Chapter 2
Hardware Implementation of Hash Functions

Zhijie Shi, Chujiao Ma, Jordan Cote, and Bing Wang

2.1 Introduction to Cryptographic Hash Functions

Hash algorithm is a type of cryptographic primitives. Hash algorithms take as input
a message of arbitrary length, and produce a hash or message digest as output. This
process can be denoted as:
h=H (M),

where M is the input message and / is the hash generated by the hash algorithm H.
Normally, the size of the hash 7 is fixed by the algorithm. For a cryptographic hash
function, the hash length should be large enough to prevent an attack from finding
two or more messages that generate the same hash. Currently, the most commonly
used hash algorithms are MDS5 [1] and SHA-2 [2].

In general, the cryptographic hash algorithms should have the following
properties:

1. Preimage resistance. Given a hash £, it should be difficult to find a message M
such that h = H(M). This is part of the one-way property. It is easy to compute
the hash from a message, but it is extremely difficult to deduce a message from
the hash.

2. Second preimage (or 2nd-preimage) resistance. Given a message M|, it is
difficult to find another message M, such that M| and M, generate the same
hash. Any change in the input results in changes, often wild changes, in the hash.

3. Collision resistance. It should be difficult to find two messages M; and M, such
that M, 75 M, but H(Ml) = H(Mz)

A hash function that is both preimage resistant and 2nd-preimage resistant is called a
one-way hash function. Note that preimage resistance does not imply 2nd-preimage

Z. Shi (<) - C. Ma - J. Cote - B. Wang

Computer Science and Engineering Department, University of Connecticut, Storrs, CT, USA
e-mail: zshi@engr.uconn.edu; chujiao.ma@engr.uconn.edu; cote @engr.uconn.edu;
bing@engr.uconn.edu

M. Tehranipoor and C. Wang (eds.), Introduction to Hardware Security and Trust, 27
DOI 10.1007/978-1-4419-8080-9_2, © Springer Science+Business Media, LLC 2012

zshi@engr.uconn.edu
chujiao.ma@engr.uconn.edu
cote@engr.uconn.edu
bing@engr.uconn.edu

28 Z. Shi et al.

Message with padding

Block 1 | Block 2 | Block3 |®@ ®@ @ ® | Block n
Initial
Value > ¥ Hé‘é« Hash

Fig. 2.1 The Merkle-Damgard model of hash functions

resistance, and vice versa. If a hash function is collision resistant (and thus also
2nd-preimage resistant), it is a collision resistant hash function (CRHF). Although
collision resistance does not guarantee preimage resistance, most CRHFsS in practice
appear to be preimage resistant [3].

2.1.1 Construction of Hash Functions

Hash function can be constructed in several ways. The Merkle-Damgard model,
illustrated in Fig. 2.1, has shown good properties over the years [4], and has been
adopted in the design of many successful hash functions such as MDS5 and SHA-2.
In this model, the message is padded and divided into blocks of uniform length.
The blocks are then processed sequentially with a compression function F'. Starting
with an initial hash, F repeatedly generates a new intermediate hash value from the
previous one and a new message block. The output of the final compression function
is the hash of the message. The Merkle-Damgard model makes it easy to manage
large inputs and produce a fixed-length output. The security of this scheme relies on
the security of the compression function F'. It can be proven that if the compression
F is collision resistant then the hash function constructed from the Merkle-Damgard
model is also collision resistant [4].

MD5, SHA-2, and their variants are the most popular hash algorithms. They
follow the Merkle-Damgard model and use logic operations such as AND, OR,
and XOR in their compression functions. Recently, collision pairs have been found
for MDS5, SHA-0 and SHA-1 [5-8], making these algorithms vulnerable to attacks
because they do not have the collision resistance property. Although no successful
attacks have been reported for algorithms in the SHA-2 family, e.g., SHA-256
and SHA-512, these algorithms may be vulnerable to the same type of attacks
because they are designed with similar principles: a Merkle-Damgard model with a
compression function consisting of logic operations. Thus, it is imperative to study
new compression functions and even new construction models for fast and secure
hash functions. In fact, National Institute of Standards and Technology (NIST) held
a public competition to select new hash algorithm, SHA-3, starting from 2007 [9].

2 Hardware Implementation of Hash Functions 29

SHA-3 is expected to be more secure than SHA-2. New hash design techniques are
also adopted in many SHA-3 candidates. We will look at some of the candidates
later in this chapter.

A hash function can also be constructed from a symmetric-key cipher, such as
DES or AES. Several schemes have been proposed to turn a block cipher into a
hash function. These scheme include Davies-Meyer, Matyas-Meyer-Oseas [10], and
Miyaguchi-Preneel schemes [5, 6, 11, 12]. The Miyaguchi-Preneel scheme also has
an iterative structure. It starts with an initial hash and updates the hash when a block
of message is processed. The scheme can be expressed as i’ = E) (M;) ®h® M;,
where M; is message block i, /i the hash before M; is processed, i’ the updated hash
after M; is processed, and g() is a function that converts % to a key for the block
cipher E.

Another notable algorithm is Whirlpool, a hash function constructed with the
Miyaguchi-Preneel scheme [13]. It has been recommended by the New European
Schemes for Signatures, Integrity, and Encryption (NESSIE) project and adopted by
International Organization for Standardization (ISO) as part of ISO 10118-3. The
block cipher in Whirlpool is a dedicated cipher called W, which is similar to the
AES algorithm despite significant differences. No successful attacks to Whirlpool
have been found so far. However, the Whirlpool algorithm is much slower than
other hash algorithms. For example, on Pentium III, Whirlpool’s performance is
36.5 cycles/byte while MDS5’s is 3.7 cycles/byte and SHA-1’s is 8.3 cycles/byte [14].

2.1.2 Application of Hash Functions

Hash algorithms can be used to verify data integrity. After receiving data, one
can compute the hash of the received data, and compare it with the hash of the
original data, which may be sent through secure channels or obtained from a trusted
source. If they are the same, there is a high confidence level that the message
was not modified during the transmission (because of the 2nd-preimage resistance).
Nowadays, many software download sites provide the MDS5 or SHA-2 hash of the
software available for downloading.

Hash algorithms can also be used together with public-key algorithms to generate
digital signatures. For example, Alice can sign a document by encrypting the hash
of the message with her private key. The ciphertext can be used as Alice’s signature.
Anyone who wants to verify the signature can decrypt the ciphertext with Alice’s
public key, and compare the decrypted value with the hash generated from the
message. This process is shown in Fig.2.2. The left part of the figure generates
the signature with Alice’s private key, and the right part checks the signature with
her public key.

Hash algorithms can be used for authentication as well. In this case, the
hash value of the user’s password, instead of the password itself, is transmitted
and compared by the server. When computing the hash, the password may be
concatenated with a random value generated by the server. Hence, the hashes
are different every time, preventing an attacker sniffing on the network traffic

30 Z. Shi et al.

Message Message Signature
HASH HASH Decryption [— Public key

l

Private key—— Encryption

l

Signature

?

Fig. 2.2 Application of hash algorithm in digital signature

from reusing an old hash. For example, the Challenge-Handshake Authentication
Protocol (CHAP) [15] uses this approach in the Point-to-Point Protocol (PPP) [16]
for dial-up Internet connections.

