
Chapter 2
Feedback Control of Particle Size Distribution
in Nanoparticle Synthesis and Processing

Mingheng Li and Panagiotis D. Christofides

2.1 Introduction

Particulate processes (also known as dispersed-phase processes) are characterized
by the co-presence of and strong interaction between a continuous (gas or liquid)
phase and a particulate (dispersed) phase and are essential in making many high-
value industrial products. Particulate processes play a prominent role in a number
of process industries since about 60% of the products in the chemical industry are
manufactured as particulates with an additional 20% using powders as ingredients.
Representative examples of particulate processes for micro- and nano-particle
synthesis and processing include the crystallization of proteins for pharmaceutical
applications [2], the emulsion polymerization of nano-sized latex particles [50], the
aerosol synthesis of nanocrystalline catalysts [64], and thermal spray processing
of nanostructured functional thermal barrier coatings to protect turbine blades [1].
The industrial importance of particulate processes and the realization that the
physicochemical and mechanical properties of materials made with particulates
depend heavily on the characteristics of the underlying particle-size distribution
(PSD) have motivated significant research attention over the last ten years on model-
based control of particulate processes. These efforts have also been complemented
by recent and ongoing developments in measurement technology which allow the
accurate and fast online measurement of key process variables including important
characteristics of PSDs (e.g., [37,55,56]). The recent efforts on model-based control
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of particulate processes have also been motivated by significant advances in the
physical modeling of highly coupled reaction-transport phenomena in particulate
processes that cannot be easily captured through empirical modeling. Specifically,
population balances have provided a natural framework for the mathematical
modeling of PSDs in broad classes of particulate processes (see, for example, the
tutorial article [30] and the review article [54]), and have been successfully used
to describe PSDs in emulsion polymerization reactors (e.g., [13, 15]), crystallizers
(e.g., [4,55]), aerosol reactors (e.g., [23]), and cell cultures (e.g., [12]). To illustrate
the structure of the mathematical models that arise in the modeling and control
of particulate processes, we focus on three representative examples: continuous
crystallization, batch crystallization, and aerosol synthesis.

2.1.1 Continuous Crystallization

Crystallization is a particulate process, which is widely used in industry for the
production of many micro- or nano-sized products including fertilizers, proteins,
and pesticides. A typical continuous crystallization process is shown in Fig. 2.1.
Under the assumptions of isothermal operation, constant volume, well-mixed
suspension, nucleation of crystals of infinitesimal size and mixed product removal, a
dynamic model for the crystallizer can be derived from a population balance for the
particle phase and a mass balance for the solute concentration and has the following
mathematical form [32, 39]:

∂n(r, t)
∂ t

= −∂ (R(t)n(r, t))
∂ r

− n(r, t)
τ

+ δ (r− 0)Q(t),

dc(t)
dt

=
(c0 −ρ)

ε(t)τ
+

(ρ − c(t))
τ

+
(ρ − c(t))

ε(t)
dε(t)

dt
, (2.1)
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where n(r, t)dr is the number of crystals in the size range of [r,r+ dr] at time t per
unit volume of suspension, τ is the residence time, ρ is the density of the crystal,
c(t) is the solute concentration in the crystallizer, c0 is the solute concentration in
the feed, and

ε(t) = 1−
∫ ∞

0
n(r, t)

4
3

πr3dr

is the volume of liquid per unit volume of suspension. R(t) is the crystal growth
rate, δ (r− 0) is the standard Dirac function, and Q(t) is the crystal nucleation rate.
The term δ (r−0)Q(t) accounts for the production of crystals of infinitesimal (zero)
size via nucleation. An example of expressions of R(t) and Q(t) is the following:

R(t) = k1(c(t)− cs), Q(t) = ε(t)k2e
− k3

(c(t)/cs−1)2 , (2.2)

where k1, k2, and k3 are constants and cs is the concentration of solute at saturation.
For a variety of operating conditions (see [6] for model parameters and detailed
studies), the continuous crystallizer model of (2.1) exhibits highly oscillatory
behavior (the main reason for this behavior is that the nucleation rate is much
more sensitive to supersaturation relative to the growth rate – i.e., compare the
dependence of R(t) and Q(t) on the values of c(t) and cs), which suggests the use
of feedback control to ensure stable operation and attain a crystal size distribution
(CSD) with desired characteristics. To achieve this control objective, the inlet solute
concentration can be used as the manipulated input and the crystal concentration as
the controlled and measured output.

2.1.2 Batch Protein Crystallization

Batch crystallization plays an important role in the pharmaceutical industry. We
consider a batch crystallizer, which is used to produce tetragonal HEW (hen-
egg-white) lysozyme crystals from a supersaturated solution [62]. A schematic of
the batch crystallizer is shown in Fig. 2.2. Applying population, mass and energy
balances to the process, the following mathematical model is obtained:

∂n(r, t)
∂ t

+G(t)
∂n(r, t)

∂ r
= 0, n(0, t) =

B(t)
G(t)

,

dC(t)
dt

=−24ρkvG(t)μ2(t),

dT (t)
dt

=− UA
MCp

(T (t)−Tj(t)), (2.3)
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Fig. 2.2 Schematic
of a batch cooling crystallizer
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where n(r, t) is the CSD, B(t) is the nucleation rate, G(t) is the growth rate, C(t)
is the solute concentration, T (t) is the crystallizer temperature, Tj(t) is the jacket
temperature, ρ is the density of crystals, kv is the volumetric shape factor, U is
the overall heat-transfer coefficient, A is the total heat-transfer surface area, M is
the mass of solvent in the crystallizer, Cp is the heat capacity of the solution, and

μ2(t) =
∫ ∞

0
r2n(r, t)dr is the second moment of the CSD. The nucleation rate, B(t),

and the growth rate, G(t), are given by [62]:

B(t) = kaC(t)exp

(
− kb

σ2(t)

)
, G(t) = kgσg(t), (2.4)

where σ(t), the supersaturation, is a dimensionless variable and is defined as σ(t) =
ln(C(t)/Cs(T (t))), C(t) is the solute concentration, g is the exponent relating growth
rate to the supersaturation, and Cs(T ) is the saturation concentration of the solute,
which is a nonlinear function of the temperature of the form:

Cs(T ) = 1.0036× 10−3T 3 + 1.4059× 10−2T 2 − 0.12835T + 3.4613. (2.5)

The existing experimental results [68] show that the growth condition of tetragonal
HEW lysozyme crystal is significantly affected by the supersaturation. Low super-
saturation will lead to the cessation of the crystal growth. On the other hand, rather
than forming tetragonal crystals, large amount of needle crystals will form when the
supersaturation is too high. Therefore, a proper range of supersaturation is necessary
to guarantee the product’s quality. The jacket temperature, Tj, is manipulated to
achieve the desired crystal shape and size distribution.
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Fig. 2.3 Schematic of a titania aerosol reactor

2.1.3 Aerosol Synthesis

Aerosol processes are increasingly being used for the large-scale production of
nano- and micron-sized particles. A typical aerosol flow reactor for the synthesis
of titania aerosol with simultaneous chemical reaction, nucleation, condensation,
coagulation, and convective transport is shown in Fig. 2.3. A general mathematical
model, which describes the spatiotemporal evolution of the particle size distribution
in such aerosol processes can be obtained from a population balance and consists of
the following nonlinear partial integro-differential equation [33, 34]:

∂n(v,z, t)
∂ t

+ vz
∂n(v,z, t)

∂ z
+

∂ (G(x̄,v,z)n(v,z, t))
∂v

− I(v∗)δ (v− v∗)

=
1
2

∫ v

0
β (v− v̄, v̄, x̄)n(v− v̄, t)n(v̄,z, t)dv̄− n(v,z, t)

∫ ∞

0
β (v, v̄, x̄)n(v̄,z, t)dv̄, (2.6)

where n(v,z, t) denotes the particle size distribution function, v is the particle
volume, t is the time, z ∈ [0,L] is the spatial coordinate, L is the length scale
of the process, v∗ is the size of the nucleated aerosol particles, vz is the velocity
of the fluid, x̄ is the vector of the state variables of the continuous phase,
G(·, ·, ·), I(·),β (·, ·, ·) are nonlinear scalar functions which represent the growth,
nucleation, and coagulation rates and δ (·) is the standard Dirac function. The model
of (2.6) is coupled with a mathematical model, which describes the spatiotemporal
evolution of the concentrations of species and temperature of the gas phase (x̄) that
can be obtained from mass and energy balances. The control problem is to regulate
process variables such as inlet flow rates and wall temperature to produce aerosol
products with desired size distribution characteristics.

The mathematical models of (2.1), (2.3) and (2.6) demonstrate that particulate
process models are nonlinear and distributed parameter in nature. These properties
have motivated extensive research on the development of efficient numerical
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methods for the accurate computation of their solution (see, for example, [12, 23,
25, 38, 48, 54, 63]). However, in spite of the rich literature on population balance
modeling, numerical solution, and dynamical analysis of particulate processes, up
to about ten years ago, research on model-based control of particulate processes
had been very limited. Specifically, early research efforts had mainly focused on
the understanding of fundamental control-theoretic properties (controllability and
observability) of population balance models [58] and the application of conventional
control schemes (such as proportional-integral and proportional-integral-derivative
control, self-tuning control) to crystallizers and emulsion polymerization processes
(see, for example, [13, 57, 59] and the references therein). The main difficulty in
synthesizing nonlinear model-based feedback controllers for particulate processes
is the distributed parameter nature of the population balance models, which does
not allow their direct use for the synthesis of low-order (and therefore, practically
implementable) model-based feedback controllers. Furthermore, a direct application
of the aforementioned solution methods to particulate process models leads to
finite dimensional approximations of the population balance models (i.e., nonlinear
ordinary differential equation (ODE) systems in time) which are of very high order,
and thus inappropriate for the synthesis of model-based feedback controllers that
can be implemented in realtime. This limitation had been the bottleneck for model-
based synthesis and real-time implementation of model-based feedback controllers
on particulate processes.

2.2 Model-Based Control of Particulate Processes

2.2.1 Overview

Motivated by the lack of population balance-based control methods for particulate
processes and the need to achieve tight size distribution control in many particulate
processes, we developed, over the last ten years, a general framework for the
synthesis of nonlinear, robust, and predictive controllers for particulate processes
based on population balance models [6–9, 16, 33, 35, 60, 62]. Specifically, within
the developed framework, nonlinear low-order approximations of the particulate
process models are initially derived using order reduction techniques and are used
for controller synthesis. Subsequently, the infinite-dimensional closed-loop system
stability, performance and robustness properties were precisely characterized in
terms of the accuracy of the approximation of the low-order models. Furthermore,
controller designs were proposed that deal directly with the key practical issues
of uncertainty in model parameters, unmodeled actuator/sensor dynamics and
constraints in the capacity of control actuators and the magnitude of the process
state variables. It is also important to note that owing to the low-dimensional
structure of the controllers, the computation of the control action involves the
solution of a small set of ODEs, and thus, the developed controllers can be readily
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Fig. 2.4 Summary of our research on model-based control of particulate processes

implemented in realtime with reasonable computing power, thereby resolving the
main issue on model-based control of particulate processes. In addition to theoretical
developments, we also successfully demonstrated the application of the proposed
methods to size distribution control in continuous and batch crystallization, aerosol,
and thermal spray processes and documented their effectiveness and advantages
with respect to conventional control methods. Figure 2.4 summarizes these efforts.
The reader may refer to [4, 12, 15] for recent reviews of results on simulation and
control of particulate processes.

2.2.2 Particulate Process Model

To present the main elements of our approach to model-based control of particulate
processes, we focus on a general class of spatially homogeneous particulate pro-
cesses with simultaneous particle growth, nucleation, agglomeration, and breakage.
Examples of such processes have been introduced in the previous section. Assuming
that particle size is the only internal particle coordinate and applying a dynamic
material balance on the number of particles of size r to r+dr (population balance),
we obtain the following general nonlinear partial integro-differential equation,
which describes the rate of change of the PSD, n(r, t):

∂n
∂ t

= −∂ (G(x,r)n)
∂ r

+w(n,x,r), (2.7)

where n(r, t) is the particle number size distribution, r ∈ [0,rmax] is the particle size,
and rmax is the maximum particle size (which may be infinity), t is the time and
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x ∈ IRn is the vector of state variables, which describe properties of the continuous
phase (for example, solute concentration, temperature, and pH in a crystallizer);
see (2.8) for the system that describes the dynamics of x. G(x,r) and w(n,x,r) are
nonlinear scalar functions whose physical meaning can be explained as follows:
G(x,r) accounts for particle growth through condensation and is usually referred
to as growth rate. It usually depends on the concentrations of the various species
present in the continuous phase, the temperature of the process, and the particle size.
On the other hand, w(n,x,r) represents the net rate of introduction of new particles
into the system. It includes all the means by which particles appear or disappear
within the system including particle agglomeration (merging of two particles into
one), breakage (division of one particle to two) as well as nucleation of particles of
size r ≥ 0 and particle feed and removal. The rate of change of the continuous-phase
variables x can be derived by a direct application of mass and energy balances to the
continuous phase and is given by a nonlinear integro-differential equation system of
the general form:

ẋ = f (x)+ g(x)u(t)+A
∫ rmax

0
a(n,r,x)dr, (2.8)

where f (x) and a(n,r,x) are nonlinear vector functions, g(x) is a nonlinear matrix
function, A is a constant matrix and u(t) = [u1 u2 · · · um] ∈ IRm is the vector of

manipulated inputs. The term A
∫ rmax

0
a(n,r,x)dr accounts for mass and heat transfer

from the continuous phase to all the particles in the population (see [8] for details).

2.2.3 Model Reduction of Particulate Process Models

While the population balance models are infinite dimensional systems, the dominant
dynamic behavior of many particulate process models has been shown to be low
dimensional. Manifestations of this fundamental property include the occurrence
of oscillatory behavior in continuous crystallizers [32] and the ability to capture the
long-term behavior of aerosol systems with self-similar solutions [23]. Motivated by
this, we introduced a general methodology for deriving low-order ODE systems that
accurately reproduce the dominant dynamics of the nonlinear integro-differential
equation system of (2.7) and (2.8) [6]. The proposed model reduction methodology
exploits the low-dimensional behavior of the dominant dynamics of the system of
(2.7) and (2.8) and is based on a combination of the method of weighted residuals
with the concept of approximate inertial manifolds.

