
Chapter 2
Overture: Ramsey’s Theorem

Musicians in the past, as well as the best of the moderns, believed that a counterpoint or
other musical composition should begin on a perfect consonance, that is, a unison, fifth,
octave, or compound of one of these.

GIOSEFFO ZARLINO

Le Istitutioni Harmoniche, 1558

The Nucleus of Ramsey Theory

Most of this text is concerned with sets of subsets of the natural numbers, so, let us
start there: The set {0,1,2, . . .} of natural numbers (or of non-negative integers)
is denoted by ω. It is convenient to consider a natural number n as an n-element
subset of ω, namely as the set of all numbers smaller than n, so, n = {k ∈ ω : k < n}.
In particular, 0 = ∅, where ∅ is the empty set. For any n ∈ ω and any set S, let [S]n
denote the set of all n-element subsets of S (e.g., [S]0 = {∅}). Further, the set of all
finite subsets of a set S is denoted by [S]<ω .

For a finite set S let |S| denote the number of elements in S, also called the
cardinality of S.

A set S is called countable if there is an enumeration of S, i.e., if S = ∅ or
S = {xi : i ∈ ω}. In particular, every finite set is countable. However, when we say
that a set is countable we usually mean that it is a countably infinite set. For any
set S, [S]ω denotes the set of all countably infinite subsets of S, in particular, since
every infinite subset of ω is countable, [ω]ω is the set of all infinite subsets of ω.

Let S be an arbitrary non-empty set. A binary relation “∼” on S is an equivalence
relation if it is

• reflexive (i.e., for all x ∈ S: x ∼ x),
• symmetric (i.e., for all x, y ∈ S: x ∼ y ↔ y ∼ x), and
• transitive (i.e., for all x, y, z ∈ S: x ∼ y ∧ y ∼ z → x ∼ z).

The equivalence class of an element x ∈ S, denoted [x] ,̃ is the set {y ∈ S : x ∼ y}.
We would like to recall the fact that, since “∼” is an equivalence relation, for any
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x, y ∈ S we have either [x]˜ = [y]˜ or [x]˜ ∩ [y]˜ = ∅. A set A ⊆ S is a set of
representatives if for each equivalence class [x]˜ we have |A ∩ [x] |̃ = 1; in other
words, A has exactly one element in common with each equivalence class. It is
worth mentioning that in general, the existence of a set of representatives relies on
the Axiom of Choice (see Chapter 5).

For sets A and B , let AB denote the set of all functions f : A → B . For f ∈ AB

and S ⊆ A let f [S] := {f (x) : x ∈ S} and let f |S ∈ SB (the restriction of f to S) be
such that for all x ∈ S, f (x) = f |S(x).

Further, for sets A and B , let the set-theoretic difference of A and B be the set
A \ B := {a ∈ A : a /∈ B}.

For some positive n ∈ ω, let us colour all n-element subsets of ω with three
colours, say red, blue, and yellow. In other words, each n-element set of natural
numbers {k1, . . . , kn} is coloured either red, or blue, or yellow. Now one can ask
whether there is an infinite subset H of ω such that all its n-element subsets have
the same colour (i.e., [H ]n is monochromatic). Such a set we would call homo-
geneous (for the given colouring). In the terminology above, this question reads as
follows: Given any colouring (i.e., function) π : [ω]n → 3, where 3 = {0,1,2}, does
there exist a set H ∈ [ω]ω such that π |[H ]n is constant? Alternatively, one can de-
fine an equivalence relation “∼” on [ω]n by stipulating x ∼ y iff π(x) = π(y) and
ask whether there exists a set H ∈ [ω]ω such that [H ]n is included in one equiv-
alence class. The answer to this question is given by RAMSEY’S THEOREM 2.1
below, but before we state and prove this theorem, let us say a few words about its
background.

Ramsey proved his theorem in order to investigate a problem in formal logic,
namely the problem of finding a regular procedure to determine the truth or fal-
sity of a given logical formula in the language of First-Order Logic, which is also
the language of Set Theory (cf. Chapter 3). However, RAMSEY’S THEOREM is a
purely combinatorial statement and was the nucleus—but not the earliest result—of
a whole combinatorial theory, the so-called Ramsey Theory. We would also like to
mention that Ramsey’s original theorem, which will be discussed later, is somewhat
stronger than the theorem stated below but is, like König’s Lemma, not provable
without assuming some form of the Axiom of Choice (see PROPOSITION 7.8).

