
Chapter 2
A Reference Architecture Capturing Structure
and Behaviour of Warehouse Control

Jacques Verriet and Bruno van Wijngaarden

Abstract Warehouse management and control systems are responsible for the oper-
ations in a warehouse. These systems are usually very complex due to the delivery
requirements of the warehouse customers. These delivery requirements are often
very specific for a group of customers, which makes it hard to reuse warehouse
management and control functionality for other warehouses. In this chapter, we will
introduce a method that will greatly increase the reusability of warehouse manage-
ment and control functionality. We present a reference architecture that supports the
development of warehouse management and control systems. This modular reference
architecture is based on functional components, which can be configured using struc-
tural and behavioural parameters. This configuration is sufficient to build a warehouse
management and control system. This chapter introduces the reference architecture
and demonstrates how it can be used to decrease the warehouse management and
control system development effort.

2.1 Introduction

The operations in a warehouse are controlled by a warehouse management and control
system (WMCS). To achieve a high warehouse performance, a WMCS needs to
use a warehouse’s scarce resources in an efficient manner. A WMCS is commonly
seen as a layered system. For instance, Ten Hompel and Schmidt [8] distinguish
several layers of WMCS control. These include strategic control by an enterprise
resource planning (ERP) system, functional control by a warehouse management

J. Verriet (B)
Embedded System Institute, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: jacques.verriet@esi.nl

B. van Wijngaarden
Vanderlande Industries B.V, Vanderlandelaan 2, 5466 RB, Veghel, The Netherlands
e-mail: bruno.van.wijngaarden@vanderlande.com

R. Hamberg and J. Verriet (eds.), Automation in Warehouse Development, 17
DOI: 10.1007/978-0-85729-968-0_2, © Springer-Verlag London Limited 2012



18 J. Verriet and B. van Wijngaarden

Fig. 2.1 Layers of
warehouse functionality Enterprise Resource Planning (ERP)

Material Handling System (MHS)

Material Flow Control (MFC)

Scheduling (task lead time & resource workload balancing)

Planning (stock, orders & resources)

system (WMS), section control by a warehouse control system (WCS), and process
control by a material flow controller (MFC).

In this chapter, we will distinguish five layers of WMCS functionality, which
are illustrated by Fig. 2.1. The top layer is the ERP system, which is responsible
for the high-level management of orders and stock. The second layer, the planning
layer, handles the assignment of orders to stock and equipment resources. The plan-
ning layer is also responsible for keeping sufficient stock levels by replenishing low
stock levels and relocating superfluous stock. The scheduling layer is responsible
for balancing the system to obtain the optimal system performance. The scheduling
layer’s responsibilities include the prioritisation of the tasks that have been assigned
to resources. Scheduling selects tasks and forwards them to the MFC layer, which
controls the warehouse equipment and provides equipment status information to the
scheduling layer. The MFC layer provides an interface to the bottom layer, the mate-
rial handling system (MHS), which contains the warehouse equipment handling the
actual execution of warehouse tasks.

Because of the size and complexity of modern warehouses, the development of
a WMCS is very difficult and time consuming. As identified in Chap. 1, an impor-
tant element of the complexity of a warehouse involves the product and delivery
requirements of the warehouse customers. Another part of the complexity of WMCS
development is due to the lack of WMCS development support. The layered archi-
tecture shown in Fig. 2.1 provides some design guidelines, but it does not provide
sufficient support for making the design decisions needed to develop an effective
WMCS. This lack of support increases the risk of developing a customer-specific
WMCS, whose functionality cannot be reused for other warehouses.

In this chapter, we will address the lack of WMCS development support. We
hypothesise that a WMCS reference architecture can reduce the WMCS development
effort and allows WMCS functionality to be reused for different warehouses. We will
test this hypothesis by defining a WMCS reference architecture that captures both the
structure and the behaviour of warehouse control. We will illustrate how our WMCS
reference architecture decreases the WMCS development effort and increases the
reusability of WMCS functionality.