Specifically, the proposed approach initially employs the method of weighted
residuals (see [54] for a comprehensive review of results on the use of this
method for solving population balance equations) to construct a nonlinear, possibly
high-order, ODE system that accurately reproduces the solutions and dynamics of
the distributed parameter system of (2.7) and (2.8). We first consider an orthogonal
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set of basis functions φk(r), where r ∈ [0,rmax), k = 1, . . . ,∞, and expand the particle
size distribution function n(r, t) in an infinite series in terms of φk(r) as follows:

n(r, t) =
∞

∑
k=1

ak(t)φk(r), (2.9)

where ak(t) are time-varying coefficients. In order to approximate the system of
(2.7) and (2.8) with a finite set of ODEs, we obtain a set of N equations by
substituting (2.9) into (2.7) and (2.8), multiplying the population balance with N
different weighting functions ψν(r) (that is, ν = 1, . . . ,N), and integrating over the
entire particle size spectrum. In order to obtain a finite dimensional model, the series
expansion of n(r, t) is truncated up to order N. The infinite dimensional system of
(2.7) reduces to the following finite set of ODEs:

∫ rmax

0
ψν (r)

N

∑
k=1

φk(r)
∂akN(t)

∂ t
dr =

N

∑
k=1

akN(t)
∫ rmax

0
ψν (r)

∂ (G(xN ,r)φk(r))
∂ r

dr,

+

∫ rmax

0
ψν(r)w

( N

∑
k=1

akN(t)φk(r),xN ,r

)
dr, ν = 1, . . . ,N

ẋN = f (xN)+ g(xN)u(t)+A
∫ rmax

0
a

( N

∑
k=1

akN(t)φk(r),r,xN

)
dr, (2.10)

where xN and akN are the approximations of x and ak obtained by an N-th order
truncation. From (2.10), it is clear that the form of the ODEs that describe the rate
of change of akN(t) depends on the choice of the basis and weighting functions,
as well as on N. The system of (2.10) was obtained from a direct application of
the method of weighted residuals (with arbitrary basis functions) to the system
of (2.7) and (2.8), and thus, may be of very high order in order to provide an
accurate description of the dominant dynamics of the particulate process model.
High-dimensionality of the system of (2.10) leads to complex controller design
and high-order controllers, which cannot be readily implemented in practice.
To circumvent these problems, we exploited the low-dimensional behavior of the
dominant dynamics of particulate processes and proposed an approach based on
the concept of inertial manifolds to derive low-order ODE systems that accurately
describe the dominant dynamics of the system of (2.10) [6]. This order reduction
technique initially employs singular perturbation techniques to construct nonlinear
approximations of the modes neglected in the derivation of the finite dimensional
model of (2.10) (i.e., modes of order N+1 and higher) in terms of the first N modes.
Subsequently, these steady-state expressions for the modes of order N+1 and higher
(truncated up to appropriate order) are used in the model of (2.10) (instead of setting
them to zero) and significantly improve the accuracy of the model of (2.10) without
increasing its dimension; details on this procedure can be found in [6].

It is important to note that the method of weighted residuals reduces to the
method of moments when the basis functions are chosen to be Laguerre polynomials
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and the weighting functions are chosen as ψν = rν . The moments of the particle size
distribution are defined as:

μν =

∫ ∞

0
rνn(r, t)dr, ν = 0, . . . ,∞ (2.11)

and the moment equations can be directly generated from the population balance
model by multiplying it by rν , ν = 0, . . . ,∞ and integrating from 0 to ∞. The
procedure of forming moments of the population balance equation very often leads
to terms that may not reduce to moments, terms that include fractional moments, or
to an unclosed set of moment equations. To overcome this problem, the particle size
distribution may be expanded in terms of Laguerre polynomials defined in L2[0,∞)
and the series solution using a finite number of terms may be used to close the
set of moment equations (this procedure has been successfully used for models of
crystallizers with fine traps used to remove small crystals [7]).

2.2.4 Model-Based Control Using Low-Order Models

2.2.4.1 Nonlinear Control

Low-order models can be constructed using the techniques described in the previous
section. We describe an application to the continuous crystallization process of
Sect. 2.1.1. First, the method of moments is used to derive the following infinite-
order dimensionless system from (2.1) for the continuous crystallization process:

dx̃0

dt
= −x̃0 +(1− x̃3)Dae−F/ỹ2

,

dx̃1

dt
= −x̃1 + ỹx̃0,

dx̃2

dt
= −x̃2 + ỹx̃1,

dx̃3

dt
= −x̃3 + ỹx̃2,

dx̃ν
dt

= −x̃ν + ỹx̃ν−1, ν = 4,5,6 . . . ,

dỹ
dt

=
1− ỹ− (α − ỹ)ỹx̃2

1− x̃3
, (2.12)

where x̃i and ỹ are the dimensionless i-th moment and solute concentration,
respectively, and Da and F are dimensionless parameters [6]. On the basis of the
system of (2.12), it is clear that the moments of order four and higher do not affect
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those of order three and lower, and moreover, the state of the infinite dimensional
system:

dx̃ν
dt

= −x̃ν + ỹx̃ν−1, ν = 4, . . . , (2.13)

is bounded when x3 and y are bounded, and it converges to a globally exponentially
stable equilibrium point when lim

t→∞
x3 = c1 and lim

t→∞
ỹ = c2, where c1 and c2 are

constants. This implies that the dominant dynamics (that is, dynamics associated
with eigenvalues that are close to the imaginary axis) of the process of (2.1) can be
adequately captured by the following fifth-order moment model:

dx̃0

dt
= −x̃0 +(1− x̃3)Dae−F/ỹ2

,

dx̃1

dt
= −x̃1 + ỹx̃0,

dx̃2

dt
= −x̃2 + ỹx̃1,

dx̃3

dt
= −x̃3 + ỹx̃2,

dỹ
dt

=
1− ỹ− (α − ỹ)ỹx̃2

1− x̃3
. (2.14)

The ability of the above fifth-order moment model to reproduce the dynamics,
and to some extent the solutions, of the distributed parameter model of (2.1) is
shown in Fig. 2.5, where the profiles of the total particle concentration generated by
the two models are compared (both models start from the same initial conditions).
Even though the discrepancy of the total particle concentration profiles predicted by
the two models increases with time (this is expected due to the open-loop instability
of the process), it is clear that the fifth-order moment model of (2.14) provides
a very good approximation of the distributed parameter model of (2.1), thereby
establishing that the dominant dynamics of the system of (2.1) are low dimensional
and motivating the use of the moment model for nonlinear controller design.

For the batch crystallization process, the following low-order model can be
derived from (2.3) using the method of moments:

dμ0

dt
=

(
1− 4

3
πμ3

)
k2e

− k3
(c/cs−1)2 e−

Eb
RT ,

dμ1

dt
= k1(c− cs)e−

Eg
RT μ0,

dμ2

dt
= 2k1(c− cs)e

− Eg
RT μ1,
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Fig. 2.5 Comparison of open-loop profiles of (a) crystal concentration, (b) total crystal size, and
(c) solute concentration obtained from the distributed parameter model and the moment model
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dμ3

dt
= 3k1(c− cs)e−

Eg
RT μ2,

dc
dt

=
−4π(c− cs)μ2(ρ − c)(

1− 4
3 πμ3

) ,

dT
dt

= −ρcΔHc

ρCp
4πk1(c− cs)e−

Eg
RT μ2 − UAc

ρCpV
(T −Tc), (2.15)

where Eg and Eb denote the activation energies for growth and nucleation,
respectively. The objective is to control the interplay between the particle nucleation
and growth rates such that a CSD with a larger average particle size is obtained at
the end of the batch run by manipulating the cooling water temperature.