THEOREM 2.1 (RAMSEY’S THEOREM). For any number n ∈ ω, for any positive
number r ∈ ω, for any S ∈ [ω]ω, and for any colouring π : [S]n → r , there is always
an H ∈ [S]ω such that H is homogeneous for π , i.e., the set [H ]n is monochromatic.

Before we prove RAMSEY’S THEOREM, let us consider a few examples: In the
first example we colour the set of prime numbers P with two colours. A Wieferich
prime is a prime number p such that p2 divides 2p−1 − 1, denoted p2 | 2p−1 − 1.
Recall that by FERMAT’S LITTLE THEOREM we have p | 2p−1 −1 for any prime p.
Now, define the 2-colouring π1 of P by stipulating

π1(p) =
{

0 if p is a Wieferich prime,

1 otherwise.
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Let H0 = {p ∈ P : p2 | 2p−1 − 1} and H1 = P \ H0. The only numbers which are
known to belong to H0 are 1093 and 3511. On the other hand, it is not known
whether H1 is infinite. However, by the Infinite Pigeon-Hole Principle we know that
at least one of the two sets H0 and H1 is infinite, which gives us a homogeneous set
for π1.

As a second example, define the 2-colouring π2 of the set of 2-element subsets
of {7l : l ∈ ω} by stipulating

π2
({n,m}) =

{
0 if nm + mn + 1 is prime,

1 otherwise.

An easy calculation modulo 3 shows that the set H = {42k + 14 : k ∈ ω} ⊆ {7l :
l ∈ ω} is homogeneous for π2; in fact, for all {n,m} ∈ [H ]2 we have 3 | (nm +
mn + 1).

Before we give a third example, we prove the following special case of RAM-
SEY’S THEOREM.

PROPOSITION 2.2. For any positive number r ∈ ω, for any S ∈ [ω]ω , and for any
colouring π : [S]2 → r , there is always an H ∈ [S]ω such that [H ]2 is monochro-
matic.

Proof. The proof is in fact just a consequence of the Infinite Pigeon-Hole Principle;
firstly, the Infinite Pigeon-Hole Principle is used to construct homogeneous sets for
certain 2-colourings τ and then it is used to show the existence of a homogeneous
set for π .

Let S0 = S and let a0 = min(S0). Define the r-colouring τ0 : S0 \ {a0} → r by
stipulating τ0(b) := π({a0, b}). By the Infinite Pigeon-Hole Principle there is an infi-
nite set S1 ⊆ S0 \ {a0} such that τ0|S1 is constant (i.e., τ0|S1 is a constant function)
and let ρ0 := τ0(b), where b is any member of S1. Now, let a1 = min(S1) and de-
fine the r-colouring τ1 : S1 \ {a1} → r by stipulating τ1(b) := π({a1, b}). Again we
find an infinite set S2 ⊆ S1 \ {a1} such that τ1|S2 is constant and let ρ1 := τ1(b),
where b is any member of S2. Proceeding this way we finally get infinite se-
quences a0 < a1 < . . . < an < . . . and ρ0, ρ1, . . . . Notice that by construction, for
all n ∈ ω and all k > n we have π({an, ak}) = τn(ak) = ρn. Define the r-colouring
τ : {an : n ∈ ω} → r by stipulating τ(an) := ρn. Again by the Infinite Pigeon-Hole
Principle there is an infinite set H ⊆ {an : n ∈ ω} such that τ |H is constant, which
implies that H is homogeneous for π , i.e., [H ]2 is monochromatic. 


As a third example, consider the 17-colouring π3 of the set of 9-element subsets
of P defined by stipulating

π3
({p1, . . . , p9}

) = c ⇐⇒ p1 · p2 · . . . · p9 ≡ c mod 17.

