13
, cosα2 =

p · j
|p| =

p2
|p| = −

4

13
,

and

cosα3 =
p · k
|p| =

p3
|p| =

12

13
.

1.2.19. We have to verify that the first three parts of Theorem 1.2.2

remain valid for the product defined by p · q = 2p1q1 + p2q2 :

1. p · q =2p1q1 + p2q2 = 2q1p1 + q2p2= q · p,

2. p · (q+ r) =2p1(q1+ r1) + p2(q2+ r2) = 2p1q1+2p1r1+ p2q2+ p2r2
=2p1q1 + p2q2 + 2p1r1 + p2r2 = p · q+ p · r,
3. c(p · q) = c(2p1q1 + p2q2) = 2(cp1)q1 + (cp2)q2 = (cp) · q and

c(p · q) = c(2p1q1 + p2q2) = 2p1(cq1) + p2(cq2) = p · (cq).
If we stretch the first component of every vector by a factor of

√
2, then

this product applied to the original vectors gives the lengths of and the angles

between the altered vectors the same way as the standard dot product would

when applied to the altered vectors.

1.3.1. The vector parametric form of the equation of the line is p = p0 +
tv = (1,−2, 4) + t(2, 3,−5) = (1 + 2t,−2 + 3t, 4− 5t), and thus the scalar

parametric form is x = 1+2t, y = −2+3t, z = 4−5t, and the nonparametric

form is x−1
2
= y+2

3
= z−4

−5 .

1.3.3. A direction vector of the line through P0 and P1 is v =
−−→
P0P 1 =
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(5− 7, 6− (−2),−3 − 5) = (−2, 8,−8). Hence the vector parametric form

of the equation of the line is p = p0 + tv = (7,−2, 5) + t(−2, 8,−8) =
(7−2t,−2+8t, 5−8t), and thus the scalar parametric form is x = 7−2t, y =
−2 + 8t, z = 5− 8t, and the nonparametric form is x−7−2 = y+2

8
= z−5

−8 .

1.3.5. A direction vector of the line through the given points P0 and P1
is v =

−−→
P0P 1 = (1 − 1,−2 − (−2),−3 − 4) = (0, 0,−7). Hence the vector

parametric form of the equation of the line is p = p0 + tv = (1,−2, 4) +
t(0, 0,−7) = (1,−2, 4 − 7t), and thus the scalar parametric form is x = 1 ,

y = −2, z = 4− 7t, and the nonparametric form is x = 1, y = −2.
1.3.7. As noted in the given hint, the direction vector w of the line is

orthogonal to the normal vectors to the two planes, u = (3,−4, 3) and v =
(0, 0, 1). Proceeding as in Example 1.3.7 in the text, the equation of the plane

through the origin determined by the vectors u and v can be expressed as

p = su+ tv, where s and t are parameters, or, in scalar form, as x = 3s, y =
−4s, z = 3s+t. Eliminating the parameters results in the equation 4x+3y =
0 (the variable z may take any value since the parameter t is “free”), and thus

w = (4, 3, 0). Therefore, the vector parametric form of the equation of the

line is p = p0 + tw = (5, 4,−8) + t(4, 3, 0), and thus the scalar parametric

form is x = 5 + 4t, y = 4 + 3t, z = −8, and the nonparametric form is
x−5
4
= y−4

3
, z = −8.
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1.3.9. a.

b. The t-scales on the two lines have their zeros at different points. Or,

alternatively, if t denotes time, then the two equations describe two moving

points that are at the intersection at different times.

c. p = (2, 6) + s(2,−3) and p = (2, 6) + s(−1, 4). (Alternatively, any

nonzero scalar multiples of the direction vectors (2,−3) and (−1, 4) will do

in their places.)

1.3.11. The vector p = ra+ sb+ tc represents the point A when r = 1
(and s = t = 0), the point B when s = 1, and the point C when t = 1.

When r = 0, p represents a point on the line segment joining B and C (by

the results of Exercise 1.3.10), and similarly for the cases s = 0 and t = 0, p
represents a point on the other two sides of the triangle formed by A, B, and

C.

When none of the variables r, s, or t is 0 or 1, then p represents a point

in the interior of that triangle. This can be seen by first noting that since

r = 1 − s − t, the equation p = ra + sb + tc can be expressed in the form

p = (1 − s − t)a + sb + tc = a + s(b− a) + t(c− a) Now, let D be the

point on side AB represented by d = a+s(b− a), and let E be the point on

side BC represented by e = a+s(b− a) + (1− s)(c− a) = sb+ (1− s)c.
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Then p = d + t
1−s(1 − s)(c− a) = d + t

1−s(e− d), and thus P is on the

line segment joining D and E, t
1−s of the way from D towards E (note that

t
1−s < 1 since s+ t < 1).

1.3.13. The vector p0 = (3,−2, 1) must lie in the required plane, and so

we may choose u = p0. For v we may choose the same v that we have for

the given line: v = (2, 1,−3), and for the fixed point of the plane we may

choose O. Thus the parametric equation can be written as p = s(3,−2, 1) +
t(2, 1,−3).

The nonparametric equations are obtained by eliminating s and t from x =
3s+2t, y = −2s+t, z = s−3t. This elimination results in 5x+11y+7z = 0.

1.3.15. In this case it is easier to start with the nonparametric form of the

equation of the plane. Since the required plane is to be orthogonal to the line

given by p = (3,−2, 1)+ t(2, 1,−3), we may take its normal vector to be the

direction vector of the line, that is, take n = (2, 1,−3). Next, we may take

p0 =
−→
OP 0 = (5, 4,−8), and therefore the equation n · p = n · p0 becomes

(2, 1,−3) · (x, y, z) = (2, 1,−3) · (5, 4,−8) = 38, that is, 2x+ y − 3z = 38.

To write parametric equations, we need to determine two nonparallel vec-

tors that lie in the plane. To do so, note that the points (19, 0, 0) and (0, 38, 0)
lie in the plane and thus u = (19, 0, 0) − (5, 4,−8) = (14,−4, 8) and

v = (0, 38, 0)− (5, 4,−8) = (−5, 34, 8) are nonparallel vectors in the plane.

Hence p = (5, 4,−8) + s(14,−4, 8) + t(−5, 34, 8) is a parametric vector

equation of the plane. (Note that this answer is not unique: there are infinitely

many other correct answers depending on the choices for p0, u and v.)

1.3.17. In this case it is again easier to start with the nonparametric form

of the equation of the plane. Since normal vectors to parallel planes must be

parallel, we may use as the normal vector n to the required plane that of the

given plane, namely n = (7, 1, 2). Also, because P0(5, 4,−8) is a point in the

required plane, we may take p0 =
−→
OP 0 = (5, 4,−8), and hence the equation

n · p = n · p0 becomes (7, 1, 2) · (x, y, z) = (7, 1, 2) · (5, 4,−8) = 23, that is,

7x+ y + 2z = 23.

To write parametric equations, choose any two distinct vectors a and b,

other than p0, whose components satisfy the above equation, and let u = a− p0
and v = b− p0. Since such vectors a and b represent points of the plane, u

and v are nonzero vectors lying in the plane. We need to be careful to choose

the vectors a and b so that u and v are not parallel. For instance, if we
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choose a = (0, 23, 0) and b = (1, 16, 0), then u = (0, 23, 0) − (5, 4,−8) =
(−5, 19, 8) and v = (1, 16, 0)− (5, 4,−8) = (−4, 12, 8). Hence we conclude

that p = (5, 4,−8) + s(−5, 19, 8) + t(−4, 12, 8) is a parametric vector equa-

tion of the plane. (As a check, notice that s = 1, t = 0 give p = a, and

s = 0, t = 1 give p = b.)

1.3.19. We may chooseu = p1−p0 = (1, 6,−3)−(5, 4,−8) = (−4, 2, 5)
and v = p2−p0 = (7,−2, 5) − (5, 4,−8) = (2,−6, 13). Thus we obtain

p = (5, 4,−8)+ s(−4, 2, 5)+ t(2,−6, 13) as a parametric vector equation of

the plane. The corresponding scalar equations are

x = 5− 4s+ 2t, y = 4 + 2s− 6t, z = −8 + 5s+ 13t.

To obtain a nonparametric equation, eliminate s and t from the last three

equations as in Example 1.3.5. Thus

28(x− 5) + 31(y − 4) + 10(z + 8) = 0.

or, equivalently,

28x+ 31y + 10z = 184.

1.3.21. We can proceed as in Example 1.3.3 in the text to decompose the

vector equation (−5, 4,−1) + s(2, 1,−7) = (9,−9,−2) + t(2,−4, 5) into

three scalar equations:

−5 + 2s = 9 + 2t, 4 + s = −9− 4t, − 1− 7s = −2 + 5t.

Solving this system yields s = 3 and t = −4. Hence the lines intersect at the

point (1, 7,−22).
1.3.23. In terms of scalar components, the equation of the given line is

x = 3− 3s, y = −2 + 5s, z = 6 + 7s.

Substituting these equations into that of the given plane results in 3(3− 3s)+
2(−2 + 5s) − 2(6 + 7s) = 3, or, simplifying, 13s = −10; the solution is

s = −10
13

. Hence the point of intersection is (69/13,−76/13, 8/13).
1.3.25. Rewriting the equation of the given line in components and re-

placing the parameter s by r yield
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x = 3 + 7r, y = 2− 5r, z = −4 + 4r

and rewriting the equation of the given plane in components gives

x = −3s+ 2t, y = −2− 3t, z = 1 + 3s+ 4t.

Combining those sets of equations and simplifying result in the system

7r + 3s− 2t = −3

5r − 3t = 4

4r − 3s− 4t = 5.

The solution of this system is r = −6 (and s = 49/9 and t = −34/3), so

the point of intersection is (−39, 32,−28).
1.3.27. Pick a point P on the plane, say, P (0, 5, 0). Then

−→
PP 0 =

(3,−1, 0). From the given equation, n = (0, 1,−2). Thus, as in Example

1.3.6,

D =
|−→PP 0 · n|
|n| =

|3 · 0 + (−1) · 1 + 0 · (−2)|√
0 + 1 + 4

=
1√
5
.

1.3.29. First find the plane through O that is parallel to the direction

vectors of the lines, as in Example 1.3.7, p = s(−4, 0, 3) + t(5, 0,−2), or, in

scalar parametric form, x = −4s + 5t, y = 0, z = 3s − 2t. The equation

of the plane in scalar form is y = 0, from which we obtain a normal vector,

n = (0, 1, 0), to the plane, and hence also to the two given lines.

The point P (2, 1, 5) lies on the first line and Q(0,−2, 3) lies on the second

one. Thus
−→
PQ = (−2,−3,−2), and as in Example 1.3.6,

D =
|−→PQ · n|
|n| =

|(−2) · 0 + (−3) · 1 + (−2) · 0|√
0 + 1 + 0

= 3.

1.3.31. Following the hint given in Exercise 1.3.30, let Q be the point

(3, 2,−4) on the line L, obtained by setting s = 0 in the equation, so
−→
QP 0 =
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(1,−2, 4) − (3, 2,−4) = (−2,−4, 8). The direction of the line L is u =

(7,−5, 4), and thus the component of
−→
QP 0 parallel to L is given by.

(−→
QP 0 ·

u

|u|

)
u

|u| =
38

90
(7,−5, 4) = 19

45
(7,−5, 4).

Then the component of
−→
QP 0 orthogonal to L is

(2, 4,−8)− 19

45
(7,−5, 4) = 1

45
(223, 85,−284),

and therefore the distance from P0 to P is ,
∣∣ 1
45
(223, 85,−284)

∣∣ ≈ 8.24.

1.3.33. Let P0 denote a point on the plane S, and let p0 =
−→
OP 0 denote

the radius vector of P0. Then d = n · p0 and, since |n| = 1, we note that

f(q) = n · q− d = n · q− n · p0 = n · (q− p0) = |q− p0| cos θ,
where θ denotes the angle between the vectors n and q− p0. Thus f(q) =
|q− p0|| cos θ| is the length of the component of q− p0 perpendicular to

the plane S; that is, it is the distance between S and Q. We also note that

cos θ ≥ 0 if 0 ≤ θ ≤ π
2
, when n points from S towards Q, and cos θ ≤ 0 if

π
2
≤ θ ≤ π, when n points from Q towards S.

1.3.35. Applying the result of Exercise 1.3.33, we have q =
−→
OP 0 =

(3, 4, 0), n = (0,1,−2)√
0+1+4

= (0,1,−2)√
5

, and hence d = 5√
5
, determined by dividing

both sides of the equation of the given plane by
√
5. Therefore, f(q) =

n · q− d = 4√
5
− 5√

5
= − 1√

5
and thus D = 1√

5
.

1.3.37. In the solution to Exercise 1.3.29, it was determined that v =
(0, 1, 0) is orthogonal to the given lines. Thus an equation of the plane con-

taining v and the line p = (2, 1, 5) + s(−4, 0, 3) is given by p = (2, 1, 5) +
s(−4, 0, 3) + t(0, 1, 0). In terms of scalar components: x = 2 − 4s, y =
1+t, z = 5+3s. The scalar form of the equation p = (0,−2, 6)+r(5, 0,−2)
of the second line, is then x = 5r, y = −2, z = 6 − 2r. At the point

of intersection of the plane S and that second line, we have 2 − 4s = 5r,

1 + t = −2, 5 + 3s = 6 − 2r, for which the solution is s = 1/7, t = −3,

and r = 2/7. Thus (10/7,−2, 38/7) is the point of intersection of S and

the second line. Therefore the equation of the normal transverse L is p =
(10/7,−2, 38/7) + t(0, 1, 0). It is a line that intersects both the given lines
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and is orthogonal to both of them.

2.1.1. First row-reduce the corresponding augmented matrix to echelon

form:



2 2 − 3
1 5 2

−4 0 6

∣∣∣∣∣∣

0
1
2





→




2 2 − 3
0 4 7/2
0 4 0

∣∣∣∣∣∣

0
1
2



→




2 2 −3
0 4 7/2
0 0 − 7/2

∣∣∣∣∣∣

0
1
2



 .

Next apply back substitution to solve the corresponding system. The last

row corresponds to the equation −7
2
x3 = 1, so x3 = −2

7
. The second row

corresponds to the equation 4x2 +
7
2
x3 = 1 and thus x2 = −7

8
x3 +

1
4
= 1

2
.

Finally, the first row corresponds to 2x1 + 2x2 − 3x3 = 0, from which we

obtain x1 = −x2 + 3
2
x3 = −13

14
. Hence, in vector form the solution is

x =




−13/14
1/2
−2/7



 .

2.1.3. First row-reduce the corresponding augmented matrix to echelon

form:
[
2 2 − 3
1 5 2

∣∣∣∣
0
1

]
→

[
2 2 − 3
0 4 7/2

∣∣∣∣
0
1

]
.

Next apply back substitution to solve the corresponding system. The sec-

ond row corresponds to the equation 4x2 +
7
2
x3 = 1. Here x3 is free; set

x3 = t. Then we obtain 4x2 +
7
2
t = 1; hence x2 =

1
4
− 7

8
t. Finally, the

first row corresponds to 2x1 + 2(1
4
− 7

8
t) − 3t = 0, from which we obtain

x1 = −1
4
+ 19

8
t. Hence, in vector form the solution is

x = t




19/8
−7/8

1



+




−1/4
1/4
0



 .
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2.1.5. First row-reduce to echelon form:




1 0 − 1

−2 3 −1
−6 6 0

∣∣∣∣∣∣

0
0
0





→




1 0 − 1
0 3 −3
0 6 −6

∣∣∣∣∣∣

0
0
0



→




1 0 − 1
0 3 −3
0 0 0

∣∣∣∣∣∣

0
0
0



 .

Next apply back substitution to solve the corresponding system. The

last row just gives the consistent trivial equation 0 = 0. The second row

corresponds to the equation 3x2 − 3x3 = 0. Here x3 is free; set x3 = t.
Then we obtain 3x2 − 3t = 0; hence x2 = t. Finally, the first row corre-

sponds to x1 − x3 = 0, from which we obtain x1 = t. Thus the solution is

x1 = x2 = x3 = t or in vector form,

x = t




1
1
1



 .

2.1.7




1 0 − 1

−2 3 −1
−6 6 0

∣∣∣∣∣∣

1
0
0



 →




1 0 − 1
0 3 −3
0 6 −6

∣∣∣∣∣∣

1
2
6





→




1 0 − 1
0 3 −3
0 0 0

∣∣∣∣∣∣

1
2
2



 .

The last row of the reduced matrix corresponds to the self-contradictory equa-

tion 0 = 2, and consequently the system is inconsistent and has no solution.
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2.1.9. First row-reduce to echelon form:




1 4 9 2
2 2 6 − 3
2 7 16 3

∣∣∣∣∣∣

0
0
0





r1 ← r1
r2 ← r2 − 2r1
r3 ← r3 − 2r1




1 4 9 2
0 − 6 − 12 − 7
0 −1 −2 −1

∣∣∣∣∣∣

0
0
0





r1 ← r1
r2 ← r3
r3 ← r2




1 4 9 2
0 −1 −2 −1
0 − 6 − 12 − 7

∣∣∣∣∣∣

0
0
0





r1 ← r1
r2 ← r2
r3 ← r3 − 6r2




1 4 9 2
0 − 1 − 2 −1
0 0 0 − 1

∣∣∣∣∣∣

0
0
0



 .

Next apply back substitution. The last row corresponds to the equation

−x4 = 0 and so x4 = 0. The second row corresponds to the equation −x2 −
2x3 − x4 = 0. Here x3 is free; set x3 = t. Then we obtain x2 = −2t.
Finally, the first row corresponds to x1 + 4x2 + 9x3 + 2x4 = 0, from which

we determine x1 = −t. In vector form the solution is

x =






−1
−2
1
0




 t.
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2.1.11. First row-reduce to echelon form:



3 −6 −1 1 5

−1 2 2 3 3
4 − 8 − 3 − 2 1

∣∣∣∣∣∣

0
0
0





r1 ← r2
r2 ← r1
r3 ← r3




−1 2 2 3 3
3 −6 −1 1 5
4 − 8 − 3 − 2 1

∣∣∣∣∣∣

0
0
0





r1 ← r1
r2 ← r2 + 3r1
r3 ← r3 + 4r1




−1 2 2 3 3
0 0 5 10 14
0 0 5 10 13

∣∣∣∣∣∣

0
0
0





r1 ← r1
r2 ← r2
r3 ← r3 − r2




−1 2 2 3 3
0 0 5 10 14
0 0 0 0 − 1

∣∣∣∣∣∣

0
0
0



 .

Next apply back substitution. The last row corresponds to the equation

−x5 = 0 and so x5 = 0. The second row corresponds to the equation 5x3 +
10x4 + 14x5 = 0. Here x4 is free; set x4 = t. Then we obtain x3 = −2t.
The variable x2 is free; set x2 = s. Finally, the first row corresponds to the

equation −x1+2x2+2x3 +3x4+ 3x5 = 0, and so to−x1 +2s+ 2 (−2t) +
3t+ 3 · 0 = 0. Hence x1 = 2s− t. In vector form the solution is

x =






2
1
0
0
0





s+






−1
0

−2
1
0





t.

2.1.13.



3 −6 −1 1

−1 2 2 3
6 − 8 − 3 − 2

∣∣∣∣∣∣

5
3
1



 r1 ↔ r2




−1 2 2 3
3 −6 −1 1
6 − 8 − 3 − 2

∣∣∣∣∣∣

3
5
1





→




−1 2 2 3
0 0 5 10
0 4 9 16

∣∣∣∣∣∣

3
14
19



 r2 ↔ r3




−1 2 2 3
0 4 9 16
0 0 5 10

∣∣∣∣∣∣

3
19
14



 .
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The last matrix is in echelon form and the forward elimination is finished.

The fourth column has no pivot and so x4 is free and we set x4 = t. Then the

last row corresponds to the equation 5x3+10t = 14, which gives x3 =
14
5
−2t.

The second row yields 4x2 + 9
(
14
5
− 2t

)
+ 16t = 19, whence x2 =

1
2
t− 31

20
.

Finally, the first row gives x1 = −3 + 2
(
1
2
t− 31

20

)
+ 2

(
14
5
− 2t

)
+ 3t = −1

2
.

In vector form the solution is

x =






−1/2
−31/20
14/5
0




+






0
1/2
−2
1




 t.

2.1.15. The line of intersection of the first two planes is obtained from the

reduction
[
1 2 0
3 6 − 1

∣∣∣∣
2
8

]
→

[
1 2 0
0 0 − 1

∣∣∣∣
2
2

]
.