Hash algorithms can also be used in Hash-based Message Authentication Code
algorithms [17] have been used in many systems to provide both data integrity
and message authentication, especially in resource constrained environments where
public-key algorithms are too slow and energy consuming.

2.2 Hardware Implementation of Hash Functions

MD5 and SHA-2 (more specifically SHA-256) are commonly used hash functions
today. Both of them adopt the Merkle-Damgard construction. As they have much in
common, many optimization techniques can be applied to both algorithms.

2.2.1 MD5

MD5 is a common Merkle-Damgard-based hash function. A MD5 block has 512
bits, which can be divided into sixteen 32-bit words (My, ..., M s5). The internal
hash state has 128 bits, which are stored as four 32-bit words and denoted by the
4-tuple (A, B, C, D), and is initially set to a predetermined initialization vector. The
basic computation unit of MDS5 is called a step. Each step alters the state variables
(A, B, C, D), as shown in Equation 2.1, using a compression function F that takes
B, C, and D as input and generates a 32-bit value as output. In the equation, <<
indicates the left rotation operation and W <K S rotates bits in W to left by . In
total, MDS5 has 64 steps. The first 16 steps are called round one, the next 16 round
two, and so on. Rounds also have distinct compression functions, as specified in
Equation 2.2, where i is the step number.

2 Hardware Implementation of Hash Functions 31

Table 2.1 A 3-stage MD5

ineli Steps Computation of B
ipeline
Pip Step i B, = B._, + (AKM, + F(Bi_,.C. D)) <K S;
Stepi+1 AKM;1, = M; + 1 + (AK; 4)

Stepi +2 AKi4r = (Ki+2 + Bi—1)
Anew =D
Buew =B+ (M; + K; + A+ F(B,C,D)) K S;
@2.1)
Cnew =B
Dnew =C
(BAC)V(=BAD) :0<i<l15
(BAC)V(CA=D) :16<i <3l
F(B,C,D) = . 2.2
() BeCao®D 132 <i <47 (2:2)
C ®(BA—-D) 148 <i <63
M; :0<i <15
M = Ms; 1 1(mod 16y - 16 Sl: <3l ' 2.3)
M3t 5(mod1s)y 32 =<1i <47
M3 (mod16) (48 <i <63

As there are only 16 words in a message block, each word is used four times
in the 64 steps. The message scheduler, Equation 2.3, determines which of the 16
message words M; is used in a particular step i. For example, round one simply
uses word M; for step i, while round two uses Ms; 1 1(nod416). Furthermore, Ky, ...,
Kg3 and Sy, ..., S¢3 are predetermined constant values. After the completion of all
64 steps, the latest values (A, B, C, D) are added to the input values (4, B, C, D) of
the block, using modulo 232 addition. That sum is the updated hash value and serves
as the input hash value for the next message block (512 bits) if there is one. The
final hash is the concatenation of A, B, C, and D generated from the last block. The
specification for MDS5 was presented in [1].

2.2.1.1 Pipelining

The operations in each step of MD5 are not complicated. When implemented in
hardware, the number of operations that can be done in parallel is limited by data
dependency. The data dependency between the state variables of MD5 allows for
interesting pipelining applications. In particular, since only B is updated in a step
and other words are not, one may use data forwarding as described in [18]. Because
some future values of A are known, the computation of B;4; and B, 4, may start
early. As shown in Table 2.1, the updated values of B can be computed in three
stages. When B; is computed in step i, AKM; 4 in step i + 1 and AK; 4, in step
i + 2 can be computed in parallel for B; 4| and B; ;.

Another approach to MD5 pipelining is to take advantage of the independency
among rounds. For example, in a 4-stage pipeline with one stage dedicated to each

32 Z. Shi et al.

Table 2.2 FPGA implementations of MD5

Type Block latency (ns) Throughput (Mbps)
Iterative [21] 843 607
Pipelined (64 stage) [21] 706 725
Parallel (10x) [21] 875 5,857
Pipelined (3 stage) [18] - 746
Iterative [19] 633 810
Pipelined (32 stage) [19] 764 21,428
Pipelined (32 stage), Loop unrolled [19] 511 32,035

round, the 16 steps in each round are computed iteratively within a stage. Therefore,
the stages are much longer. One extension to this architecture is to unroll the loop
for the 16 steps in each stage, requiring dedicated logic for each step rather than
reusing logic for 16 steps in a pipeline stage. There are also performance gains as
the results of the reduction in clock and register delay [19].

2.2.1.2 Other Optimizations

Carry save adders (CSA) are commonly used as an alternative to the full adder
when there are multiple numbers to be added. A CSA is much smaller and
faster than a regular adder because it does not require carry propagation. A
regular adder is needed only at the end of a series of CSA additions. However,
in FPGA implementations, the utility of using CSA is diminished since some
platforms incorporate partial addition optimizations which allow ripple carry adders
to perform just as well while using less area [20].

If the hash function is being implemented in FPGA, block RAM can be used to
improve performance. Block RAM is a dedicated part of the chip which may be
used to store constants. This takes the burden off the combinatorial logic blocks,
freeing them for other purposes. This means that more CLBs are available to the
routing algorithm, resulting in more direct routes and faster performance.

2.2.1.3 MD5 Performance

Table 2.2 lists some fast MD5 implementations. The FPGA implementations have
reached extremely high throughput up to 32 Gbps. The reader should exercise
caution while reviewing these numbers, as a high throughput does not imply a
low latency. This is especially true for parallel block implementations. Processing
blocks for a single message cannot be done in parallel since they are dependent
on each other. Instead, a parallel block implementation is similar to using multiple
processing units with independent input streams. Hence, the configuration is only
useful when the input is parallel in nature.

2 Hardware Implementation of Hash Functions 33

Table 2.3 SHA-2 state variables, compression functions, and message scheduler

Apew =T1 + T T1=H+ZI(E)+C1’1(E,F,G)+K,+VV,
Bhew = A T, = ZO(A) + Maj(4, B,C)

Ciew = B

Dpew = C

Eww=D+T Ch(E,F,G)=(E/\F)®(_‘E/\G)

Frew = E Maj(4, B,C) = (AAB)® (AAC)® (B AC)
Guew = F So(A) = (A3 5) B (AS3> 5,) B (A3 53)
Hnew =G ZI(E) = (E > S4) (&) (E > S5) (&) (E > Sﬁ)
W, = M, 0<t<I5

T o1 (Wima) + W + 0o(Wi—15) + Wimis 16 <1 <63

0o(Wi—15) = (Wi—15 3> 57) @ (W,—153>55) © (Wi—15 > 59)
o1 (Wi—2) = (W2 3> s10) ®@ Wi—2 3> 511) & Wi—2 > s12)
Note :@: bitwise exclusive OR, +: addition (modulo 232 or 26%), 3> rotate right, >>: shift right

2.2.2 SHA-2

SHA-2 has several different modes, SHA-224, 256, 384, and 512, where the
numbers denote the length of the hash. Shorthand “SHA-256" and the like refer
to specific SHA-2 modes and not SHA-1, which has a 160 bit digest. SHA-2,
like MD5, is a Merkle-Damgard-based hash and so the initial setup is similar. For
SHA-224 and SHA-256, the message block size (512 bits) is the same as in MD5.
However, the number of state variables is doubled. There are eight state variables in
SHA-2. In SHA-384 and SHA-512, the word size is also doubled to 64 bits. Thus,
the block size increases to 1,024 bits.