For 0 ≤ k ≤ 16 let Pk = {p ∈ P : p ≡ k mod 17}. Then, by Dirichlet’s theorem on
primes in arithmetic progression, Pk is infinite whenever gcd(k,17) = 1, i.e., for
all positive numbers k ≤ 16. Thus, by an easy calculation modulo 17 we find for
1 ≤ k ≤ 16, that Pk is homogeneous for π3.
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Now we give a complete proof of RAMSEY’S THEOREM 2.1:

Proof of Ramsey’s Theorem. The proof is by induction on n. For n = 2 we get
PROPOSITION 2.2. So, we assume that the statement is true for n ≥ 2 and prove it
for n + 1. Let π : [ω]n+1 → r be any r-colouring of [ω]n+1. For each integer a ∈ ω

let πa be the r-colouring of [ω \ {a}]n defined as follows:

πa(x) = π
(
x ∪ {a}).

By induction hypothesis, for each S′ ∈ [ω]ω and for each a ∈ S′ there is an HS′
a ∈

[S′ \ {a}]ω such that HS′
a is homogeneous for πa . Construct now an infinite sequence

a0 < a1 < . . . < ai < . . . of natural numbers and an infinite sequence S0 ⊇ S1 ⊇
. . . ⊇ Si ⊇ . . . of infinite subsets of ω as follows: Let S0 = S and a0 = min(S), and
in general let

Si+1 = HSi
ai

, and ai+1 = min{a ∈ Si+1 : a > ai}.
It is clear that for each i ∈ ω, the set [{am : m > i}]n is monochromatic for πai

; let
τ(ai) be its colour (i.e., τ is a colouring of {ai : i ∈ ω} with at most r colours). By
the Infinite Pigeon-Hole Principle there is an H ⊆ {ai : i ∈ ω} such that τ is constant
on H , which implies that π |[H ]n+1 is constant, too. Indeed, for any x0 < . . . < xn

in H we have π({x0, . . . , xn}) = πx0({x1, . . . , xn}) = τ(x0), which completes the
proof. 


Corollaries of Ramsey’s Theorem

In finite Combinatorics, the most important consequence of RAMSEY’S THEO-
REM 2.1 is its finite version:

COROLLARY 2.3 (FINITE RAMSEY THEOREM). For all m,n, r ∈ ω, where r ≥ 1
and n ≤ m, there exists an N ∈ ω, where N ≥ m, such that for every colouring of
[N ]n with r colours, there exists a set H ∈ [N ]m, all of whose n-element subsets
have the same colour.

Proof. Assume towards a contradiction that the FINITE RAMSEY THEOREM fails.
So, there are m,n, r ∈ ω, where r ≥ 1 and n ≤ m, such that for all N ∈ ω with N ≥
m there is a colouring πN : [N ]n → r such that no H ∈ [N ]m is homogeneous, i.e.,
[H ]n is not monochromatic. We shall construct an r-colouring π of [ω]n such that
no infinite subset of ω is homogeneous for π , contradicting RAMSEY’S THEOREM.
The r-colouring π will be induced by an infinite branch through a finitely branching
tree, where the infinite branch is obtained by König’s Lemma. Thus, we first need
an infinite, finitely branching tree. For this, consider the following graph G: The
vertex set of G consists of ∅ and all colourings πN : [N ]n → r , where N ≥ m, such
that no H ∈ [N ]m is homogeneous for πN . There is an edge between ∅ and each
r-colouring πm of [m]n, and there is an edge between the colourings πN and πN+1
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iff πN ≡ πN+1|N (i.e., for all x ∈ [N ]n, πN+1(x) = πN(x)). In particular, there is
no edge between two different r-colouring of [N ]n. By our assumption, the graph
G is infinite. Further, by construction, it is cycle-free, connected, finitely branching,
and has a root, namely ∅. In other words, G is an infinite, finitely branching tree
and therefore, by König’s Lemma, contains an infinite branch of r-colourings, say
(∅,πm,πm+1, . . . , πm+i , . . .), where for all i, j ∈ ω, the colouring πm+i+j is an
extension of the colouring πm+i .

At this point we would like to mention that since for any N ∈ ω the set of all
r-colouring of [N ]n can be ordered, for example lexicographically, we do not need
any non-trivial form of the Axiom of Choice to construct an infinite branch.

Now, the infinite branch (∅,πm,πm+1, . . .) induces an r-colouring π of [ω]n
such that no m-element subset of ω is homogeneous. In particular, there is no infinite
set H ∈ [ω]ω such that π |[H ]n is constant, which is a contradiction to RAMSEY’S

THEOREM 2.1 and completes the proof. 