The last matrix represents the same planes as Equations (2.25) in the text.

The line of intersection of the last two planes is obtained from the reduc-

tion
[
3 6 − 1
1 2 1

∣∣∣∣
8
0

]
→

[
1 2 1
3 6 − 1

∣∣∣∣
0
8

]
→

[
1 2 1
0 0 − 4

∣∣∣∣
0
8

]
→

[
1 2 1
0 0 − 1

∣∣∣∣
0
2

]
→

[
1 2 0
0 0 − 1

∣∣∣∣
2
2

]
,

In the last step, we added the second row to the first row. Again, the last

matrix represents the same planes as Equations (2.25) in the text.

The line of intersection of the first and last planes is obtained from the

reduction
[
1 2 0
1 2 1

∣∣∣∣
2
0

]
→

[
1 2 0
0 0 1

∣∣∣∣
2

−2

]
,

the same planes as before.
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2.2.1.
[
p1 ∗
0 p2

]
,

[
p1 ∗
0 0

]
,

[
0 p1
0 0

]
,

[
0 0
0 0

]
.

2.2.3. Following the given hint, reduce the augmented matrix [A|b] to

echelon form:



1 0 −1

−2 3 − 1
−6 6 0

∣∣∣∣∣∣

b1
b2
b3




r1 ← r1
r2 ← r2 + 2r1
r3 ← r3 + 6r1




1 0 −1
0 3 − 3
0 6 −6

∣∣∣∣∣∣

b1
b2 + 2b1
b3 + 6b1





r1 ← r1
r2 ← r2
r3 ← r3 − 2r2




1 0 −1
0 3 − 3
0 0 0

∣∣∣∣∣∣

b1
b2 + 2b1
b3 + 6b1 − 2 (b2 + 2b1)



 .

Hence the condition for consistency is b3 + 6b1 − 2(b2 + 2b1) = 0, or

equivalently, 2b1 − 2b2 + b3 = 0.

2.2.5. Reduce the augmented matrix [A|b] to echelon form:

[
1 2 − 6

−2 − 4 12

∣∣∣∣
b1
b2

]
r1 ← r1
r2 ← r2 + 2r1

[
1 2 − 6
0 0 0

∣∣∣∣
b1
b2 + 2b1

]
.

Hence the condition for consistency is b2 + 2b1 = 0.

2.2.7. The rank of a matrix is the number r of non-zero rows in an echelon

matrix obtained by the forward elimination phase of the Gaussian elimination

algorithm. The same row operations that reduce the matrix A to an echelon

matrix U will also row-reduce the augmented matrix [A|b] to an augmented

matrix [U |c], with the same echelon matrix U . Thus the system Ax = b is

consistent if and only if cr+1 = cr+2 = · · · = 0; that is, if and only if all rows

in [U |c] below the rth row are zero rows. In this case [U |c] is an echelon

matrix too, and the number of non-zero rows in it is the rank of [A|b]. Hence

the system Ax = b is consistent if and only if the rank of [A|b] equals the

number r of non-zero rows in the matrix U , which is, by definition, the rank

of A.

2.3.1..
[
1 0
0 1

]
,

[
1 ∗
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 0

]
.
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2.3.3. To apply the method of Gauss-Jordan elimination for solving the

given system of equations, continue row-reducing the echelon matrix obtained

in the solution of Exercise 2.1.5:




1 0 − 1
0 3 −3
0 0 0

∣∣∣∣∣∣

0
0
0




r1 ← r1
r2 ← r2/3
r3 ← r3




1 0 − 1
0 1 −1
0 0 0

∣∣∣∣∣∣

0
0
0



 .

Next, apply back substitution to the last matrix, which is in row-reduced

echelon form. The third row corresponds to the equation 0 = 0, and so the

system is consistent. The second row corresponds to the equation x2 − x3 =
0; x3 is free, so set x3 = t, and thus also x2 = t. Finally, the first row

corresponds to the equation x1 − x3 = 0, and hence also x1 = t.

2.3.5. To apply the method of Gauss-Jordan elimination for solving the

given system of equations, continue row-reducing the echelon matrix obtained

in the solution of Exercise 2.1.11:




−1 2 2 3 3
0 0 5 10 14
0 0 0 0 − 1

∣∣∣∣∣∣

0
0
0





r1 ← −r1
r2 ← r2/5
r3 ← −r3




1 −2 −2 −3 −3
0 0 1 2 14/5
0 0 0 0 1

∣∣∣∣∣∣

0
0
0





r1 ← r1 + 3r3
r2 ← r2 − (14/5) r3
r3 ← r3




1 −2 −2 −3 0
0 0 1 2 0
0 0 0 0 1

∣∣∣∣∣∣

0
0
0





r1 ← r1 + 2r2
r2 ← r2
r3 ← r3




1 −2 0 1 0
0 0 1 2 0
0 0 0 0 1

∣∣∣∣∣∣

0
0
0



 .

The pivots correspond to the variables x1, x3 and x5; the variables x2 and

x4 are free: set x2 = s and x4 = t. Then, by back substitution, we obtain

x5 = 0 from the third row, x3 = −2t from the second, and x1 = 2s− t from

the first.

2.3.7. First represent the system as an augmented matrix and row-reduce
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it to echelon form:
[
2 3 − 1
3 5 2

∣∣∣∣
4
1

]
r1 ← r1
r2 ← r2 − (3/2) r1

[
2 3 − 1
0 1/2 7/2

∣∣∣∣
4

−5

]
.

The second row corresponds to the equation 1
2
x2 +

7
2
x3 = −5, and the

first row to the equation 2x1+3x2− x3 = 4. We can get a particular solution

by setting the free variable x3 = 0. Then 1
2
x2 = −5, and so x2 = −10,

and 2x1 − 30 = 4, and thus x1 = 17. Hence xb =




17

−10
0



 is a particular

solution of Ax = b. Similarly, setting x3 = 1 gives 1
2
x2 +

7
2
= −5, or

x2 = −17, and 2x1 − 51 − 1 = 4, or x1 = 28. Thus x′b =




28

−17
1



 is

another particular solution of Ax = b.

For the homogeneous equation Ax = 0 we can use the same echelon

matrix as above, except that the entries of its last column must be replaced by

zeros. The general solution is obtained by setting x3 = t, and solving for the

other variables as 1
2
x2 +

7
2
= 0, x2 = −7t, 2x1 − 21t − t = 0, x1 = 11t.

Thus the general solution of Ax = 0 is v = t




11
−7
1



 .

Hence the general solution of the inhomogeneous equation Ax = b can

be written either as

x =




17

−10
0



+ t




11
−7
1



 or as x =




28

−17
1



+ s




11
−7
1





The two equations represent the same line, as can be seen by setting s = t−1.

2.4.1 .

C = 2A+ 3B =

[
13 − 6
8 2

]
and D = 4A− 3B =

[
−1 24
−2 − 14

]
.

2.4.3.

AB = 2 and BA =




3 − 6 9
2 −4 6
1 −2 3



 .
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2.4.5.

AB =




17 − 17
2 −17
3 −26



, while BA does not exist since B is 3 × 2 and A

is 3× 3.

2.4.7.

AB = [(3 − 4 + 3 + 8), (−4 − 4 − 9 − 20)] = [10, −37], and BA is

undefined.

2.4.9.

AB = [−1 − 8], (AB)C = [−1, −8]
[
1 − 3
3 0

]
= [−25, 3], and

BC =

[
−9 − 9
8 −6

]
, A(BC) = [1, −2]

[
−9 − 9
8 −6

]
= [−25, 3].

2.4.11. There are many possible answers; for example,

A =

[
0 0
0 1

]
and B =

[
0 1
0 0

]
.

2.4.13. a. Each of the terms in the sum a1b
1+a2b

2+ · · ·+ aPbP is the

outer product of an m × 1 column vector and a 1 × n row vector and is

therefore of the same mxn size as AB. Now the ith element of any column

ak is the element in the ith row kth column of A, that is, aik. Similarly, the

jth element of the row bk is bkj . Thus (akb
k)ij = aikbkj. Summing over k

from 1 to p, we get

(
p∑

k=1

akb
k

)

ij

=

p∑

k=1

(akb
k)ij =

p∑

k=1

aikbkj = (AB)ij

and so

AB =

p∑

k=1

akb
k.

b. Let us expand the jth sum on the right of the equation given in part (b) of
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the exercise:

p∑

i=1

aibij =

p∑

i=1






a1i
a2i
...

ami




 bij =






∑p
i=1 a1ibij∑p
i=1 a2ibij

...∑p
i=1 amibij




 .

The column vector on the right is exactly the jth column of AB, and so AB
is the row of such columns for j = 1, . . . , n.

c. Let us expand the ith sum on the right of the equation given in part (c) of

the exercise:

p∑

j=1

aijb
j =

p∑

j=1

aij(bj1 bj2 . . . bjn) =

(
p∑

j=1

aijbj1

p∑

j=1

aijbj2 . . .

p∑

j=1

aijbjn

)

.

The row vector on the right is exactly the ith row of AB, and so AB is the

column of such rows for i = 1, . . . ,m.

2.4.15. There are many possible answers; for example,

A =

[
0 1
0 0

]
or A =

[
−1 1
−1 1

]
.

2.4.17. (M3)24 = (M ·M2)24 can be computed by summing the products

of the elements of the second row ofM with the corresponding elements in the

fourth column of M2. Thus, from Equations (2.104) and (2.105), we obtain

(M3)24 = 1 · 0 + 0 · 1 + 0 · 1 + 0 · 2 + 0 · 0 = 0. Hence there are no three-leg

flights between B and D.

2.4.19. On the one hand, using the blocks:

[
1 − 2
3 4

] [
0 0
0 0

]
+

[
1 0
0 1

] [
3 2
1 −1

]

=

[
1 · 0− 2 · 0 1 · 0− 2 · 0
3 · 0 + 4 · 0 3 · 0 + 4 · 0

]
+

[
1 · 3 + 0 · 1 1 · 2 + 0 · (−1)
0 · 3 + 1 · 1 0 · 2 + 1 · (−1)

]

=

[
3 2
1 − 1

]
,

and on the other hand, without the blocks:
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[
1 − 2 1 0
3 4 0 1

]





0 0
0 0
3 2
1 −1






=

[
1 · 0− 2 · 0 + 1 · 3 + 0 · 1 1 · 0− 2 · 0 + 1 · 2 + 0 · (−1)
3 · 0 + 4 · 0 + 0 · 3 + 1 · 1 3 · 0 + 4 · 0 + 0 · 2 + 1 · (−1)

]

=

[
3 2
1 − 1

]
.

2.4.21. Expand the given matrix using Corollary 2.4.3 and then apply the

result of Exercise 2.4.20.

2.4.23. In order that all relevant matrices be conformable, the second

matrix should be partitioned as






1 − 2
2 0

0 0
0 0

∣∣∣∣∣∣∣∣

1 0
−3 1

2 3
7 4




 .

Then, applying the result of Exercise 2.4.21, we obtain:






1 − 2
3 4

∣∣∣∣
1 0
0 1

−1 0

0 − 1

∣∣∣∣
0 0

0 0











1 − 2
2 0

0 0
0 0

∣∣∣∣∣∣∣∣

1 0
−3 1

2 3
7 4




 =

[
X11 X12

X21 X22

]
,

where

X11 =




1 − 2
3 4

−1 0




[
1 − 2
2 0

]
+




1 0
0 1
0 0




[
0 0
0 0

]
=




−3 − 2
11 −6
−1 2



 ,

X12 =




1 − 2
3 4

−1 0




[

1 0
−3 1

]
+




1 0
0 1
0 0




[
2 3
7 4

]
=




9 1

−2 8
−1 0



 ,
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X21 =
[
0 − 1

] [ 1 − 2
2 0

]
+
[
0 0

] [ 0 0
0 0

]
=
[
−2 0

]
,

X22 =
[
0 − 1

] [ 1 0
−3 1

]
+
[
0 0

] [ 2 3
7 4

]
=
[
3 − 1

]
.

Thus






1 − 2
3 4

∣∣∣∣
1 0
0 1

−1 0

0 − 1

∣∣∣∣
0 0

0 0











1 − 2
2 0

0 0
0 0

∣∣∣∣∣∣∣∣

1 0
−3 1

2 3
7 4






=






−3 − 2
11 −6

∣∣∣∣
9 1

−2 8

−1 2

−2 0

∣∣∣∣
−1 0

3 − 1




 .

2.5.1. To find A−1, form the augmented matrix [A|I] and row-reduce it to

the form [I|A−1], if possible.

[
2 3
4 − 1

∣∣∣∣
1 0
0 1

]
→

[
2 3
0 − 7

∣∣∣∣
1 0

−2 1

]
→

[
2 3
0 1

∣∣∣∣
1 0

2/7 − 1/7

]

→
[
2 0
0 1

∣∣∣∣
1/7 3/7
2/7 − 1/7

]
→

[
1 0
0 1

∣∣∣∣
1/14 3/14
2/7 − 1/7

]
.

Hence

A−1 =
1

14

[
1 3
4 − 2

]
.

2.5.3. To find A−1, form the augmented matrix [A|I] and row-reduce it to

the form [I|A−1], if possible.
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


2 3 5
4 − 1 1
3 2 − 2

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1





r1 ← r1/2
r2 ← r2
r3 ← r3




1 3/2 5/2
4 − 1 1
3 2 −2

∣∣∣∣∣∣

1/2 0 0
0 1 0
0 0 1





r1 ← r1
r2 ← r2 − 4r1
r3 ← r3 − 3r1




1 3/2 5/2
0 − 7 −9
0 −5/2 −19/2

∣∣∣∣∣∣

1/2 0 0
−2 1 0
−3/2 0 1





r1 ← r1
r2 ← −r2/7
r3 ← −2r3/5




1 3/2 5/2
0 1 9/7
0 1 19/5

∣∣∣∣∣∣

1/2 0 0
2/7 −1/7 0
3/5 0 −2/5





r1 ← r1 − 3r2/2
r2 ← r2
r3 ← r3 − r2




1 0 4/7
0 1 9/7
0 1 88/35

∣∣∣∣∣∣

1/14 3/14 0
2/7 −1/7 0
11/35 1/7 −2/5





r1 ← r1
r2 ← r2
r3 → 35r3/88




1 0 4/7
0 1 9/7
0 0 1

∣∣∣∣∣∣

1/14 3/14 0
2/7 −1/7 0
1/8 5/88 −7/44





r1 ← r1 − 4r3/7
r2 ← r2 − 9r3/7
r3 ← r3




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

0 2/11 1/11
1/8 − 19/88 9/44
1/8 5/88 −7/44



 .

Hence

A−1 =
1

88




0 16 8
11 −19 18
11 5 −14



 .

2.5.5. To find A−1, form the augmented matrix [A|I] and row-reduce it

to the form [I|A−1], if possible.
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


2 3 5
4 − 1 3
3 2 5

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1





r1 ← r1/2
r2 ← r2
r3 ← r3




1 3/2 5/2
4 − 1 3
3 2 5

∣∣∣∣∣∣

1/2 0 0
0 1 0
0 0 1





r1 ← r1
r2 ← r2 − 4r1
r3 ← r3 − 3r1




1 3/2 5/2
0 − 7 −7
0 − 5/2 −5/2

∣∣∣∣∣∣

1/2 0 0
−2 1 0
−3/2 0 1





r1 ← r1
r2 ← −r2/7
r3 ← −2r3/5




1 3/2 5/2
0 1 1
0 1 1

∣∣∣∣∣∣

1/2 0 0
2/7 −1/7 0
3/5 0 −2/5





r1 ← r1
r2 ← r2
r3 ← r3 − r2




1 3/2 5/2
0 1 1
0 0 0

∣∣∣∣∣∣

1/2 0 0
2/7 −1/7 0
11/35 1/7 −2/5





Since the last row corresponds to inconsistent equations, the matrix A
cannot be reduced to the identity matrix I , and therefore A is not invertible.

2.5.7. For example, A =

[
1 0
0 1

]
and B =

[
1 0
0 − 1

]
are invertible,

but A+B =

[
2 0
0 0

]
is not.

2.5.9. a. The matrix equation XA = I can be spelled out as

[
x11 x12 x13
x21 x22 x23

]


2 − 1
4 −1
2 2



 =

[
1 0
0 1

]

We can write the corresponding system in augmented matrix form, and reduce

it as follows:

[
2 4 2

−1 − 1 2

∣∣∣∣
1 0
0 1

]
→

[
2 4 2
0 1 3

∣∣∣∣
1 0
1/2 1

]
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(Notice the appearance of AT in the augmented matrix. This is due to the fact

that the equation XA = I is equivalent to ATXT = I , and it is the latter

equation with the XT on the right in the product that is directly translated to

the augmented matrix form.)

The unknowns x13 and x23 are free. Choosing x13 = s and x23 = t, we

get the systems of equations

2x11 + 4x12 + 2s = 1
x12 + 3s = 1/2

and
2x21 + 4x22 + 2t = 0

x22 + 3t = 1,

from which x12 =
1
2
− 3s, x11 = −1

2
+ 5s, x22 = 1− 3t, and x21 = −2+ 5t.

Thus

X =

[
−1
2
+ 5s 1

2
− 3s s

−2 + 5t 1− 3t t

]

is a solution for any s, t, and every left inverse of A must be of this form.

b. AY = I can be written as



2 − 1
4 −1
2 2




[
y11 y12 y13
y21 y22 y23

]
=




1 0 0
0 1 0
0 0 1



 .

Hence the entries of the first column of Y must satisfy

2y11− y12 = 1
4y11− y21 = 0
2y11+ 2y21 = 0.

From the last two equations we get y11 = y21 = 0 and, substituting these

values into the first equation above, we obtain the contradiction 0 = 1. Thus

there is no solution matrix Y .

2.5.11. For the given square matrix A, we know that AX = I and Y A =
I . If we multiply the first of these equations by Y from the left, we get

Y (AX) = Y I , which is equivalent to (Y A)X = Y . Substituting Y A = I
into the latter equation, we obtain X = Y .

2.5.13. Writing ei for the ith row of I , we must have

P = PI = P




e1

e2

e3



 =




ce1

e2

e3



 =




c 0 0
0 1 0
0 0 1



 .
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But then P also produces the desired multiplication of the first row by c for

any 3× n matrix A:

PA =




c 0 0
0 1 0
0 0 1








a1

a2

a3



 =




ca1

a2

a3



 .

2.5.15. Since AA−1 = I , and since c · 1
c
= 1, a reasonable guess is

(cA)−1 = 1
c
A−1. To prove this, we need only show that (cA)(1

c
A−1) = I . If

we denote the ikth element of A by aik and the kjth element of A−1 by bkj,
then the ikth element of cA is caik, and the kjth element of 1

c
A−1 is 1

c
bkj , and

hence the ijth element of (cA)(1
c
A−1) is

m∑

k=1

(caik)(
1

c
bkj) =

m∑

k=1

aikbkj = (AA−1)ij = Iij,

which is what we wanted to show.

2.5.17.

P1 =




1 0 0
0 1 0
0 0 1



 , P2 =




1 0 0
0 0 1
0 1 0



 , P3 =




0 1 0
1 0 0
0 0 1





P4 =




0 0 1
0 1 0
1 0 0



 , P5 =




0 0 1
1 0 0
0 1 0



 , P6 =




0 1 0
0 0 1
1 0 0





P−1
i = Pi for i = 1, 2, 3, 4, and P−1

5 = P6 and P−1
6 = P5.

Furthermore, for instance

P2A =




1 0 0
0 0 1
0 1 0








a1

a2

a3



 =




a1

a3

a2



 ,

which shows that P2 permutes the second row of A with the third one. Since

P2I = P2, the second and third rows of P2 are those of I permuted. Analo-

gous results hold for each Pi.

If we apply any Pi to an n × 3 matrix B from the right, then it permutes

the columns bi of B the same way as Pi has the columns of I permuted. For
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instance,

BP2 = [b1 b2 b3]




1 0 0
0 0 1
0 1 0



 = [b1 b3 b2].

2.5.19. The matrix (A−1)−1 is defined as the solution X of the equa-

tion A−1X = I. Now, multiplying both sides by A and simplifying, we get

A (A−1X) = (AA−1)X = IX = X on the left, and AI = A on the right.

Thus, X = A. Also, earlier we had X = (A−1)−1. Hence (A−1)−1 = A.

3.1.1. The set of all polynomials of degree two and the zero polynomial

is not a vector space. For example, it is not closed under addition: the sum of

x2+ x− 1 and −x2 is x− 1, which is neither a polynomial of degree two nor

the zero polynomial.