http://dx.doi.org/10.1007/978-0-85729-968-0_1


2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 19

2.1.1 Decentralised Warehouse Control

Since modularity and loose coupling are important characteristics of systems built
from reusable components, we let ourselves be inspired by the recent research into
agent-based control systems. Such systems consist of a collection of autonomous
agents, each having a limited scope. Examples from the warehousing domain include
the work by Kim et al. [4] and Graves et al. [3]. They study an agent-based WMCS for
warehouses with a man-to-goods and a goods-to-man picking concept, respectively.
They propose a hierarchical agent-based WMCS, in which high-level agents compute
a global schedule. The low-level agents constantly reschedule their work to match
the real-time conditions. If they find a better schedule, they negotiate with the high-
level agents for a schedule change. The high-level agents will allow the proposed
schedule change if the new schedule does not deteriorate the global schedule. The
results of Kim et al. [4] and Graves et al. [3] show that the constant rescheduling by
the low-level agents has a positive influence on the system performance. Although the
WMCS agents do not have full system knowledge, they have a similar performance
as the original WMCS under normal circumstances and a better performance in case
of exceptions.

Decentralised control has also been applied in domains with similarities to the
warehousing domain. Other examples of decentralised control mainly involve the
manufacturing domain. There are many publications describing the benefits of
decentralised manufacturing systems. An example is the engine manufacturing line
described by Fleetwood et al. [2], who present a decentralised control system that
has a better performance and flexibility than its centralised counterpart.

Many applications of decentralised control systems are very specific for the appli-
cation. However, a few reference architectures have been proposed for decentralised
control systems. Examples are PROSA [9] and ADACOR [5]. The applicability of
these reference architectures has been demonstrated using a variety of applications
in the manufacturing domain. These reference architectures improve reusability by
identifying generic roles and corresponding interaction protocols. Within the Falcon
project, Moneva et al. [7] defined a WMCS reference architecture, which standard-
ises WMCS functionality using roles and interaction protocols similar to PROSA’s.
These generic roles and interaction protocols allow warehouse operations to be per-
formed by a collection of agents organised in a hierarchy matching the underlying
material handling system.

2.1.2 Outline

In this chapter, we will go one step further in standardising WMCS functionality than
Moneva et al. [7]. We will present a WMCS reference architecture that standardises
not just the components and their interfaces, but also the components’ functionalities.
This is achieved by using generic behaviours with local business rule plug-ins, which
can be used to make a behaviour application specific. This standardisation allows a



20 J. Verriet and B. van Wijngaarden

ERP

MHS

MFC

Scheduling

Planning

Stock 
planner

Stock 
planner

Stock 
planner

Zone

Device 
manager

Device 
controller

Device 
controller

Stock 
planner

Device 
manager

Zone

Stock 
planner

Device 
manager

Device 
controller

Device 
controller

Zone Zone

Device 
manager

Stock 
planner

Device 
controller

Zone

Stock 
planner

Device 
manager

Device 
controller

Zone

Fig. 2.2 WMCS reference architecture

WMCS to be generated automatically by identifying the components, their intercon-
nections and behaviours, and by specifying the business rules of these behaviours.

The chapter is organised as follows. Section 2.2 describes the structural and behav-
ioural components of the WMCS reference architecture. Section 2.3 introduces an
automated case picking system, which will be used to illustrate the benefits of our
reference architecture. A prototype implementation of the reference architecture is
described in Sect. 2.4. Sections 2.5 and 2.6 present the initial results validating the
new architecture. Section 2.7 describes the current status of the reference architecture
and an outlook into the future.

2.2 Warehouse Management and Control Reference Architecture

In this section, the WMCS reference architecture is explained in terms of its structural
and behavioural components.

2.2.1 WMCS Components

Our decentralised WMCS reference architecture is a layered system, which distin-
guishes the same layers as Fig. 2.1. The layers of the architecture and their com-
ponents are shown in Fig. 2.2. The WMCS reference architecture distinguishes four
types of components each corresponding to a different layer of the WMCS hierarchy:
stock planners, device managers, device controllers, and (material handling) zones.



2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 21

The stock planners reside in the planning layer. The stock planners’ main respon-
sibility is the delivery of goods to its (local) customers. This delivery service is
determined by its connected device managers, which define which types of goods
can be delivered from a stock planner’s local stock. Figure 2.2 shows that the stock
planners form a tree. This tree structure allows a logical clustering of stock planners,
for instance based on the type of goods they can deliver.

The device managers in the scheduling layer couple the abstract stock planners
in the planning layer to the concrete device controllers in the MFC layer. They
are responsible for sequencing the tasks assigned by the stock planners. Upon the
assignment or completion of a task, a device manager selects the next task to be
executed and forwards it to its underlying device controller. Figure 2.2 shows that the
device managers form a network of device managers. This network is an abstraction
of the warehouse topology in the MHS layer. This abstraction is used to determine
how work is to be handed over in the scheduling layer in order to obtain the desired
flows of goods through the warehouse. The connections in this network can be seen
as producer-consumer relationships between device managers.

