
Chapter 2

General Considerations of High-/Mixed-VDD

Analog and RF Circuits and Systems

2.1 Introduction

Instead of just following the rapid downsizing of VDD in technology scaling,

high-/mixed-voltage RF and analog CMOS circuits and systems have emerged as

a prospective alternative [1], to deal with the wireless technology trends such

as software-defined radio and cognitive radio; both are hungry for bandwidth and

dynamic range. An elevated VDD, or a hybrid use of I/O and core VDD’s,

in conjunction with optimum selection of thin- and thick-oxide MOSFETS open

upmuch new design possibilities in re-defining circuit topologies, whilemaintaining

most speed and area benefits of advanced fine linewidth processes [2]. Voltage-

conscious bias techniques and overdrive protection circuits are simple and low

overhead techniques to ensure the reliability of all devices. This chapter studies

the basic design concept, system design considerations and some state-of-the-art

circuit examples. A wide variety of analog and RF CMOS circuits featuring high-/

mixed-VDD is discussed. Those circuits comprise power amplifier, low-noise ampli-

fier, mixer, operational-amplifier-based analog circuits, sample-and-hold amplifier

and line driver. Reliability metrics such as oxide breakdown voltage, hot carrier

injection (HCI), time dependent dielectric breakdown (TDDB), and bias tempera-

ture instability (BTI) will be briefly addressed. The involved concepts and

techniques are generally extendable to different wireless and non-wireless

applications.

2.2 System Considerations

A general system architecture of mixed-voltage wireless system-on-chip (SoC) for

portable applications is depicted in Fig. 2.1. Thin-oxide transistors powered byVDD,c

(core VDD) exhibit the simplest structure to maximize the speed-to-power efficiency
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of digital functions such as the digital signal processor. However, RF and analog

circuits such as theRFpower amplifier and the baseband operational amplifier are not

that efficient to work under the same VDD,c, which in the latest technologies, such as

the 65 and 40-nmCMOS, has values in the order of 1 to 0.9V [3], respectively. Such a

reduced VDD,c limits: (1) the overdrive voltages on transistors, and (2) the linear

output swing. Both of them can directly burden the performance optimization,

especially in multistandard wireless systems that demand high-linearity low-noise

wideband RF circuits [4]. Consequently, the exploration of a voltage islanding
concept in a power management unit would become essential for distribution of

the supply voltages to different RF and analog functions appropriately.

On the other hand, since many peripherals do not scale synchronously with the

silicon technologies, thick-oxide transistors are still kept available in advanced

processes to facilitate I/O communications. Thus, bringing thick-oxide transistors,

and their associated VDD,IO, into the RF and analog circuit design portfolio appears

to be a handy option to increase the design flexibility. Thick-oxide transistors can

be considered as devices from previous technology nodes: 0.25 and 0.18 mm.

Their reliable operating voltages are 2.5 and 1.8 V, respectively. Both are much

more comfortable values for RF and analog circuit design and can be easily

generated by a 3.6/3.7-V Li-ion battery. Obviously, circuits built with purely

thick-oxide transistors are not preferred as they cannot profit the speed and area

benefits of advanced processes. A hybrid use of thin- and thick-oxide transistors,

VDD,c and VDD,IO, emerges then as a new art in electronics that should be

adopted with a sensible balance. In the next sections, before the high-/mixed-

voltage-enabled circuits for wide types of RF and analog functions are described,

we will discuss the key device reliability concerns.
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Fig. 2.1 Increase the design flexibility of analog and RF circuits with more options on voltage

supplies and devices
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2.3 Device Reliability in Ultra-scaled Processes

The technology Design Rule Manual provides the key device reliability concerns

including the absolute maximum rating (AMR), hot carrier injection (HCI),

electrostatic discharge (ESD), time dependent dielectric breakdown (TDDB), bias

temperature instability (BTI) and punchthrough effect. Complying with them in the

design indeed translates the term “design for reliability” into “voltage-conscious

design”, highly simplifying the design and verification methodologies [5]. Further-

more, in the topology formation phase, their implications to the circuits can be

easily identified. Other reliability issues related to interconnects and materials

like electromigration, stress-induced voiding and mechanical weakness are beyond

the scope of this work.