Based on the low-order models, nonlinear finite-dimensional state and output
feedback controllers have been synthesized that guarantee stability and enforce
output tracking in the closed-loop finite dimensional system. It has also been
established that these controllers exponentially stabilize the closed-loop particulate
process model. The output feedback controller is constructed through a standard
combination of the state feedback controller with a state observer. Specifically, in
the case of the continuous crystallization example, the nonlinear output feedback
controller has the following form:

dω0

dt
= −ω0 +(1−ω3)Dae−F/ω2

4 +L0(h̃(x̃)− h̃(ω)),

dω1

dt
= −ω1 +ω4ω0 +L1(h̃(x̃)− h̃(ω)),

dω2

dt
= −ω2 +ω4ω1 +L2(h̃(x̃)− h̃(ω)),

dω3

dt
= −ω3 +ω4ω2 +L3(h̃(x̃)− h̃(ω)),

dω4

dt
=

1−ω4− (α −ω4)ω4ω2

1−ω3
+L4(h̃(x̃)− h̃(ω))

+
[β2Lg̃L f̃ h̃(ω)]−1

{
v−β0h̃(ω)−β1L f̃ h̃(ω)−β2L2

f̃
h̃(ω)

}

1−ω3
,

ū(t) = [β2Lg̃L f̃ h̃(ω)]−1
{

v−β0h̃(ω)−β1L f̃ h̃(ω)−β2L2
f̃ h̃(ω)

}
, (2.16)

where v is the set-point, β0, β1, β2 and L = [L0 L1 L2 L3 L4]
T are controller

parameters and h̃(ω) = ω0 or h̃(ω) = ω1.
The nonlinear controller of (2.16) was also combined with a PI controller (that

is, the term v−β0h̃(ω) was substituted by v−β0h̃(x̃)+
1
τ ′i

ξ , where ξ̇ = v− h̃(x̃),

ξ (0)= 0 and τ ′i is the integral time constant) to ensure offsetless tracking in the pres-
ence of constant uncertainty in process parameters. The practical implementation of
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the nonlinear controller of (2.16) requires online measurements of the controlled
outputs x̃0 or x̃1; in practice, such measurements can be obtained by using, for
example, light scattering [3, 55]. In (2.16), the feedback controller is synthesized
via geometric control methods and the state observer is an extended Luenberger-
type observer [6].

Several simulations have been performed in the context of the continuous crys-
tallizer process model presented before to evaluate the performance and robustness
properties of the nonlinear controllers designed based on the reduced order models,
and to compare them with the ones of a PI controller. In all the simulation runs, the
initial condition:

n(r,0) = 0.0, c(0) = 990.0 kg/m3

was used for the process model of (2.1) and (2.2) and the finite difference method
with 1,000 discretization points was used for its simulation. The crystal concentra-
tion, x̃0, was considered to be the controlled output and the inlet solute concentration
was chosen to be the manipulated input. Initially, the set-point tracking capability of
the nonlinear controller was evaluated under nominal conditions for a 0.5 increase
in the value of the set-point.

Figure 2.6 shows the closed-loop output (left plot) and manipulated input (right
plot) profiles obtained by using the nonlinear controller (solid lines). For the sake of
comparison, the corresponding profiles under proportional-integral (PI) control are
also included (dashed lines); the PI controller was tuned so that the closed-loop
output response exhibits the same level of overshoot to the one of the closed-
loop output under non-linear control. Clearly, the nonlinear controller drives the
controlled output to its new set-point value in a significantly shorter time than the
one required by the PI controller, while both controlled outputs exhibit very similar
overshoot. For the same simulation run, the evolution of the closed-loop profile and
the final steady-state profile of the CSD are shown in Fig. 2.7. An exponentially
decaying CSD is obtained at the steady state. The reader may refer to [6] for
extensive simulation results.

2.2.4.2 Hybrid Predictive Control

In addition to handling nonlinear behavior, an important control problem is to
stabilize the crystallizer at an unstable steady-state (which corresponds to a desired
PSD) using constrained control action. Currently, the achievement of high perfor-
mance, under control and state constraints, relies to a large extent on the use of
model predictive control (MPC) policies. In this approach, a model of the process
is used to make predictions of the future process evolution and compute control
actions, through repeated solution of constrained optimization problems, which
ensure that the process state variables satisfy the imposed limitations. However,
the ability of the available model predictive controllers to guarantee closed-loop
stability and enforce constraint satisfaction is dependent on the assumption of
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Fig. 2.6 (a) Closed-loop output and (b) manipulated input profiles under nonlinear and PI control,
for a 0.5 increase in the set-point (x̃0 is the controlled output) [6]

feasibility (i.e., existence of a solution) of the constrained optimization problem.
This limitation strongly impacts the practical implementation of the MPC policies
and limits the a priori (i.e., before controller implementation) characterization
of the set of initial conditions starting from where the constrained optimization
problem is feasible and closed-loop stability is guaranteed. This problem typically
results in the need for extensive closed-loop simulations and software verification
(before online implementation) to search over the whole set of possible initial
operating conditions that guarantee stability. This in turn can lead to prolonged
periods for plant commissioning. Alternatively, the lack of a priori knowledge of
the stabilizing initial conditions may necessitate limiting process operation within a
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distribution (bottom) under nonlinear control (x̃0 is the controlled output) [6]

small conservative neighborhood of the desired set-point in order to avoid extensive
testing and simulations. Given the tight product quality specifications, however,
both of these two remedies can impact negatively on the efficiency and profitability
of the process by limiting its operational flexibility. Lyapunov-based analytical
control designs allow for an explicit characterization of the constrained stability
region [17, 18, 47]; however, their closed-loop performance properties cannot be
transparently characterized.

To overcome these difficulties, we recently developed [20] a hybrid predictive
control structure that provides a safety net for the implementation of predictive
control algorithms. The central idea is to embed the implementation of MPC within
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the stability region of a bounded controller and devise a set of switching rules
that orchestrate the transition from MPC to the bounded controller in the event
that MPC is unable to achieve closed-loop stability (e.g., due to inappropriate
choice of the horizon length, infeasibility, or computational difficulties). Switching
between the two controllers allows reconciling the tasks of optimal stabilization of
the constrained closed-loop system (through MPC) with that of computing a priori
the set of initial conditions for which closed-loop stability is guaranteed (through
Lyapunov-based [17, 18] bounded nonlinear control).

We demonstrated the application of the hybrid predictive control strategy to the
continuous crystallizer of (2.1) and (2.2). The control objective was to suppress the
oscillatory behavior of the crystallizer and stabilize it at an unstable steady state that
corresponds to a desired PSD by manipulating the inlet solute concentration. To
achieve this objective, measurements or estimates of the first four moments and of
the solute concentration are assumed to be available. Subsequently, the proposed
methodology was employed for the design of the controllers using a low-order
model constructed by using the method of moments. We compared the hybrid
predictive control scheme, with an MPC controller designed with a set of stabilizing
constraints and a Lyapunov-based nonlinear controller.