The device controllers in the MFC layer are responsible for the coordination
of task execution by the material handling zones. Figure 2.2 shows that there is a
one-to-one correspondence between zones and device controllers. It also shows that
each device controller is connected to one device manager, but that a device manager
can be connected to several device controllers. Then the device manager is responsible
for dividing the work over the underlying device controllers.

The zones in the MHS layer are responsible for the actual execution of warehouse
tasks. Examples of material handling zones are miniloads, order-picking worksta-
tions, and transport loops. Figure 2.2 shows connections between the zones; these
correspond to the physical connections between the warehouse equipment.

Figure 2.2 shows a similarity to the organisation-based WMCSs in Chap. 3: a
device manager and its underlying device controllers and zones can be seen as the
presences of a single MASQ agent in the scheduling, MFC, and MHS communication
spaces. This has been illustrated by the rounded rectangles in Fig. 2.2.

Both the zones and the device controllers are equipment-specific, and therefore
reusable, components. In our WMCS reference architecture, the stock planner and
device managers are generic components. Both types of components have parameters
from which a structure as shown in Fig. 2.2 can be constructed. The stock planners’
parameters include their parent and children in the tree of stock planners and the
connected device managers. The device managers’ parameters include the neighbours
in the network of device managers and the capabilities of the underlying device
controllers.

2.2.2 WMCS Behaviours

In Sect. 2.1, we have defined the components of our WMCS reference architecture.
A collection of these components needs to behave in such a way that the underlying

http://dx.doi.org/10.1007/978-0-85729-968-0_3


22 J. Verriet and B. van Wijngaarden

5. Accept Work
(to parent)

0. Assign Work
(from parent)

1. Stock Inquiry
(to children)

2. Stock Reply
(from children)

3. Count 
available stock

4. Issue 
replenishment 

work

Fig. 2.3 AssignWork behaviour activity diagram

warehouse equipment operates in an efficient manner. The main challenge in design-
ing an effective WMCS is designing the behaviours of its components that together
provide the desired system behaviour. We will focus on the behaviour of the stock
planners and device managers, as their high-level behaviour has the largest influence
on system behaviour.

To alleviate the system design effort, we have standardised component behaviour.
We have defined a collection of generic behaviours for stock planners and device
managers: their interaction has been fixed with respect to the interacting agents and
the interface object types. Each of these behaviours is triggered by the reception of
messages matching generic interfaces. In this section, we will describe some exam-
ples of our reference architecture’s behaviours implementing the generic interaction
protocols; this includes the object types being communicated.

2.2.2.1 Delivery Behaviour

The main goal of the stock planners is the delivery of goods to its customer stock
planners. Several generic behaviours have been defined to control this delivery. An
example is the AssignWork behaviour shown as a UML activity diagram in Fig. 2.3.
This behaviour is triggered by the reception of an AssignWork message; this is a
standardised interface specifying the goods to be delivered and the container type
in which to deliver them. After receiving the message, the AssignWork behaviour
sends a StockInquiry message to its child stock planners to ask for the availability of
the requested goods. It then waits for the corresponding StockReply messages and
computes the available stock level. If the stock level does not suffice, the behaviour
issues replenishment work. This involves sending and receiving several messages,
but this has not been detailed in Fig. 2.3. The AssignWork behaviour ends by sending
an AcceptWork message to acknowledge the original AssignWork message.

The completion of the AssignWork behaviour will asynchronously trigger another
delivery behaviour, the ForwardWork behaviour, which is shown in Fig. 2.4. This
behaviour starts by checking whether all stock needed for a work assignment is
available in its children’s local stock. If sufficient stock is available, it will send
a SupplyCostInquiry to its child stock planners. The children will answer with a
SupplyCostReply specifying the cost of delivering parts of the work to be forwarded.
Based on the answers, the ForwardWork behaviour assigns work to its children using
an AssignWork message. The ForwardWork behaviour will continue until it has
completely forwarded the work assignment to its child stock planners.