3.1.3. The set of all solutions (x, y) of the equation 2x + 3y = 1 is not

a vector space. For example, (−1, 1) and (−4, 3) are solutions, but their sum

(−1, 1) + (−4, 3) = (−5, 4) is not a solution since 2(−5) + 3(4) = 2 �= 1.

Thus the set is not closed under addition.

3.1.5. The set of all twice differentiable functions f for which f ′′(x) +
2f(x) = 1 holds is not a vector space. For example, f(x) = 1/2 is a solution,

but f(x) = 2 (1/2) = 1 is not a solution. Thus the set is not closed under

multiplication by all scalars.

3.1.7. This set is not a vector space, because addition is not commutative:

For example, let (p1, p2) = (1, 2) and (q1, q2) = (1, 3). Then, by the given

addition rule, we have (1, 2) + (1, 3) = (1 + 3, 2 + 1) = (4, 3), but (1, 3) +
(1, 2) = (1 + 2, 3 + 1) = (3, 4).

3.1.9. This set is not a vector space, because Axiom 7 fails: Let a = b =
1, and p2 �= 0. Then (a+ b)p = (a+ b)(p1, p2) = 2(p1, p2) = (2p1, 2p2), but

ap+ bp = (p1, p2) + (p1, p2) = (2p1, 0).

3.1.11. Prove the last three parts of Theorem 3.1.1.

Proof of Part 6:

For any real number c we have −c = (−1)c, and so

(−c)p = ((−1)c)p
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= (−1)(cp) by Axiom 6 of Definition 3.1.1, and

= −(cp) by Part 5 of Theorem 3.1.1.

Also, ((−1)c)p = (c(−1))p by the commutativity of multiplication of

numbers,

= c((−1)p) by Axiom 6 of Definition 3.1.1, and

= c(−p) by Part 5 of Theorem 3.1.1.

Proof of Part 7:

c(p− q) = c[p+ (−q)] by Definition 3.1.3,

= cp+ c(−q) by Axiom 8 of Definition 3.1.1,

= cp+ (−(cq)) by Part 6 above, and

= cp− cq by Definition 3.1.3.

Proof of Part 8:

(c− d)p = [c+ (−d)]p by the definition of subtraction of numbers,

= cp+ (−d)p by Axiom 7 of Definition 3.1.1,

= cp+ (−(dp)) by Part 6 above, and

= cp− dp by Definition 3.1.3.

3.1.13. If p + q = p + r, then adding −p to both sides we get −p +
(p + q) = −p + (p + r). By applying the associative rule for addition, we

may change this to (−p + p) + q = (−p + p) + r. By Axioms 1 and 4 of

Definition 3.1.1 we can replace the −p + p terms by 0, and then Axioms 1

and 3 give q = r.

3.2.1. This U is a subspace of R3:

a. 0 ∈ U , and so U is nonempty.

b. U is closed under addition: Let u,v ∈ U . Then u1 = u2 = u3 and

v1 = v2 = v3. Hence u1 + v1 = u2 + v2 = u3 + v3, which shows that

u+ v ∈ U .

c. U is closed under multiplication by scalars: If u ∈ U and c ∈ R, then

cu1 = cu2 = cu3, which shows that cu ∈ U .

3.2.3. This U is not a subspace of R3:

Take for instance u = [1,−1, 1]T and v = [1, 1, 1]T . Then u,v ∈ U ,

but u + v = [2, 0, 2]T /∈ U , because |2| �= |0|. Thus U is not closed under

addition.

33



3.2.5. This U is not a subspace of R3:

Take for instance u = [1, 1, 1]T and v = [1, 2, 0]T . Then u,v ∈ U , but

u+ v = [2, 3, 1]T /∈ U , because 2 �= 3 and neither is the third component of

the sum 0. Thus U is not closed under addition.

3.2.7. This U is not a subspace of Rn:

Take for instance u = e1 = [1, 0, · · · , 0]T and c = −1. Then u ∈ U , but

cu = −e1 = [−1, 0, · · · , 0]T /∈ U . Thus U is not closed under multiplication

by scalars.

3.2.9. If U and V are subspaces of a vector space X , then U ∩ V is a

subspace of X :

a. 0 ∈ U ∩ V , and so U ∩ V is nonempty.

b. U ∩ V is closed under addition: Let u, v ∈ U ∩ V . Then we have

both u,v ∈ U and u,v ∈ V . Since both U and V are vector spaces, they

are closed under addition. that is, u + v ∈ U and u + v ∈ V . Thus, by the

definition of intersection, u+ v ∈ U ∩ V.

c. U ∩ V is closed under multiplication by scalars: If u ∈ U ∩ V and

c ∈ R, then we have both u ∈ U and u ∈ V . Since both U and V are vector

spaces, they are closed under multiplication by scalars: that is, cu ∈ U and

cu ∈ V . Thus, by the definition of intersection, cu ∈ U ∩ V .

3.2.11. No. 0 /∈ U and so U is not a vector space.

3.3.1. Let us prove the “if” part first: So, assume that one of the vectors

a1, a2 and a3 is a linear combination of the other two, say

a3 = s1a1 + s2a2

for some coefficients s1 and s2. (The proof would be similar if a1 or a2 were

given as a linear combination of the other two vectors.) Then we can write

equivalently

s1a1 + s2a2 + (−1)a3 = 0.
This equation shows that there is a nontrivial linear combination of a1, a2 and

a3 that equals the zero vector. But the existence of such a linear combination

is precisely the definition of the dependence of the given vectors.

To prove the “only if” part, assume that the given vectors are dependent,

that is, that there exist coefficients s1, s2 and s3, not all zero, such that
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s1a1 + s2a2 + s3a3 = 0.

Assume further, without any loss of generality, that s3 �= 0. Then we can

solve the above equation for a3 as

a3 =

(
−s1
s3

)
a1 +

(
−s2
s3

)
a2.

This equation exhibits a3 as a linear combination of a1 and a2; just what we

had to show.

3.3.3. b = (7, 32, 16,−3)T , a1 = (4, 7, 2, 1)T , a2 = (4, 0,−3, 2)T ,

a3 = (1, 6, 3,−1)T .

We have to solve





4 4 1
7 0 6
2 − 3 3
1 2 − 1









s1
s2
s3



 =






7
32
16
−3




 .

We solve this system in augmented matrix form by row reduction as follows:




4 4 1
7 0 6
2 − 3 3
1 2 − 1

∣∣∣∣∣∣∣∣

7
32
16
−3




→






1 2 − 1
7 0 6
2 − 3 3
4 4 1

∣∣∣∣∣∣∣∣

−3
32
16
7






→






1 2 − 1
0 − 14 13
0 −7 5
0 −4 5

∣∣∣∣∣∣∣∣

−3
53
22
19




→






1 2 − 1
0 −7 5
0 − 14 13
0 −4 5

∣∣∣∣∣∣∣∣

−3
22
53
19






→






1 2 − 1
0 − 7 5
0 0 3
0 0 15/7

∣∣∣∣∣∣∣∣

−3
22
9

45/7




→






1 2 − 1
0 − 7 5
0 0 3
0 0 0

∣∣∣∣∣∣∣∣

−3
22
9
0




 .

Then, by back substitution, we obtain s3 = 3, −7s2 + 5 · 3 = 22, and so

s2 = −1, s1 − 2− 3 = −3, and so s1 = 2. Hence b = 2a1 − a2 + 3a3.

3.3.5. We have to solve
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


4 4 0
2 − 3 5
1 2 − 1








s1
s2
s3



 =




7
16
−3



 .

We solve this system in augmented matrix form by row reduction as:


4 4 0
2 − 3 5
1 2 − 1

∣∣∣∣∣∣

7
16
−3



→




1 2 − 1
2 − 3 5
4 4 0

∣∣∣∣∣∣

−3
16
7





→




1 2 − 1
0 − 7 7
0 −4 4

∣∣∣∣∣∣

−3
22
19



→




1 2 − 1
0 − 7 3
0 0 0

∣∣∣∣∣∣

−3
22

45/7



 .

The last row of the reduced matrix yields the self-contradictory equation

0 = 45/7, and so the vector b cannot be written as a linear combination of

the given ai vectors.

3.3.7. These four vectors are not independent since, by the result of

Exercise 3.3.4, the equation s1a1 + s2a2 + s3a3 + s4b = 0 has the nontrivial

solution s1 = 2, s2 = −1, s3 = 3, s4 = −1.

3.3.9. The three vectors a1 = (4, 2, 1)T , a2 = (4,−3, 2)T , a3 = (0, 5,−1)T
from Exercise 3. 3. 5 are not independent: We have to solve




4 4 0
2 − 3 5
1 2 − 1








s1
s2
s3



 =




0
0
0



 .

By row-reduction:


4 4 0
2 − 3 5
1 2 − 1

∣∣∣∣∣∣

0
0
0



→




1 2 − 1
2 − 3 5
4 4 0

∣∣∣∣∣∣

0
0
0





→




1 2 − 1
0 − 7 7
0 −4 4

∣∣∣∣∣∣

0
0
0



→




1 2 − 1
0 − 7 7
0 0 0

∣∣∣∣∣∣

0
0
0



 .

Hence s3 is free, and there are nontrivial solutions. Consequently the ai
vectors are dependent.
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This result also follows from the equivalence of Parts 4 and 6 of Theorem

2.5.5, which implies that if Ax = b has no solution for some b, as happens

for the b of Exercise 3.3.5, then Ax = 0 has nontrivial solutions.

3.3.11. To test the vectors a1 = (1, 0, 0, 1)T , a2 = (0, 0, 1, 1)T , a3 =
(1, 1, 0, 0)T , a4 = (1, 0, 1, 1)T for independence, we solve As = 0 by row

reduction:




1 0 1 1
0 0 1 0
0 1 0 1
1 1 0 1

∣∣∣∣∣∣∣∣

0
0
0
0




→






1 0 1 1
0 0 1 0
0 1 0 1
0 1 − 1 0

∣∣∣∣∣∣∣∣

0
0
0
0






→






1 0 1 1
0 1 0 1
0 0 1 0
0 1 − 1 0

∣∣∣∣∣∣∣∣

0
0
0
0




→






1 0 1 1
0 1 0 1
0 0 1 0
0 0 − 1 − 1

∣∣∣∣∣∣∣∣

0
0
0
0






→






1 0 1 1
0 1 0 1
0 0 1 0
0 0 0 − 1

∣∣∣∣∣∣∣∣

0
0
0
0




 .

Back substitution yields s = 0, and so the columns of A are independent.

3.3.13.

a. The vectors a1, a2, . . . , an of any vector space X are linearly indepen-

dent if and only if the equation s1a1 + s2a2 + · · · + snan = 0 has only the

trivial solution s = 0.

b. The vectors a1, a2, . . . , an of any vector space X are linearly indepen-

dent if and only if none of them can be written as a linear combination of the

others.

c. The vectors a1, a2, . . . , an of any vector space X are linearly indepen-

dent if and only if the solution of the equation s1a1 + s2a2 + · · ·+ snan = b
is unique for any b ∈ X for which a solution exists.

3.3.15. Let a1,a2, . . . , an be any vectors in R3, with n > 3. Then, to

test them for dependence, we solve s1a1 + s2a2 + · · · + snan = 0. We can

do this by reducing the augmented matrix [A|0] to echelon form, where A
is the 3 × n matrix that has the given vectors for its columns. Since A is

3× n, we cannot have more than three pivots. On the other hand, since there

37



are n columns. with n > 3, there must exist at least one pivot-free column

and a corresponding free variable. Thus there are nontrivial solutions, and

consequently the vectors a1, a2, . . . ,an are dependent.

3.3.17. Let a1,a2, a3 span R3. Let A be the 3 × 3 matrix that has the

given vectors as columns. Then, by the definition of spanning, As = b has

a solution for every vector b in R3. By the equivalence of Parts 4 and 6 of

Theorem 2.5.5, this implies that the equation As = 0 has only the trivial

solution. Thus a1,a2, a3 are independent.

3.3.19. Let A be the n×m matrix with columns a1, a2, . . . ,am. If these

vectors are independent, then, by the definition of linear independence, the

equation As = 0 has only the trivial solution. Thus, if A is row-reduced to

the echelon form U , then the corresponding equation Us = 0 cannot have any

free variables, that is, the number of rows n must be at least the number of

columns m, and there cannot be any free columns. In other words, we must

have m ≤ n and r = m. The definition of independence also requires 0 < m.

Conversely, if 0 < m ≤ n and r = m, then Us = 0 has no free variables,

and so As = 0 has only the trivial solution. Thus the columns of A are

independent.

5

3.4.1. First we apply Theorems 3.3.1 and 3.3.3:



1 3 1
3 2 4
2 − 1 3



→




1 3 1
0 − 7 1
0 − 7 1



→




1 3 1
0 − 7 1
0 0 0



 .

Thus a basis for Col(A) is the set








1
3
2



 ,




3
2

−1









,

and a basis for Row(A) is








1
3
1



 ,




0

−7
1









.
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To find a basis for Null(A) we need to solve Ax= 0. The row reduction of

[A|0] would result in the same echelon matrix as above, just augmented with

a zero column. Thus the variable x3 is free. Set x3 = s; then the second row

of the reduced matrix gives x2 = s/7, and the first row leads to x1 = −10s/7.

Hence

x =
s

7




−10

1
7





is the general form of a vector in Null(A), and so the one-element set









−10

1
7










is a basis for Null(A).

3.4.3. As in Exercise 3.3.1 above,






1 3 1
3 2 4
2 − 1 3
0 1 1




→






1 3 1
0 − 7 1
0 −7 1
0 1 1




→






1 3 1
0 1 1
0 0 8
0 0 0




 .

Thus a basis for Col(A) is the set











1
3
2
0




 ,






3
2

−1
1




 ,






1
4
3
1










,

and a basis for Row(A) is









1
3
1



 ,




0
1
1



 ,




0
0
8









.
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For Null(A): x3 = 0, x2 = 0, x1 = 0. Hence Null(A) = {0}, which has no

basis or, expressed differently, its basis is the empty set.

3.4.5. A simple example is given by

A =




1 1 1
1 1 1
1 0 0



 .

Clearly, the first two rows being the same, they span a one-dimensional space,

which does not contain the third row. Thus the first two rows transposed do

not form a basis for Row(A), since Row(A) must contain the transpose of

every row. On the other hand, the transposed first two rows of

E =




1 1 1
0 1 1
0 0 0





do form a basis for Row(A), since the third row of A can be obtained as the

difference of the first two rows of E.

3.4.7. Since a is the third column of the given matrix A, it is in Col(A).
It can be expressed as a linear combination of the first two columns a1 and a2
by Gaussian elimination as follows:




1 3
3 2
2 − 1

∣∣∣∣∣∣

1
4
3



→




1 3
0 −7
0 − 7

∣∣∣∣∣∣

1
1
1



→




1 3
0 − 7
0 0

∣∣∣∣∣∣

1
1
0



 .

Hence s2 = −1/7, s1 − 3/7 = 1, and so s1 /7. Thus a = (10a1 − a2)/7.
For b, similarly:




1 3
3 2
2 − 1

∣∣∣∣∣∣

−10
1
7



→




1 3
0 −7
0 − 7

∣∣∣∣∣∣

−10
31
27



→




1 3
0 − 7
0 0

∣∣∣∣∣∣

−10
31
−4



 .

The last row shows that this is the augmented matrix of an inconsistent

system, and so b is not in Col(A).

Since c = −(a + b) and a is in Col(A), but b is not, c cannot be in
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Col(A) either. (If it were in Col(A), then b = −(a+c) would have to be too,

because Col(A), being a subspace, is closed under vector addition and under

multiplication by scalars.)

For d, row-reduce again:




1 3
3 2
2 − 1

∣∣∣∣∣∣

5
9
4



→




1 3
0 −7
0 − 7

∣∣∣∣∣∣

5
−6
−6



→




1 3
0 − 7
0 0

∣∣∣∣∣∣

5
−6
0



 .

Hence s2 = 6/7, s1 + 18/7 = 5, and s1 = 17/7. Thus we can write d as

d = (17a1 + 6a2)/7.

3.4.9. First we show that any vector x ∈ Null(B) is also in Null(AB).
Now x ∈ Null(B) means that x is a solution of Bx = 0. Multiplying both

sides by A, we get ABx = 0. Thus x is also in Null(AB).

Conversely, if x ∈ Null(AB), then ABx = 0, and multiplying both sides

by A−1 (which exists by assumption), we get A−1ABx = Bx = 0. Thus x is

also in Null(B).

Taken together, the two arguments above show that Null(B) and Null(AB)
contain exactly the same vectors x. This means that Null(B) = Null(AB).

3.4.11. Let A = (a1, a2, . . . , am) be the list of the given spanning vectors,

and B = (b1,b2, . . . ,bn) the list of independent vectors that we use for

comparison. By the Exchange Theorem, the number of independent vectors

must not exceed the number of spanning vectors. More formally: the n here

is the k of the Exchange Theorem, and the m here is the n there. Thus the

conclusion k ≤ n of the theorem becomes n ≤ m.

3.4.13. Let A be the n × m matrix with columns a1,a2, . . . , am ∈ Rn,

with m > n. These vectors are dependent if and only if the equation As = 0
has nontrivial solutions. Now, if A is row-reduced to the echelon form U ,

then the corresponding equation Us = 0 must have free variables, because

the number of pivots cannot exceed the number n of rows, and the number of

columns m is greater than n. So there are free columns and, correspondingly,

nontrivial solutions.

For an alternative proof, assume that B = (b1,b2, . . . ,bm), with n <
m, is a list of independent vectors in Rn. For comparison use the standard

vectors as the spanning list, that is, let A = (e1, e2, . . . , en) in the Exchange
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Theorem.. Then the conclusion k ≤ n of the theorem becomes m ≤ n. This

inequality contradicts the previous one, and so the vectors of B cannot be

independent.

3.5.1. We reduce A to echelon form:

[
1 1 1 2 0
3 3 0 6 0

]
→

[
1 1 1 2 0
0 0 − 3 0 0

]
.

Hence a basis for Row(A) is given by the vectors b1 = (1, 1, 1, 2, 0)T and

b2 = (0, 0,−3, 0, 0)T . Thus dim(Row(A)) = 2. Consequently, by Theorem

3.4.2, dim(Col(A)) = 2, too, and, by Corollary 3.4.2 and Theorem 3.4.4,

dim(Null(A)) = 3, and dim(Left-null(A)) = 0.

To find a basis for Null(A), solve Ax = 0 by setting x2 = s, x4 = t, and

x5 = u. Then x3 = 0 and x1 = −s− 2t. Hence

x = s






−1
1
0
0
0





+ t






−2
0
0
1
0





+ u






0
0
0
0
1






is the general form of a vector in Null(A), and so

c1 =






−1
1
0
0
0





, c2 =






−2
0
0
1
0





, c3 =






0
0
0
0
1






form a basis for Null(A). Thus, to get the desired decomposition of x =
(−2, 0, 1, 4, 1)T , we must solve (−2, 0, 1, 4, 1)T = s1b1 + s2b2 + t1c1 +
t2c2 + t3c3. By row-reduction:




1 0 − 1 − 2 0
1 0 1 0 0
1 − 3 0 0 0
2 0 0 1 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣

−2
0
1
4
1





→
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




1 0 − 1 − 2 0
0 0 2 2 0
0 − 3 1 2 0
0 0 2 5 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣

−2
2
3
8
1





→






1 0 − 1 − 2 0
0 − 3 1 2 0
0 0 2 2 0
0 0 2 5 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣

−2
3
2
8
1





→






1 0 − 1 − 2 0
0 − 3 1 2 0
0 0 2 2 0
0 0 0 3 0
0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣

−2
3
2
6
1





.

From here, by back substitution, we get t3 = 1, t2 = 2, t1 = −1, 3s2 =
t1 + 2t2 − 3 = −1 + 4− 3 = 0, and s1 = t1 + 2t2 − 2 = 1. Thus

x0 = −






−1
1
0
0
0





+ 2






−2
0
0
1
0





+






0
0
0
0
1





=






−3
−1
0
2
1





,

and

xR =






1
1
1
2
0





.
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Indeed,

x0 + xR =






−3
−1
0
2
1





+






1
1
1
2
0





=






−2
0
1
4
1






and

x0 · xR =
[
−3 − 1 0 2 1

]






1
1
1
2
0





= 0.

3.5.3.

a. dim(Row(A)) = dim(Col(A)) = 1, and, by Corollary 3.4.2 and

Theorem 3.4.4, dim(Null(A)) = 4, and dim(Left-null(A)) = 0.

b. This A is an echelon matrix, and so b1 = (3, 3, 0, 4, 4)T forms a basis

for its row space, and we must have xR = sb1 with an unknown value for s.