2.3.1 AMR

The AMR corresponds to the maximum voltage applied to a minimum-gate-length

device with no unrecoverable hard failure. AMR is concerned mainly with the gate-

oxide breakdown voltage as it is 3–4 times smaller than the junction breakdown

voltage [5]. A device biased close to the AMR limit may also lead to a deviation in

device parameters, degrading the long-term reliability. The tolerable AMR is

continuously reducing with the technologies (e.g., 1.6 V in 90-nm CMOS),

complicating the design of ESD protection in high-frequency pins.

2.3.2 HCI Lifetime

Degradation of MOS device characteristics occurs as a result of exposure to a high

VDS with a large drain current. Examples of degradation are a shift of VT and a

shorter gate-oxide breakdown lifetime. HCI normally happens in high-power

circuits such as the power amplifier, where the worst HCI bias conditions:

VDS≧VGS≧VT and VDS≧VDD/2 are concurrently satisfied. HCI degradation can be

reduced by lowering the drain current or increasing the device channel length (L).

2.3.3 TDDB

TDDB is the wear-out of insulating properties of silicon dioxide in the CMOS gate,

leading to the formation of a conducting path through the oxide to the substrate.

In order to protect the circuit against TDDB the catastrophic destruction of gate

oxides induced by the maximum DC gate oxide voltage at different temperatures
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must be considered. According to the maximum DC gate oxide voltages of 90 and

65-nm CMOS given in Table 2.1, NMOS has a higher voltage standing capability

than PMOS for all cases to prevent TDDB. Thus, NMOS is preferable when

considering TDDB in circuit design.

2.3.4 NBTI

BTI degradation happens under steady-state conditions. It is design dependent in

analog and RF circuits and primarily only PMOS devices are subjected to BTI

stress, namely negative BTI (NBTI). In a VDD-upscaled design, analyzing NBTI

involves detecting, in all modes of operation (DC and small signal), which PMOS

device is exposed to a peak or rms voltage value exceeding the standard VDD, which

is around 1 V in 90 and 65-nm CMOS. Thus, NMOS is also preferred when

implementing analog switches.

2.3.5 Punchthrough

Transistor gate length should be increased wherever possible to prevent the drain-

source depletion regions from punchthrough. In 90-nm CMOS, for a transistor

having an aspect ratio (W/L) of 10/0.1, a strong increment of drain current due to

punchthrough effect starts at a value of |VDS| around 2.3 V. Although the punch-

through effect is not intrinsically destructive it can accelerate, in the long term, the

gate oxide breakdown because of the induction of hot carriers. Punchthrough is a

critical concern in high-power circuits such as the power amplifier (PA), but it can be

avoided for low-power RF circuits such as the low-noise amplifier (LNA).

2.4 Extend the Voltage Capability of Thin-

and Thick-Oxide Transistors

With respect to the above-mentioned reliability concerns, individual thin (thick)-

oxide transistors can withstand maximally just one VDD,c (VDD,IO) voltage differ-

ence for any of the two terminals. In order to extend their voltage capability,

Table 2.1 Maximum DC gate oxide voltage to prevent TDDB

90 nm CMOS 65 nm CMOS

45�C 150�C 45�C 150�C
GP NMOS 1.43 V 1.28 V GP NMOS 1.35 V 1.23 V

GP PMOS 1.29 V 1.17 V GP PMOS 1.23 V 1.11 V
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stacking of devices can be applied. The concept is illustrated in Fig. 2.2. In steady

state, the possible structures can be a stack of two (or more) thin-oxide transistors,

thick-oxide transistors, or a hybrid use of both. Generally, the voltage capability

across the drain and source terminals can be multiplied by the number of stacked

transistors. One basic request of this technique is that the bulk should be tied to the

source terminal to avoid overstress between them, implying the need of a triple-well

process for NMOS to have an isolated bulk.