2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 23

6. Assign Work
(to children)

1. Stock Inquiry
(to children)

2. Stock Reply
(from children)

3. Count 
available stock

4. Supply Cost 
Inquiry

(to children)

5. Supply Cost 
Reply

(from children)

7. Accept Work 
(from children)

0. Select work for 
forwarding

Fig. 2.4 ForwardWork behaviour activity diagram

Note that the ForwardWork behaviour and the AssignWork behaviour trigger each
other: the ForwardWork behaviour of a stock planner is triggered by the AssignWork
behaviour of its parent and triggers the AssignWork behaviour of its children. The
combination of these behaviours allows work to be forwarded from the root of the
stock planner hierarchy to the leaf stock planners. From there, it is forwarded to the
associated device managers. The latter involves a ForwardWork behaviour that is
similar to the one shown in Fig. 2.4.

2.2.2.2 Replenishment Behaviour

The description of the AssignWork behaviour already showed the existence of replen-
ishment work triggered by the forwarding of work through a hierarchy of stock
planners. These replenishment assignments are handled by creating delivery work
that is forwarded using the ForwardWork and AssignWork behaviours described in
Sect. 2.2. Order-driven replenishment may take a long time to be fulfilled, because
the required goods need to be transported from one part of the warehouse to another.
This may not be acceptable for popular products; these fast movers have to be deliv-
ered so often, that they should be in stock all the time. This is achieved by the
MinMaxReplenishment behaviour. This behaviour gets triggered when goods have
been delivered by a stock planner. The behaviour will check whether the stock level
for a certain product has dropped below a minimum. If so, the behaviour will issue
replenishment work, which will be handled in the same manner as the order-driven
replenishment issued by the AssignWork behaviour. This will ensure that the stock
level will be replenished to a specified maximum level.

2.2.2.3 Execution Behaviour

The delivery and replenishment behaviours involve standardised behaviours of the
stock planners. The behaviours of the device managers have been standardised as
well. An example of a device manager behaviour is the Execution behaviour, which
is triggered by an event from a device controller signalling the completion of a task.
This behaviour will select the next task to be executed. This involves sending a
TaskInquiry message to the consumer device managers; this list contains all tasks
that can be executed. The consumers will select a task from this list and send it as



24 J. Verriet and B. van Wijngaarden

Fig. 2.5 Automated case picking module

a reply. The producer device manager will select one task from the collection of
replies and assign it to the signalling device controller, which is responsible for the
execution by the material handling system.

2.3 Case Study

We will use the system shown in Fig. 2.5 to illustrate the main ingredients of our
reference architecture. It shows an automated case picking module with a palletiser
and three case picking cells. Each cell consists of two pick fronts, a reserve, two case
pickers, and a tray miniload.

The corresponding component structure is shown in Fig. 2.6. The module, pick
fronts, and reserves are stock planners that are part of planning layer; the palletiser,
case pickers and tray miniloads are device managers, which reside in the scheduling
layer. Besides these, there is an initiation component that plays the role of the ERP
system. We do not consider the MFC and MHS layers explicitly.

The module’s responsibility is delivering ordered pallets. If it is asked to deliver
a pallet, it asks its children, the pick fronts and the reserves, for the corresponding
cases. The pick fronts’ local stock consists of trays, from which the associated case
picker can pick cases. The reserves also store trays of cases, but they cannot be used
to deliver cases. If a pick front cannot deliver a certain product, it can be replenished
from a reserve: the corresponding tray miniload can pick entire trays and place them
in the pick front’s local stock.



2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 25

ERP

Scheduling

Planning

Module

Pick front 
1.2

Pick front 
1.1

Reserve 
1

Tray 
miniload 

1

Init

Pick front 
2.2

Pick front 
2.1

Reserve 
2

Tray 
miniload 

2

Pick front 
3.2

Pick front 
3.1

Reserve
3

Tray 
miniload 

3
Palletiser

Case
picker

1.1

Case 
picker 

3.2

Case 
picker 

3.1

Case 
picker 

2.2

Case 
picker 

2.1

Case
picker

1.2

Fig. 2.6 Automated case picking WMCS components

Fig. 2.7 WMCS reference architecture class diagram

Figure 2.6 shows that there need not be a one-to-one relationship between stock
planners and device managers. The tray miniloads are associated with two pick fronts
and one reserve. It also shows that the device managers are connected in a network,
which describes their producer-consumer relationships. Since a tray miniload can
replenish two case pickers, it is connected to two case pickers. Similarly, the case
pickers are all connected to the palletiser, as they deliver cases for pallet building by
the palletiser.