There are no rounds in SHA-2, although there are still 64 steps in SHA-256 and
80 steps for SHA-384/512. The message scheduler also involves more than simply
shuffling the message chunks. Rotation and exclusive OR are used to combine
words in earlier rounds. In addition, a set of new compression functions Ch, Maj,
> s and Y, replaces MD5’s F function. Table 2.3 shows the operations in SHA-
2, which are identical for all variants (although the word sizes and constants are
different).

2.2.2.1 Iterative Bound Analysis

The optimization of an algorithm is limited by its data dependencies. A method
called Iterative Bound Analysis (IBA) has been proposed to find the theoretical
maximum performance limit [22]. This means that while advances in silicon process
may increase the speed of implementations, the speed gained by refactoring an
implementation from an architectural standpoint will have an inherent limit.

34 Z. Shi et al.

Fig. 2.3 A DFG example A(n)
from [22] /
B(n)

To find the bound with IBA, the data flow graph (DFG) for the algorithm is first
constructed. For example, Fig. 2.3 shows the DFG for the following equation:

An+1) = A(n)+ B(n) * C1xC2
B(n+1) = A(n)

In the equation, C1 and C?2 are constants; A and B are variables updated in a loop.
The DFG has two types of nodes. One type is the variables, such as A and B, and
the other type is the operations that are needed for updating the variables, such as +
and *. There are also two types of delays. Algorithmic delays, such as updating A
and B, are denoted by D on edges that are essential for the algorithm and cannot be
removed. Functional delays are from operation nodes, such as + and *, indicating
the time needed for performing the operations. IBA assumes all the operations are
atomic, i.e., functional operations cannot be split or merged.

A DFG may have loops, like the one shown in Fig.2.3. A loop is defined as
a path that begins and ends at the same node. It contains both algorithmic delays
and functional delays. The sum of the functional delays on a loop is the running
time of the loop. The performance bound for a loop is given by the loop’s running
time divided by the number of algorithmic delays in the loop. There may be
multiple loops in the DFG. The iterative bound of the algorithm is the maximum
of the performance bound for all loops in the DFG. It defines the best throughput
that may be reached.

Two techniques are proposed in [22] to make the performance close to that of
the iterative bound. One of them is called retiming, which moves the algorithmic
delays (the D edges in DFG) through functional nodes. Retiming can reduce the
critical path delay, which is the longest total functional delay between two adjacent
algorithmic delays, by balancing the functional delays among algorithmic delays.
The second technique in [22] is called unfolding, which is similar to loop unrolling.
It performs multiple iterations of the loop in a single cycle. After unfolding, the DFG
has more functional nodes, thus having more opportunities to reach the optimal
throughput. Retiming can also be applied here to balance out the delays in an
unfolded DFG.

2 Hardware Implementation of Hash Functions 35

Table 2.4 SHA-256 implementations

Type Platform Block latency (ns) Throughput (Mbps)
Pipelined (4 stage), FPGA 614 3,334
Unrolled [25]
Operation reordering [20] FPGA 433 1,184
Loop unrolled [22] ASIC(0.13 pm) 86 5,975
Pipelined (3 stage) [26] ASIC (0.13 um) ~70 >6,500

Loop unrolling is a commonly used technique in the implementation of hash
algorithms. One implementation was able to increase the speed of SHA-512 by 30%
with an area penalty of 48% [23]. In [24], SHA-512 achieved a speedup of 24.6%
with an area penalty of 19.4 after 2x unrolling. Likewise, 4x unrolling yielded a
28.7% speed up with an area penalty of 75.6%, so returns are diminishing.

2.2.2.2 SHA-2 Performance

Table 2.4 summarizes the best performance of some SHA-2 implementations. The
techniques mentioned in the previous section yield good results. However, SHA-2
is actually slower than MDS5 because of the increased level of interdependency and
complexity. These characteristics limit the amount of data forwarding pipelining
and low-level parallel computation that can be applied. Note that we have some
extremely low latency ASIC implementations for SHA-2. This is primarily due to
high clock rate, e.g., approximately 1 GHz in [26,27].

2.2.3 Optimized for Area

Sometimes a compact design is required for platforms with limited resources such
as area or power. An example is RFID tags, which are very limited in both aspects.
They typically have a maximum average current draw of 15 LA total [28]. As of
2009, RFID tags typically have 3,000 ~ 4,000 gates available for cryptographic
purposes [29].

The smallest implementation for SHA-256 was reported in [30], where the
authors obtained a size of 8,588 gates on a 250nm CMOS process. This imple-
mentation is capable of a throughput of 142 Mbps. The authors used a folding
technique to optimize for area. This is basically the opposite of the unrolling process
described earlier. In this case, a single iteration takes seven cycles to complete.
While there are seven modulo addition operations in SHA-2, only one physical
adder is synthesized and then reused in each step. Another technique shrinks the
message scheduler, which takes up more space than the compression function. This
reduction is primarily due to using only a single 32-bit register rather than sixteen
32-bitregisters. These registers were used for timing purposes to obtain W,_,, W;_7,

36 Z. Shi et al.

W,—15 and W,_¢ by having the 16 registers in series so that the correct W values
are always available. The area optimized version’s single register holds temporary
values that are written back into the memory block. The needed W values for each
computation are stored in the memory rather than sequential registers.

Some applications do not require all the properties of a secure cryptographic hash
function. For example, some applications may need only one-wayness, not requiring
collision resistance. Therefore, some special purpose hash functions that have only
the needed secure properties for particular applications can be implemented with
smaller area. The downside of using a less known algorithm is that it has not been
subject to as much scrutiny as popular algorithms have been. Therefore, the level
of security provided by these hash functions is not well known. On the other hand,
an obscure algorithm does have a unique (perhaps remote) advantage over popular
ones in that someone may have indeed found an attack to a popular algorithm but
has declined to publicize it.

2.3 SHA-3 Candidates

Due to security concerns of SHA-1 and recent advances in the cryptanalysis of
hash algorithms, NIST held a public competition for a new hash algorithm standard,
SHA-3, which is meant to replace SHA-2. Therefore, the new algorithm is expected
to be more secure SHA-2. As of now, early 2011, the competition is at the
final round, with five algorithms up for consideration. This section examines the
constructions and properties of all five algorithms in the final round: Keccak based
on sponge construction, BLAKE based on HAIFA construction, Grgstl based on the
chop-Merkle-Damgard iterations, Skein based on tweakable block cipher Threefish
and Unique Block Iteration (UBI), and JH based on iterative construction with
generalized AES methodology [31].

2.3.1 Keccak

Keccak is a family of cryptographic hash functions based on sponge construction.
Sponge construction, shown in Fig.2.4, is a simple iterated construction with a
variable-length input and arbitrary length output based on a fixed length transfor-
mation (or permutation) operating on a fixed number of bits. The fixed number of
bits is the width of the permutation, or bit state . The bit state is the sum of bit
rate r and bit capacity c¢. The permutation in this case is called Keccak- f, the most
important building block of this algorithm. There are seven Keccak- f* permutations,
indicated by Keccak-[b], where b = 25 x 2¢ and £ ranges from 0 to 6 producing
the values b = 25,50, 100, 200, 400, 800, and 1,600. The default permutation is
Keccak- f [1600] with r = 1,024 and ¢ = 576 [32].