The following corollary is a geometrical consequence of the FINITE RAMSEY

THEOREM 2.3:

COROLLARY 2.4. For every positive integer n there exists an N ∈ ω with the fol-
lowing property: If P is a set of N points in the Euclidean plane without three
collinear points, then P contains n points which form the vertices of a convex n-gon.

Proof. By the FINITE RAMSEY THEOREM 2.3, let N be such that for every 2-
colouring of [N ]3 there is a set H ∈ [N ]n such that [H ]3 is monochromatic. Now
let N points in the plane be given, and number them from 1 to N in an arbitrary but
fixed way. Colour a triple (i, j, k), where i < j < k, red, if travelling from i to j to
k is in clockwise direction; otherwise, colour it blue. By the choice of N , there are n

ordered points so that every triple has the same colour (i.e., orientation) from which
one verifies easily (e.g., by considering the convex hull of the n points) that these
points form the vertices of a convex n-gon. 


The following theorem—discovered more than a decade before RAMSEY’S

THEOREM—is perhaps the earliest result in Ramsey Theory:

COROLLARY 2.5 (SCHUR’S THEOREM). If the positive integers are finitely
coloured (i.e., coloured with finitely many colours), then there are three distinct
positive integers x, y, z of the same colour, with x + y = z.

Proof. Let r be a positive integer and let π be any r-colouring of ω \ {0}. Let N ∈ ω

be such that for every r-colouring of [N ]2 there is a homogeneous 3-element subset
of N . Define the colouring π∗ : [N ]2 → r by stipulating π∗(i, j) = π(|i − j |),
where |i − j | is the modulus or absolute value of the difference i − j . Since N

contains a homogeneous 3-element subset (for π∗), there is a triple 0 ≤ i < j <

k < N such that π∗(i, j) = π∗(j, k) = π∗(i, k), which implies that the numbers
x = j − i, y = k − j , and z = k − i, have the same colour, and in addition we have
x + y = z. 
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The next result is a purely number-theoretical result and follows quite easily
from RAMSEY’S THEOREM. However, somewhat surprisingly, it is unprovable in
Number Theory, or more precisely, in Peano Arithmetic (which will be discussed in
Chapter 3). Before we can state the corollary, we have to introduce the following
notion: A non-empty set S ⊆ ω is called large if S has more than min(S) elements.
Further, for n,m ∈ ω let [n,m] := {i ∈ ω : n ≤ i ≤ m}.

COROLLARY 2.6. For all n, k, r ∈ ω with r ≥ 1, there is an m ∈ ω such that for any
r-colouring of [[n,m]]k , there exists a large homogeneous set.

Proof. Let n, k, r ∈ ω, where r ≥ 1, be some arbitrary but fixed numbers. Let π :
[ω \ n]k → r be any r-colouring of the k-element subsets of {i ∈ ω : i ≥ n}. By
RAMSEY’S THEOREM 2.1 there exists an infinite homogeneous set H ∈ [ω \ n]ω.
Let a = min(H) and let S denote the least a + 1 elements of H . Then S is large and
[S]k is monochromatic.

The existence of a finite number m with the required properties now follows—
using König’s Lemma—in the very same way as the FINITE RAMSEY THEOREM

followed from RAMSEY’S THEOREM (see the proof of the FINITE RAMSEY THE-
OREM 2.3). 


Generalisations of Ramsey’s Theorem

Even though Ramsey’s theorems are very powerful combinatorial results, they can
still be generalised. The following result will be used later in Chapter 7 in order to
prove that the Prime Ideal Theorem—introduced in Chapter 5—holds in the ordered
Mostowski permutation model (but it will not be used anywhere else in this book).

In order to illustrate the next theorem, as well as to show that it is optimal to some
extent, we consider the following two examples: Firstly, define the 2-colouring π1
of [ω]2 × [ω]3 × [ω]1 by stipulating

π1
({x1, x2}, {y1, y2, y3}, {z1}

) =
{

1 if 2x1·x2 + 13y1·y2·y3 + 17z1 − 3 is prime,

0 otherwise.

Let H1 = {3 · k : k ∈ ω}, H2 = {2 · k : k ∈ ω}, and H3 = {6 · k : k ∈ ω}. Then an easy
calculation modulo 7 shows that [H1]2 ×[H2]3 ×[H3]1 is an infinite monochromatic
set.