2.4 Implementation

To assess the validity of the WMCS reference architecture introduced in Sect. 2.2, we
have implemented a prototype in Java. This prototype implementation only covers the
planning layer and the scheduling layer, since these layers cover the most important
component behaviours. The actual execution by the MFC and MHS layers is replaced
by a simulation, which is included in the scheduling layer. A partial class diagram
for the implementation is shown in Fig. 2.7.

The implemented prototype is an agent-based system built upon
Jade middleware [1]. A Jade application consists of a number of agents, each having
a collection of behaviours. Figure 2.7 shows Jade’s Agent class and its Behaviour



26 J. Verriet and B. van Wijngaarden

class, which both have warehouse-specific specialisations in our reference archi-
tecture. We distinguish two types of parametrised agents: stock planner agents and
device manager agents. These correspond to the components described in Sect. 2.1.
The parameters of the stock planners specify the parent and child stock planners, the
connected device managers, the initial stock level, and a collection of behaviours.
The main parameters of the device managers are its behaviours and the consumer
device managers in the network of device managers.

The agents’ behaviours are the main ingredients for obtaining the desired system
behaviour. As described in Sect. 2.2, the behaviours of the stock planners and device
managers have been standardised. This means the interaction between the agents has
been fixed, both with respect to the interacting agents and the interface object types.
Examples of these generic interaction protocols are described in Sect. 2.2. However,
the detailed content of the exchanged messages has not been specified. We will refer
to these interaction protocols as skeleton behaviours.

Figure 2.8 shows an excerpt of the implementation to illustrate the concept of
skeleton behaviours. It shows parts of the code of three classes: Main, Forward-
WorkBehaviour, and ModuleForwardWorkBehaviour. The class Main defines the
WMCS by specifying the agents and their behaviours. Figure 2.4 shows a behaviour
ModuleForwardWorkBehaviour being added to the module agent. This behaviour
is a specialisation of the abstract class ForwardWorkBehaviour, which is a skeleton
behaviour implementing the activity diagram shown in Fig. 2.4 as a state machine.
State 0 of the activity diagram corresponds to state 0 in the code in Fig. 2.8. This state
calls an abstract method selectNextWorkAssignment, which corresponds to an empty
placeholder function for a business rule in the abstract ForwardWorkBehaviour class.
This method is defined in the concrete ModuleForwardWorkBehaviour class.

The notion of skeleton behaviour is further illustrated in Fig. 2.7. It shows the
abstract ForwardWorkBehaviour class and three of its application-specific speciali-
sations for the module, the pick fronts, and the reserves. These three behaviours share
the interaction protocol defined by the skeleton behaviour ForwardWorkBehaviour,
but implement the corresponding business rules differently.

2.5 Experimental Validation

The architecture described in the previous sections is being validated using a series
of experiments of the implemented prototype described in Sect. 2.4. The first exper-
iments of the architecture involve the automated case picking module described in
Sect. 2.3. The first experiment has been described by Verriet et al. [10]; this exper-
iment focused on stock planner delivery behaviour and device manager execution
behaviour. It did not involve replenishment, because the pick fronts were assumed
to have sufficient stock to fulfil all orders.

The second experiment focuses on delivery and replenishment behaviour. The
experiment starts with pick fronts without any stock and reserves having sufficient
stock for all orders. The components of the corresponding WMCS and their behav-
iours are listed in Table 2.1. There are ten stock planner agents: one module, six pick



2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 27

Fig. 2.8 WMCS source code excerpts

fronts, and three reserves. Associated with these stock planners are ten device man-
ager agents: six case pickers, three tray miniloads, and one palletiser. These agents
and their connections correspond to those in Fig. 2.6. It shows that each pick front
has two device managers: a case picker and a tray miniload. The former allows the
delivery of cases; the latter is needed for replenishment. Besides the stock planner
and device managers, there is an initiator agent playing the role of the ERP system.

The implementation of the experiment involves a total of 27 skeleton behaviours:
21 stock planner and 6 device manager behaviours. These behaviours have been
made concrete for the different agents in Fig. 2.6. This involves a total of 38 ACP-
specific behaviours (see Table 2.1). Together these behaviours have 83 business rules
overwriting the placeholder functions in the skeleton behaviours. Each behaviour



28 J. Verriet and B. van Wijngaarden

Table 2.1 Prototype
behaviours per component

Component type # behaviours # components # threads

Initiator 3 1 3
Module 5 1 5
Pick front 12 6 72
Reserve 6 3 18
Case picker 6 6 36
Tray miniload 4 3 12
Palletiser 2 1 2
Total 38 21 150

has been deployed as a separate thread using Jade’s threaded behaviour factory; this
makes a total of 150 behaviour threads running on a single pc. Despite the large
number of threads, there is no performance issue, because the threads are all simple
programs and only a few threads are active simultaneously.