2 Hardware Implementation of Hash Functions 37

|
Absorbing | Squeezing
Po P Pi | 20 2
J sRNEl
I b e
. Ll .
f J S / /
c|0 :
|
J | L
|
Fig. 2.4 Diagram of sponge construction
6 step
Clx] = Alx, 0]@®A[x, 1]®A[x, 2]DA[x,3]DA[x,4] VxinO0..4
D[x] = C[x — 1]®(C[x + 1] « 1) Vxin0..4
Alx,y] = Alx,y]®D|x] V(x,y)in (0..4,0..4)
p and m step
Bly,2x + 3y] = Alx,y] << r[x,y] V(x,y)in(0..4,0..4)
x step

Alx,y] = B[x,yl®((= Blx + 1,y]) A Blx +2,y])
V(x,y)in(0..4,0..4)
t step
A[0,0] = A[0,0]BRC
return A

Fig. 2.5 Pseudocode of Keccak- f

Before any permutation is performed, Keccak initializes state s and pads the
message to make the string a multiple of r. The padded message, represented by
P, is then divided into i blocks. For sponge construction, there are two phases.
In the first phase (absorbing) the r-bit input message blocks are XOR-ed into the
first 7 bits of the state, interleaved with applications of the function f (Keccak- f').
This phase is finished when all message blocks are processed. In the second phase
(squeezing) the first r bits of the state are returned as hash bits, interleaved with
applications of the function f. This phase is finished when the desired length of
hash is produced [33].

The basic block in Keccak is Keccak- f, an iterated permutation consisting of a
sequence of almost identical rounds [4]. The number of rounds 7, depends on the
permutation width b, and is computed as n, = 12 + 2/, where 2l = p /25. This
gives 24 rounds for Keccak- f[1600]. Each round consists of five steps illustrated
in Fig.2.5. In the figure, A denotes the complete permutation state array. A[x, y]
denotes a particular word in the 5 x 5 state array. B[x, y], C[x], and D[x]
are intermediate variables, and C[x] and D[x] are vectors. All the operations on
the indices are done modulo 5. Rotation amounts r[x, y] are constants. RC in
the ¢ step is the round constant. All the rounds of Keccak- f perform identical
operations, except for using different round constant RC (consult [34] for the
computation of RC).

38 Z. Shi et al.

Keccak- f is designed such that the dependence on CPU word length is only
due to fixed rotations, leading to an efficient use of CPU resources on a wide
range of processors. The default bit state for Keccak- f permutation (1,600) is
chosen in favor of 64-bit architectures. When implemented on 32-bit processors,
the rotation on 64-bit words is the only operation that cannot be simply divided
into 32-bit operations. The algorithm’s symmetry allows the exploitation of SIMD
instructions and pipelining in processors, which results in compact code in software,
or a compact coprocessor circuit suitable for constrained environments [34].

The full Keccak algorithm design has no known security vulnerabilities because
the sponge construction has been successful against generic attacks. It is simple,
allows variable length output, and is flexible (such as the tradeoff between bit rate
and security).

2.3.2 BLAKE

Blake is based on the HAIFA iteration mode with a compression function that uses
a modified version of the stream cipher ChaCha. While Merkle-Damgard only uses
the previous hash value and the current message block in the compression function,
HAIFA also uses a salt and a counter that indicates how many blocks have been
processed as part of the input [35].

Depending on the message size and word length, different BLAKE hash
functions can be used. BLAKE-224 and BLAKE-256 operate on 32-bit words, with
block size of 512 bits and salt of 128 bits. BLAKE-384 and BLAKE-512 operate
on 64-bit words with block size of 1024 bits, salt of 256 bits. The numbers in the
algorithm name indicate the digest length.

All four variants use the same compression function and only differ by the initial
value, the message padding, and the truncation of the output. The compression
function of BLAKE adopts the wide-pipe design. A large inner state is initialized,
injectively updated by message-dependent rounds, then compressed to return the
next chain value. The actual compression method is based on modified version of
ChaCha, which is a variant of Salsa20 family of stream ciphers. In the following,
BLAKE-512 will be used as the example to explain the algorithm.

In BLAKE-512, the message is first padded and divided into blocks of 1,024 bits.
The intermediate hash value is then initialized. The initial values used in BLAKE
are same as those used in SHA-2 (e.g., BLAKE-512 uses the values from SHA-512,
BLAKE-256 uses the values from SHA-224). Then, BLAKE iteratively updates the
intermediate hash value using the compression function: /; 4+ < compress(h;, m;,
s, t;), where m; is the message block, s is the salt, and #; is the counter indicating
the number of bits that have been processed so far.

The compression function of BLAKE-512 has 16 rounds. The inner state of the
compression function is represented as a 4 x 4 matrix of words. For each round,
a nonlinear function G that operates on four words is applied to columns and
diagonals of the state. This process is illustrated in Fig. 2.6. First, all four columns

2 Hardware Implementation of Hash Functions 39

G G G G

DO
{/Vo !/vl\\ I/VQ\ !/Vs\ —>T\< \ \ﬁ S
\VS \V9HV10 \V“I VYo \;\:o \V\:l

Fig. 2.6 Column step (on the left) and diagonal step (on the right) in BLAKE

Fig. 2.7 Pseudocode of G

in BLAKE-512 a «a+b+ (Mg, o ® Coisn)

de({d®a)> 32

c—c+d

b« (b®c)>» 25
a<a+b+(mg, i ® Coin)
de—({d®a)> 16

ce—c+d

b—(bdc)>» 11

are updated independently with Gy, ..., and Gs. This procedure is called a column
step. Thereafter, the four disjoint diagonals are updated with Gy, ..., and G7. This
procedure is called a diagonal step. Note that Gy, ..., and G3 can be computed in
parallel because each of them updates a distinct column of the matrix. Similarly,
Gy, ..., and G7 update distinct diagonals and thus can be parallelized as well.

The pseudocode of G;(a, b, ¢, d) is shown in Fig.2.7, where o, represents
a permutation of integers between 0 and 15. There are ten different permutations,
which are reused when the round number is ten or greater. For example, round 10
uses 0y and round 11 uses o7.

After performing the round function, the new hash values are extracted from the
state and salt:

h0 < h0®s0Bv0 B8
Wl < hl®sl®dvl®v9

W7 <« h7T®s3®vI®vl5

As the salt has only four words, each word is used twice. For example, 50 is used in
R0 and h'4.

Lastly, the algorithm truncates the final chaining value if needed. The truncation
method slightly differs depending on the version of the algorithm [36].

40 Z. Shi et al.

There are several important design choices in BLAKE. The HAIFA iteration
mode provides resistance to long-message second preimage attacks, and the local
wide-pipe internal structure makes local collisions impossible. The compres-
sion algorithm is based on ChaCha, which has good performance and has been
intensively analyzed. The properties of compression function also allow parallel
processing. The G functions performed on the four columns and diagonals can be
done in parallel, which allows convenient performance-area trade-off. The perfor-
mance can be improved if more resources are available for performing multiple G
functions in parallel.