In the first set of simulation runs, we tested the ability of the MPC controller with
the stability constraints to stabilize the crystallizer starting from the initial condition
x(0) = [0.066 0.041 0.025 0.015 0.560]′, corresponding to the dimensionless
moments of the CSD as well as the dimensionless concentration of the solute in the
crystallizer [60]. The result is shown by the solid lines in Fig. 2.8a–e where it is seen
that the predictive controller, with a horizon length of T = 0.25, is able to stabilize
the closed-loop system at the desired equilibrium point. Starting from the initial
condition x(0) = [0.033 0.020 0.013 0.0075 0.570]′, however, the MPC controller
with the stability constraints yields no feasible solution. If the stability constraints
are relaxed to make the MPC feasible, we see from the dashed lines in Fig. 2.8a–e
that the resulting control action cannot stabilize the closed-loop system, and leads
to a stable limit cycle. On the other hand, the bounded controller is able to stabilize
the system from both initial conditions (this was guaranteed because both initial
conditions lied inside the stability region of the controller). The state trajectory
starting from x(0) = [0.033 0.020 0.013 0.0075 0.570]′ is shown in Fig. 2.8a–e with
the dotted profile. This trajectory, although stable, presents slow convergence to the
equilibrium as well as a damped oscillatory behavior that the MPC does not show
when it is able to stabilize the system.

When the hybrid predictive controller is implemented from the initial condition
x(0) = [0.033 0.020 0.013 0.0075 0.570]′, the supervisor detects initial infeasibility
of MPC and implements the bounded controller in the closed loop. As the closed-
loop states evolve under the bounded controller and get closer to the desired
steady state, the supervisor finds (at t = 5.8 h) that the MPC becomes feasible and,
therefore, implements it for all future times. Note that despite the “jump” in the
control action profile as we switch from the bounded controller to MPC at t =
5.8 h, (see the difference between dotted and dash-dotted profiles in Fig. 2.8f), the
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Fig. 2.8 Continuous crystallizer example: closed-loop profiles of the dimensionless crystallizer
moments (a–d), the solute concentration in the crystallizer (e) and the manipulated input (f) under
MPC with stability constraints (solid lines), under MPC without stability constraints (dashed lines),
under the bounded controller (dotted lines), and using the hybrid predictive controller (dash-dotted
lines) [60]. Note the different initial states

moments of the PSD in the crystallizer continue to evolve smoothly (dash-dotted
lines in Fig. 2.8a–e). The supervisor finds that MPC continues to be feasible and
is implemented in closed-loop to stabilize the closed-loop system at the desired
steady state. Compared with the simulation results under the bounded controller, the
hybrid predictive controller (dash-dotted lines) stabilizes the system much faster,
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and achieves a better performance, reflected in a lower value of the performance
index (0.1282 vs 0.1308). The manipulated input profiles for the three scenarios are
shown in Fig. 2.8f.

2.2.4.3 Predictive Control of Size Distribution in a Batch Protein Crystallizer

In batch crystallization, the main objective is to achieve a desired particle size
distribution at the end of the batch and to satisfy state and control constraints during
the whole batch run. Significant previous work has focused on CSD control in batch
crystallizers, e.g., [55,70]. In [52], a method was developed for assessing parameter
uncertainty and studied its effects on the open-loop optimal control strategy, which
maximized the weight mean size of the product. To improve the product quality
expressed in terms of the mean size and the width of the distribution, an online
optimal control methodology was developed for a seeded batch cooling crystallizer
[72]. In these previous works, most efforts were focused on the open-loop optimal
control of the batch crystallizer, i.e., the optimal operating condition was calculated
offline based on mathematical models. The successful application of such a control
strategy relies, to a large extent, on the accuracy of the models. Furthermore, an
open-loop control strategy may not be able to manipulate the system to follow the
optimal trajectory because of the ubiquitous existence of modeling error. Motivated
by this, we developed a predictive feedback control system to maximize the volume-
averaged tetragonal lysozyme crystal size (i.e., μ4/μ3 where μ3,μ4 are the third and
fourth moments of the CSD; see (2.11)) by manipulating the jacket temperature,
Tj [60]. The principle moments are calculated from the online measured CSD, n,
which can be obtained by measurement techniques such as the laser light scattering
method. The concentration and crystallizer temperature are also assumed to be
measured in real time. In the closed-loop control structure, a reduced-order moments
model was used within the predictive controller for the purpose of prediction. The
main idea is to use this model to obtain a prediction of the state of the process at the
end of the batch operation, tf, from the current measurement at time t. Using this
prediction, a cost function that depends on this value is minimized subject to a set
of operating constraints. Manipulation input limitations and constraints on supersat-
uration and crystallizer temperature are incorporated as input and state constraints
on the optimization problem. The optimization algorithm computes the profile of
the manipulated input Tj from the current time until the end of the batch operation
interval, then the current value of the computed input is implemented on the process,
and the optimization problem is resolved and the input is updated each time a
new measurement is available (receding horizon control strategy). The optimization
problem that is solved at each sampling instant takes the following form:

min
Tj

−μ4(tf)
μ3(tf)

such that
dμ0

dt
= kaC exp

(
− kb

σ2

)
,
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dμi

dt
= ikgσgμi−1(t), i = 1, ...,4,

dC
dt

=−24ρkvkgσgμ2(t),

dT
dt

=− UA
MCp

(T −Tj),

Tmin ≤ T ≤ Tmax,

Tj min ≤ Tj ≤ Tj max,

σmin ≤ σ ≤ σmax,∥∥∥∥dCs

dt

∥∥∥∥≤ k1, (2.17)

n(0, t)≤ nfine,∀ t ≥ tf/2, (2.18)

where Tmin and Tmax are the constraints on the crystallizer temperature, T , and are
specified as 4◦C and 22◦C, respectively. Tj min and Tj max are the constraints on
the manipulated variable, Tj, and are specified as 3◦C and 22◦C, respectively. The
constraints on the supersaturation σ are σmin = 1.73 and σmax = 2.89. The constant,
k1, (chosen to be 0.065mg/ml·min) specifies the maximum rate of change of the
saturation concentration Cs. nfine is the largest allowable number of nuclei at any
time instant during the second half of the batch run, and is set to 5/μ m/ml. In
the simulation, the sampling time is 5 min, while the batch process time tf is 24 h.
The optimization problem is solved using sequential quadratic programming (SQP).
A second-order accurate finite difference scheme with 3,000 discretization points
is used to obtain the solution of the population balance model of (2.3). Referring
to the predictive control formulation of (2.17) and (2.18), it is important to note
that previous work has shown that the objective of maximizing the volume-
averaged crystal size can result in a large number of fines (crystals whose size
is very small compared to the mean crystal size) in the final product [49].
To enhance the ability of the predictive control strategy to maximize the perfor-
mance objective while avoiding the formation of a large number of fines in the final
product, the predictive controller of (2.17) and (2.18) includes a constraint (2.18)
on the number of fines present in the final product. Specifically, the constraint of
(2.18), by restricting the number of nuclei formed at any time instant during the
second half of the batch run limits the fines in the final product. Note that predictive
control without a constraint on fines can result in a product with a large number
of fines (see Fig. 2.9a), which is undesirable. The implementation of the predictive
controller with the constraint of (2.18), designed to reduce the fines in the product,
results in a product with much less fines while still maximizing the volume-averaged
crystal size (see Fig. 2.9b). The reader may refer to [60,62] for further results on the
performance of the predictive controller and comparisons with the performance of
two other open-loop control strategies, Constant Temperature Control (CTC) and
Constant Supersaturation Control (CSC).
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Fig. 2.9 Evolution of particle size distribution under (a) predictive control without a constraint on
fines, and (b) predictive control with a constraint on fines [62]