Figure 2.9 shows a partial trace of the agent conversations in Jade’s Sniffer [1]: it
shows the messages that are sent between one module, two pick fronts, one reserve,
two case pickers, and one tray miniload. We have limited the number of agents to be
able to visualise all messages. Figure 2.9 shows three conversations. The first conver-
sation (messages 2.x) involves the module’s AssignWork behaviour (see Fig. 2.3). It
starts when the module receives an AssignWork message from the initiation agent,
which plays the role of the ERP system. As one can see in Fig. 2.9 the AssignWork
behaviour causes several messages of different types to be sent, the last one being an
AcceptWork reply to the initiation agent. After the first pallet has been assigned to
the module, two conversations start running in parallel. The initiation agent forwards
the second pallet to the module (messages 3.x) and the module starts to forward this
pallet to the pick front and the reserve (messages 4.x).

Figure 2.10 shows a Gantt chart for the execution of the tasks corresponding to
two identical pallets consisting of 40 cases each of a unique product. Each colour
represents a product. It clearly shows that the pick fronts do not have any stock:
before a case picker can pick a case for a pallet, the tray miniload has to replenish
the pick front. The case for the second pallet can be picked directly after the first
one, because the trays delivered by the tray miniloads contain more than one case.
This means that replenishment is needed only once. Figure 2.10 also shows that the
work is divided equally over the different case pickers and tray miniloads.

2.6 Architectural Validation

The previous section showed the functional validation of our reference architecture:
we were able to forward work through a hierarchy or stock planners and device man-
agers and perform the necessary replenishment. This section considers the validation
of the reference architecture in terms of usability aspects. One of the limitations of



2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 29

Fig. 2.9 Agent conversations in Jade’s Sniffer

Fig. 2.10 Execution Gantt chart

traditional WMCSs was the limited reusability. This has clearly been addressed by
our reference architecture, which is built around generic component types and a
collection of generic skeleton behaviours. These generic components can be used
and configured for any WMCS.

Reusing the generic components and behaviours has a large positive effect on the
WMCS development effort. This effort is limited to the configuration of the sys-
tem. This involves specifying the connections between the components and defining



30 J. Verriet and B. van Wijngaarden

Table 2.2 Prototype implementation details

Category Description # classes % classes # lines % lines

Generic code Stock planner skeleton behaviours 21 14 6,064 38
Device manager skeleton behaviours 6 4 1,072 7
Initiator behaviours 3 2 271 2
Miscellaneous 83 56 4,932 31

ACP-specific code Initialisation code 1 1 814 5
Stock planner behaviours 23 15 2,115 13
Device manager behaviours 12 8 612 4

Total 149 100 15,980 100

the business rules to be filled in the abstract architecture, which is built around
generic component types and a collection of generic skeleton behaviours. For the
experiment described in the previous section, the application-specific business rules
and the specification of the agent parameters account for 17 and 5 % of the code
(see Table 2.2). The remaining 78 % of the code needs to be written once and can be
used for other warehouses.

This 22 % application-specific code is an increase compared to the 15 % of the
first experiment described by Verriet et al. [10]. The reason for the increase is the
complexity of the second experiment. In the first experiment, each skeleton behav-
iour had only one application-specific specialisation, whereas the behaviours of the
pick fronts and the reserves are specialisations of the same skeleton behaviour in
the second experiment. This suggests that the amount of application-specific code
strongly depends on the number of WMCS components.

There is more to the WMCS development effort than just the amount of code.
Currently, warehouse architects define a warehouse architecture and communicate
this architecture to the WMCS developers. This communication has not been for-
malised, meaning that it is highly ambiguous. The misinterpretations caused by the
ambiguity necessitate rework by the designers and hence involves a larger WMCS
development effort. Our reference architecture can eliminate a large part of the ambi-
guity of the architectural communication, because it provides a clear structure for
the WMCS architecture. This structure will leave less room for misinterpretation,
because the architectural description will contain local business rules with a clearly
defined scope and interface.