2.3.3 Grostl

Grgstl is based on the wide-pipe design and chop-Merkle-Damgard iterations.
A wide-pipe design has an internal state that is larger than the final hash output.
When all the message blocks are processed, the internal state is truncated to get the
final hash output. This process is similar to chop-Merkle-Damgard, except Grgstl
applies a final output transformation before truncating the result to the desired output
length. The returned message digests can be any number of bits from 8 to 512, in
8-bit steps. The hash function processing message digest of size n is called Grgstl-n.

In Grgstl, the message is first padded to a multiple of /, the length of a message
block. Then the padded message is split into /-bit message blocks m; to m,, and
each message block is processed sequentially. The compression function comes in
two variants: for Grgstl that outputs up to 256 bits, / is defined to be 512; for larger
outputs, [is 1024. An [-bit initial value is set as the initial hash value hy = iv, and
then the message blocks are processed as follows:

h; < f(/’li_l,m,’) fori =1,...,¢
f(h,m) =P(hdm)® Q(m) & h,

where f is the compression function and %; is the updated state after processing
message block 7. The compression function consists of two permutations P and Q.
The two permutations are identical except for the different round constants. Both
permutations consist of the following four round transformations:

* AddRoundConstant

e SubBytes

e ShiftBytes (or ShiftBytesWide in permutations for 1,024-bit blocks)
e MixBytes

Both P and Q have the same number of rounds, which depends on the internal state
size: ten rounds are recommended for / = 512 and fourteen rounds for / = 1,024.
In each round, the round transformation is applied on a state represented by a matrix
A of bytes. For the short variant, the matrix is 8 by 8, and for the large variant it is
8 by 16.

2 Hardware Implementation of Hash Functions 41

——— Shift by 0 —> .
—— Shift by | —>

—— Shift by 7—>

Fig. 2.8 ShiftBytes in Grgstl

Fig. 2.9 Diagram of Grgstl my

my my
hashing process
hy Iy !

The first step is AddRoundConstant, which adds (XOR) a round-dependent
constant to the state matrix. The process in round i can be represented as A <«
A @ Cpli] for permutation P and A < A @ Cy|i] for permutation Q, where 4 is
the state and Cp[i] and Cyp|i] are the round constants.

The second step is SubBytes, which substitutes each byte in the state matrix with
its image taken from the S-Box. Grgstl uses the same S-Box as AES. If g; ; is the
element in row i and column j of A, SubBytes transformation can be denoted as
ajj < S(ai,j),O <i<80<] <.

The third step is ShiftBytes or ShiftBytesWide, which cyclically shift the bytes
within a row to the left by the number of positions, wrapping as necessary.
ShiftBytes is illustrated in Fig. 2.8. ShiftBytesWide uses the same method but each
row has 16 bytes.

The last step of the transformation of the compression function is MixBytes,
which multiplies each column of A by an 8 x 8 matrix of constants, defined as B.
The transformation can be written as A <— B x A.

When the last message block has been processed, the resulting %, is then put
through function 2. The final hash is H(m) = Q(h,;) = trunc, (P (h;) & h;). The
function trunc, (x) discards all but the trailing n bits of x and n < [[37]. The
process is illustrated in Fig. 2.9.

Grgstl is very flexible. It can generate digest of many sizes, and seems secure
against known attacks. The permutations are constructed with wide-pipe design,
which makes all known, generic attacks on the hash function much more difficult.
Therefore, it is possible to give strong statements about the resistance of Grgstl
against large classes of cryptanalytic attacks. As Grgstl is based on AES, its counter-
measures against side-channel attacks are well understood.

42 Z. Shi et al.
2.3.4 Skein

Skein is a family of hash functions based on tweakable block cipher Threefish and
Unique Block Iteration (UBI) [38]. Tweakable block cipher allows Skein to hash
configuration data along with the input text in every block and greatly improves
Skein’s flexibility. UBI is a chaining mode that combines an input chaining value
with an arbitrary input size to a fixed output size.

Skein has three different internal state sizes, which are also the message block
sizes: 256, 512, and 1,024 bits. Skein-512 is the default variant and consists of 72
rounds. Skein-1024 is an ultra-conservative and highly secure variant and consists
of 80 rounds. On the other end, Skein-256 is a low-memory variant that can be
implemented using about 100 bytes of RAM and consists of 72 rounds.

The UBI chaining mode combines an input chaining value with an arbitrary
length input string and produces a fixed size output. Each UBI computation takes
a message block and a 128-bit tweak value as input. The tweak value encodes how
many bytes have been processed so far, whether this is the first and/or last block of
the UBI computation, and what type of UBI computation it is. The types of UBI
computations include key, configuration block, message, and output. A UBI call
takes three parameters as input: the output of the previous UBI call (0 for the first
call), the current content to be processed, and the type of content.

When used as a straightforward hash function, Skein consists of three UBI calls:
a configuration call with the chaining value initialized to 0, then a message call that
takes a message of up to 2°° — 1 bytes long, and lastly an output call that truncates
the chained value to produce the final hash.

e [V = UBI (0, Config, CFG)
e G =UBI{UV, M,MSG)
e Qutput = Truncate (UBI(G, 0, OUT), o).

The UBI chaining mode is based on the tweakable block cipher Threefish. In Skein-
512, the UBI has 72 rounds, each consisting of four simple nonlinear functions
(MIX), followed by a permutation of the eight 64-bit words. The idea is that a
larger number of simple rounds are more secure than fewer number of complex
rounds. MIX, the basic block of Threefish, operates on two 64-bit words at a time.
It uses only three mathematical operations: XOR, addition, and rotation on 64-bit
words. Suppose the two words are A and B, the function of MIX can be expressed
as (A,B) = (A+ B,(B <<< R) @ (A + B)) [39], where R is a constant.
The permutation on eight words that follows the MIX operation is the same for
all rounds.

In Skein-512, a subkey is injected every four rounds, and the rotation constants R
are repeated every eight rounds. The subkeys are generated from key words, tweak
words, and counter value. For more details on subkey generation, please refer to
Sect.2.3.3 in the Skein submission document [38].

Skein has the option to include keys or to work in hash tree mode. To use Skein
as a MAC function or any keyed hash function, a UBI call for the keys, with the

2 Hardware Implementation of Hash Functions 43

first input set to 0, is done before the configuration block. The output of the key UBI
call is used as the first input of the configuration UBI call. In the optional hash tree
mode, each leaf UBI call takes a message block as the input, and the output of every
two UBI calls goes into a UBI call at the next level until only the root UBI remains.

Skein is designed to be simple, secure, and efficient. It is based only on three
primitive operations: XOR, addition, and rotation of 64-bit words. The best attack
made by the author on Threefish-512 is on 35 of the 72 rounds. Skein is quite
efficient on a variety of platforms, especially on 64-bit processors. Skein-512, the
default or primary variant, can be implemented in approximately 200 bytes of state.
Skein-512 hashes data at 6.1 clock cycles per byte on a 64-bit CPU. This means that
on a 3.1 GHz x64 Core 2 Duo CPU, Skein hashes data at 500 Mbps per core, almost
twice as fast as SHA-512.