Let x = (1, 1, 1, 1, 1)T . We use the shortcut mentioned at the end of Example

3.4.2 to solve x = sb1 + x0 for s by left-multiplying it with bT1 . We obtain,

because of the orthogonality of the row space to the nullspace, bT1 x = sbT1 b1,
which becomes 14 = 50s. Thus s = 7/25 and xR =

7
25
(3, 3, 0, 4, 4)T . From

here we get x0 = x− xR = 1
25
(4, 4, 25,−3,−3)T .

3.5.5. This matrix needs no reduction: it is already in echelon form. Thus

b1 = (0, 2, 0, 0, 4)T and b2 = (0, 0, 0, 2, 2)T form a basis for Row(A). Hence

dim(Row(A)) = 2. Consequently, by Theorem 3.4.2, dim(Col(A)) = 2,

too, and, by Corollary 3.4.2 and Theorem 3.4.4, dim(Null(A)) = 3, and

dim(Left-null(A)) = 0.

To find a basis for Null(A) we solve Ax = 0 by setting x1 = s, x3 = t,
and x5 = u. Then 2x4 + 2u = 0, 2x2 + 4u = 0, and so x4 = −u and

x2 = −2u. Hence Null(A) consists of the vectors
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x = s






1
0
0
0
0





+ t






0
0
1
0
0





+ u






0
−2
0

−1
0





,

and so

c1 =






1
0
0
0
0





, c2 =






0
0
1
0
0





, c3 =






0
−2
0

−1
0






form a basis for Null(A). To decompose x = (1, 2, 3, 4, 5)T into the sum of an

x0 ∈Null(A) and an xR ∈Row(A), solve x = s1b1+s2b2+t1c1+t2c2+t3c3
by row-reduction:




0 0 1 0 0
2 0 0 0 − 2
0 0 0 1 0
0 2 0 0 −1
4 2 0 0 0

∣∣∣∣∣∣∣∣∣∣

1
2
3
4
5





→






2 0 0 0 − 2
0 2 0 0 −1
0 0 1 0 0
0 0 0 1 0
4 2 0 0 0

∣∣∣∣∣∣∣∣∣∣

2
4
1
3
5






→






2 0 0 0 − 2
0 2 0 0 −1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 6

∣∣∣∣∣∣∣∣∣∣

2
4
1
3

−3






Thus, t3 = −1/2, t2 = 3, t1 = 1, s2 = 7/4, s1 = 1/2,

x0 =






1
0
0
0
0





+ 3






0
0
1
0
0





− 1

2






0
−2
0

−1
0





=
1

2






2
2
6
1

−1





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and

xR =
1

2






0
2
0
0
4





+
7

4






0
0
0
2
2





=
1

2






0
2
0
7
11





.

3.5.7. Null(A) is defined as the solution set of Ax = 0. Writing ai for the

ith row of A, we have, equivalently, aix = 0 for all i. If x is also in the row

space of A, then by the definition of Row(A), xT is a linear combination of

the rows of A, that is, xT = xAia
i, for some coefficients xAi. Multiplying both

sides of aix = 0 by xAi, and summing over i, we get
∑

xAia
ix = xTx = 0.

The last equality can be written as |x|2 = 0, which is true only for x = 0.

Thus 0 is the only vector lying in both Null(A) and Row(A).

3.5.9. From Exercise 3.2.9 we know that U∩V is a subspace of X . Since,

by the result of Exercise 3.5.8, U + V too is a subspace of X , all we need to

prove is that U ∩ V is a subset of U + V .

Let x be any element of U ∩ V . Then x is an element of U and can

therefore be written as u + v with u = x ∈ U and v = 0 ∈ V . Thus

x ∈U +V , and so U ∩V is a subset, and consequently a subspace, of U +V .

3.5.11. If both A and B have n columns, then clearly each of the three

nullspaces in the problem are subspaces of Rn. Now, by definition,

Null

[
A
B

]
=

{
x ∈ Rn

∣∣∣∣

[
A
B

]
x = 0

}
.

Here the condition

[
A
B

]
x = 0 is equivalent to

[
Ax
Bx

]
= 0, and therefore

to the simultaneous occurrence of Ax = 0 and Bx = 0. Thus a vector x ∈Rn

is in Null

[
A
B

]
if and only if it is both in Null(A) and in Null(B), that is, in

Null(A) ∩ Null(B).

3.5.13. For any subspace U of an inner product space X, we have defined

U⊥ = {v ∈ X|u · v = 0 for all u ∈ U}. Hence

a. 0 ∈ U⊥, because u · 0 = 0 for all u ∈ U , and so U⊥ is nonempty.

b. U⊥ is closed under addition: Let v,w ∈ U⊥. Then u · v = 0 and
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u ·w = 0 for all u ∈ U . Hence u · (v +w) = 0, for all u ∈ U , which shows

that v +w ∈ U⊥.

c. U⊥ is closed under multiplication by scalars: If v ∈ U⊥ and c ∈ R,

then u · v = 0 for all u ∈ U , and therefore u · (cv) = 0 for all u ∈ U , which

shows that cv ∈ U⊥. Thus U⊥ is a subspace of X .

3.5.15. The exercises cited in the hint show that every elementary row

operation on a matrix A is equivalent to multiplication by an elementary

matrix E, and that every such E is invertible. Thus, if A and B are row-

equivalent matrices, then there exist elementary matrices Ei such that A =
E1E2 · · ·EkB. Since each of the Ei matrices is invertible, so too is their

product R = E1E2 · · ·Ek. Consequently, by the result of Exercise 3.5.14, B
and A = RB have the same rank.

3.5.17. Assuming B has n columns, they are linearly dependent, if

and only if there exist n constants ti, not all zero, such that
∑n
i=1 tibi = 0.

Multiplying both sides of this equation by A, we get
∑n
i=1 tiAbi = 0, which

shows that the vectors Abi, that is, the columns of AB, are dependent with

the same coefficients as the bi vectors.

Conversely, if the matrix A is not invertible, then we cannot conclude

that the equation
∑n
i=1 tiAbi = 0 implies

∑n
i=1 tibi = 0. Thus we cannot

expect the converse of the original statement to be true, and should look for a

counterexample.

Indeed, if

A =

[
0 1
0 1

]
and B =

[
1 0
1 1

]
,

then

AB =

[
1 1
1 1

]

Here the columns of AB are linearly dependent, but the columns of B are

linearly independent.

3.5.19. The first three columns of A form an echelon matrix, and so they

are independent and form the basis {a1, a2, a3} for U . The last three columns

of A can be reduced to an echelon matrix with three pivots, and so {a3, a4, a5}
is a basis for V .

To find a basis forU∩V , we must find all vectors p that can be written both
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as s1a1+s2a2+s3a3 and as t3a3+ t4a4+ t5a5, that is, find all solutions of the

equation s1a1+ s2a2+ s3a3 = t3a3+ t4a4+ t5a5. Writing x1 = s1, x2 = s2,
x3 = s3 − t3, x4 = −t4, and x5 = −t5, the equation we wish to solve

becomes Ax = 0. Since A is an echelon matrix, we need no row-reduction,

and back substitution gives x5 = t, x4 = −t, x3 = 0, x2 = −t/2, x1 = 0.

Equivalently, s1 = 0, s2 = −t/2, s3 − t3 = 0, t4 = t, and t5 = −t. Thus

U ∩ V = {p|p = −ta2/2 + s3a3} = {p|p = s3a3 + t(a5 − a4)}. Hence we

observe that {a2, a3} is a basis for U ∩ V .

Since A is an echelon matrix, {a1,a2, a3,a4} is a basis for U + V = R4.

To find a basis for U⊥ we need to solve xT (a1, a2, a3) = 0, that is, find a

basis for the left nullspace of (a1, a2, a3). This computation results in {e4} as

a basis for U⊥.

To find a basis for V ⊥ we need to solve xT (a3, a4,a5) = 0, that is,

find a basis for the left nullspace of (a3,a4, a5). This computation results

in {(1, 0,−1, 1)T} as a basis for V ⊥.

3.5.21. Let {u1,u2, . . . ,um} be a basis for U and {v1,v2, . . . ,vn} a

basis for V . Then dimU = m and dimV = n. Furthermore, any u ∈ U and

v ∈ V can be written as u =
∑m
i=1 aiui and v =

∑n
j=1 bjvj . Now U⊕V con-

sists of all sums of vectors from U and from V , that is, of all sums
∑m
i=1 aiui+∑n

j=1 bjvj . Thus the combined set C = {u1,u2, . . . ,um,v1,v2, . . . ,vn}
spans U ⊕ V . It is also an independent set, for the following reason: If

u + v =
∑m
i=1 aiui +

∑n
j=1 bjvj = 0, then u = −v, and so u is also in

V . Since, by the definition of direct sum, the only vector that is in both U
and V is the zero vector, we have u = v = 0. Thus both

∑m
i=1 aiui = 0

and
∑m
j=1 bjvj = 0. Since the ui vectors form a basis for U , and the vj

vectors a basis for V , the last two equations imply that all coefficients ai and

bj must be zero. Hence C is an independent set, too, and therefore a basis for

U ⊕ V . This shows that dim(U ⊕ V ) = m + n and so that dim(U ⊕ V ) =
dimU + dimV .

3.5.23. Let B = {w1,w2, . . . ,wk} be a basis for U ∩ V . Extend B to a

basis B1 = {w1, . . . ,wk,u1, . . . ,ul} for U and to a basis

B2 = {w1, . . . ,wk,v1, . . . ,vm} for V . (These subspaces, together with the

symbol for the number of basis vectors in each intersection, are illustrated

schematically in a Venn diagram below.) Then

B1 ∪B2 = {w1, . . . ,wk,u1, . . . ,ul,v1, . . . ,vm} is a basis for U + V . Hence

dim(U ∩ V ) = k , dim(U + V ) = k + l +m , dimU = k + l, and dimV =
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k +m. Now, k + l +m = (k + l) + (k +m)− k, and this proves the given

formula.

U V

l k m

U V

3.5.25

dim(U + V +W ) = dim(U) + dim(V ) + dim(W )

− dim(U ∩ V )− dim(U ∩W )− dim(V ∩W ) + dim(U ∩ V ∩W ).

(The relevant subspaces, together with the symbol for the number of basis

vectors in each intersection, are illustrated schematically in the Venn diagram

below.)

U p j q V

ik l
U W WV

U V
U V W

r

W

Proof : Consider a basis B for U ∩ V ∩W . Say, it has i vectors. Extend B
to a basis for U ∩ V , so that dim(U ∩ V ) = i+ j. Next, extend B to a basis

for U ∩W , so that dim(U ∩W ) = i + k, and to a basis for V ∩W , so that

dim(V ∩W ) = i+ l. Since U ∩ V and U ∩W are subspaces of U , the union

of their bases can be extended to a basis for U , and so dim(U) = i+j+k+p,

for some p. Similarly, dim(V ) = i+ j + l + q and dim(W ) = i+ k + l + r
for some q and r. By the result of Exercise 3.5.20, U + V +W is generated

by the union of U , V and W , and so also by the union of their bases. Thus
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dim(U + V +W ) = i+ j + k + l + p+ q + r. On the other hand, the other

dimension formulas above yield dim(U)+dim(V )+dim(W )−dim(U∩V )−
dim(U ∩W )− dim(V ∩W ) + dim(U ∩ V ∩W )

= (i+j+k+p)+(i+j+l+q)+(i+k+l+r)−(i+j)−(i+k)−(i+l)+i

= i+ j + k + l + p +q + r, the same as above.

3.5.27. Let A be a basis for U ∩ V, B a basis for U ∩ V ⊥, C a basis for

U⊥ ∩ V , and D a basis for U⊥ ∩ V ⊥. Then, clearly, A∪ B ∪ C ∪ D is a basis

for Rn, C ∪ D for the subspace U⊥, B ∪ D for V ⊥, and B ∪ C ∪ D for (U ∩
V )⊥. However, by the result of Exercise 3.5.20, the set ( (B ∪ D)∪ (C ∪ D) )
= B ∪ C ∪ D generates U⊥+V ⊥, and so we must have (U∩V )⊥ = U⊥+V ⊥.

3.5.29. U ⊂ V means that every u ∈ U is also in V . Thus if v ∈ V ⊥,

then vTu = 0 for every u ∈ U . On the other hand, the set U⊥ was defined

exactly as the set of those vectors that are orthogonal to every u ∈ U . Hence

v ∈ V ⊥ implies that v ∈ U⊥, and this means that V ⊥ ⊂ U⊥ holds.

3.5.31. We want to find a basis for Left-null(B), as in Example 3.5.6,

because the vectors of such a basis are orthogonal to the columns of B, and

the transposes of those basis vectors can therefore be taken as the rows of the

desired matrix A. Since Left-null(B) = Null(BT ) we solve BTx = 0 by

reducing BT as follows:




1 0 0 2
1 2 0 1
1 0 0 0



→




1 0 0 0
1 2 0 1
1 0 0 2



→




1 0 0 0
0 2 0 1
0 0 0 2



 .

Thus x3 is free and x1 = x2 = x4 = 0, and so A = [0, 0, 1, 0] is a matrix

such that Null(A) = Col(B).

3.5.33. For any A as stated, the equation Ax = b is consistent if and only

if b ∈ Col(A). For any b ∈ Col(A) write the above equation as Ax = Ib
and reduce the latter, by elementary row operations, until A is in an echelon

form

[
U
O

]
with U having no zero rows. On the right-hand side denote the

result of this reduction of the matrix I by

[
L
M

]
Thus we get the equations

Ux = Lb and 0 = Mb. The last equation shows that the rows of M must

be orthogonal to any vector in the column space of A, and so their transposes
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are in the left null- space of A. Furthermore, the matrix

[
L
M

]
has full rank,

since it is obtained from I by elementary row operations, which are invertible.

Consequently the rows of M are independent. On the other hand, since the

dimension of the left nullspace of A is m− r and M has m− r independent

rows, their transposes span the left nullspace of A.

3.5.35. The construction of Exercise 3.5.33 applied to the transpose AT

of A in place of A yields a basis for the nullspace of A.

3.5.37. By the algorithm of Exercise 3.5.36 we do the following reduction






1 0 − 1
−2 3 −1
3 −3 0
2 0 − 2

5 − 6 1

∣∣∣∣∣∣∣∣∣∣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

0 0 0 0





→






1 0 − 1
0 3 −3
0 −3 3
0 0 0

0 − 6 6

∣∣∣∣∣∣∣∣∣∣

1 0 0 0
2 1 0 0
−3 0 1 0
−2 0 0 1

−5 0 0 0





→






1 0 − 1
0 3 −3
0 0 3
0 0 0

0 0 0

∣∣∣∣∣∣∣∣∣∣

1 0 0 0
2 1 0 0
−1 1 1 0
−2 0 0 1

−1 2 0 0





.

Thus x = (−1, 2, 0, 0)T is a particular solution, and the general solution

is

x =






−1
2
0
0




+ s






−1
1
1
0




+ t






−2
0
0
1




 ,

where s and t are arbitrary parameters.

3.5.39. Applying the algorithm of Exercise 3.5.38, we have:
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




1 − 2
3 4

−1 0
0 − 1

∣∣∣∣∣∣∣∣

1 0
0 1

0 0
0 0




→






1 − 2
0 10

0 −2
0 − 1

∣∣∣∣∣∣∣∣

1 0
−3 1

1 0
0 0






→






1 − 2
0 10

0 0
0 0

∣∣∣∣∣∣∣∣

1 0
−3 1

4/10 2/10
−3/10 1/10




 .

Thus

A−1 =
1

10

[
4 2

−3 1

]
.

3.5.41. Let A = (a1, a2, . . . , am) be a list of spanning vectors. By

the definition of dimension, any basis of an n-dimensional vector space X
consists of n vectors. Thus, let B = (b1,b2, . . . ,bn) be the list of the

vectors of a basis and use this list as the list of independent vectors in the

Exchange Theorem. According to the theorem, the number of independent

vectors cannot exceed the number of spanning vectors, and so we must have

n ≤ m.

3.5.43. Assume that B = (b1,b2, . . . ,bm), with m > n, is a list of

independent vectors in X . For comparison use the vectors ai of any basis as

the spanning list, that is, let A = (a1,a2, . . . , an) in the Exchange Theorem.

Then the conclusion k ≤ n of the theorem becomes m ≤ n. This inequality

contradicts the assumption of m > n, and so the vectors of B cannot be

independent.

3.6.1. a. By Corollary 3.6.1,

S = A =

[
1 − 2
2 1

]
.

b. Compute S−1:
[
1 − 2
2 1

∣∣∣∣
1 0
0 1

]
→

[
1 − 2
2 1

∣∣∣∣
1 0
0 1

]
→

[
1 − 2
0 1

∣∣∣∣
1 0

−2/5 1/5

]
→

[
1 0
0 1

∣∣∣∣
1/5 2/5

−2/5 1/5

]
.
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Thus

S−1 =

[
1/5 2/5

−2/5 1/5

]
=
1

5

[
1 2

−2 1

]

and

xA = S−1x =
1

5

[
1 2

−2 1

] [
3
5

]
=
1

5

[
13
−1

]
.

3.6.3. a. The matrix A is the same as in Exercise 3. 6. 1, and so

A =

[
1 − 2
2 1

]
and A−1 =

1

5

[
1 2

−2 1

]
.

Now

B =

[
3 1
2 1

]

and

S = A−1B =
1

5

[
1 2

−2 1

] [
3 1
2 1

]
=
1

5

[
7 3

−4 − 1

]
.

b. By Theorem 3.6.1,

xA = SxB =
1

5

[
7 3

−4 − 1

] [
3

−2

]
=

[
3

−2

]
.

Thus x = 3b1−2b2 = 3a1−2a2. (It is only a coincidence that the coordinates

of this x are the same in both bases.)

c. From Part (a) above,

S−1 =

[
−1 − 3
4 7

]
.

Hence

xB = S−1xA =

[
−1 − 3
4 7

] [
2
4

]
=

[
−14
36

]
,

and so

x = 2a1 + 4a2 = −14b1 + 36b2.

53



3.6.5. From the given data

xA =




x2 − x3
x3 − x1
x1 + x2



 =




0x1 + 1x2 − 1x3

−1x1 + 0x2 + 1x3
1x1 + 1x2 + 0x3





=




0 1 − 1

−1 0 1
1 1 0








x1
x2
x3



 .

By Corollary 3.6.1, with A in place of B, we have xA = A−1x, and so

A−1 =




0 1 − 1

−1 0 1
1 1 0



 .

Hence

A =
1

2




−1 − 1 1
1 1 1

−1 1 1



 .

The new basis vectors a1, a2, a3 are the columns of this matrix (including the

factor 1/2).

3.6.7. a. From the statement of the problem,

A =




0 1 0
0 0 1
1 0 0



 .

By Corollary 3.6.1, with A in place of B, we have S = A.

b. From A we compute

A−1 =




0 0 1
1 0 0
0 1 0





and

xA = A−1x =




0 0 1
1 0 0
0 1 0








3
4
5



 =




5
3
4



 .
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c.

MA = A−1MA =




0 0 1
1 0 0
0 1 0








1 2 3
1 2 0
1 0 0








0 1 0
0 0 1
1 0 0





=




0 1 0
3 1 2
0 1 2



 .

3.6.9. a. We need to solve AS = B. As in Example 3.6.3, we reduce the

augmented matrix [A|B] :



1 0
2 4
3 − 1

∣∣∣∣∣∣

2 3
0 − 2
7 11



→




1 0
1 2
3 − 1

∣∣∣∣∣∣

2 3
0 − 1
7 11



→




1 0
0 2
0 − 1

∣∣∣∣∣∣

2 3
−2 − 4
1 2



→




1 0
0 1
0 0

∣∣∣∣∣∣

2 3
−1 − 2
1 2



 .

Thus

S =

[
2 3

−1 − 2

]
.

b. The transition matrix in the reverse direction is S−1, which happens to

equal S.

3.6.11. a. As in Example 3.6.4, in the space

P3 = {p = P : P (x) = p0 + p1x+ p2x
2 + p3x

3; p0, p1, p2, p3 ∈ R}

we choose the basis A to consist of the monomials, that is, ai = xi for i =
0, . . . , 3, and the basis B to consist of the first four Legendre polynomials, that

is, bi = Li for i = 0, . . . , 3. Then, according to Theorem 3.6.2, the columns

of the matrix S are given by the coordinates of the bi vectors relative to A.