2.2.4.4 Fault-Tolerant Control of Particulate Processes

Compared with the significant and growing body of research work on feedback
control of particulate processes, the problem of designing fault-tolerant control
systems for particulate processes has not received much attention. This is an
important problem given the vulnerability of automatic control systems to faults
(e.g., malfunctions in the control actuators, measurement sensors, or process
equipment), and the detrimental effects that such faults can have on the process
operating efficiency and product quality. Given that particulate processes play a
key role in a wide range of industries (e.g., chemical, food, and pharmaceutical)
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where the ability to consistently meet stringent product specifications is critical to
the product utility, it is imperative that systematic methods for the timely diagnosis
and handling of faults be developed to minimize production losses that could result
from operational failures. Motivated by these considerations, recent research efforts
have started to tackle this problem by bringing together tools from model-based
control, infinite-dimensional systems, fault diagnosis, and hybrid systems theory.
For particulate processes modeled by population balance equations with control
constraints, actuator faults, and a limited number of process measurements, a fault-
tolerant control architecture that integrates model-based fault detection, feedback
and supervisory control has recently been developed in [19]. The architecture,
which is based on reduced-order models that capture the dominant dynamics of
the particulate process, consists of a family of control configurations, together with
a fault detection filter and a supervisor. For each configuration, a stabilizing output
feedback controller with well-characterized stability properties is designed through
a combination of a state feedback controller and a state observer that uses the
available measurements of the principal moments of the PSD and the continuous-
phase variables to provide appropriate state estimates. A fault detection filter that
simulates the behavior of the fault-free, reduced-order model is then designed, and
its discrepancy from the behavior of the actual process state estimates is used as a
residual for fault detection. Finally, a switching law based on the stability regions of
the constituent control configurations is derived to reconfigure the control system in
a way that preserves closed-loop stability in the event of fault detection. Appropriate
fault detection thresholds and control reconfiguration criteria that account for model
reduction and state estimation errors were derived for the implementation of the
control architecture on the particulate process. The methodology was successfully
applied to a continuous crystallizer example using computer simulations where the
control objective was to stabilize an unstable steady state and achieve a desired CSD
in the presence of constraints and actuator faults.

In addition to the synthesis of actuator fault-tolerant control systems for par-
ticulate processes, recent research efforts have also investigated the problem of
preserving closed-loop stability and performance of particulate processes in the
presence of sensor data losses [24]. Typical sources of sensor data losses include
measurement sampling losses, intermittent failures associated with measurement
techniques, as well as data packet losses over transmission lines. In this work,
two representative particulate process examples – a continuous crystallizer and a
batch protein crystallizer – were considered. In both examples, feedback control
systems were first designed on the basis of low-order models and applied to
the population balance models to enforce closed-loop stability and constraint
satisfaction. Subsequently, the robustness of the control systems in the presence
of sensor data losses was investigated using a stochastic formulation developed
in [51] that models sensor failures as a random Poisson process. In the case of
the continuous crystallizer, a Lyapunov-based nonlinear output feedback controller
was designed and shown to stabilize an open-loop unstable steady state of the
population balance model in the presence of input constraints. Analysis of the
closed-loop system under sensor malfunctions showed that the controller is robust
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with respect to significant sensor data losses, but cannot maintain closed-loop
stability when the rate of data losses exceeds a certain threshold. In the case of
the batch crystallizer, a predictive controller was designed to obtain a desired CSD
at the end of the batch while satisfying state and input constraints. Simulation results
showed how constraint modification in the predictive controller formulation can
assist in achieving constraint satisfaction under sensor data losses.

2.2.4.5 Nonlinear Control of Aerosol Reactors

The crystallization process examples discussed in the previous section share the
common characteristic of having two independent variables (time and particle
size). In such a case, order reduction, for example with the method of moments,
leads to a set of ODEs in time as a reduced-order model. This is not the case,
however, when three or more independent variables (time, particle size, and space)
are used in the process model. An example of such a process is the aerosol flow
reactor presented in the Introduction section. The complexity of the partial integro-
differential equation model of (2.6) does not allow its direct use for the synthesis of
a practically implementable nonlinear model-based feedback controller for spatially
inhomogeneous aerosol processes. Therefore, we developed [33–35] a model-based
controller design method for spatially inhomogeneous aerosol processes, which is
based on the experimental observation that many aerosol size distributions can be
adequately approximated by lognormal functions. The proposed control method can
be summarized as follows:

1. Initially, the aerosol size distribution is assumed to be described by a lognormal
function and the method of moments is applied to the aerosol population balance
model of (2.6) to compute a hyperbolic partial differential equation (PDE)
system (where the independent variables are time and space) that describes the
spatiotemporal behavior of the three leading moments needed to exactly describe
the evolution of the lognormal aerosol size distribution.

2. Then nonlinear geometric control methods for hyperbolic PDEs [10] are applied
to the resulting system to synthesize nonlinear distributed output feedback
controllers that use process measurements at different locations along the length
of the process to adjust the manipulated input (typically, wall temperature), in
order to achieve an aerosol size distribution with desired characteristics (e.g.,
geometric average particle volume).

We carried out an application of this nonlinear control method to an aerosol
flow reactor, including nucleation, condensation, and coagulation, used to produce
NH4Cl particles [33] and a titania aerosol reactor [34]. Specifically, for an aerosol
flow reactor used to produce NH4Cl particles, the following chemical reaction takes
place NH3+HCl → NH4Cl where NH3, HCl are the reactant species and NH4Cl
is the monomer product species. Under the assumption of lognormal aerosol size
distribution, the mathematical model that describes the evolution of the first three
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moments of the distribution, together with the monomer (NH4Cl) and reactant
(NH3, HCl) concentrations and reactor temperature takes the form:

∂N
∂θ

= −vzl
∂N
∂ z̄

+ I′ − ξ N2,

∂V
∂θ

= −vzl
∂V
∂ z̄

+ I′k∗+η(S− 1)N,

∂V2

∂θ
= −vzl

∂V2

∂ z̄
+ I′k∗2 + 2ε(S− 1)V + 2ζV 2,

∂S
∂θ

= −vzl
∂S
∂ z̄

+CC̄1C̄2 − I′k∗ −η(S− 1)N,

∂C̄1

∂θ
= −vzl

∂C̄1

∂ z̄
−A1C̄1C̄2,

∂C̄2

∂θ
= −vzl

∂C̄2

∂ z̄
−A2C̄1C̄2,

∂ T̄
∂θ

= −vzl
∂ T̄
∂ z̄

+BC̄1C̄2T̄ +ET̄ (T̄w − T̄ ), (2.19)

where θ is the dimensionless time, z̄ is the dimensionless length, vzl is the dimen-
sionless velocity, I′ is the dimensionless nucleation rate, S is the saturation ratio,
C̄1 and C̄2 are the dimensionless concentrations of NH3 and HCl, respectively, T̄ , T̄w

are the dimensionless reactor and wall temperatures, respectively, and A1,A2,B,C,E
are dimensionless quantities [33]. The controlled output is the geometric average
particle volume in the outlet of the reactor, and the manipulated input is the wall
temperature.