235 JH

JH is an iterative hash algorithm that produces hash values of 224, 256, 384, and
512 bits. The compression functions for all four versions are the same, and JH-512
will be used in the following discussion. For hardware implementation, the round
functions of JH block cipher are identical and use techniques similar to the AES row
rotations.

In JH-512, the message is first padded to a multiple of 512 bits, and then
divided into blocks of four 128-bit words. For each iteration, the message block
is put through the compression function Fg to update the chaining value H; of
1,024 bits: H; = Fg(H;—1, M;). For the first iteration, Hy = Fs(H—-, M,), where
H_,; consists of two bytes representing the message digest size followed by 0Os, and
M, is set as 0. Fg first compresses the 512-bit message block M; with the first half
of the previous chaining value H;_;, feeds the result to function Ey (to be described
later), and then combines the output of Es with the message block. After all blocks
have been processed, the n-bit hash value of the message is the last n bits of H [40].

The steps of compression function for each message block in JH-512, H; =
Fg(H;—1, M;), is illustrated below, where A4, and B denote two 1024-bit words:

1. A; = Hi—y @ M, for0 < j <511,
Aj = Hi_l_jfor512 < j <1023;
2. B = Eg(A);
3. H(,’)’j = ijOI‘O < j <511;
H(,’)’j = Bj @Mifor512§ J <1023;
The bijective function Eg used in the compression function Fg is based on

d-dimensional generalized AES methodology (d is 8 in this case). The computation
of B = Eg (A) is given as follows:

1. Group the 1,024 bits in A into 28 4-bit elements to obtain Qy;
2. Forr =0to 34, Q,4+1 = Rs(Q,, Cr(8));

44 Z. Shi et al.

3. Q36 = R} (Q35. C33);
4. De-grouping the 2% 4-bit elements in Q34 to obtain B.

Each C,(S) is a 28-bit constant. The computation of Q = Rg(A, C,(S)) consists of the
following three steps and Rg only has step 1.

1. Consider A as 256 4-bit elements and replace each element with its image in an
S-Box. There are two S-Boxes, and a bit in C,(S) decides which S-Box to use
for the corresponding 4-bit element. The results can be represented by 256 4-bit
elements v; (0 < i <255).

2. A linear transformation L is applied on each pair of 4-bit elements. The output
of this step is (wy;, wai+1) = L (vai, vai4+1) for 0 <i <127. The linear
transformation L implements a (4, 2, 3) Maximum Distance Separable code over
GF (24). Each bit in (wy;, wp;4+1) is an XOR of a set of bits from (vy;, voi41).

3. A permutation is done on the 256 4-bit elements generated in Step 2.

(QO? le e Q28_1) = PS(WO, Wi, ..., W28_1).

For step 3, Pg is a composition of three permutations: P = ¢g o PS’ o mrg. All three
functions are permutation on 2% elements. And the details of the three permutations
are described as follows:

B = ng(A) :

Baivo = asivo fori =0t02°—1;
Baiv1 = asiyy fori =0t02%—1;
Baitr = asiyn fori =0t02%—1;

Baiys = a4t fori =0t02°—1;

B = P{(A):
bi = ay fori =0t02" —1;

biy21 = azi4y fori =0to 27— 1;

B = ¢s5(A) :
bi = a; fori =0102"—1;
b2i+0 = dyi+1 for i =2%t02" — 1;
byis1 = azipo fori =2°102" —1;
The compression function of JH algorithm is illustrated in Fig.2.10. The message
block is then XOR-ed with the first half of the previous hash value, the result of
which is put through function E, which consist of a number of rounds that include

S-Box, linear transformation L, and permutation P;. The message is then XOR-ed
with the second half of the output of £, which produces the updated hash value.

2 Hardware Implementation of Hash Functions 45

Fig. 2.10 Diagram of the H.
. .o [|] -l
compression function in JH
M; ©®
| 1 |
E [, ————
I Rq S-Box :
L
I - |
| —=——==_]

In JH-512, each message block has 64 bytes and passes through the 35.5 round
compression function that involves 9216 4x4 bit S-Boxes. The large number of
active S-Boxes ensures that JH is strong against differential attacks. As the key
of the block cipher is constant, no extra variables are introduced into the middle
of the compression function. Therefore, it is much easier to analyze the security
with respect to differential attacks. As the block cipher outputs do not need to be
truncated, the structure is also efficient.

2.3.6 Performance

Before we compare the performance of the candidate algorithms, we first give an
overview of major operations in each algorithm. Table 2.5 summarizes the major
operations in five algorithms in the final round of the SHA-3 competition. Most
operations used in the five algorithms are simple. When implemented in hardware,
fixed permutations and rotations with fixed amounts can be done with careful wire
routing. S-Box can be implemented with logic operations. The more expensive
operations include matrix multiplication in Grgstl and addition in BLAKE and
Skein.

In addition to security, performance is one of the main criteria for evaluating
the SHA-3 candidates. However, it is very challenging to compare all SHA-3
candidates due to various choices of technologies and multiple optimization goals.
Most performance evaluation in literature is done on one to three algorithms at
a time and cannot be adequately compared with each other due to difference in
implementation and measurements.

46 Z. Shi et al.

Table 2.5 Major operations in five SHA-3 algorithms

Algorithm Block size No. of round Major operations in a round

Keccak-1600 1,024 bits 24 P, K, —, A on 64-bit words

BLAKE-512 1,024 bits 16 +, @, 3> on 64-bit words

Grgstl-512 1,024 bits 16 @, 8-bit S-Box, ShiftRow, matrix multiplication.
Mainly 8-bit operations

Skein-512 512 bits 72 +, K, @ operations on 64-bit words.
1 permutation of eight 64-bit words

JH-512 512 bits 35 @, 4-bit S-Box, and a permutation of 256 4-bit
elements

When implemented with hardware, fixed permutations, <<, and 3> can be done with wire routing.

Table 2.6 Performance of five final SHA-3 candidates on FPGA [41]

Area Max. frequency Throughput Throughput/area
Algorithm (slices) (MHz) (Mbps) (Mbps/slice)
SHA-2-256 656 125 985 0.966
SHA-2-512 1,213 110 1,264 0.713
Keccak-256 1,117 189 6,263 3.17
Keccak-512 1,117 189 8,518 4.32
BLAKE-32 1,118 118 1,169 0.707
BLAKE-64 1,718 91 1,299 0.449
Grgstl-256 2,391 101 3,242 1.257
Grgstl-512 4,845 123 3,619 0.799
Skein-512 1,786 84 1,945 0.706
JH 1,291 250 1,941 1.1

The FGPA implementations of the algorithms are compared in [41]. The results
are summarized in Table 2.6. To fairly analyze the designs and variants, all designs
were implemented in slice logic on a Virtex-5 FPGA. Message padding for all
designs were included as part of the hardware, and the test was for message digest
of size 224, 256, 384, and 512. The efficiency of the architecture is also compared
in terms of throughput per unit area. According to the results in [41], Keccak has
higher throughput while requiring smaller area.

Reference [42] compared the ASIC implementations of round-two candidates.
The results are summarized in Table2.7. The implementations are optimized for
maximum peak throughput, with consideration for reasonable area. If the throughput
can only be increased a few percent further at the cost of increase in area
of several dozen percent, the slightly lower throughput with more area-efficient
implementation is considered. The important implementation decisions in [42] for
each algorithm are listed later.