These can be read off the definitions of the Legendre polynomials, to give (in
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ascending order of degrees)

S =






1 0 −1/2 0
0 1 0 −3/2
0 0 3/2 0
0 0 0 5/2




 .

b. The coordinate vector of any p relative to A is pA = (p0, p1, p2, p3)
T and its

coordinate vector relative to B is given by pB = S−1pA. Thus multiplication

of pA by

S−1 =






1 0 1/3 0
0 1 0 3/5
0 0 2/3 0
0 0 0 2/5






will give the coordinates of any p relative to B. For the polynomial P (x) =
1− 2x+ 3x2 − 4x3 we have






1 0 1/3 0
0 1 0 3/5
0 0 2/3 0
0 0 0 2/5











1
−2
3

−4




 =






2
−22/5
2

−8/5




 .

Thus P (x) = 2L0(x)− 22L1(x)/5 + 2L2(x)− 8L3(x)/5.

3.6.13. For any x ∈ Rn, let y = Mx be the corresponding vector of

R
m. We can rewrite this equation, by using x = AxA and y = ByB, as

AxA =MByB. Hence xA = A−1MByB and so MA,B = A−1MB.

3.6.15. The second one of the given matrices is the 2× 2 identity matrix

I . Now, for any invertible matrix S, SIS−1 = I, and so there is no matrix

other than I itself that is similar to the identity matrix.

3.6.17. a. B is similar to A if there exists an invertible matrix S such

that B = S−1AS, or, equivalently, SB = AS. Taking the transpose of both

sides, we get BTST = STAT and from this BT = STAT (ST )−1. Thus BT is

similar to AT with (ST )−1 in place of S if B is similar to A.

b. If B = S−1AS, then Bk = S−1ASS−1AS · · ·S−1AS = S−1AkS.

c. For any invertible matrices A and S, we have (S−1AS)−1 = SA−1S−1,
and so, if B = S−1AS, then B−1 exists and equals SA−1S−1, and B−1 is

similar to A−1 with S−1 in place of S.
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3.6.19. An n×n matrix B is similar to an n×n matrix A if there exists an

invertible n× n matrix S such that B = S−1AS, or, equivalently, SB = AS.

Furthermore, by the result of Exercise 3.4.9, Null(B) = Null(SB).

To see that nullity(A) = nullity(AS), consider the definitions of these

nullspaces: Null(AS) is the solution set of the equation ASx = 0, and

Null(A) that of Ay = 0. Since S is invertible, the equation y = Sx estab-

lishes a one-to-one linear correspondence between the elements of Null(AS)

and Null(A). In particular, any basis of Null(AS) is mapped by S onto a basis

of Null(A). Thus the dimensions of the two nullspaces must be equal.

Coupling the statements in the two paragraphs above, we find that nullity(A)
= nullity(B). Thus, from this equation and Corollary 3.5.1 we get the desired

result: rank(A) = rank(B).

4.1.1. a. We just prove Corollary 4.1.1, because Lemma 4.1.1 is a special

case of it with n = 2.

Assume first that Equation 4.4 holds for some n ≥ 2 and for all vectors

and all scalars in it. Then, choosing c1 = c2 = 1 and ci = 0 for all i > 2, we

get Equation 4.1. On the other hand, choosing c1 = c and ci = 0 for all i > 1,

we get Equation 4.2. Thus, if T preserves all linear combinations with n ≥ 2
terms, then it is linear.

Assume conversely that T is linear, that is, that Equations 4.1 and 4.2 hold

for all choices of x1, x2, and c. Then, for any n ≥ 2,

T

(
n∑

i=1

cixi

)

= T

(

c1x1 +
n∑

i=2

cixi

)

= T (c1x1) + T

(
n∑

i=2

cixi

)

= c1T (x1) + T

(
n∑

i=2

cixi

)

.

We can similarly reduce the remaining sum by repeated applications of Equa-

tions 4.1 and 4.2 until we get

T

(
n∑

i=1

cixi

)

= c1T (x1) + c2T (x2) + · · ·+ cnT (xn) =
n∑

i=1

ciT (xi).
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b. For any x we have T (0) = T (x − x) = T (x + (−1)x) = T (x) +
T ((−1)x) = T (x) + (−1)T (x) = T (x)− T (x) = 0.

4.1.3. a. It is certainly true that if a mapping T from R
n to Rm is linear,

then it preserves straight lines: If T is any such mapping, then, applying T to

x = x0 + ta with any x,x0,a ∈ Rn and scalar t, we must have y = T (x) =
T (x0 + ta) = T (x0) + tT (a). Thus the line given by x = x0 + ta is mapped

into the line given by y = y0 + tb with y0 = T (x0) and b = T (a).

b. The converse statement is not true in general, that is, not every trans-

formation that preserves straight lines is linear. For example a shift within

R
n, defined by y = S(x) = x + c with fixed nonzero c, preserves straight

lines but is nonlinear, since S(0) = 0+ c = c and not 0 as required for linear

transformations (see Exercise 4.1.1).

Let us try to find out what additional conditions will make such transfor-

mations linear. So, let us assume that T maps every x = x0 + ta to some

y = y0 + tb for every scalar t. Setting t = 0 yields y0 = T (x0), and so we

must have T (x0 + ta) = T (x0) + tb. For T to be linear we must also have

b = T (a). These two conditions are also sufficient, that is, if T maps every

x = x0 + ta to y = y0 + tb with y0 = T (x0) and b =T (a), then T is linear.

Indeed, in that case, T (x0+ ta) = T (x0) + tT (a) with t = 1 shows the addi-

tivity of T . Setting x0 = a = 0, from here we obtain T (0) = 2T (0), and so

T (0) = 0. Hence T (ta) = T (0+ ta) = T (0)+ tT (a) = 0+ tT (a) = tT (a),
which shows the homogeneity of T .

4.1.5. We can write

T (x) =




x1 − x2
2x1 + 3x2
3x1 + 2x2



 =




x1
2x1
3x1



+




−x2
3x2
2x2





= x1




1
2
3



+ x2




−1
3
2



 =




1 − 1
2 3
3 2




[
x1
x2

]
,

and so

[T ] =




1 − 1
2 3
3 2



 .

4.1.7. In the formula T (x) = (aTx)b the product on the right is under-
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stood as the scalar aTx multiplying the vector b, that is, multiplying each

component of b. Thus the ith component of T (x) is

[T (x)]i =

(
n∑

j=1

afxj

)

bi =
n∑

j=1

(biaj)xj ,

and so [T ]ij = biaj.

Alternatively, we may write T (x) as the matrix product b(aTx), in which

aTx is considered to be a 1×1 matrix. Thus, by the associativity of matrix

multiplication, T (x) = (baT )x. Hence

[T ] = baT =






b1
b2
...

bm




 (a1, a2, . . . , an) =






b1a1 b1a2 · · · b1an
b2a1 b2a2 · · · b2an

...

bma1 bma2 · · · bman




 .

This matrix is called the tensor product of b and a and also the outer product

of b and aT .

4.1.9. a1 = (1, 1, 1)T , a2 = (1,−1,−1)T and a3 = (1, 1, 0)T are the

columns of the basis-matrix

A =




1 1 1
1 − 1 1
1 −1 0



 .

Similarly, the vectors b1 = (1, 1)T , b2 = (1,−1)T and b3 = (1, 0)T may be

combined into the (nonbasis) matrix

B =

[
1 1 1
1 − 1 0

]

By the definition of the matrix [T ],

[T ]A = B

and so

[T ] = BA−1.
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Now A−1 can be obtained in the usual way:




1 1 1
1 − 1 1
1 −1 0

∣∣∣∣∣∣

1 0 0
0 1 0
0 0 1





→




1 1 1
0 − 2 0
0 −2 − 1

∣∣∣∣∣∣

1 0 0
−1 1 0
−1 0 1





→




1 1 1
0 − 2 0
0 0 − 1

∣∣∣∣∣∣

1 0 0
−1 1 0
0 − 1 1





→




1 1 1
0 1 0
0 0 1

∣∣∣∣∣∣

1 0 0
1/2 − 1/2 0
0 1 − 1





→




1 0 0
0 1 0
0 0 1

∣∣∣∣∣∣

1/2 − 1/2 1
1/2 − 1/2 0
0 1 − 1



 .

Thus,

A−1 =




1/2 − 1/2 1
1/2 − 1/2 0
0 1 − 1



 .

and

[T ] = BA−1 =

[
1 1 1
1 − 1 0

]


1/2 − 1/2 1
1/2 − 1/2 0
0 1 − 1



 =

[
1 0 0
0 0 1

]
.

Hence

T (x) =

[
1 0 0
0 0 1

]


x1
x2
x3



 =

[
x1
x3

]
.

4.1.11. A rotation by −45◦ takes the y = x line into the x-axis. Then
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stretch by the matrix S of Example 4.1.11 and rotate back by 45◦ :

[T ] =

(√
2

2

)2 [
1 − 1
1 1

] [
2 0
0 1

] [
1 1

−1 1

]
=
1

2

[
3 1
1 3

]
.

It is easy to check that this matrix doubles the vector (1, 1)T and leaves

the vector (1,−1)T unchanged, as it should.

4.1.13. The matrix [T ] given by

[T ] =
1

a2 + b2

[
b2 − a2 −2ab
−2ab a2 − b2

]

represents a reflection across the line ax + by = 0 (see Exercise 4.1.12).

If θ denotes the inclination of that line, with 0 ≤ θ ≤ π, then cos 2θ =
(b2 − a2)/(a2 + b2) and sin 2θ = (−2ab)/(a2 + b2). Thus we can rewrite [T ]
as

[T ] =

[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

Similarly, the matrix [S] given by

[S] =

[
cos 2φ sin 2φ
sin 2φ − cos 2φ

]

represents a reflection across a line cx + dy = 0 whose inclination is φ. The

matrix that represents the result of a reflection across the line ax + by = 0
followed by a reflection across the line cx+ dy = 0 is given by

[S][T ] =

[
cos 2φ sin 2φ
sin 2φ − cos 2φ

] [
cos 2θ sin 2θ
sin 2θ − cos 2θ

]

=

[
cos 2 (φ− θ) − sin 2 (φ− θ)
sin 2 (φ− θ) cos 2 (φ− θ)

]
.

The resultant matrix corresponds to a rotation about the origin through the

angle 2(φ − θ) , which is twice the angle between the lines, measured from

ax+ by = 0 to cx+ dy = 0.

4.1.15. A linear transformation T fromR2 toR2 will map a line p = p1+
tv1 onto the line T (p) = T (p1 + tv1) = T (p1) + tT (v1). Similarly T
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maps the line p = p2 + tv2 onto the line T (p) =T (p2) + tT (v2) Thus T
has the property that it maps perpendicular lines onto perpendicular lines if

and only if it maps orthogonal vectors onto orthogonal vectors. The zero

transformation satisfies these conditions trivially. Suppose that T �= 0, and

that the matrix of T relative to the standard basis for R2 is given by

[T ] =

[
a b
c d

]
.

Then T (e1) = (a, c)T , and T (e2) = (b, d)T . Since e1 and e2 are orthogo-

nal, their images are orthogonal; that is, (a, c)T · (b, d)T = 0, or, (1) ab +
cd = 0. Also, the vectors e1−e2 and e1+e2 are orthogonal, and thus so

are their images; that is, (a − b, c − d)T · (a + b, c + d)T = 0, or, (2)

a2 + c2 = b2 + d2. The assumption that T �= 0, together with Equations

(1) and (2) above, imply that (a, c)T �= 0 and (b, d)T �= 0. In addition, we

may write (a, c)T = k(cos θ, sin θ)T and (b, d)T = k(cosφ, sinφ)T , where

k =
√
a2 + c2 =

√
b2 + d2 > 0, and φ = θ �= π/2. There are two cases to

consider:

(1) φ = θ + π/2.

In this case, sinφ = cos θ and cosφ = − sin θ, and so

[T ] = k

[
cos θ − sin θ
sin θ cos θ

]
.

Hence T is a rotation through an angle θ, followed by a dilation or contraction

by a factor k.

(2) φ = θ − π/2.

In this case, sinφ = − cos θ and cosφ = sin θ, and so

[T ] = k

[
cos θ sin θ
sin θ − cos θ

]
.

Hence T is a reflection across the line through the origin with inclination θ/2,

followed by a dilation or contraction by a factor k.

Since a pure dilation or contraction is the special case of (1) when θ = 0,
and the zero transformation is obtained when k = 0, we can summarize the

possibilities as follows. A linear transformation T preserves orthogonality

if and only if it is a rotation, a reflection, a dilation or a contraction, or a
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composition of such transformations.

4.1.17. For the transformation T of Exercise 4.1.6, we have

T (x) =




x1 − x2
x2 − x3
x3 − x1



 =




1 − 1 0
0 1 − 1

−1 0 1








x1
x2
x3



 ,

and thus

[T ] =




1 − 1 0
0 1 − 1

−1 0 1



 .

We may apply Corollary 4.1.2 to determine the matrix TA,B. To do so, we

need to compute B−1, which we find to be

B−1 =
1

2




1 1 − 1

−1 1 1
1 − 1 1



 .

Then matrix multiplication gives

TA,B = B−1[T ]A

=
1

2




1 1 − 1

−1 1 1
1 − 1 1








1 − 1 0
0 1 − 1

−1 0 1








1 0 1
1 1 0
0 1 1





=




1 − 1 0
0 1 − 1

−1 0 1



 .

4.1.19. To determine the matrix TA,B that represents the integration map

T relative to the ordered bases A = (1, x, . . . , xn) and B = (1, x, . . . , xn+1) ,

we can proceed as in Example 4.1.13 in the text. Using the notation aj = xj−1

and bi = xi−1 , we have

T (aj) =
1

j
bj+1 for j = 1, 2, . . . , n.
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Thus

T (a1) = 0b1+1b2 + · · ·+ 0bn+1,

T (a2) = 0b1 + 0b2 + (1/2)b3 + · · ·+ 0bn+1,

T (a3) = 0b1 + 0b2 + 0b3 + (1/3)b4 + · · ·+ 0bn+1,

etc.

Therefore

TA,B =






0 0 0 · · · 0
1 0 0 · · · 0
0 1/2 0 · · · 0
0 0 1/3 · · · 0
...

...
... · · · ...

0 0 0 · · · 1/(n+ 1)






.

4.2.1. a. W must be closed under addition: Let x1,x2 ∈ W . Then

T (x1) + T (x2) is well-defined, but if x1 + x2 were not in the domain W of

T , then T (x1 + x2) would not be defined, and T (x1) + T (x2) = T (x1 + x2)
could not hold, in contradiction to our assumption.

b. W must be closed under multiplication by scalars: Let x1 ∈ W , and

let c be any scalar. Then cT (x1) is well-defined, but if cx1 were not in the

domain W of T , then T (cx1) would not be defined, and cT (x1) = T (cx1)
could not hold, in contradiction to our assumption.

4.2.3. a. T being one-to-one implies Ker(T ) = {0}: By definition, T is

one-to-one if T (x) = T (y) implies x = y. Choose y = 0. By the result of

Exercise 4.1.1b, T (0) = 0, and so T (x) = 0 implies T (x) = T (0), which, by

the one-to-oneness assumption, implies x = 0. Thus Ker(T ) = {x : T (x) =
0} = {0}.

b. Ker(T ) = {0} implies T is one-to-one: If Ker(T ) = {0}, then T (x−
y) = 0 implies x−y = 0. But, by the linearity of T , the equation T (x−y) =
0 is equivalent to T (x)−T (y) = 0, that is, to T (x) = T (y). Also, x−y = 0
is equivalent to x = y, and so, if Ker(T ) = {0}, then T (x) = T (y) implies

x = y. This is precisely the definition of T being one-to-one.
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4.2.5. If N = MT , then Row(N) = Col(M) and Col(N) = Row(M).
Thus we can use the same bases as in Example 4.2.5, just switched, and so

A =




1 1
0 1
1 2





is a basis matrix for Row(N), and

B =






1 0
0 1
1 0
1 1






is a basis matrix for Col (N).

If N : Row(N) → Col(N ) is the isomorphism given by y = Nx, then

this equation can be written, in terms of the coordinate vectors, as

ByB = NAxA,

that is, as






1 0
0 1
1 0
1 1






[
yB1
yB2

]
=






1 0 1
1 1 2
1 0 1
2 1 3









1 1
0 1
1 2




[
xA1
xA2

]

=






2 3
3 6
2 3
5 9






[
xA1
xA2

]
.

This equation can be reduced to





1 0
0 1
0 0
0 0






[
yB1
yB2

]
=






2 3
3 6
0 0
0 0






[
xA1
xA2

]
.
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Hence

NA,B =

[
2 3
3 6

]
.

4.2.7. a. Ker(T ) is not empty, since 0 is always a member of it.

b. It is closed under vector addition, since, if T (x) = 0 and T (y) = 0,

then, by the linearity of T, T (x+ y) = T (x) + T (y) = 0.

c. It is closed under multiplication by scalars: If T (x) = 0 and c is any

scalar, then, by the linearity of T , we have T (cx) = cT (x) = 0.

4.2.9. Let us first test the bi vectors for independence: Assume
∑n
i=1 cibi

= 0. Then, by the linearity of T , we may rewrite this as

n∑

i=1

ciT (ai) = T (
n∑

i=1

ciai) = 0.

Also, as for any linear transformation, T (0) = 0. Thus, because T is one-to-

one, we must have
∑n
i=1 ciai = 0. Since the ai vectors form a basis for U ,

they are independent, and so, ci = 0 for each i. Hence the bi vectors are also

independent, and consequently, by the result of Exercise 3.4.40, they form a

basis for V .

All that remains to show is that T is a mapping onto V . But this is

now easy: Let b ∈ V . Since the bi vectors form a basis for V , we can

write b as a linear combination of these, say, b =
∑n
i=1 cibi. But then

b =
∑n
i=1 ciT (ai) = T (

∑n
i=1 ciai), which shows that any b ∈ V is the

image of some a ∈ U under T .

4.2.11. Consider the ordered basis A = B = (1, x, . . . , xn) of Pn, that

is, take the vectors ai = xi−1, i = 1, 2, . . . , n + 1, for a basis. Then, as in

Example 4.1.13, Dai = (i − 1)xi−2 for i = 2, . . . , n + 1,.and Da1 = 0.
Hence, X ◦Dai = (i − 1)xi−1 = (i − 1)ai for i = 1, 2, . . . , n + 1, and,

similarly,D ◦Xai = ixi−1 = iai for all i.

Thus, Tai = (X ◦D−D ◦X)ai = −ai. Consequently, we find that

TA,B = −I, Range(T ) = Pn , Ker(T ) = {0}, and T is both one-to-one and

onto.
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4.3.1. As in Example 4.3.1, we have

R(30◦) = T (1,−2)R(30◦)T (−1, 2)

=
1

2




1 0 1
0 1 − 2
0 0 1









√
3 − 1 0

1
√
3 0

0 0 2








1 0 − 1
0 1 2
0 0 1





=




1
2

√
3 −1

2
−1
2

√
3

1
2

1
2

√
3
√
3− 5

2
0 0 1





=
1

2




1 0 1
0 1 − 2
0 0 1









√
3 −1 −

√
3− 2

1
√
3 −1 + 2

√
3

0 0 2





=
1

2





√
3 − 1 −

√
3

1
√
3 2

√
3− 5

0 0 2



 .

4.3.3.

L−1 =




3 0 1
0 4 − 2
0 0 1



 .

This matrix represents the inverse of the mapping of Exercise 4.3.2, that is, it

maps the unit square onto the given rectangle without any rotation. Indeed,

L−1(0, 0, 1)T = (1,−2, 1)T , L−1(1, 0, 1)T = (4,−2, 1)T , L−1(0, 1, 1)T =
(1, 2, 1)T , L−1(1, 1, 1)T = (4, 2, 1)T .

4.3.5. First we use the matrix

R =
1

pp12




pp2 −pp1 0
p1p3 p2p3 −p212
p1p12 p2p12 p3p12





resulting from Exercise 4.3.4, to rotate the vector p into the z-axis. Here

p = |p| and p12 =
√
p21 + p22. Next, we rotate by the angle θ about the z-axis,

using the matrix of Equation (4.107) and, finally, we rotate back by R−1. Thus
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Rθ =
1

p2p212




pp2 p1p3 p1p12
−pp1 p2p3 −p212
0 p2p12 p3p12








cos θ − sin θ 0
sin θ cos θ 0

0 0 1








pp2 −pp1 0
p1p3 p2p3 −p212
p1p12 p2p12 p3p12





4.3.7. From the solution of Exercise 4.3.5, with p1 = p2 = 1, p3 = 0
and p = p12 =

√
2, we obtain

Rθ =






2 cos θ + 2 − 2 cos θ + 2 2
√
2 sin θ 0

−2 cos θ + 2 2 cos θ + 2 − 2
√
2 sin θ 0

−2
√
2 sin θ 2

√
2 sin θ 4 cos θ 0

0 0 0 4




 .