Figure 2.10 displays the steady-state profile of the dimensionless total particle
concentration, N, as a function of reactor length. As expected, N increases very
fast close to the inlet of the reactor (approximately, the first 3% of the reactor)
due to a nucleation burst, and then, it slowly decreases in the remaining part of
the reactor due to coagulation. Even though coagulation decreases the total number
of particles, it leads to the formation of bigger particles, and thus, it increases the
geometric average particle volume, vg. We formulate the control problem as the one
of controlling the geometric average particle volume in the outlet of the reactor,
vg(1,θ ), (vg(1,θ ) is directly related to the geometric average particle diameter,
and hence, it is a key product characteristic of industrial aerosol processes) by
manipulating the wall temperature, i.e.:

y(θ ) = C vg = vg(1,θ ), u(θ ) = T̄w(θ )− T̄ws, (2.20)

where C (·) =
∫ 1

0
δ (z̄−1)(·)dz and T̄ws = Tws/To = 1. Since coagulation is the main

mechanism that determines the size of the aerosol particles, we focus on controlling
the part of the reactor where coagulation occurs. Therefore, the wall temperature is
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Fig. 2.10 Steady-state profile of dimensionless particle concentration

assumed to be equal to its steady-state value in the first 3.5% of the reactor (where
nucleation mainly occurs), and it is adjusted by the controller in the remaining part
of the reactor (where coagulation takes place).

The model of (2.19) was used as the basis for the synthesis of a nonlinear con-
troller utilizing the above-mentioned control method. For this model, σ (geometric
standard deviation of particle number distribution) was found to be equal to 2 and the
necessary controller was synthesized using the nonlinear distributed state feedback
formula developed in [10] and is of the form:

u =

[
C γσ Lg

(
n

∑
j=1

∂x j

∂ z̄
La j +Lf

)
h(x)b(z̄)

]−1

{
ysp −C h(x)−

2

∑
ν=1

C γν

(
n

∑
j=1

∂x j

∂ z̄
La j +Lf

)ν

h(x)

}
, (2.21)

where γ1 = 580 and γ2 = 1.6× 105 to enforce a slightly underdamped response.
Two simulation runs were performed to evaluate the set-point tracking capabil-

ities of the nonlinear controller and compare its performance with a proportional-
integral controller. In both simulation runs, the aerosol reactor was initially assumed
to be at steady-state and a 5% increase in the set-point value of vg(1,0) was imposed
at t = 0s (i.e., ysp = 1.05vg(1,0)). Figure 2.11 (top plot – solid line) shows the profile
of the controlled output which is the mean particle volume at the outlet of the reactor
vg(1, t), while Fig. 2.11 (bottom plot – solid line) displays the corresponding profile
of the manipulated input which is the wall temperature. The nonlinear controller
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Fig. 2.11 (a) Closed-loop profiles of scaled mean particle volume in the outlet of the reactor under
proportional-integral and nonlinear controllers. (b) Manipulated input profiles for proportional-
integral and nonlinear controllers [33]

of (2.21) regulates vg(1, t) successfully to its new set-point value. For the sake of
comparison, we also implemented on the process a proportional-integral controller;
this controller was tuned so that the time at which the closed-loop output needs to
reach the final steady state is the same as for the closed-loop output under nonlinear
control. The profiles of the controlled output and manipulated input are shown in
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Fig. 2.11 (dashed lines show the corresponding profiles for the proportional-integral
controller). It is clear that the nonlinear controller outperforms the proportional-
integral controller.

2.3 Multiscale Modeling and Control of HVOF Thermal
Spray Coating Processes

2.3.1 Multiscale Modeling of Coating Microstructure

The past decade has witnessed a shift of synthesis to processing in nanotechnology
research, i.e. the manufacture of functional coatings and bulk structures using nanos-
tructured powders [5]. One example is HVOF thermal spray processing of functional
coatings from nanostructured agglomerate powders. The nanostructured coatings
prepared by HVOF are extensively used in many industries as thermal-barrier
and wear-resistant surface layers to extend product life, increase performance, and
reduce production and maintenance costs. Thermal spray has also been a molding
method for the fabrication of micro-components [69].

A representative diagram of the HVOF thermal spray process is shown in
Fig. 2.12. The high-pressure combustion of a fuel (typically hydrogen, propane, or
kerosene) with oxygen generates a supersonic jet, which propels and heats up the
powder of particles added to the gas stream. The powder particles are accelerated,
softened in the gas stream, and deformed on the substrate, forming a dense coating.

Because the highly coupled transport phenomena of the HVOF thermal spray
cannot be fully revealed by experimental studies, mathematical modeling has been
an excellent complement in order to provide system-level understanding of the un-
derlying physics of the HVOF thermal spray process to guide optimal system design
and operation [14, 53]. Moreover, to fabricate coatings of a consistent quality, the
compensation of feed disturbances and process variability during real-time process

Cooling Water

Air
Oxygen and

Fuel

Powder and N2

Prepared Substrate

Spray Stream

Spray Deposit

Fig. 2.12 Schematic of a representative HVOF thermal spray process
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Fig. 2.13 Multiscale character of the HVOF thermal spray process [44]

operation becomes essential. This motivates the development and implementation
of real-time control systems in the HVOF thermal spray process to suppress
variations in the particle characteristics at the point of impact on the substrate. The
major challenge in this problem is the development of multiscale models linking
the macroscopic scale process behavior (i.e., gas dynamics and particle inflight
behavior) and the microscopic scale process characteristics (evolution of coating
microstructure), and the integration of models, measurements, and control theory
to develop measurement/model-based control strategies. The multiscale character
of the HVOF thermal spray process is shown in Fig. 2.13. The microstructure of
HVOF-sprayed coatings results from the deformation, solidification, and sintering
of the deposited particles, which are dependent on the substrate properties (e.g.,
substrate temperature) as well as the physical and chemical state (e.g., temperature,
velocity, melting ratio, and oxidant content) of the particles at the point of impact
on the substrate. On the other hand, the particle inflight characteristics are coupled
with the gas dynamics, which can be manipulated by adjusting operating conditions
such as the gas flow rates of fuel and oxygen. While the macroscopic thermal/flow
field can be readily described by continuum type differential equations governing
the compressible two-phase flow, the process of particle deposition is stochastic
and discrete in nature, and thus, it can be best described by stochastic simulation
methods [36]. By manipulating macro-scale operating conditions such as gas feed
flow rates, one can control the coating microstructure which determines the coating
mechanical and physical properties.