» Keccak: One Kekkak- f* round per cycle.
* BLAKE: Four G functions are implemented in parallel; two pipeline registers;
additional cycle for chaining; carry-save adders.

2 Hardware Implementation of Hash Functions 47

Table 2.7 Comparison of five SHA-3 candidates with SHA-256 in [42]*
Algorithm Latency (cycles) Area (GE) Clock frequency (MHz) Throughput (Gbps)

BLAKE-32 22 38,877 144.15 3.355
JH-256 39 51,212 259.54 3.407
Keccak-256 25 56,713 267.09 11.624
Grgstl-256 22 53,680 202.47 4.712
Skein-256 10 47,678 64.75 1.658
Skein-512 10 76,250 43.49 2.227
SHA-256 66 19,515 211.37 1.640

#Use the UMC 0.18 pm FSAOA_C standard-cell library

Table 2.8 The best performance of five SHA-3 candidates and SHA-256

Algorithm Technology Area Frequency Throughput (Gbps)
Keccak-1600[43] ASIC (0.13 um) 48 kGE 526 MHz 22
Keccak-1600[43] FPGA Stratix III 4,684 ALUT 206 MHz 8.5
BLAKE-512 [44] ASIC (90 nm) 79kGE 532 MHz 18.8
BLAKE-512 [45] FPGA Virtex 5 108 slices 358 MHz 0.3
Grgstl-256 [46] ASIC (0.18 um) 59kGE 6.3
Grgstl-512 [47] FPGA Virtex 5 19k slices 84 MHz 6.1
Skein-512 [39] ASIC (32nm) 61 kGE 1.13GHz 58
Skein-512 [48] FPGA Virtex 5 0.82
JH-256 [42] ASIC(0.18 pm) 51kGE 260 MHz 34
JH-512 [41] FPGA Virtex 5 1.7k slices 144 MHz 1.9
SHA-256 [26] ASIC (0.13 um) ~1GHz >6.5

* Grgstl: Shared P/Q permutation; S-Boxes and MixBytes separated; S-Boxes with
one pipeline register.

» Skein: Eight Threefish rounds unrolled; generic adders.

e JH: 320 S-Boxes (one cycle per R8 round); combinational S-Boxes.

e SHA-2: No unrolling or quasi-pipelining; generic adders.

Table 2.8 shows the best performance of the five algorithms reported in literature, in
terms of throughput. Skein has the highest throughput for ASIC, followed by Kec-
cak. Keccak also has the highest throughput for FPGA implementations, followed
by Grgstl. BLAKE and Skein have good performance in ASIC implementations, but
poor performance on FPGA. The slow adders on FPGA may cause the performance
degradation.

As the final SHA-3 algorithm has not been decided yet, the algorithm may still
be tweaked and improved. For example, Keccak went through minor revision during
each round of the competition. BLAKE went through minor revision during round 2
of the competition. The performance of BLAKE shown here is for the version before
revision. There are no changes in the other three algorithms so far. On the other hand,
as the competition is already in the final round, no major changes are expected from
all candidates. Therefore, the impact of potential changes on the implementation
should be small.

48 Z. Shi et al.

From Table 2.8, we can also see that four out of five SHA-3 candidates in the
final rounds have an implementation that has higher throughput than SHA-256.
Therefore, SHA-3 is expected to be more secure and, at the same time, have higher
throughput than SHA-2.

References

1. Rivest R (1992) The MDS5 message-digest algorithm. In: The Internet Engineering Task Force
(ITEF) Internet Draft, no. RFC-1321, April 1992
2. National Institute of Standards and Technology (1994) Secure hash standard. In: Federal
Information Processing Standards Publication 1801, April 1994
3. Menezes A, Oorschot P, Vanstone S (1996) Handbook of Applied Cryptography, 1st edn. CRC
Press, West Palm Beach, FL, USA
4. Damgard I (1990) A design principle for hash functions. In: Proceedings of Cryptology, Crypto
’89, vol 435, pp 416427
5. Wang X, Feng D, Lai X, Yu H (2004) Collisions for hash functions: MD4, MD5, HAVAL-128
and RIPEMD. http://eprint.iacr.org/2004/199.pdf. Accessed August 2004
6. Wang X, Yu H, Yin YL (2005) Efficient collision search attacks on SHA-0. In: Advances in
Cryptology — CRYPTO’05, vol 3621, pp 1-16
7. Wang X, Yin YL, Yu H (2005) Finding collisions in the full SHA-1. In: Advances in
Cryptology — CRYPTO’05, vol 3621, pp 17-36
8. Wang X, Hongbo Y (2005) How to break MDS5 and other hash functions. In: Advances in
Cryptology EUROCRYPT 2005, pp 19-35
9. National Institute of Standard and Technology (2007) Cryptographic hash algorithm competi-
tion. http://csrc.nist.gov/groups/ST/hash/sha-3/index.html. Accessed November 2007
10. Matyas SM, Meyer CH, Oseas J (1985) Generating strong one-way functions with crypto-
graphic algorithm. IBM Tech Disclosure Bull 27(10A): 5658-5659
11. Preneel B, Govaerts R, Vandewalle J (1989) Cryptographically secure hash functions: an
overview. In: ESAT Internal Report, K. U. Leuven
12. Miyaguchi S, Iwata M, Ohta K (1989) New 128-bit hash function. In: Proceedings 4th
International Joint Workshop on Computer Communications, pp 279-288
13. Barreto PSLM, Rijmen V (2000) The Whirpool hash function. http://www.larc.usp.br/~
pbarreto/WhirlpoolPage.html. Accessed November 2000
14. Nakajima J, Matsui M (2002) Performance analysis and parallel implementation of dedicated
hash functions. In: Proceedings of EUROCRYPT 2002, Lecture Notes in Computer Science,
vol 2332, pp 165-180
15. Lloyd B et al. (1992) PPP authentication protocols. In: The Internet Engineering Task Force
(ITEF) Internet Draft, RFC-1334, October 1992
16. Simpson W (1994) The point-to-point protocol. In: The Internet Engineering Task Force
(ITEF) Internet Draft, RFC-1661, July 1994
17. National Institute of Standards and Technology (2002) The keyed-hash message authentication
code (HMAC). In: FIPS PUB, vol 198
18. Hoang AT, Yamazaki K, Oyanagi S (2008) Multi-stage pipelining MD5 implementations
on FPGA with data forwarding. In: 16th International Symposium on Field-Programmable
Custom Computing Machines, pp 271-272, April 2008
19. Wang Y, Zhao Q, Jiang L, Yi S (2010) Ultra high throughput implementations for MD5 hash
algorithm on FPGA. In: High Performance Computing and Applications, pp 433-441
20. Chaves R, Kuzmanov G, Sousa L, Vassiliadis S (2006) Improving SHA-2 hardware implemen-
tations. In: Cryptographic Hardware and Embedded Systems-CHES 2006, pp 298-310

http://eprint.iacr.org/2004/199.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://www.larc.usp.br/~

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Hardware Implementation of Hash Functions 49

Jarvinen K, Tommiska M, Skytta J (2005) Hardware implementation analysis of the MD5 hash
algorithm. In: Proceedings of the 38th Annual Hawaii International Conference on System
Sciences, vol 9, p 298a