Among the three structures shown in Fig. 2.2 only pure stack of thin-oxide

transistors and a hybrid stack of thin- and thick-oxide transistors are relevant to

balance the speed and voltage capability. A pure stack of thick-oxide transistors

cannot take advantage of the area and speed features of advanced technologies.

In the hybrid case the thin-oxide transistor can serve as the amplification device

for minimization of the loading effect to the previous stage. The thick-oxide

transistor serves as the cascode device thus increasing the voltage capability.

High-/mixed-voltage RF and analog circuits are generally based on these two

stacking structures.

In addition to steady-state overstress, transient-state overstress should not be

allowed too. Depending on the nature of the signal processing, large-signal circuits

(e.g., line driver) requires checking the trajectory of all nodes. Alternative solutions

are to employ voltage-biased and self-biased circuit topologies; both of them

have the benefit that the internal node voltages can be easily controlled during

power up/-down transients. Examples of the techniques will be discussed in the

next section.
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Fig. 2.2 Extending the voltage capability of thin-and thick-oxide transistors through stacking
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2.5 High-/Mixed-Voltage Building Blocks

2.5.1 Power Amplifier and Wideband Balun-LNA
(High-VDD þ Mixed-Transistor)

VDD-upscaling circuits have appeared in the literature for many years. The most

common application is on the PA. As shown in Fig. 2.3a a hybrid use of thin- (M1)

and thick-oxide device (M2) in cascode permits using of a higher VDD beyond the

standard value to maximize the possible output power in 0.13-mm CMOS [6].

The reliability test should be under the maximum output power level with the

entailed modulation (e.g., 64QAM OFDM), to ensure the steady-state overstress

conditions are met (i.e., │VGD,rms│, │VGS,rms│ and │VDS,rms│ have to be less than VDD

of each device type). M2 entails a triple well for independent bulk-source

connection.

On the other hand, in order to protect M1 from overstressing automatically

during the power-up/down transients, we propose to add a thick-oxide device

Mpt1 can be added to the Vx node. Its size is not critical as its aim is to ensure Vx

< VDD,c when VDD,elevated is activated first and can be turned off when VDD,c has

caught up automatically.

Mixed-transistor circuit topologies also find applications in recent small-signal

linearity-demanding wireless circuits and systems [7–9]. A 90-nm CMOS ultra-

wideband balun low-noise amplifier (LNA) [7] based on an elevated VDD (2.5 V)
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Fig. 2.3 RF circuits using an elevated VDD. (a) Power amplifier with automatic protection of M1

from being overstressed. (b) Wideband balun LNA
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increases the output dynamic range while allowing more voltage drop at the

resistive load RL (Fig. 2.3b), achieving both high gain and high linearity but a

smaller output bandwidth due to an increased RL. A gain-peaking inductor LL can

be exploited to extend the output bandwidth.Mpt1 in Fig. 2.3a can also be applied to

this topology to protect M1 and M3.

2.5.2 Passive Mixers (High-VDD þ Thin-Oxide Transistor)

A passive current-mode downconversion mixer can be implemented with a resistor

Rff in-series with a MOS switch, and terminated with a virtual ground through the

use of an operational amplifier (OpAmp). The OpAmp provides linear I-V conver-

sion and first-order lowpass filtering at the output. In order to achieve a rail-to-rail

output swing the output dc-level should be at half of the supply. For a generic

1 � VDD design as shown in Fig. 2.4a, the clocked MOS switch can only have

1xVDD

1xVDD

2 xVDD

1xVDD

2xVDD

0

Vout

Vout

Vin

Vin

VSS

VSS

Rff

Rff

Rfb

Cfb

Rfb

Cfb

VCM
(0.5xVDD)