4.3.9. Let u = 1√
5
(2,−1, 0)T and v = (0, 0, 1)T . Thus

PV (u,v) =

[
2/
√
5 − 1/

√
5 0

0 0 1

]

and

PV




0
3
4



 =

[
−3/

√
5

4

]
, PV




6
3
4



 =

[
9/
√
5

4

]
,

PV




0
3
0



 =

[
−3/

√
5

0

]
, PV




6
3
0



 =

[
9/
√
5

0

]
, PV




0
0
4



 =

[
0
4

]
,

PV




0
0
0



 =

[
0
0

]
, PV




6
0
4



 =

[
12/
√
5

4

]
,

PV




0
3/2
5



 =

[
−3
√
5/10
5

]
, PV




6
3/2
5



 =

[
21
√
5/10
5

]
.

Hence we get the following picture:
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5.1.1. To find a matrix A with independent columns with a given column

space, is just another way of saying that we want to find a basis for the given

space.

In the present case the x-axis is one-dimensional and is spanned by any

non-zero multiple of the vector i. Thus A = (1, 0, 0)T is a matrix with

independent columns whose column space is the x-axis.

5.1.3. Since the given column space is a plane, it is two-dimensional and

we just have to find two independent vectors whose components satisfy the

condition x = y. Clearly the columns of the matrix

A =




1 0
1 0
0 1





will do.

Alternatively, using the formalism of Chapter 2, we may write the equa-

tion x = y in the form 1x − 1y + 0z = 0, whose augmented matrix is the

echelon matrix B = [1,−1, 0| 0]. Columns 2 and 3 are free, and so we set y
and z equal to parameters s and t. Then we get the general solution as




x
y
z



 = s




1
1
0



 + t




0
0
1





from which we see that the columns of the matrix A above form a basis for

Null(B), that is for the x = y plane.
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5.1.5. In one direction the proof is easy: If x is a solution of Ax = p, then

left-multiplying both sides by AT shows that x is also a solution of ATAx =
ATp.

In the other direction, the assumption that p is in Col(A) must be used.

This condition means that there exists a vector pA such that p = ApA. Sub-

stituting this expression for p into ATAx = ATp, we get ATAx = ATApA.

By Lemma 5.1.3 the matrix ATA is invertible for any A with independent

columns, and so the last equation yields x = pA. Thus if x satisfies ATAx =
ATp, then it also satisfies p = ApA = Ax.

5.1.7. Since such a matrix has to map any vector (x, y, z)T to (x, y, 0)T ,

it must be the matrix

P =




1 0 0
0 1 0
0 0 0



 .

5.1.9. The solution of Exercise 5.1.3 gives a matrix A with independent

columns, whose column space is the plane x = y. Thus, by Theorem 5.1.1, a

matrix of the projection onto this plane is given by P = A(ATA)−1AT Now

ATA =

[
1 1 0
0 0 1

]


1 0
1 0
0 1



 =

[
2 0
0 1

]

and

(
ATA

)−1
=

[
1/2 0
0 1

]
.

Hence

P =




1 0
1 0
0 1




[
1/2 0
0 1

] [
1 1 0
0 0 1

]
=




1/2 1/2 0
1/2 1/2 0
0 0 1



 .

Using this P , we obtain the projections of the given vectors as

q1 =




1/2 1/2 0
1/2 1/2 0
0 0 1








1

−1
2



 =




0
0
2



 ,
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q2 =




1/2 1/2 0
1/2 1/2 0
0 0 1








1
2
3



 =




3/2
3/2
3



 ,

and

q3 =




1/2 1/2 0
1/2 1/2 0
0 0 1








2

−1
−2



 =




1/2
1/2
−2



 .

5.1.11.
(
A(ATA)−1AT

)2
= A(ATA)−1ATA(ATA)−1AT = A(ATA)−1AT ,

because the ATA in the middle can be cancelled with one of the (ATA)−1

factors. Also,

(A(ATA)−1AT )T = ATT ((ATA)−1)TAT = A((ATA)T )−1AT = A(ATA)−1AT .

5.1.13. This “proof” makes use of P−1, which does not exist for any

projection matrix other than I . Indeed, if P−1 exists, then multiplying both

sides of the idempotency relation P 2 = P by it results in P = I .

5.1.15. We have Null(A) = Left-null(AT ) = Col(AT )⊥, and so, by the

result of Exercise 5.1.12, with AT in place of A, the matrix of the projection

onto Null(A) is P = I − AT (AAT )−1A.

5.1.17. The normal system can be written as
[
Σx2i Σxi
Σxi m

] [
a
b

]
=

[
Σxiyi
Σyi

]
.

The second row corresponds to the equation

a
∑

xi +mb =
∑

yi.

Division by m gives y = ax+b with x = 1
m

∑
xi and y = 1

m

∑
yi. The latter

are the coordinates of the centroid of the given points.

5.1.19. The third equation of the normal system is

a
∑

xi + b
∑

yi +mc =
∑

zi.
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Division by m gives z = ax + by + c with x = 1
m

∑
xi, y = 1

m

∑
yi, and

z = 1
m

∑
zi. The latter are the coordinates of the centroid of the given points.

5.2.1. Normalizing the given vectors to a1 = 1
3
(2, 1, 2)T and a2 =

1√
2
(1, 0,−1)T , we can apply Equation 5.49, since these vectors are obvi-

ously orthogonal. Now a1 · x = 1
3
(2, 1, 2)T (2, 3, 4) = 15

3
and a2 · x =

1√
2
(1, 0,−1)T (2, 3, 4) = − 2√

2
. Thus the required projection is

xC =
15

9




2
1
2



+
−2
2




1
0

−1



 =
1

3




7
5
13



 .

5.2.3. a. The subspace U is spanned by the orthonormal vectors q1, q2,
and q3 given by the Equations 5.56. Thus we may use Equation 5.49 with

these vectors in place of the ai there. Now

q1 · x =
1√
6
(2, 0,−1, 1)T (1, 2, 3,−1) = −2√

6
,

q2 · x =
1√
6
(0, 2, 1, 1)T (1, 2, 3,−1) =

√
6,

and

q3 · x =
1√
102

(−3,−5, 2, 8)T (1, 2, 3,−1) = −15√
102

.

Thus, substituting into Equation 5.49, we get

xU =
−2
6






2
0

−1
1




+






0
2
1
1




−

15

102






−3
−5
2
8




 =

1

102






−23
279
106
−52




 .

b. The projection xU⊥ of x into U⊥ can be obtained simply by subtracting
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xU from x:

xU⊥ = x− xU =






1
2
3

−1




−

1

102






−23
279
106
−52




 =

25

102






5
−3
8

−2




 .

c. Since U⊥ is one-dimensional, the vector xU⊥ forms a basis for it.

d. To obtain an appropriate q4, we just have to normalize xU⊥ . Actually,

we can ignore the factor 25/102, and normalize without it. 52+32+82+22 =
102, and so q4 =

1√
102
(5,−3, 8,−2)T .

5. 2. 5. Apply first |Qx| = |x| to x = ei. Now

Qe1 = (q1 q2 · · · qn)






1
0
...

0




 = 1q1 + 0q2 + · · ·+ 0qn = q1

and similarly Qei = qi for all i. Thus |Qei| = |ei| = 1 implies |qi| = 1.

Next, apply |Qx| = |x| to x = ei + ej with i �= j:

|qi + qj |2 = |Qei +Qej|2 = |Q(ei + ej)|2 = |ei + ej |2
= |ei|2 + 2eTi ej + |ej|2 = 1 + 0 + 1 = 2.

On the other hand,

|qi + qj |2 = |qi|2 + 2qTi qj + |qj|2 = 2 + 2qTi qj.

Comparing this result with the previous equation, we see that qTi qj = 0 must

hold. Thus the columns of Q are orthonormal, which means that Q is an

orthogonal matrix.

5.2.7. The vectors q1 = 1
3
(−1, 2, 2)T and q2 = 1

3
(2,−1, 2)T are or-

thonormal. Thus, we need to find a vector x of length 1 such that qT1 x = 0
and qT2 x = 0 hold. With x = (x, y, z)T , the above equations reduce to

−x+ 2y + 2z = 0 and 2x− y + 2z = 0. Subtracting the first equation from

the second one, we get 3x− 3y = 0 or x = y. Letting x = y = 2, we obtain
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z = −1. Thus x = (2, 2,−1)T is a vector orthogonal to q1 and q2. Its length

is 3, and so q3 =
1
3
(2, 2,−1)T is a unit vector in the same direction. Thus

q1, q2, and q3 form an orthonormal basis for R3.

5.2.9. By Exercise 2.4.13a,
∑n
i=1 qiq

T
i = QQT and, by Theorem 5.2.2,

QT = Q−1. Consequently,
∑n
i=1 qiq

T
i = QQ−1 = I .

6.1.1.
∣∣∣∣∣∣

2 − 3 2
1 4 0
0 1 − 5

∣∣∣∣∣∣
= (−1)

∣∣∣∣∣∣

1 4 0
2 − 3 2
0 1 − 5

∣∣∣∣∣∣
=

(−1)

∣∣∣∣∣∣

1 4 0
0 − 11 2
0 1 − 5

∣∣∣∣∣∣
= (−1)2

∣∣∣∣∣∣

1 4 0
0 1 − 5
0 − 11 2

∣∣∣∣∣∣

= (−1)2
∣∣∣∣∣∣

1 4 0
0 1 − 5
0 0 −53

∣∣∣∣∣∣
= −53.

6.1.3.
∣∣∣∣∣∣∣∣

−1 1 2 3
2 0 − 5 0
0 0 0 − 1
3 − 3 1 4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

−1 1 2 3
0 2 − 1 6
0 0 0 − 1
0 0 7 13

∣∣∣∣∣∣∣∣

= (−1)

∣∣∣∣∣∣∣∣

−1 1 2 3
0 2 − 1 6
0 0 7 13
0 0 0 − 1

∣∣∣∣∣∣∣∣
= −14.

6.1.5. Axiom 2 does not apply, because it relates two distinct columns

of a matrix to each other, and when n = 1, there is only one column, since

A = [a11] .

Axiom 1 becomes det (sa1 + ta′1) = s det (a1) + tdet (a′1). Choosing

s = a11, t = 0, and a1= e1 = [1], we can thus write det(A) = det(a11) =
det(a11e1) = a11 det(e1), which, by Axiom 3, equals a11.

6.1.7. This result could be proved much the same way as Theorem 6.1.7

was in the text. Alternatively, it follows from Theorems 6.1.6 and 6.1.7, since

74



AT is upper triangular:




a11 0 0
a21 a22 0
a31 a32 a33





T

=




a11 a21 a31
0 a22 a32
0 0 a33



 .

6.1.9. If A invertible, then AA−1 = I . Hence, by Theorem 6.1.9 and Ax-

iom 3 of Definition 6.1.1, we have |A||A−1| = |AA−1| = |I| = 1. Dividing

by |A|, we get |A−1| = 1/|A|.
6.1.11. If AB is invertible, then det(AB) = det(A) det(B) �= 0, and so

neither det(A) nor det(B) is zero, which implies that A and B are invertible.

Conversely, if A and B are invertible, then neither det(A) nor det(B) is zero,

and so det(AB) = det(A) det(B) �= 0, which implies that AB is invertible.

6.1.13. By the definition of an orthogonal matrix, QTQ = I . Then

Theorems 6.1.9 and 6.1.6 give |QTQ| = |QT ||Q| = |Q|2. On the other hand,

by Axiom 3 of Definition 6.1.1, we have |QTQ| = |I| = 1, and so |Q|2 = 1,

from which we get the desired result: det(Q) = ±1.

6.1.15. The formula for the Vandermonde determinant of order n > 3
can be expressed as

∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · an−11

1 a2 a22 · · · an−12

1 a3 a23 · · · an−13
...

...
...

...
...

1 an a2n · · · an−1n

∣∣∣∣∣∣∣∣∣∣

=
∏

1≤i<j≤n
(aj − ai).

The notation on the right-hand side represents the product of all factors of the

form aj − ai, where i and j are subscripts from 1 to n, with i < j.

To prove the formula, we will show how to express it for the case of an

order n determinant in terms of the corresponding one of order n−1. Starting

with the Vandermonde determinant of order n, subtracting the first row from
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each of the succeeding rows results in the equivalent determinant

∣∣∣∣∣∣∣∣∣∣

1 a1 a21 · · · an−11

0 a2 − a1 a22 − a21 · · · an−12 − an−11

0 a3 − a1 a23 − a21 · · · an−13 − an−11
...

...
...

...
...

0 an − a1 a2n − a21 · · · an−1n − an−11

∣∣∣∣∣∣∣∣∣∣

,

which is equal to

∣∣∣∣∣∣∣∣

a2 − a1 a22 − a21 · · · an−12 − an−11

a3 − a1 a23 − a21 · · · an−13 − an−11
...

...
...

...

an − a1 a2n − a21 · · · an−1n − an−11

∣∣∣∣∣∣∣∣
.

Each of the terms in the first column is a factor of all of the terms in its row

and thus may be factored out of the determinant, resulting in the equivalent

expression

n∏

j=2

(aj − a1)

∣∣∣∣∣∣∣∣

1 a2+a1 a22+a2a1 + a21 · · · an−12 + · · ·+ an−11

1 a3+a1 a23+a3a1 + a21 · · · an−13 + · · ·+ an−11
...

...
...

...
...

1 an+a1 a2n+ana1 + a21 · · · an−1n + · · ·+ an−11

∣∣∣∣∣∣∣∣
.

The last determinant can be simplified by multiplying the first column by

a1 and subtracting the product from the second column, then multiplying the

first column by a21 and subtracting the product from the third column, etc.,

resulting in the equivalent expression

n∏

j=2

(aj − a1)

∣∣∣∣∣∣∣∣

1 a2 a22+a2a1 · · · an−22 + · · ·+ an−31 a2
1 a3 a23+a3a1 · · · an−23 + · · ·+ an−31 a3
...

...
...

...
...

1 an a2n+ana1 · · · an−2n + · · ·+ an−31 an

∣∣∣∣∣∣∣∣
.

The last expression can be further simplified by multiplying the second

column by a1 and subtracting the product from the third column, then multi-

plying the second column by a21 and subtracting the product from the fourth
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column, etc., resulting in the equivalent expression

n∏

j=2

(aj − a1)

∣∣∣∣∣∣∣∣

1 a2 a22 · · · an−22 + · · ·+ an−41 a22
1 a3 a23 · · · an−23 + · · ·+ an−41 a23
...

...
...

...
...

1 an a2n · · · an−2n + · · ·+ an−41 a2n

∣∣∣∣∣∣∣∣
.

Continuing to simplify in a similar fashion leads to the following expres-

sion, which is equal to the original Vandermonde determinant of order n :

n∏

j=2

(aj − a1)

∣∣∣∣∣∣∣∣

1 a2 a22 · · · an−22

1 a3 a23 · · · an−23
...

...
...

...
...

1 an a2n · · · an−2n

∣∣∣∣∣∣∣∣
.

Note that the determinant in this expression is another Vandermonde de-

terminant, but of order n− 1. Evaluating it in the same way indicated above,

results in the expression

n∏

j=2

(aj − a1)
n∏

k=3

(ak − a2)

∣∣∣∣∣∣∣∣

1 a3 a23 · · · an−33

1 a4 a24 · · · an−34
...

...
...

...
...

1 an a2n · · · an−3n

∣∣∣∣∣∣∣∣
,

and then similarly evaluating the resulting Vandermonde determinants of lower

order leads eventually to the desired formula. (A more rigorous proof would

employ mathematical induction. The argument above provides the crucial

inductive step in such a proof.)

6.2.1. Expanding along the first column, we get

∣∣∣∣∣∣

2 − 3 2
1 4 0
0 1 − 5

∣∣∣∣∣∣
= 2

∣∣∣∣
4 0
1 − 5

∣∣∣∣− (−3)
∣∣∣∣
1 0
0 − 5

∣∣∣∣+ 2

∣∣∣∣
1 4
0 1

∣∣∣∣

= 2 (−20 + 0) + 3 (−5 + 0) + 2 (1− 0) = −53.

6.2.3. Expansion along the third row, and then along the second row,
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gives:

∣∣∣∣∣∣∣∣

−1 1 2 3
2 0 − 5 0
0 0 0 − 1
3 − 3 1 4

∣∣∣∣∣∣∣∣
= −(−1)

∣∣∣∣∣∣

−1 1 2
2 0 − 5
3 − 3 1

∣∣∣∣∣∣
=

−2
∣∣∣∣

1 2
−3 1

∣∣∣∣− (−5)
∣∣∣∣
−1 1
3 − 3

∣∣∣∣ = −2 (1 + 6) + 5 (3− 3) = −14.

6.2.5. Expanding the determinant in the numerator of Cramer’s rule

along the column b, we obtain

xi =
1

|A|
∑

j

bjAji.

Substituting this expression for xi into Ax results in

(Ax)k =
∑

i

akixi =
1

|A|
∑

i

∑

j

bjakiAji =
1

|A|
∑

j

(bj
∑

i

akiAji).

By Lemma 6.2.1, the inside sum on the right is 0 if j �= k, and, by Theorem

6.2.1, it is |A| if j = k. Thus the sum over j has only one nonzero term,

which equals bk|A|. Therefore (Ax)k = bk and Ax = b, as we had to show.

6.2.7. Using Cramer’s Rule and the expansion of Theorem 6.1.3, we get

x1 =

∣∣∣∣∣∣

1 1 2
2 0 4
3 3 1

∣∣∣∣∣∣
÷

∣∣∣∣∣∣

1 1 2
2 0 4
0 3 1

∣∣∣∣∣∣

=
(0 + 12 + 12)− (12 + 2 + 0)

(0 + 12 + 0)− (12 + 2 + 0)
=

10

−2 = −5,

and similarly, x2 = 0, x3 = 3.

6.2.9. A =

[
1 3
2 1

]
implies A11 = 1, A12 = −2, A21 = −3, A22 = 1,
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and so adj(A) =

[
1 − 3

−2 1

]
. Hence

A−1 =
1

|A| adj(A) =
1

−5

[
1 − 3

−2 1

]
.

6.2.11. From Theorem 6.2.3, adj(A)= |A|A−1. Apply the result det(cA)
= cn det(A) of Exercise 6.1.6 here, with c = |A|, and A−1 in place of A, to

get det(adj(A)) = det(|A|A−1) = |A|n det(A−1). Now, by Corollary 6.1.2,

det(A−1) = 1/|A|, and so

det(adj(A)) = (det(A))n−1.

6.2.13. The area A of the triangle with vertices (a1, a2), (b1, b2), (c1, c2)
is half that of the parallelogram spanned by the vectors b− a and c− a,

where a = (a1, a2), b = (b1, b2), and c = (c1, c2). Thus, by Theorem 6.2.4,

±A =
1

2
|b− a, c− a| = 1

2

∣∣∣∣
b1 − a1 c1 − a1
b2 − a2 c2 − a2

∣∣∣∣ =
1

2

∣∣∣∣
b1 − a1 b2 − a2
c1 − a1 c2 − a2

∣∣∣∣

=
1

2

∣∣∣∣∣∣

0 0 1
b1 − a1 b2 − a2 0
c1 − a1 c2 − a2 0

∣∣∣∣∣∣
=
1

2

∣∣∣∣∣∣

a1 a2 1
b1 − a1 b2 − a2 0
c1 − a1 c2 − a2 0

∣∣∣∣∣∣

=
1

2

∣∣∣∣∣∣

a1 a2 1
b1 b2 1
c1 c2 1

∣∣∣∣∣∣
.

6.2.15. If we expand the determinant along the first row, then we obtain

a linear combination of the elements of that row, which can be rearranged

into the form y = ax2 + bx + c, since the coefficient of y is a nonzero deter-

minant (see Exercise 6.1.14). Note that, by the result in Exercise 6.2.13, the

coefficient of x2 is also a nonzero determinant if the points (x1, y1), (x2, y2),
and (x3, y3) are noncollinear. If they are collinear, then we get an equation of

a straight line, which may be considered to be a degenerate parabola. If we

substitute the coordinates of any of the given points for x, y, then two rows

become equal, which makes the determinant vanish. Thus the given points lie

on the parabola.