Lee YK, Chan H, Verbauwhede I (2007) Iteration bound analysis and throughput optimum
architecture of SHA-256 (384,512) for hardware implementations. In: Proceedings of the 8th
international conference on Information security applications, vol 256, pp 102-114

Lien R, Grembowski T, Gaj K (2004) A 1 Gbit/s partially unrolled architecture of hash
functions SHA-1 and SHA-512. In: Topics in Cryptologya CT-RSA 2004, pp 1995-1995
Crowe F, Daly A, Kerins T, Marnane W (2005) Single-chip FPGA implementation of a
cryptographic co-processor. In: Proceedings. 2004 IEEE International Conference on Field-
Programmable Technology (IEEE Cat. No.04EX921), pp 279-285

Athanasiou G, Gregoriades A, Panagiotou L, Goutis C, Michail H (2010) High through-
put hardware/software co-design approach for SHA-256 hashing cryptographic module in
IPSec/IPv6. Global J Comput Sci Technol 10(4): 54-59

Dadda L, Macchetti M, Owen J (2004) An ASIC design for a high speed implementation of the
hash function SHA-256 (384, 512). In: ACM Great Lakes Symposium on VLSI, pp 421-425
Dadda L, Macchetti M, Owen J (2004) The design of a high speed ASIC unit for the
hash function SHA-256 (384, 512). In: Proceedings Design, Automation and Test in Europe
Conference and Exhibition, vol 256, pp 70-75

Feldhofer M, Wolkerstorfer J (2007) Strong crypto for RFID tags —a comparison of low-power
hardware implementations. In: 2007 IEEE International Symposium on Circuits and Systems,
pp 1839-1842, May 2007

Peris-Lopez P, Hernandez-Castro J, Tapiador J, Ribagorda A (2009) Advances in ultra-
lightweight cryptography for low-cost RFID tags: Gossamer protocol. Inform Security Appl
56-68

Kim M, Ryou J, Jun S (2009) Efficient hardware architecture of SHA-256 algorithm for trusted
mobile computing. Architecture. Springer Verlag, Berlin, Heidelberg, New York, pp 240-252
Perlner R, Chang S, Kelsey J, Nandi M, Paul S, Regenscheid A (2009) Status Report on the
First Round of the SHA-3 Cryptographic Hash Algorithm Competition. September 2009
Bertoni G, Daemen J, Peeters M, Assche GV (2009) Keccak specifications Version 2. http://
keccak.noekeon.org/Keccak-specifications-2.pdf. Accessed July 2011

Morawiecki P, Srebrny M (2010) A SAT-based Preimage Analysis of Reduced KECCAK Hash
Functions. Santa Barbara, CA, 23-24 August 2010

Bertoni G, Daemen J, Peeters M, Assche GV (2010) Keccak sponge function family main
document. http://keccak.noekeon.org/Keccak-main-2.1.pdf. Accessed June 2010

Biham E, Dunkelman O (2006) A framework for iterative hash functions: HAIFA. In: Second
NIST Cryptographic Hash Workshop

Henzen L, Meier W, Raphael C-W, Phan, Aumasson J-P (2009) SHA3 Proposal BLAKE. 7
May 2009

Knudsen LR, Matusiewicz K, Mendel F, Rechberger C, Schlaffer M, Sgren S, Gauravaram TP
(2008) Grgstl —a SHA-3 Candidate

Lucks S, Schneier B, Whiting D, Bellare M, Kohno T, Callas J, Ferguson JWN (2008) The
Skein Hash Function Family

Sheikh F, Mathew SK, Walker RKJ (2010) A Skein-512 hardware implementation. http://csrc.
nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/ WALKER _skein-
intel-hwd-slides.pdf. Accessed August 2010

Wu H (2009) The Hash Function JH. http://www3.ntu.edu.sg’home/wuhj/research/jh/. Ac-
cessed July 2011

Hanley N, Hamilton M, Lu L, Byrne A, O’Neill M, William P, Baldwin MB (2010) FPGA
Implementations of the Round Two SHA-3 Candidates, August 2010

Feldhofer M, Kirschbaum M, Plos T, Schmidt J-M, Tillich ASS (2010) Uniform evaluation
of hardware implementations of the round-two SHA-3 candidates. In: The Second SHA-3
Candidate Conference

http://keccak.noekeon.org/Keccak-specifications-2.pdf
http://keccak.noekeon.org/Keccak-specifications-2.pdf
http://keccak.noekeon.org/Keccak-main-2.1.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/WALKER{_}skein-intel-hwd-slides.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/WALKER{_}skein-intel-hwd-slides.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round2/Aug2010/documents/presentations/WALKER{_}skein-intel-hwd-slides.pdf
http://www3.ntu.edu.sg/home/wuhj/research/jh/

50

43.

44,

45.

46.

47.

48.

Z. Shi et al.

Bertoni G, Daemen J, Peeters M, Assche GV (2010) The Keccak sponge function family:
hardware performance. http://keccak.noekeon.org/hw_performance.html. Accessed November
2010

Henzen L, Aumasson J-P, Meier W, Phan R VLSI Characterization of the Cryptographic Hash
Function BLAKE. http://www.131002.net/data/papers/HAMP10.pdf. Accessed July 2011
Beuchat J-L, Okamoto E, Yamazaki T (2010) Compact Implementations of BLAKE-32 and
BLAKE-64 on FPGA

Grgstl — a SHA-3 candidate. http://www.groestl.info/implementations.html. Accessed July
2011

Baldwin B, Byrne A, Hamilton M et al. (2009) FPGA Implementations of SHA-3 Candidates:
CubeHash, Grgstl, LANE, Shabal and Spectral Hash. http://eprint.iacr.org/2009/342.pdf.
Accessed July 2011

Long M (2009) Implementing Skein Hash Function on Xilinx Virtex-5 FPGA. http://www.
schneier.com/skein_fpga.pdf. Accessed February 2009

http://keccak.noekeon.org/hw{_}performance.html.
http://www.131002.net/data/papers/HAMP10.pdf
http://www.groestl.info/implementations.html
http://eprint.iacr.org/2009/342.pdf
http://www.schneier.com/skein{_}fpga.pdf.
http://www.schneier.com/skein{_}fpga.pdf.

2 Springer
http://www.springer.com/978-1-4419-8079-3

Introduction to Hardware Security and Trust
Tehranipoor, M.; Wang, C. (Eds.)

2012, WIll, 427 p., Hardcover

ISBN: 978-1-4419-B079-3

	Chapter
2 Hardware Implementation of Hash Functions
	2.1 Introduction to Cryptographic Hash Functions
	2.1.1 Construction of Hash Functions
	2.1.2 Application of Hash Functions

	2.2 Hardware Implementation of Hash Functions
	2.2.1 MD5
	2.2.1.1 Pipelining
	2.2.1.2 Other Optimizations
	2.2.1.3 MD5 Performance

	2.2.2 SHA-2
	2.2.2.1 Iterative Bound Analysis
	2.2.2.2 SHA-2 Performance

	2.2.3 Optimized for Area

	2.3 SHA-3 Candidates
	2.3.1 Keccak
	2.3.2 BLAKE
	2.3.3 Grøstl
	2.3.4 Skein
	2.3.5 JH
	2.3.6 Performance

	References