Secondly, define the 2-colouring π2 of [ω]1 × [ω]1 by stipulating

π2
({x}, {y}) =

{
1 if x < y,

0 otherwise.

It is easy to see that whenever H1 and H2 are infinite subsets of ω, then [H1]1 ×
[H2]1 is not monochromatic; on the other hand, we easily find arbitrarily large finite
sets M1,M2 ⊆ ω such that [M1]1 × [M2]1 is monochromatic.

Thus, if [ω]n1 × . . .×[ω]nl is coloured with r colours, then, in general, we cannot
expect to find infinite subsets of ω, say H1, . . . ,Hl , such that [H1]n1 × . . . × [Hl]nl

is monochromatic; but we always find arbitrarily large finite subsets of ω:
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THEOREM 2.7. Let r, l, n1, . . . , nl ∈ ω with r ≥ 1 be given. For every m ∈ ω with
m ≥ max{n1, . . . , nl} there is some N ∈ ω such that whenever [N ]n1 × . . . × [N ]nl

is coloured with r colours, then there are M1, . . . ,Ml ∈ [N ]m such that [M1]n1 ×
. . . × [Ml]nl is monochromatic.

Proof. The proof is by induction on l and the induction step uses a so-called
product-argument. For l = 1 the statement is equivalent to the FINITE RAMSEY

THEOREM 2.3. So, assume that the statement is true for l ≥ 1 and let us prove it for
l + 1. By induction hypothesis, for every r ≥ 1 there is an Nl (depending on r) such
that for every r-colouring of [Nl]n1 × . . . × [Nl]nl there are M1, . . . ,Ml ∈ [Nl]m
such that [M1]n1 × . . . × [Ml]nl is monochromatic. Now, the crucial idea in order
to apply the FINITE RAMSEY THEOREM is to consider the coloured l-tuples in
([Nl]m)l as new colours. More precisely, let ul be the number of different l-tuples
in ([Nl]m)l and let rl := ul · r . Notice that each colour in rl corresponds to a pair
〈t, c〉, where t is an l-tuple in ([Nl]m)l and c is one of r colours. Notice also that
rl is very large compared to r . Now, by the FINITE RAMSEY THEOREM 2.3, there
is a number Nl+1 ∈ ω such that whenever [Nl+1]nl+1 is coloured with rl colours,
then there exists an Ml+1 ∈ [Nl+1]m such that [Ml+1]nl+1 is monochromatic. Let
N = max{Nl,Nl+1} and let π be any r-colouring of [Nl]n1 × . . .×[Nl]nl ×[N ]nl+1 .
For every F ∈ [N ]nl+1 let πF be the r-colouring of [Nl]n1 × . . . × [Nl]nl defined by
stipulating

πF (X) = π
(〈X,F 〉).

By the definition of N , for every F ∈ [N ]nl+1 there is a lexicographically first l-
tuple (MF

1 , . . . ,MF
l ) ∈ ([Nl]m)l such that [MF

1 ]n1 × . . .×[MF
l ]nl is monochromatic

for πF . By definition of rl we can define an rl-colouring πl+1 on [N ]nl+1 as fol-
lows: Every set F ∈ [N ]nl+1 is coloured according to the l-tuple t = (MF

1 , . . . ,MF
l )

(which can be encoded as one of ul numbers) and the colour c = πF (X), where X

is any element of the set [MF
1 ]n1 × . . . × [MF

l ]nl ; because [MF
1 ]n1 × . . . × [MF

l ]nl

is monochromatic for πF , c is well-defined and one of r colours. In other words,
for every F ∈ [N ]nl+1 , πl+1(F ) correspond to a pair 〈t, c〉, where t ∈ ([Nl]m)l and
c is one of r colours. Finally, by definition of N , there is a set Ml+1 ∈ [N ]m such
that [Ml+1]nl+1 is monochromatic for πl+1, which implies that for all F,F1,F2 ∈
[Ml+1]nl+1 we get that

• [MF
1 ]n1 × . . . × [MF

l ]nl is monochromatic for πF ,

• (M
F1
1 , . . . ,M

F1
l ) = (M

F2
1 , . . . ,M

F2
l ),

• and restricted to the set [MF
1 ]n1 × . . . × [MF

l ]nl , the colourings π
F1
l and π

F2
l are

identical.

Hence, there are M1, . . . ,Ml+1 ∈ [N ]m such that π |[M1]n1×...×[Ml+1]nl+1 is constant,
which completes the proof. 