VCM
(1xVDD)

0.5xVDD
-0.5xVDD

VGS =

1xVDDVGS =

(VDC = 0.5xVDD) (VDC = 0.5xVDD)

(VDC = 0.5xVDD)

(VDC = 1xVDD)

(VDC = 1xVDD)(VDC = 1xVDD)

0

a

b

Fig. 2.4 Downconversion passive mixers: (a) 1 � VDD design. (b) 2 � VDD design
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a maximum overdrive voltage of 0.5 VDD. However, by doubling the supply to

2 � VDD as shown in Fig. 2.4b, the overdrive voltage of the MOS switches is

maximized to the technology allowable limit, i.e., 1 � VDD. This act significantly

reduces the size of the MOS switch and its induced nonlinearity. The design of

2 � VDD OpAmp will be presented later in this chapter.

Another type of 2� VDD passive mixer with a mixer driver is shown in Fig. 2.5a.

A 2 � VDD 90-nm CMOS cascode amplifier serves as the mixer driver improving

the linearity and reverse isolation but the output dc-level is up-shifted to 1.5� VDD.

Under a 1.5 � VDD dc-level PMOS is preferred as the mixing MOS to maximize

the overdrive voltage. The unmatched input and output dc-levels of the OpAmp

require an extra bias current Ib to sink out the excess dc-current in the feedback

loop. Since Ib depends on the absolutely value of Rfb, a resistance-tracking
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Fig. 2.5 (a) 2 � VDD passive mixer with mixer driver and its (b) Ib generation circuit

16 2 General Considerations of High-/Mixed-VDD Analog. . .



bias circuit can be utilized for this purpose. As shown in Fig. 2.5b, an error

amplifier together with a 3Rfb and a current mirror generates the required value of

Ib ¼ 0.5 � VDD/Rfb. It should be noted that no device is under overstress.

2.5.3 Differential Pair (High-VDD þ Thin-Oxide Transistor)

A 3.3-V 0.18-mmCMOS two-stage operational amplifier (OpAmp) was demonstrated

in [10]. The concept of extending the voltage is related with the addition of

extra cascode transistors, boosting the voltage-withstand capability from 1.8 to

3.3 V. The input stage is of particular interest as it is based on a high-voltage-

enabled differential pair using a current mirror load. In order to understand the

performance difference in an advanced process, we re-designed and compared

only the input stage of the OpAmp (output stage is more customized) in 65-nm

CMOS, as shown in Fig. 2.6a and b. Table 2.2 summarizes the simulation
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a b
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M2

M4

M4

M5 M5 M6
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M3
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M1
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CL

(VDC ª 0.3xVDD)

(VDC ª 1xVDD)

(VDC ª 0.55xVDD)

(VDC ª 0.7xVDD)

(VDC ª 1.5xVDD)

Fig. 2.6 Typical OpAmp’s input stage: (a) 1 V (typical) (b) 2 V-enabled

Table 2.2 Comparison between 65-nm1-V and 2-VOpAmp’s input stagewith a current-mirror load

Parameters 1 V OpAmp’s input stage 2 V OpAmp’s input stage

Technology 65 nm CMOS

Transistor type 1 V GP NMOS and PMOS

Power consumption 0.4 mW

Load CL 1 pF

DC gain 10 dB 18.4 dB

Unity-gain frequency 318.5 MHz 191 MHz

Phase margin 107� 95�

HD3 (@ 1 MHz input) 45.6 dB at 125 mVpp Output 44.3 dB at 330 mVpp Output

Output noise voltage

(@ 100 MHz)

14.6 nV/sqrtHz 14.7 nV/sqrtHz
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results showing that the dc gain and linear output swing of the 2-V design are

8.4 dB and 2.6 times better than its 1-V counterpart, respectively. On the other

hand, the unity-gain frequency is reduced by 40% due to the additional parasitic

poles in the 2-V design. Thus, when the speed is not that demanding, a 2-V-

enabled OpAmp is better since OpAmp-based circuits such as the active filter

are normally for baseband operation.