Because of the standardised interfaces, the components of our architecture are
also exchangeable. A change in the stock planner hierarchy can easily be accom-
modated by altering the parent-child relationships in the WMCS configuration. The
new structure may require an alteration of business rules, but this is limited to the
components affected by the structural change. Similarly, a change of the network of
device managers does not involve a large redesign effort.

To improve the WMCS development even further, we are currently developing
a graphical editor (see Fig. 2.11), in which the warehouse architect can select the
required warehouse components and their interfaces [6]. Moreover, he will be able
to select the components’ behaviours and specify the appropriate application-specific



2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 31

Fig. 2.11 Prototype WMCS editor

business rules. A large part of a WMCS code can be generated automatically from
the architect’s specification using a model-driven software engineering approach (see
Chap. 4). The generated code includes the code needed to define the components and
their parameters. The remaining code, the application-specific business rules, is to
be written by the WMCS designers.

2.7 Conclusion and Outlook

In this chapter, we have described a WMCS reference architecture. This architec-
ture defines the generic WMCS components, their connections, and their generic
behaviours. A WMCS can be designed by specifying the parameters of the compo-
nents and behaviours. The behaviours’ parameters are application-specific business
rules, which create concrete behaviours from abstract skeleton behaviours. First
experiments successfully demonstrated forwarding of work through a hierarchy of
components and order-driven replenishment of local stock.

The experiments have also shown that the reference architecture can greatly reduce
the WMCS development effort. The architecture provides a communication frame-
work, which reduces the chance of ambiguity by limiting the scope to local business
rules. Moreover, a lot of generic code can be reused: in our experiment, only 22 %

http://dx.doi.org/10.1007/978-0-85729-968-0_4


32 J. Verriet and B. van Wijngaarden

of the code was application specific. The remaining code can be reused for other
warehouses by configuring its components, their connections, and their behaviours.
Using the editor we are developing, part of the application-specific code and all of
the reusable code can be generated automatically.

References

1. Bellifemine F, Caire G, Greenwood D (2007) Developing multi-agent systems with JADE.
Wiley, Chichester

2. Fleetwood M, Kotak DB, Wu S, Tamoto H (2003) Holonic system architecture for scalable
infrastructures. In: IEEE international conference on systems, man and cybernetics 2003,
vol 2, pp 1469–1474

3. Graves RJ, Wan VK, van der Velden J, van Wijngaarden B (2008) Control of complex inte-
grated automated systems—system retro-fit with agent-based technologies and industrial case
experiences. In: Proceedings of the 10th international material handling research colloquium

4. Kim BI, Graves RJ, Heragu SS, St. Onge A (2002) Intelligent agent modeling of an industrial
warehousing problem. IIE Trans 34:601–612

5. Leitao P, Restivo F (2006) ADACOR: A holonic architecture for agile and adaptive manufac-
turing control. Comput Ind 57:121–130

6. Liang HL (2011) A graphical specification tool for decentralized warehouse control systems.
SAI Technical Report, Eindhoven University of Technology, Eindhoven

7. Moneva H, Caarls J, Verriet J (2009) A holonic approach to warehouse control. In: 7th interna-
tional conference on practical applications of agents and multi-agent systems (PAAMS 2009),
Advances in intelligent and soft computing vol 55. Springer, Berlin, pp 1–10

8. Ten Hompel M, Schmidt T (2006) Warehouse management: Automation and organisation of
warehouse and order picking systems. Springer, Berlin

9. Van Brussel H, Wyns J, Valckenaers P, Bongaerts L, Peeters P (1998) Reference architecture
for holonic manufacturing systems: PROSA. Comput Ind 37:255–274

10. Verriet J, van Wijngaarden B, van Heusden E, Hamberg R (2011) Automating the development
of agent-based warehouse control systems. In: Trends in practical applications of agents and
multiagent systems, Advances in intelligent and soft computing, vol 90. Springer, Berlin,
pp 59–66



http://www.springer.com/978-0-85729-967-3


	2 A Reference Architecture Capturing Structure and Behaviour of Warehouse Control 
	2.1 Introduction
	2.1.1 Decentralised Warehouse Control
	2.1.2 Outline

	2.2 Warehouse Management and Control Reference Architecture
	2.2.1 WMCS Components
	2.2.2 WMCS Behaviours

	2.3 Case Study
	2.4 Implementation
	2.5 Experimental Validation
	2.6 Architectural Validation
	2.7 Conclusion and Outlook
	References