A very strong generalisation of RAMSEY’S THEOREM in terms of partitions is
the PARTITION RAMSEY THEOREM 11.4. However, since the proof of this general-
isation is quite involved, we postpone the discussion of that result until Chapter 11
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and consider now some other possible generalisations of RAMSEY’S THEOREM:
Firstly one could finitely colour all finite subsets of ω, secondly one could colour
[ω]n with infinitely many colours, and finally, one could finitely colour all the in-
finite subsets of ω. However, below we shall see that none of these generalisations
works, but first, let us consider Ramsey’s original theorem, which is—at least in
the absence of the Axiom of Choice—also a generalisation of RAMSEY’S THEO-
REM.

Ramsey’s Original Theorem. The theorem which Ramsey proved originally is
somewhat stronger than what we proved above. In our terminology, it states as fol-
lows:

RAMSEY’S ORIGINAL THEOREM. For any infinite set A, for any number n ∈ ω,
for any positive number r ∈ ω, and for any colouring π : [A]n → r , there is an
infinite set H ⊆ A such that [H ]n is monochromatic.

Notice that the difference is just that the infinite set A is not necessarily a sub-
set of ω, and therefore, it does not necessarily contain a countable infinite subset.
However, this difference is crucial, since one can show that, like König’s Lemma,
this statement is not provable without assuming some form of the Axiom of Choice
(AC). On the other hand, if one has AC, then every infinite set has a countably in-
finite subset, and so RAMSEY’S THEOREM implies the original version. Ramsey
was aware of this fact and stated explicitly that he is assuming the axiom of selec-
tions (i.e., AC). Even though we do not need full AC in order to prove RAMSEY’S

ORIGINAL THEOREM, there is no way to avoid some non-trivial kind of choice,
since there are models of Set Theory in which RAMSEY’S ORIGINAL THEOREM

fails (cf. PROPOSITION 7.8). Consequently, RAMSEY’S ORIGINAL THEOREM can
be used as a choice principle, which will be discussed in Chapter 5.

Finite Colourings of [ω]<ω. Assume we have coloured all the finite subsets of ω

with two colours, say red and blue. Can we be sure that there is an infinite subset of
ω such that all its finite subsets have the same colour? The answer to this question
is negative and it is not hard to find a counterexample (e.g., colour a set x ∈ [ω]<ω

blue, if |x| is even; otherwise, colour it red).
Thus, let us ask for slightly less. Is there at least an infinite subset of ω such that

for each n ∈ ω, all its n-element subsets have the same colour? The answer to this
question is also negative: Colour a non-empty set x ∈ [ω]<ω red, if x has more than
min(x) elements (i.e., x is large); otherwise, colour it blue. Now, let I be an infinite
subset of ω and let n = min(I ). We leave it as an exercise to the reader to verify that
[I ]n+1 is dichromatic.

The picture changes if we are asking just for an almost homogeneous sets: An
infinite set H ⊆ ω is called almost homogeneous for a colouring π : [ω]n → r

(where n ∈ ω and r is a positive integer), if there is a finite set K ⊆ ω such that
H \ K is homogeneous for π . Now, for a positive integer r consider any colouring
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π̄ : [ω]<ω → r . Then, for each n ∈ ω, π̄ |[ω]n is a colouring πn : [ω]n → r . Is there
an infinite set H ⊆ ω which is almost homogeneous for all πn’s simultaneously?
The answer to this question is affirmative and is given by the following result.

PROPOSITION 2.8. Let {rk : k ∈ ω} and {nk : k ∈ ω} be two (possibly finite) sets of
positive integers, and for each k ∈ ω let πk : [ω]nk → rk be a colouring. Then there
exists an infinite set H ⊆ ω which is almost homogeneous for each πk (k ∈ ω).

Proof. A first attempt to construct the required almost homogeneous set would be to
start with an I0 ∈ [ω]ω which is homogeneous for π0, then take an I1 ∈ [I0]ω which
is homogeneous for π1, et cetera, and finally take the intersection of all the Ik’s.
Even though this attempt fails—since it is very likely that we end up with the empty
set—it is the right direction. In fact, if the intersection of the Ik’s would be non-
empty, it would be homogeneous for all πk’s, which is more than what is required.
In order to end up with an infinite set we just have to modify the above approach—
the trick, which is used almost always when the word “almost” is involved, is called
diagonalisation.