2.5.4 Recycling Folded Cascode Operational Amplifier
(High-VDD þ Thin-Oxide Transistor)

Based on the above observation, a 2 � VDD-enabled recycling folded cascode

(RFC) OpAmp [10] is proposed and compared with its 1 � VDD RFC counterpart

[11] and its original 1 � VDD folded cascode (FC) counterpart. Without resorting

from a two-stage or multi-stage OpAmp, this 2 � VDD-enabled RFC OpAmp can

offer sufficient open-loop gain and linear output swing to realize high-precision

analog functions in a single stage. The reliability of the circuit is ensured via

voltage-conscious biasing and gate-drain-source engineering.

The single-stage FC OpAmp is shown in Fig. 2.7. Its performance can be

enhanced with the RFC technique [11] as shown in Fig. 2.8. It employs M1b, M2b,

M11, M12, M3b andM4b to improve concurrently the gain and speed. By controlling

the current mirror gain K, the small signal transconductance can be boosted,
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Vcmfb
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Fig. 2.7 Typical RFC OpAmp (1 � VDD design)
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i.e., gmRFC ¼ gm1a (1 + K). Thus, under a fixed power budget, the RFC shows

a higher gain-bandwidth product (GBW) than the conventional FC structure.

Furthermore, the RFC OpAmp also exhibits larger output resistance than its FC

counterpart, leading to further gain enhancement.

The proposed 2 � VDD RFC OpAmp is depicted in Fig. 2.9. The aim of

doubling the supply is to enhance certain performance metrics that cannot be

simply obtained by doubling the bias current at 1 � VDD under the same power

budget. By appropriately doing transistor stacking and biasing, the output resis-

tance of the devices can be boosted while the voltage stress on them can also be

shared to meet the reliability limits. For instance, under a 2 � VDD, M00 can be

added to share the voltage stress on the current source M0 and improve its output

resistance, thereby the OpAmp’s common-mode rejection ratio (CMRR). On the

other hand, the current mirrors (M3a, M3b, M4a, M4b) are cascoded with (M3a0,

M3b0, M4a0, M4b0), whereas the current sources of the output stage (M11, M12) are

cascoded with (M9,M10). Thus, the overall DC gain should be enhanced due to the

boosted output resistance RO,RFC-2V by comparing it with the RO,RFC-1V as

summarized in Table 2.3.

The bias and common-mode feedback circuits (CMFB) are tailored to include

extra cascode devices to ensure all node voltages are within the reliability limits as

shown in Fig. 2.10.
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In order to ensure the reliability and performance of the 2� VDD RFC OpAmp, it

should be tested in a closed-loop way based on the intended applications. Here, a

first-order active-RC circuit with unity gain is assumed, as shown in Fig. 2.11.

To check the reliability of all devices inside the OpAmp, a large square-wave

input at a common-mode voltage of 1 V is applied. Figure 2.12 shows the VGS–VGD

relationship at an input swing of 1.2 Vpp. Since the circuit is differential, only

half-circuit results are shown. It can be observed that both VGS and VGD vary within

the ±1-V boundary and the variation is indeed small. Next, the VDS trajectory is

checked. Figure 2.13a–c show that the VDS, in a period of square-wave input under

an input swing of 1.2, 1.6 and 2 Vpp, respectively. When the input swing is 1.2 V, all

VDS are within the ±1-V boundary. When the input swing is enlarged, some of the

VDS exceed 1 V, reached 1.13 and 1.25 V for 1.6 and 2-Vpp inputs, respectively.

According to the lifetime targets discussed in [12], VDS > 1 V may still be

acceptable for some applications.