6.2.17. Applying the formula in Exercise 6.2.16, the equation of the circle
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can be expressed in the form

∣∣∣∣∣∣∣∣

x2 + y2 x y 1
0 0 0 1
5 2 −1 1
16 4 0 1

∣∣∣∣∣∣∣∣
= 0.

Expanding along the second row yields
∣∣∣∣∣∣

x2 + y2 x y
5 2 −1
16 4 0

∣∣∣∣∣∣
= 0.

Then expanding along the top row results in
∣∣∣∣
2 − 1
4 0

∣∣∣∣ (x
2 + y2)−

∣∣∣∣
5 − 1
16 0

∣∣∣∣ x+
∣∣∣∣

5 2
16 4

∣∣∣∣ y = 0.

From here, evaluating the coefficient determinants, we obtain

4(x2 + y2)− 16x− 12y = 0, or, x2 + y2 − 4x− 3y = 0.

Completing the square of the terms in x and y results in

(x− 2)2 + (y − 3/2)2 = 25/4,

and so the circle has center (2, 3/2) and radius 5/2.

6.2.19. If we expand the determinant along the first row, then we obtain

a linear combination of the elements of that row. That combination is a linear

equation in x, y, and z, which is the equation of a plane. If we substitute the

coordinates of any of the given points for x, y, and z, then two rows become

equal, which makes the determinant vanish. Thus the given points lie on the

plane.

6.3.1. If u = (1,−1, 0)T and v = (1, 2, 0)T , then

u× v =

∣∣∣∣∣∣

i j k

1 − 1 0
1 2 0

∣∣∣∣∣∣
=

∣∣∣∣
1 − 1
1 2

∣∣∣∣=3k.
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The triangle spanned by u and v has an altitude, parallel to the x-axis, of

length 1 and a corresponding base of length 3. Its area is 3/2, and thus the

area of the parallelogram spanned by the two vectors is 3, which is equal to

|u× v| = |3k|.
6.3.3. First, we will verify Statement 11 of Theorem 6.3.1:

If u = (1,−1, 0)T , v = (1, 2, 0)T , and w = (1, 0, 3)T , then

v ×w =

∣∣∣∣∣∣

i j k

1 2 0
1 0 3

∣∣∣∣∣∣
= 6i− 3j− 2k

w× u =

∣∣∣∣∣∣

i j k

1 0 3
1 − 1 0

∣∣∣∣∣∣
= 3i+ 3j− k

and, as shown in Exercise 6.3.1,

u× v = 3k.

Thus

u · (v ×w) = (1,−1, 0)T · (6,−3,−2)T = 6 + 3 + 0 = 9,

v · (w× u) = (1, 2, 0)T · (3, 3,−1)T = 3 + 6 + 0 = 9,

w · (u× v) = (1, 0, 3)T · (0, 0, 3)T = 0 + 0 + 9 = 9,

and

det(u,v,w) =

∣∣∣∣∣∣

1 1 1
−1 2 0
0 0 3

∣∣∣∣∣∣
= 9.

Next we will verify Statement 12:

(u× v)×w = (0, 0, 3)T×(1, 0, 3)T =

∣∣∣∣∣∣

i j k

0 0 3
1 0 3

∣∣∣∣∣∣
= 3j,
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and

(u ·w)v− (v ·w)u
= [(1,−1, 0)T · (1, 0, 3)T ](1, 2, 0)T − [(1, 2, 0)T · (1, 0, 3)](1,−1, 0)T
= (1, 2, 0)T − (1,−1, 0)T = (0, 3, 0)T = 3j.

Finally, we will verify Statement 13:

u× (v ×w) = (1,−1, 0)T×(6,−3,−2)T =

∣∣∣∣∣∣

i j k

1 − 1 0
6 −3 − 2

∣∣∣∣∣∣

= 2i+ 2j+ 3k = (2, 2, 3)T ,

and

(u ·w)v − (u · v)w
= [(1,−1, 0)T · (1, 0, 3)T ](1, 2, 0)T − [(1,−1, 0)T · (1, 2, 0)T ](1, 0, 3)T
= (1, 2, 0)T + (1, 0, 3)T = (2, 2, 3)T .

6.3.5. Geometrically, in the case of nonzero vectors, v ×w is a vector

whose magnitude is equal to the area of the parallelogram spanned by the

vectors v andw and whose direction is orthogonal to the plane of that parallel-

ogram. Thus, if n = (v ×w)/|v ×w| denotes the unit vector in the direction

of v ×w, then |u · n| is equal to the length of the orthogonal projection of u

onto the direction of v ×w, which is the height of the parallelepiped spanned

by the vectors u, v, and w. Therefore, the volume V of that parallelepiped is

given by

V = height × area of base = |u· n| |v×w|

=

∣∣∣∣u·
v ×w
|v ×w|

∣∣∣∣ |v ×w| = |u · (v ×w)|.

If either v or w is 0, then the parallelepiped spanned by the three vectors

degenerates into one of zero volume, and the scalar triple product is also zero

in this case.

6.3.7. If we expand the given expression by applying Statement 11 in

Theorem 6.3.1, with u = a× b, v = c, andw = d, then we obtain

(a× b) · (c× d) = c · (d× (a× b))
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Evaluating the triple cross product in the expression on the right side of the

above equation with the aid of Statement 12 in Theorem 6.3.1 results in

(a× b) · (c× d)= c · [(d · b)a− (d · a)b]
= (d · b)(c · a)− (d · a)(c · b)
= (a · c)(b · d)− (a · d)(b · c).

6.3.9. a. 1. T is additive: By Part 6 of Theorem 6.3.1, we have T (x+ y) =
a× (x+ y) = a× x + a× y =T (x)+T (y).

2. T is homogeneous: By Part 1 of Theorem 6.3.1 we have T (cx) =
a×(cx) = c(a× x) = cT (x).

b. The columns of [T ] are given by the action of T on the standard vectors.

Thus

t1 = T (i) = a× i = (a1i+a2j+a3k)× i = −a2k+a3j = (0, a3,−a2)T ,

t2 = T (j) = a× j = (a1i+ a2j+ a3k)× j = a1k− a3i = (−a3, 0, a1)T ,

t3 = T (k) = a× k = (a1i+a2j+a3k)×k = −a1j+a2i = (a2,−a1, 0)T .

Hence

[T ] =




0 −a3 a2
a3 0 −a1

−a2 a1 0



 .

c. Solve [T ]x = 0 by row reduction, assuming without loss of generality

a3 �= 0:



0 −a3 a2
a3 0 −a1

−a2 a1 0

∣∣∣∣∣∣

0
0
0



 →




a3 0 −a1
0 −a3 a2
−a2 a1 0

∣∣∣∣∣∣

0
0
0



→




a3 0 −a1
0 −a3 a2
0 a1 −a1a2/a3

∣∣∣∣∣∣

0
0
0



 →




a3 0 −a1
0 −a3 a2
0 0 0

∣∣∣∣∣∣

0
0
0



 .

Now x3 is free, and so, set x3 = t. Then −a3x2 + a2t = 0 gives x2 =
a2t/a3 and a3x2 − a1t = 0 gives x1 = a1t/a3. If we set t = ca3, then we

obtain from the above x = ca. Thus the nullspace of the matrix [T ] is the line

of a. We could have found this result alternatively by observing that [T ]x = 0
is equivalent to T (x) = a× x = 0, and the cross product is zero if and only

if its factors are parallel.
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d. Since, for any matrix, rank + nullity = number of columns, in the

present case we have rank([T ]) = 3 − 1 = 2. Alternatively, the rank is

the number of non-zero rows in the echelon form, which is clearly 2 in the

matrix above, because of the assumption a3 �= 0. Since a was assumed to

be nonzero, at least one of its components has to be nonzero, and we end up

with two nonzero rows in the echelon form, regardless of which component

is nonzero.

7.1.1. The characteristic equation is

|A− λI| =
∣∣∣∣
2− λ 3
3 2− λ

∣∣∣∣ = 0,

or equivalently, λ2 − 4λ − 5 = (λ + 1)(λ − 5) = 0. The eigenvalues are

λ1 = −1 and λ2 = 5.

To find the eigenvectors corresponding to λ1 = −1, we need to solve the

equation

(A− λ1I)s =

[
3 3
3 3

] [
s1
s2

]
=

[
0
0

]
.

The solutions of this equation are of the form s = s(−1, 1)T . Thus the

eigenvectors belonging to the eigenvalue λ1 = −1 form a one-dimensional

subspace of R2 with basis vector s1 = (−1, 1)T
To find the eigenvectors corresponding to λ2 = 5, we need to solve the

equation

(A− λ2I)s =

[
−3 3
3 − 3

] [
s1
s2

]
=

[
0
0

]
.

The solutions of this equation are of the form s = s(1, 1)T . Thus the eigen-

vectors belonging to the eigenvalue λ2 = 5 form a one-dimensional subspace

of R2 with basis vector s2 = (1, 1)T .

7.1.3. The characteristic equation is

|A− λI| =
∣∣∣∣
0− λ 0
0 0− λ

∣∣∣∣ = 0,
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or equivalently, λ2 = 0. The only solution is λ = 0. Thus 0 is the only

eigenvalue and it has multiplicity 2. To find the corresponding eigenvectors,

we need to solve (A − λI)s = 0. Clearly, every s ∈ R2 is a solution, that

is, an eigenvector. In other words, λ = 0 is the sole eigenvalue with the

corresponding eigenspace being the whole of R2.

7.1.5. The characteristic equation is

|A− λI| =

∣∣∣∣∣∣

2− λ 0 1
0 2− λ 0
1 0 2− λ

∣∣∣∣∣∣
= 0,

or equivalently, (2−λ)3−(2−λ) = 0. Factoring on the left, we may write the

equation in the form (2−λ)[(2−λ)2− 1] = 0, or (2−λ)(1−λ)(3−λ) = 0.
Thus the eigenvalues are λ1 = 1, λ2 = 2 and λ3 = 3.

To find the eigenvectors corresponding to λ1 = 1, we need to solve the

equation

(A− λ1I)s =




1 0 1
0 1 0
1 0 1








s1
s2
s3



 =




0
0
0



 .

The solutions of this equation are of the form s = s(−1, 0, 1)T . Thus

the eigenvectors belonging to the eigenvalue λ1 = 1 form a one-dimensional

subspace of R3 with basis vector s1 = (−1, 0, 1)T
Next, to find the eigenvectors corresponding to λ2 = 2, we need to solve

the equation

(A− λ2I)s =




0 0 1
0 0 0
1 0 0








s1
s2
s3



 =




0
0
0



 .

The solutions of this equation are of the form s = s(0, 1, 0)T . Thus the

eigenvectors belonging to the eigenvalue λ2 = 2 form a one-dimensional

subspace of R3 with basis vector s2 = (0, 1, 0)T .

Finally, to find the eigenvectors corresponding to λ3 = 3, we need to solve
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the equation

(A− λ3I)s =




−1 0 1
0 −1 0
1 0 −1








s1
s2
s3



 =




0
0
0



 .

The solutions of this equation are of the form s = s(1, 0, 1)T . Thus the

eigenvectors belonging to the eigenvalue λ3 = 3 form a one-dimensional

subspace of R3 with basis vector s3 = (1, 0, 1)T .

7.1.7. The characteristic equation is

|A− λI| =

∣∣∣∣∣∣

1− λ 0 −1
−2 3− λ −1
−6 6 −λ

∣∣∣∣∣∣
= 0.

We can reduce this equation to−(1−λ)(3−λ)λ+12−6(3−λ)+6(1−λ) = 0;
or, equivalently, to λ(1 − λ)(3 − λ) = 0. Thus the eigenvalues are λ1 =
0, λ2 = 1 and λ3 = 3.

To find the eigenvectors corresponding to λ1 = 0, we need to solve the

equation

(A− λ1I)s =




1 0 − 1

−2 3 −1
−6 6 0








s1
s2
s3



 =




0
0
0



 .

The solutions of this equation are of the form s = s(1, 1, 1)T . Thus the

eigenvectors belonging to the eigenvalue λ1 = 0 form a one-dimensional

subspace of R3 with basis vector s1 = (1, 1, 1)T

Next, to find the eigenvectors corresponding to λ2 = 1, we need to solve

the equation

(A− λ2I)s =




0 0 − 1

−2 2 −1
−6 6 −1








s1
s2
s3



 =




0
0
0



 .

The solutions of this equation are of the form s = s(1, 1, 0)T . Thus the

eigenvectors belonging to the eigenvalue λ2 = 1 form a one-dimensional

subspace of R3 with basis vector s2 = (1, 1, 0)T
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Finally, to find the eigenvectors corresponding to λ3 = 3, we need to solve

the equation

(A− λ3I)s =




−2 0 − 1
−2 0 −1
−6 6 −3








s1
s2
s3



 =




0
0
0



 .

The solutions of this equation are of the form s = s(−1, 0, 2)T . Thus

the eigenvectors belonging to the eigenvalue λ3 = 3 form a one-dimensional

subspace of R3 with basis vector s3 = (−1, 0, 2)T .
7.1.9. If the scalar c �= 0, then we have

|cA− λI| =
∣∣∣∣c(A−

λ

c
I)

∣∣∣∣ = cn
∣∣∣∣A−

λ

c
I

∣∣∣∣ .

It follows from this relation that λ is an eigenvalue of the matrix cA with

c �= 0, if and only if λ/c is an eigenvalue of A, and that the eigenvectors

corresponding to those related eigenvalues will be the same. On the other

hand, if c = 0, then cA = O, and its only eigenvalue is λ = 0with eigenspace

R
n. (See Exercise 7.1.3).

7.1.11. First suppose that the matrix A is singular. Then As = 0 has a

nontrivial solution s, and As = 0s for all such solutions. This equation shows

that 0 is an eigenvalue of A, with all solutions s of As = 0 as its eigenvectors.

In the other direction, suppose that 0 is an eigenvalue of A. Then for all

corresponding nonzero eigenvectors s we have As = 0s = 0. By Part 6 of

Theorem 2.5.5, it follows that A is singular.

7.1.13. Suppose that s is an eigenvector of a nonsingular matrix A,
belonging to the eigenvalue λ. Then As = λs. Since A is nonsingular, it is

invertible, and λ �= 0 (see Exercise 7.1.11). Therefore, A−1(As) = A−1(λs),
and thus s = λA−1s, or A−1s = 1

λ
s. Hence s is an eigenvector of A−1

belonging to the eigenvalue λ−1.

7.1.15. Apply the matrix A to the vector u. That gives Au = uuTu = u,

because uTu = 1. This shows that u is an eigenvector of A belonging to the

eigenvalue 1. If v is any vector orthogonal to u, then Av = uuTv = 0,

because uTv = 0. Thus any such vector v is an eigenvector of A belonging

to the eigenvalue 0. So the eigenvalues are 1 and (for n > 1 only) 0. The
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corresponding eigenspaces are the line of u and its orthogonal complement,

respectively.

Now, any vector x ∈ Rn can be decomposed uniquely as the sum of its

projection cu onto u and a vector v orthogonal to u. ThusAx = A(cu+ v) =
cu. This equation shows that A represents the projection onto the line of u.

7.1.17. According to the definition, sT is a left eigenvector of a matrix

A belonging to the eigenvalue λ if and only if the equation sTA = λsT holds.

This last equation is true if and only if (sTA)T = (λsT )T , or, AT s = λs, and

thus if and only if s is an eigenvector of AT belonging to the eigenvalue λ.

7.1.19. Suppose that s is an eigenvector of a matrix A, belonging to two

eigenvalues λ1 and λ2 �= λ1. Then As = λ1s = λ2s. Hence (λ1−λ2) s = 0
and so, since (λ1−λ2) �= 0, we must have s = 0.

7.2.1. By Exercise 7.1.11, if A is invertible, then all of its eigenvalues are

different from zero, even if it is not diagonalizable.

Conversely, if A is diagonalizable, say as A = SΛS−1, and λi �= 0 for all

i, then

Λ−1 =






λ−11 0 · · · 0
0 λ−12 · · · 0
...

...
...

...

0 0 · · · λ−1n






exists, and X = SΛ−1S−1 is A−1. Indeed, XA = SΛ−1S−1SΛS−1 =
SΛ−1ΛS−1 = SS−1 = I , and similarly AX = I as well.

Furthermore, for a diagonalizable and invertible A and any positive integer
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k,

Λ−k =
(
Λ−1

)k
=






(
λ−11

)k
0 · · · 0

0
(
λ−12

)k · · · 0
...

...
...

...

0 0 · · ·
(
λ−1n

)k






=






λ−k1 0 · · · 0
0 λ−k2 · · · 0
...

...
...

...

0 0 · · · λ−kn






and

A−k =
(
A−1

)k
=
(
SΛ−1S−1

)k
= SΛ−kS−1.

7.2.3. By Theorem 7.3.2, any symmetric matrix can be diagonalized with

an orthogonal matrix S, so that A = SΛS−1. Furthermore, if all eigenvalues

of A are nonnegative, then writing

Λ1/2 =






λ
1/2
1 0 · · · 0

0 λ
1/2
2 · · · 0

...
...

...
...

0 0 · · · λ1/2n





,

we can compute
√
A as

√
A = SΛ1/2S−1, because then

(√
A
)2

=
(
SΛ1/2S−1

)2
= S

(
Λ1/2

)2
S−1 = SΛS−1 = A.

Furthermore, the orthogonality of S implies ST = S−1, and so (
√
A)T =

(S−1)T (Λ1/2)TST = SΛ1/2S−1 =
√
A, that is,

√
A is also symmetric.

7.2.5. A can be diagonalized with an orthogonal matrix as A = SΛS−1.
The eigenvalues and eigenvectors of A were computed in Exercise 7.1.5. The

former make up the diagonal elements ofΛ, and the latter, after normalization,

the columns of S. Thus A100 = SΛ100S−1 can be evaluated as
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A100 =
1

2




−1 0 1
0

√
2 0

1 0 1








1100 0 0
0 2100 0
0 0 3100








−1 0 1
0

√
2 0

1 0 1





=
1

2




3100 + 1 0 3100 − 1

0 2101 0
3100 − 1 0 3100 + 1



 .

7.2.7. If B = SAS−1, then

|B − λI| = |S−1AS − λI| = |S−1AS − S−1λIS|
= |S−1(A− λI)S| = |S−1||A− λI||S| = |A− λI|,

since |S−1| = 1/|S|.
7.2.9. If S−1AS = Λ, then A = SΛS−1. The orthogonality of S implies

ST = S−1, and so

AT = (SΛS−1)T = (S−1)TΛTST = SΛS−1 = A.

7.2.11. In matrix form, the given equations become

x(0) =

[
1000
1000

]

and

x(k + 1) = Ax(k),

where

A =

[
0.8 0.4

−0.8 2.0

]
,

and so

x(n) = Anx(0)

for any positive integer n. We diagonalize A to compute An here.

The characteristic equation for this A is

|A− λI| =
∣∣∣∣
0.8− λ 0.4
−0.8 2.0− λ

∣∣∣∣ = (0.8− λ)(2− λ) + 0.32 = 0.
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The solutions are λ1 = 1.6 and λ2 = 1.2. The corresponding eigenvectors

can be found by substituting these eigenvalues into (A− λI)s = 0:

(A− λ1I)s1 =

[
0.8− 1.6 0.4
−0.8 2.0− 1.6

]
s1 =

[
−0.8 0.4
−0.8 0.4

]
s1 = 0.

A solution is s1 = (1, 2)T .

For the other eigenvalue we have the equation

(A − λ2I)s2 =

[
0.8− 1.2 0.4
−0.8 2.0− 1.2

]
s2 =

[
−0.4 0.4
−0.8 0.8

]
s2 = 0.

A solution is s2 = (1, 1)T . Thus

S =

[
1 1
2 1

]
,

Λ =

[
1.6 0
0 1.2

]

and

S−1 =

[
−1 1
2 − 1

]
.

According to Corollary 3.6.1, the coordinate vectors of each x(n), for

n = 0, 1, . . ., relative to the basis S, are given by

xS(0) = S−1x(0) =

[
−1 1
2 − 1

] [
1000
1000

]
=

[
0

1000

]

and

xS(n) = S−1x(n) = S−1Anx(0) = S−1AnSxS(0) = ΛnxS(0)

=

[
1.6n 0
0 1.2n

] [
0

1000

]
= 1.2n

[
0

1000

]
.

Hence the solution in the standard basis is given by

x(n) = SxS(n) = 1.2n
[
1 1
2 1

] [
0

1000

]
= 1.2n

[
1000
1000

]
.
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As the last equation shows, the proportion of predators to preys does not

change over time if they were evenly split in the beginning, and the numbers

of both increase by 20% each year, approaching infinity.