In the past several years, we developed a multiscale computational framework
for the HVOF thermal spray processing of nanostructured coatings [40–46, 61].
The multiscale process model encompasses gas dynamics of the supersonic re-
acting flow, evolution of particle velocity, temperature and molten state during
flight, and stochastic growth of coating microstructure, as shown in Fig. 2.14.
The modeling work demonstrates that the coating microstructure, porosity, and
roughness, as well as the deposition efficiency, are highly dependent on the particle
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Fig. 2.14 Multiscale modeling of the HVOF thermal spray process (based on [44, 61])

characteristics (primarily velocity, temperature, and molten state), which is consis-
tent with experimental observations [26, 28, 29]. For example, the effect of particle
melting degree on the coating microstructure is shown in Fig. 2.15 [42]. When all
the particles are fully melted, which is typical in a plasma spray, an ideal lamellar
microstructure is formed. However, under normal HVOF processing conditions,
many particles might be partially melted or even unmelted [44,71]. When a partially
melted particle lands on the substrate and deforms, the resulting splat typically has
a “fried-egg” shape which features a nearly hemispherical core located in the center
of a thin disk [31]. As a result, a different coating microstructure is formed which
deviates from the ideal lamellar microstructure. The fact that the particles are not
necessarily fully melted to form a coating with excellent microstructure is very
important in the processing of nanostructured coatings because the nanostructure in
the powder particles could be destroyed if the particles are heated too much and go
through a phase change during flight. However, if the particle melting degree is very
low, unmelted particles may bounce off the substrate, resulting in a high-porosity
coating with a low deposition efficiency. In addition to particle melting degree,
the model also predicts that the higher the particle impact velocity, the higher the
flattening ratio. As a result, the coating porosity is lower and the coating is denser.

2.3.2 Control of Particle Velocity and Temperature
in HVOF Thermal Spray

Based on the above analysis, one should suppress the variation in the particle
characteristics upon impact on the substrate to enhance the consistency of the
coating quality. Both modeling and experimental studies [44, 65, 67] reveal that
the particle velocity and temperature (or melting degree) at impact with the
substrate can be almost independently adjusted by manipulating the pressure in the
combustion chamber and the fuel/oxygen ratio. As shown in Fig. 2.16, when the
combustion pressure increases from 5 bar to 15 bar with a fixed equivalence ratio
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Fig. 2.15 Simulated microstructure of coatings formed by fully melted particles and particles with
mixed molten states [42]

(or the fuel/oxygen ratio divided by its stoichiometric value), the gas momentum
flux (ρv2

g), which is roughly proportional to the drag force for particle motion, is
almost tripled. However, the gas temperature increases by about 4% only. When
the equivalence ratio varies from 0.5 to 1.5 with a fixed chamber pressure, the gas
temperature varies about 12% from its lowest value to the peak occurring at an
equivalence ratio around 1.2. However, the gas momentum flux remains almost the
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Fig. 2.16 Influence of pressure and fuel/oxygen ratio on gas momentum flux and gas temperature
[44]

same in the entire range. It is worth noting that the window for particle temperature
control in the HVOF thermal spray is narrower than in the plasma spray where the
particle temperature can be adjusted in a wider range by manipulating the torch
current [21].
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Based on the model predictions and available experimental observations, the
control problem for the HVOF process is formulated as the one of regulating
the volume-based averages of velocity and temperature (or melting degree) of
particles at impact on the substrate by manipulating the flow rates of fuel and
oxygen at the entrance of the HVOF thermal spray gun. The particle sensing
including temperature, velocity, and size can be provided by a variety of online
diagnostic techniques developed by different groups [22, 27, 66]. The manipulation
of combustion pressure and equivalence ratio is realized by adjusting the flow rate
of fuel, u1(t), and oxygen, u2(t) (see (2.23) below). Note that the chamber pressure
is dependent on the flow rates of fuel and oxygen as follows:

ṁ =
p0√
T0

Ath

√√√√ γM̄pr

Rg

(
2

γ + 1

) γ+1
γ−1

, (2.22)

where ṁ is the total mass flow rate, Ath is the cross-sectional area at the throat (where
the area is the minimum), Rg is the molecular gas constant, M̄pr is the average
molecular weight of the combustion products, and T0 and p0 are the stagnation
temperature and stagnation pressure in the combustion chamber, respectively.

Owing to the almost decoupled nature of the manipulated input/controlled output
pairs, two proportional-integral (PI) controllers were proposed in [41,44] to regulate
the process. Specifically, the controllers have the following form:

ζ̇i = yspi
− yi, ζi(0) = 0, i = 1,2

u′i = Kci

[
(yspi

− yi)+
1

τci

ζi

]
+ u′0i

, i = 1,2

{u1,u2} = f (u′1,u
′
2), (2.23)

where yspi
is the desired set-point value and yi is the value of the output obtained

from the measurement system (y1 is the volume-based average of particle velocity
and y2 is the volume-based average of particle temperature or melting degree), u′1 is
the combustion pressure and u′2 is the equivalence ratio. f is the mapping between
the flow rates and the chamber pressure as well as the equivalence ratio. Kci is the
proportional gain and τci is the integral time constant. If the gas phase measurement
is available, a model-based scheme can be used to estimate the particle properties
through the dynamic particle-inflight model [45].

Closed-loop simulations under the control scheme of (2.23) have been carried
out to demonstrate the effectiveness of the proposed control formulation [46]. It
is assumed in the computer simulations that the responses of gas and particle
dynamics to the change of gas flow rates are very fast, which is reasonable for
such a supersonic flow. With this simplification, it has been demonstrated that the
feedback controllers are very effective with respect to set-point changes in both
particle velocity and temperature (i.e., 5% increase in both particle velocity and
melting degree). As seen in Fig. 2.17, both the flow rates of oxygen and fuel increase
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Fig. 2.17 Profiles of (a) controlled outputs (average particle velocity and melting ratio) and
(b) manipulated inputs (flow rates of propylene and oxygen) under the request of 5% increase
in particle velocity and 5% increase in melting ratio [46]

in order to have a higher particle velocity. However, the temperature increases and
exceeds its desired value due to the increased chamber pressure. As a result, the rate
of change of oxygen flow becomes slower than the one of fuel after a short period of
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Fig. 2.18 Profiles of (a) controlled outputs (average particle velocity and melting ratio) and
(b) manipulated inputs (flow rates of propylene and oxygen) in the presence of 10% decrease
in spray distance [46]

time, which lowers the equivalence ratio and drives the temperature down to its set
point. Figure 2.18 demonstrates the response of the feedback controller in order to
maintain the same particle velocity and temperature levels in the presence of a 10%
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decrease in the spray distance (process disturbance). The particle velocity does not
change much while the particle temperature increases significantly. Under feedback
control, the manipulated inputs adjust to drive the process outputs to their original
steady-state values in 10 s, which demonstrates the robustness of the controller.

To the best knowledge of the authors, no experimental implementation of HVOF
thermal spray control has been reported. Feedback control of average particle
temperature and velocity in plasma spray has been studied by Fincke et al. [21].
With the development of fast and reliable online gas and particle sensing and
diagnostic tools by companies and institutions (e.g., Idaho National Laboratory,
Tecnar Automation, Canada, and Oseir Ltd., Finland), the demonstration of HVOF
spray control should be expected in the near future.

2.4 Conclusions

Control of particulate processes systems is a cross-disciplinary and rapidly growing
research area that brings together fundamental modeling, numerical simulation,
nonlinear dynamics, and control theory. This chapter presents recent advances
in systematic methods for the design of easy-to-implement nonlinear feedback
controllers for broad classes of particulate processes. It is expected that feedback
control will play an important role in the synthesis and processing of nano- and
micro-size particles with the ever-increasing research and development in advanced
materials and semiconductor manufacturing, nanotechnology, and biotechnology.
The reader may refer to [11] for a detailed discussion on future problems on control
of particulate processes.
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