In order to compare the performances between 1 � VDD FC, 1 � VDD RFC and

2� VDD RFC OpAmps fairly, they are designed under the same power budget. The

simulated open loop DC gain (Fig. 2.14) of the FC, 1-V RFC and 2-V RFC is

45.3 dB, 54.0 dB and 72.8 dB respectively, which indeed demonstrates the

enhanced output impedance of the 2-V RFC and the enhanced gain of the 1-V

RFC over the FC is apparent and within the expected range of 8–10 dB.
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Fig. 2.9 Proposed 2 � VDD-enabled RFC OpAmp
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As for the GBW, the FC, 1-V RFC and 2-V RFC is 68.2 MHz, 157.8 MHz and

97.5 MHz, The GBW of the 2 � VDD design, as expected, is less than to that in

the 1 � VDD design under the same power budget, but is fairly adequate for most

analog functions with signal bandwidth of less than 10 MHz. The phase margin

simulated for FC, 1-V RFC and 2-V RFC is 86.6�, 60.9� and 70.7� at their

respective GBWs. The phase margin of 1-V RFC is smallest since it has the largest

GBW, and has more poles compared to FC. The 2-V RFC shows less phase

margin compared to FC, since the larger GBW and the multiple poles added by

2xVDD

GND

Vref=1V

Ib

CMFBBias circuit

Vbn1

Vbn2

Vbp3

Vbp1

Vbp2

VBp1’

Vcmfb

VOutn
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Fig. 2.10 Bias and CMFB circuits for the 2 � VDD-enabled RFC OpAmp
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Fig. 2.11 A unity-gain amplifier is used to assess the performance and reliability of a 2 � VDD-

enabled RFC OpAmp. R ¼ 600 kO, C1 ¼ 2 pF and C2 ¼ 4 pF. The input and output dc-levels are

1 � VDD to maximize the signal swing and allow ease of cascading
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cascode and current mirror. Nevertheless, neither amplifier shows any ringing in the

transient performance.

The linearity of the OpAmps is assessed as follows: a two-tone test centered

around 500 kHz (250 mVpp at 450 kHz and 250 mVpp at 550 kHz) was applied to

the three OpAmps, and their results are shown in Fig. 2.15a–c. The third intermod-

ulation distortion, IM3, is �49.7 dB (1-V FC), �57.2 dB (1-V RFC) and �76.5 dB

(2-V RFC), as shown in Fig. 2.16. For an analog-to-digital converter, the achieved

gain of the 2-V RFC OpAmp corresponds to>11-bit resolution for an output swing

as large as 0.8 Vpp. When they are in a unity-gain configuration, Fig. 2.17 confirms

the high gain accuracy of the 2-V RFC OpAmp over such a wide output swing.

The input-referred noises of the three OpAmps are shown in Fig. 2.18. When

integrated over a bandwidth of 1 Hz to 100 MHz, the noises are 74.4 mVrms (FC),

64.3 mVrms (1-V RFC) and 83.2 mVrms (2-V RFC). The latter is actually inferior
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comparing with the 1-V ones. Table 2.4 summarizes their simulation results.

It concludes that the 2 � VDD RFC OpAmp is more efficient in improving the

gain precision and linearity of analog circuits. However, when GBW and noise are

the priorities, the 1-V RFC OpAmp becomes more superior. Voltage-oriented

OpAmp design, therefore, improves the performance metrics very different from

the current-oriented ones in nm-length CMOS processes.
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0.5 V, Vcm,1-V RFC ¼ 0.5 V and Vcm,2-V RFC ¼ 1 V
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2.5.5 OpAmp-Based Analog-Baseband Circuits
(Mixed-VDD þ Mixed-Transistor)

As shown above, a 2 � VDD recycling folded-cascode (RFC) OpAmp can achieve

better performances than its 1 � VDD counterpart such as DC gain and close-loop

linearity under a similar power budget. The applications of such an OpAmp are

extensive, as shown in Fig. 2.19. Depending on the selected impedances of Zfb and Zff
several types of continuous-time and discrete-time circuits can be synthesized. Of

course, in some cases, it will need to interface between standard-VDD and high-VDD

building blocks.As shown inFig. 2.20a, in a transmitter the use of 1�VDD and2�VDD