7.3.1. The matrix of the given quadratic form is

A =
1

30

[
13 − 4
−4 7

]
.

The eigenvalues and corresponding unit eigenvectors of this matrix are λ1 =
1/6, λ2 = 1/2, s1 =

1√
5
(1, 2)T , s2 =

1√
5
(−2, 1)T Hence, the given equation

represents the ellipse below. It is centered at the origin, its major axis has

half-length 1/
√
λ1 =

√
6 and points in the direction of the eigenvector s1,

and its minor axis has half-length 1/
√
λ2 =

√
2 and points in the direction of

the eigenvector s2.

-2

-1

1

2

-1 1

7.3.3. The matrix of the given quadratic form is

A =
1

12

[
2 2
2 − 1

]
.

The eigenvalues and corresponding unit eigenvectors of this matrix are

λ1 = 1/4, λ2 = −1/6, s1 = 1√
5
(2, 1)T , s2 =

1√
5
(−1, 2)T . Hence, the given

equation represents a hyperbola centered at the origin, whose axis has half-

length 1/
√
λ1 = 2 and points in the direction of the eigenvector s1, and so its

vertices are at x = ± 1√
5
(4, 2)T .
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7.3.5. a.

(∇(xTAx))k =
∂

∂xk

∑

i

∑

j

aijxixj =
∑

i

∑

j

aij(
∂xi
∂xk

xj + xi
∂xj
∂xk

)

=
∑

i

∑

j

aij(δikxj + xiδjk) =
∑

j

akjxj +
∑

i

aikxi

= (Ax)k + (xTA)k = 2(Ax)Tk .

(The last equality above follows from the symmetry ofA.) Hence∇(xTAx) =
2(Ax)T .

b. Since xTx = xT Ix, Part (a) with A = I shows that ∇(xTx) = 2xT .

Thus Lagrange’s equation∇(xTAx) = λ∇(xTx) becomes 2(Ax)T = 2λxT ,

from which we see that the Lagrange multiplier is an eigenvalue of A.

7.3.7. The construction in the proof of Theorem 7.3.2 remains unchanged

, except that if A is not symmetric, then Equation 7.107 does not hold and

Equation 7.108 becomes

S−11 AS1 =






λ1
∣∣∣

0
...

0

∣∣∣∣∣∣∣∣∣

∗ · · · ∗

A1





,
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where the stars denote appropriate, possibly nonzero entries. Similarly, the

0 entries in the first two rows of the matrix in Equation 7.110 may become

nonzero; and so on, until in Equation 7.112 all the entries above the diagonal

may be different from zero.

7.4.1.

a)

xH = (2,−2i) and yH = (−5i, 4− i),

b)

|x|2 = xHx = (2,−2i)
[
2
2i

]
= 4− 4i2 = 8 and |x| =

√
8,

|y|2 = yHy = (−5i, 4− i)

[
5i
4 + i

]
= 25+16+1 = 42 and |y| =

√
42,

c)

xHy = (2,−2i)
[

5i
4 + i

]
= 10i− 8i+ 2 = 2 + 2i,

yHx = (−5i, 4− i)

[
2
2i

]
= −10i+ 8i+ 2 = 2− 2i.

7.4.3.

a)

xH = (2e−iπ/4,−2i) and yH = (e−iπ/4, eiπ/4),

b)

|x|2 = (2e−iπ/4,−2i)
[
2eiπ/4

2i

]
= 4− 4i2 = 8 and |x| =

√
8,

c)

xHy = (2e−iπ/4,−2i)
[

eiπ/4

e−iπ/4

]
= 2− 2ie−iπ/4 = 2−

√
2−

√
2i,

yHx = xHy = 2−
√
2 +

√
2i.

7.4.5.

a) Let u2 =

[
x1 + iy1
x2 + iy2

]
. Then uH1 u2 = 0 becomes x1+iy1−ix2+y2 =

0, which can be written in components as x1 + y2 = 0 and y1 − x2 = 0. We
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may choose x1 = y2 = 0 and y1 = x2 = 1 Thus u2 =
1√
2

[
i
1

]
is a unit

vector orthogonal to u1.

b) The matrix

U = (u1,u2) =
1√
2

[
1 i
i 1

]

is unitary, and so

U−1 = UH =
1√
2

[
1 − i
−i 1

]
.

Just as in the real case, the coordinate vector xU is given by xU = U−1x,

which in the present case becomes

xU =
1√
2

[
1 − i
−i 1

] [
x1
x2

]
=

1√
2

[
x1 − ix2
x2 − ix1

]
.

c) From the last equation, with x1 = 2 + 4i and x2 = 1− 2i, we get

xU =
1√
2

[
2 + 4i− i (1− 2i)
1− 2i− i (2 + 4i)

]
=

1√
2

[
3i

5− 4i

]
.

Hence

x =
3i√
2
u1 +

5− 4i√
2
u2.

7.4.7. AHH = (ajk)
HH = (akj)

H = (akj)
T = (akj)

T = (ajk) = A.

7.4.9. For any complex number z, zH = z if and only if z is real. Apply-

ing this observation and Theorem 7.4.1 to z = xHAx, and using (xHAx)H =
xHAHxHH = xHAHx, we find that xHAHx = xHAx for every x, if and

only if xHAx is real for every x. Thus if AH = A, then xHAx is real for

every x.

Conversely, assume that xHAx is real for every x. Write x+y in place of

x. Then (x+y)HAH(x+ y) = (x+y)HA(x+y) for all x, y, is equivalent

to xHAHy + yHAHx = xHAy + yHAx for all x,y. Choose x = ej and

y = ek. Then the last equation becomes

(AH)jk + (AH)kj = ajk + akj .
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Next, choosing x = ej and y = iek, we get

i(AH)jk − i(AH)kj = iajk − iakj .

Multiplying the last equation by i and subtracting it from the previous one,

we obtain

(AH)jk = ajk.

Since this equation holds for all jk, we have AH = A, as was to be shown.

7.4.11. If AH = A, then

UH =
(
eitA

)H
=

( ∞∑

k=0

(iAt)k

k!

)H
=

∞∑

k=0

(
(iAt)k

k!

)H

=
∞∑

k=0

((
(iAt)H

)k

k!

)

=
∞∑

k=0

(−iAt)k
k!

= e−At = U−1.

7.4.13. Suppose A is Hermitian and s1 and s2 are nonzero eigenvectors

belonging to the distinct eigenvalues λ1 and λ2 respectively. Then

As1 = λ1s1 and As2 = λ2s2.

Multiplying these equations by sH2 and sH1 , we get

sH2 As1 = λ1s
H
2 s1 and sH1 As2 = λ2s

H
1 s2.

Taking the Hermitian conjugate of the last equation and using AH = A, we

can change it to

sH2 As1 = λ2s
H
2 s1.

Thus

(λ2 − λ1)s
H
2 s1 = 0,

and, since λ2 − λ1 �= 0, we must have sH2 s1 = 0.

7.4.15. The characteristic equation is

|A− λI| =
∣∣∣∣
1− λ 1
−1 1− λ

∣∣∣∣ = 0,

96



or equivalently, (1− λ)2 + 1 = 0. Hence, the eigenvalues are λ1 = 1 + i and

λ2 = 1− i.

To find the eigenvectors corresponding to λ1 = 1+ i, we need to solve the

equation

(A− λ1I)s =

[
−i 1
−1 − i

] [
s1
s2

]
=

[
0
0

]
.

The general solution is s1 = t(1, i)T , where t is an arbitrary complex param-

eter.

To find the eigenvectors corresponding to λ2 = 1− i, we need to solve the

equation

(A− λ2I)s =

[
i 1

−1 i

] [
s1
s2

]
=

[
0
0

]
.

The general solution is s2 = u(i, 1)T , where u is an arbitrary complex param-

eter.

8.1.1.

E32E31E21 =




1 0 0
0 1 0
0 1 1








1 0 0
0 1 0

−1 0 1








1 0 0

−3 1 0
0 0 1





=




1 0 0
0 1 0
0 1 1








1 0 0

−3 1 0
−1 0 1





=




1 0 0

−3 1 0
−4 1 1





The last matrix is L−1, and it too is lower diagonal. Its −4 entry does not,

however, come from a single lij , but it is the combination −(l21 + l31) of

two coefficients of the forward elimination algorithm. While the order of

the matrix multiplications in Equation 8.17 has kept the off-diagonal entries

separate, the reverse order used here mixes them up.

8.1.3. Let A = AT and A = LDU . Since D is diagonal, we then have
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DT = D and UTDLT = LDU . As we know, L is invertible, and therefore LT

must be invertible, too. Thus, multiplying the last equation by L−1 from the

left and by (LT )−1 from the right, we obtain L−1UTD = DU(LT )−1. Notice

that the product on the left is lower diagonal, and the one on the right is upper

diagonal. This is possible only if both are diagonal, which, for invertible D,

implies that L−1UT = C must be diagonal. (If D is singular, that is, it has

some zeros on its main diagonal, then the columns of C corresponding to the

nonzero entries of D must still contain only diagonal nonzero elements, and

the other columns, being arbitrary, can be chosen to contain only diagonal

nonzero elements.) Since, by Corollary 8.1.1, the diagonal elements of L−1

and UT are all 1, the diagonal elements of their product must be l’s too. Thus

C = I and UT = L must hold.

8.1.5. In the forward phase of Gaussian elimination, assuming no row

exchanges are needed, to get a 0 in place of a21, we compute l21 = a21/a11 and

subtract l21a1j from each element a2j of the second row for j = 2, 3, . . . , n.

Thus again, as in the n× n case, we need n long operations for the reduction

of the second row of A.

Next, we do the same for each of the other rows below the first row. Thus

to get all the m−1 zeros in the first column requires (m−1)n long operations.

Now we do the same for the (m − 1) × (n − 1) submatrix below and to

the right of a11. For this we need (m− 2)(n− 1) long operations.

Continuing in this manner, we find that the total number of long operations

needed for the reduction of A, in case m ≤ n, is

m∑

k=1

((m− 1)− k)(n− k) =
m−1∑

k=1

[(m− 1)n− (m+ n− 1)k + k2] =

(m− 1)2n− (m+ n− 1)
m(m− 1)

2
+

m(m− 1)(2m− 1)

6
=

m2n

2
− m3

6
.

If m > n, then the reduction must stop when k = n. So the total number of

long operations is then

n∑

k=1

((m− 1)− k)(n− k) =
n∑

k=1

[(m− 1)n− (m+ n− 1)k + k2] =
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(m− 1)n2 − (m+ n− 1)
n(n+ 1)

2
+

n(n+ 1)(2n+ 1)

6
=

mn2

2
− n3

6
.

Since in both of the foregoing cases the reduction of A produces L and

U as well, the formulas above give also the numbers of the long operations

needed for the LU factorization of A.

8.1.7. By Equation 8.34, the forward elimination phase requires approxi-

mately n3/3 long operations.

Assuming that none of the n pivots is zero, we need approximately n2/2
divisions to change them to l’s, because we have approximately that many

possibly nonzero elements in the echelon matrix, which must each be divided

by a pivot. Then we need n− 1 multiplications and subtractions on the right

side to produce zeros in the last column above the last pivot. (The zeros

need not be computed, only the corresponding numbers on the right must be.)

Similarly, we need n− 2 multiplications and subtractions on the right side to

produce zeros in the next to last column, and so on. Hence the total number

of such operations is n(n− 1)/2 = n2/2.

For large n the number n2 of second phase operations is negligible com-

pared to the number n3/3 in the first phase, and so the latter provides the

approximate necessary total.

8.1.9. The reduction to upper triangular form requires the same operations

as the forward elimination phase of Gaussian elimination, which, by Equation

8.34, uses approximately n3/3 long operations when n is large. To multiply

the diagonal entries we need n − 1 multiplications, and this number can be

neglected next to n3/3 when n is large.

8.2.1. The first step of Gaussian Elimination would produce
[
0.002 1
0 −3001

∣∣∣∣
4

−11998

]

and our machine would round the second row to give
[
0.002 1
0 −3000

∣∣∣∣
4

−12000

]

The machine would then solve this by back substitution and obtain x2 = 4
and x1 = 0 This solution is, however, wrong. The correct solution is x2 =
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11998
3001

= 3.9980 . . . and x1 =
6

6.002
= 0.9996 . . .. Thus, while the machine’s

answer for x2 is close enough, for x1 it is way off.

The reason for the discrepancy is this: In the first step of the back substi-

tution, the machine rounded x2 = 3.998 . . . to 4. This, in itself, is certainly

all right, but in the next step, the machine had to divide x2 by 0.002 in solving

for x1. Here the small roundoff error, hidden in taking x2 as 4, got magnified

five hundredfold.

8.2.3. The scale factors are s1 = 1 and s2 = 6, and the ratios r1 = 0.0002
and r2 = 1. Since r2 > r1, we put the second row on top:

[A|b] =
[
6 − 1
0.002 1

∣∣∣∣
2
4

]

Now we subtract 0.0002/6 times the first row from the second, to get

[
6 − 1
0 1.00033 . . .

∣∣∣∣
2
3.99933 . . .

]
.

The machine of Example 8.2.1 would round the above matrix to
[
6 − 1
0 1

∣∣∣∣
2
4

]

and solve the system from here as x2 = 4 and x1 = 1.

The correct values are, as we have seen in the solution of Example 8.2.1,

x2 =
11998
3001

= 3.998 . . . and x1 =
6

6.002
= 0.9996 . . .. Thus, this method has

produced excellent approximations. The reason for this success is that here

we did not have to divide the roundoff error by a small pivot in the course of

the back substitution.

8.2.5. The scale factors are s1 = 5, s2 = 11 and s3 = 9, and the ratios

r1 = 1/5, r2 = 4/11 and r3 = 5/9. Since r3 > r2 > r1, we put the third row

on top, and then proceed with the row reduction:



5 8 9
1 2 5
4 − 7 11

∣∣∣∣∣∣

1
1
0



→




5 8 9
0 2 16
0 − 67 19

∣∣∣∣∣∣

1
4

−4



→

The new scale factors are s2 = 16 and s3 = 67, and the ratios r2 = 2/16 and

100



r3 = 67/67 = 1. Thus we switch the last two rows:



5 8 9
0 − 67 19
0 2 16

∣∣∣∣∣∣

1
−4
4



→




5 8 9
0 − 67 19
0 0 1110

∣∣∣∣∣∣

1
−4
260



 .

Back substitution now gives x3 = 26/111, x2 = 14/111, and x1 = −47/111.

8.3.1. a. Setting

x0 = x
′
0 =




1
1
1



 ,

we get

x1 = Ax′0 =




4.0000
3.0000
1.0000



 and x′1 =




1

0.7500
0.2500



 ,

x2 = Ax′1 =




3.2500
2.2500
0.2500



 and x′2 =




1

0.6923
0.0769



 ,

x3 = Ax′2 =




3.0769
2.0769
0.0769



 and x′3 =




1

0.6750
0.0250



 ,

x4 = Ax′3 =




3.0250
2.0250
0.0250



 and x′4 =




1

0.6694
0.0083



 ,

x5 = Ax′4 =




3.0083
2.0083
0.0083



 and x′5 =




1

0.6676
0.0028



 .

Thus λ1 ≈ 3 and s1 ≈ (3, 2, 0)T .

If we start with

x0 = x
′
0 =




1

−1
1



 ,

then we get
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x1 = Ax′0 =




4.0000

−3.0000
1.0000



 and x′1 =




1

−0.7500
0.2500



 ,

x2 = Ax′1 =




3.2500

−2.2500
0.2500



 and x′2 =




1

−0.6923
0.0769



 ,

x3 = Ax′2 =




3.0769

−2.0769
0.0769



 and x′3 =




1

−0.6750
0.0250



 ,

x4 = Ax′3 =




3.0250

−2.0250
0.0250



 and x′4 =




1

−0.6694
0.0083



 ,

x5 = Ax′4 =




3.0083

−2.0083
0.0083



 and x′5 =




1

−0.6676
0.0028



 .

Thus λ1 ≈ 3 and s2 ≈ (3,−2, 0)T .
b. As we can see from the computations above, if a dominant eigenvalue

has geometric multiplicity greater than 1, then different initial vectors may

lead to different eigenvectors. Clearly, any eigenvector belonging to such a

dominant eigenvalue can be so obtained by an appropriate choice of the initial

vector, since if we started with an eigenvector, the method would stay with it.

It is only this observation that needs to be added to Theorem 8.3.1.

8.3.3. The eigenvalues of a matrix A are the solutions λ of its charac-

teristic equation |A − λI| = 0. Hence if c is not an eigenvalue of A, then

|A − cI| �= 0. By Theorem 6.1.8, this inequality implies that B = A− cI is

nonsingular.

Alternatively, by Exercises 7.1.10 and 11, the eigenvalues of B = A− cI
are the λ − c values, which are nonzero if c �= λ, and a matrix with only

nonzero eigenvalues is nonsingular.

A2.1. Equation A.22 follows from Equations A.20, A.17, and A.18, since

| cosφ+ i sinφ|2 = cos2 φ+ sin2 φ = 1 for any φ.

A2.3. If P (z) =
∑n
k=0 akz

k is a polynomial with real coefficients ak,
then, by Equations A.12 and A.13, generalized to arbitrary finite sums and
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products, it follows that

P (z) =
n∑

k=0

akzk =
n∑

k=0

akzk =
n∑

k=0

akz
k = P (z).

Thus P (z0) = 0 is equivalent to P (z0) = P (z0) = 0 = 0.

A2.5. Suppose that
∑∞
n=0 zn converges absolutely; that is,

∑∞
n=0 |zn| con-

verges. Then since |xn| ≤ |zn| and |yn| ≤ |zn| for all indices n, it follows from

the Comparison Test that both
∑∞
n=0 xn and

∑∞
n=0 yn converge absolutely

and thus both converge by the Absolute Convergence Test for real series. The

result of Exercise A.2.4 implies that
∑∞
n=0 zn also converges.

A2.7. In order to use Formula A.33 to find the roots of a given complex

number, it is first necessary to express the number in polar exponential form,

that is, in the form of Equation A.29.

a. Since |i| = 1 and the principal argument of i is π/2, i = ei((π/2)+2kπ)

and thus i1/2 = ei((π/4)+kπ). Distinct roots are obtained for k = 0 and 1:

k = 0 yields

z1 = eiπ/4 =

√
2

2
(1 + i),

and k = 1 yields

z2 = ei(5π/4) = −
√
2

2
(1 + i).

b. Since |1 + i| =
√
2 and the principal argument of 1 + i is π/4,

1 + i =
√
2ei((π/4)+2kπ),

and thus

(1 + i)1/2 =
4
√
2ei((π/8)+kπ).

Distinct roots are obtained for k = 0 and 1:

k = 0 yields

z1 =
4
√
2eiπ/8 =

4
√
2(cos(π/8) + i sin(π/8))

and k = 1 yields

z2 =
4
√
2ei(5π/8) =

4
√
2(cos(5π/8) + i sin(5π/8))

103



= − 4
√
2(cos(π/8) + i sin(π/8)).

c. Since |1| = 1 and the principal argument of 1 is 0, 1 = ei2πk and thus

11/3 = ei(2πk/3). Distinct roots are obtained for k = 0, 1, and 2:

k = 0 yields

z1 = e0 = 1,

k = 1 yields

z2 = ei(2π/3) =
1

2
(−1 +

√
3i),

and k = 2 yields

z3 = ei(4π/3) =
1

2
(−1−

√
3i).

d. Since | − 1| = 1 and the principal argument of −1 is π,

−1 = ei(π+2kπ),

and thus

(−1)1/3 = eiπ(2k+1)/3.

Distinct roots are obtained for k = 0, 1, and 2:

k = 0 yields

z1 = eiπ/3 =
1

2
(1 +

√
3i),

k = 1 yields

z2 = eiπ = −1,
and k = 2 yields

z3 = ei5π/3 =
1

2
(1−

√
3i).

e. From part (a),

i = ei((π/2)+2kπ),

and thus

i1/4 = ei((π/8)+(kπ/4)).

104



Distinct roots are obtained for k = 0, 1, 2, and 3:

k = 0 yields

z1 = eiπ/8 = cos(π/8) + i sin(π/8),

k = 1 yields

z2 = ei5π/8 = cos(5π/8) + i sin(5π/8),

k = 2 yields

z3 = ei9π/8 = cos(9π/8) + i sin(9π/8) = −[cos(π/8) + i sin(π/8)],

and k = 3 yields

z4 = ei13π/8 = cos(13π/8) + i sin(13π/8) = −[cos(5π/8) + i sin(5π/8)].
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