OpAmp allows a progressively increase of linear output swing. The level shifter is a

current source Ib. Another case is shown in Fig. 2.20b for receiver, a 2� VDD OpAmp

(at the front) offerswider linear output swing to handle the out-of-channel interferer 1�
VDD OpAmp (at the back) easily interfaces with 1 � VDD ADC. Again, Ib allows

seamless cascade of blocks having different common-mode voltages.
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Fig. 2.18 Input referred noise spectral power density

Table 2.4 Performance summary for 1-V and 2-V RFC OpAmps

Parameter FC 1-V RFC 2-V RFC

Power (bias current) [mA] 600 600 300

DC gain [dB] 45.3 54.0 72.8

GBW [MHz] 68.2 157.8 97.5

Open loop PM [deg] 86.6 60.9 70.7

Capacitive load [pF] 5.0 5.0 5.0

Slew rate (average) [V/ms] 53.3 96.6 65.4

1% settling time [ns] 24.8 9.8 18.0

Gain precision (closed loop, ideal case is 1) 98.6% 99.4% 99.8%

IM3, 0.5 Vpp at 0.5 MHz [dB] �49.7 �57.2 �76.5

Input referred noise (1 Hz–100 MHz) [mVrms] 74.4 64.3 83.2
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After lowpass filtering, the baseband signal can be driven off-chip or to the

analog-to-digital converter (ADC). In either case, a high-VDD source follower with

a thick-oxide MOS can be used as the buffer, as compared in Fig. 2.21a and b for

mixed-VDD and standard-VDD design. The mixed-VDD design inherently offers

level-shifting, avoiding any AC-coupling circuit that is area hungry at baseband,

i.e., the highpass cutoff frequency should be sufficiently low to prevent notching the

signal spectrum.

2.5.6 Low-Dropout-Regulator (Mixed-VDD þ Mixed-Transistor)

Low-dropout regulators (LDOs) are widely employed in SoC for improving the

power-supply rejection ratio (PSRR) of the internal circuit. PMOS-based LDO

(Fig. 2.22a) is more popular than its NMOS counterpart (Fig. 2.22b) for its lower

dropout voltage property. The main issue of PMOS-based LDO is the necessity of

an external big capacitor to ensure the stability. Such a requirement significantly

increases the manufacturing cost and pin counts because many LDOs are entailed

for a SoC. The NMOS-based LDO, on the other hand, is free from such a request

(i.e., cap-less) and features better stability and PSRR+. The key appeal is that VG

will need to be greater VDD12, which is not normally possible in a single-VDD

design. In a mixed-VDD design, VG > VDD12 can be solved as shown in

Fig. 2.22c. The abovementioned benefits of NMOS-based LDO are retained,

while an add-on benefit is that the maximum Vout,max can now be VDD12 (i.e., no

dropout voltage!). The drawback is that every 1-mA current to ZL yields 1.3-mW

power loss in the pass transistor. Thus, the technique befits better low-power high-

sensitivity circuits.

In addition to VDD-LDO, ground-LDO is becoming more crucial to desensitize

low-noise high-DR circuits, e.g., voltage-controlled oscillator (VCO), from sub-

strate noise coupling in a noisy SoC environment as shown in Fig. 2.23. Due to the
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Thick-Oxide
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Fig. 2.21 (a) Standard-VDD and (b) mixed-VDD source follower serves as a buffer
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presence of VDD25, VDD-LDO and ground-LDO can be jointly employed. The VCO

may employ a thick-oxide varactor or MOSFET capacitor as the frequency tuning

element, covering potentially a wider tuning range. Proper biases can ensure the

internal rail sufficiently large for the core circuit, surpassing the voltage-headroom

NMOS
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Stability & PSRR +
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Fig. 2.22 LDO with (a) a PMOS pass transistor. (b) a NMOS pass transistor, and (c) mixed-

voltage design on a NMOS pass transistor
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tradeoff when employing LDO for PSRR improvements. Again, the drawback is

that every 1-mA current to ZL yields 1.3-mW power loss in the two pass transistors.

2.5.7 Sample-and-Hold Amplifier (High-VDD þ Mixed-Transistor)

Discrete-time analog-baseband circuits not only can benefit from the area and

power savings of a VDD-elevated OpAmp, but also the extra voltage headroom to

improve the linearity of sampling. Shown in Fig. 2.24a and b are two sample-and-

hold circuits with 1-V and 2.5-V supplies, respectively. At a 100-MHz sampling

rate, to sample-and-hold a 10-MHz 0.6-Vpp sinusoidal input at a dc level that is

midway to VDD/2, the former, based on thin-oxide MOS with a minimum channel

length of 60 nm can achieve 1.18-GHz tracking bandwidth (BW) but the HD3 is

limited to 31.5 dB. Alternatively, the latter based on thick-oxide MOS with a

minimum channel length of 280 nm can achieve 50-dB HD3, but the tracking

BW is almost halved. Then, this speed-linearity tradeoff is subject to applications

and can be flexibly selected in advanced processes, as both thin- and thick-oxide

devices are available. Since the clock is normally synthesized with the thin-oxide

circuit for power and area reduction, a clock level shifter, as shown in Fig. 2.25,

would be required for the 2.5-V design. Thus, power and speed overheads must be

considered.
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Fig. 2.25 Clock level shifter for 1–2.5 V
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2.5.8 Line Driver (High-VDD þ Thin-Oxide Transistor)

Reference [13] has demonstrated that a 5.5-V line driver realized in a standard 1.2-V

0.13-mmprocess is capable to attain state-of-the-art performances with no reliability

degradation. Figure 2.26 depicts the block schematic of such a central office (CO)

line driver topology (the output stage), where a 2 � VDD,c supply is adopted for

simplicity. The input signal is delayed (to synchronize with the upper path) and

buffered to drive the NMOS device M1, besides being also level-shifted up to drive

the PMOS device M4. The cascode transistors M2 and M3 serve to increase the

voltage-withstand capability. With a 2� VDD,c supply, the gate-bias voltages ofM2

andM3 are very simple, i.e., 1� VDD,c to ensure no overstress in both high- and low-

state outputs (Fig. 2.27). For a higher VDD multiplying design (i.e., greater than 2),
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a dedicated bias circuit for each cascode transistor is necessary to guarantee no

device is under overstress in both steady-state and transient operations. The circuit

needs two supplies 1 � VDD,c and 2 � VDD,c. The application-related performance

metrics are available elsewhere [13].

This 2 � VDD line driver has been recently modified to work on a 90-nm CMOS

switched-capacitor power amplifier [14] and 32-nm CMOS class-D power amplifier

[15]; both demonstrate state-of-the-art performances, further proving the impor-

tance of high-/mixed-VDD designs in nanoscale CMOS.

2.6 Summary

High-/mixed-voltage techniques feature high potential to boost up the

performances of RF and analog circuits without degrading the reliability. Bringing

the VDD,IO and thick-oxide transistors into the RF and analog circuit design portfo-

lio does not by itself require any add-on resource or technology option (at least up to

now), but it effectively increases the design flexibility. Circuit techniques play a

key role in this development, and are therefore long-term reusable when the

technology continues to advance.

This chapter only serves as a glimpse of this research trend and guiding direc-

tion, while highlighting the necessary gate-drain-source engineering skills to take a

broader advantage of available techniques. One of the critical points would be to

guarantee the circuit reliability compliance with the foundry guidelines when

considering device size and the potential adopted bias in transient and steady states.

Advantages of high-/mixed-voltage analog and RF CMOS circuits have been

demonstrated by several recent works, and are easily extendable to other

applications.
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