The proof is by induction on k: By RAMSEY’S THEOREM 2.1 there exists an
H0 ∈ [ω]ω which is homogeneous for π0. Assume we have already constructed Hk ∈
[ω]ω (for some k ≥ 0) such that Hk is homogeneous for πk . Let ak = min(Hk)

and let Sk = Hk \ {ak}. Then, again by RAMSEY’S THEOREM 2.1, there exists an
Hk+1 ∈ [Sk]ω such that Hk+1 is homogeneous for πk+1. Let H = {ak : k ∈ ω}. Then,
by construction, for every k ∈ ω we see that H \ {a0, . . . , ak−1} is homogeneous for
πk , which implies that H is almost homogeneous for all πk’s simultaneously. 


Now we could ask what is the least number of 2-colourings of 2-element subsets
of ω we need in order to make sure that no single infinite subset of ω is almost
homogeneous for all colourings simultaneously? By PROPOSITION 2.8 we know
that countably many colourings are not sufficient, but as we will see later, the axioms
of Set Theory do not decide how large this number is (cf. Chapter 18).

The dual question would be as follows: How large must a family of infinite sub-
sets of ω be, in order to make sure that for each 2-colouring of the 2-element subsets
of ω we find a set in the family which is homogeneous for this colouring? Again,
the axioms of Set Theory do not decide how large this number is (cf. Chapter 18).

Going to the Infinite. There are two parameters involved in a colouring π :
[ω]n → r , namely n and r . Let first consider the case when n = 2 and r = ω. In
this case, we obviously cannot hope for any infinite homogeneous or almost ho-
mogeneous set. However, there are still infinite subsets of ω which are homoge-
neous in a broader sense which leads to the CANONICAL RAMSEY THEOREM.
Even though the CANONICAL RAMSEY THEOREM is a proper generalisation of
RAMSEY’S THEOREM, we will not discuss it here (but see RELATED RESULT 0).

In the case when n = ω and r = 2 we cannot hope for an infinite homogeneous
set, as the following example illustrates (compare this result with Chapter 5 | RE-
LATED RESULT 38):
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In the presence of the Axiom of Choice there is a 2-colouring of [ω]ω such that there
is no infinite set, all whose infinite subsets have the same colour.

The idea is to construct (or more precisely, to prove the existence of) a colouring
of [ω]ω with say red and blue in such a way that whenever an infinite set x ∈ [ω]ω
is coloured blue, then for each a ∈ x, x \ {a} is coloured red, and vice versa.

For this, define an equivalence relation on [ω]ω as follows: for x, y ∈ [ω]ω let

x ∼ y ⇐⇒ x�y is finite

where x�y = (x \ y) ∪ (y \ x) is the symmetric difference of x and y. It is easily
checked that the relation “∼” is indeed an equivalence relation on [ω]ω. Further, let
A ⊆ [ω]ω be any set of representatives, i.e., A has exactly one element in common
with each equivalence class. Since the existence of the set A relies on the Axiom of
Choice, the given proof is not entirely constructive.

Colour now an infinite set x ∈ [ω]ω blue, if |x�rx | is even, where rx ∈
(A ∩ [x]˜); otherwise, colour it red. Since two sets x, y ∈ [ω]ω with finite sym-
metric difference are always equivalent, every infinite subset of ω must contain blue
as well as red coloured infinite subsets.

So, there is a colouring π : [ω]ω → {0,1} such that for no x ∈ [ω]ω , π |[x]ω is
constant. On the other hand, if the colouring is not too sophisticated we may find a
homogeneous set: For A ⊆ [ω]ω define πA : [ω]ω → {0,1} by stipulating πA (x) =
1 iff x ∈ A . Now we say that the set A ⊆ [ω]ω has the Ramsey property if there
exists an xh ∈ [ω]ω such that πA |[x]ω is constant. In other words, A ⊆ [ω]ω has the
Ramsey property if and only if there exists an xh ∈ [ω]ω such that either [xh]ω ⊆ A
or xh]ω ∩ A = ∅. The Ramsey property is related to the cardinal h (cf. Chapter 8)
and will be discussed in Chapter 9.

A slightly weaker property than the Ramsey property is the so-called doughnut
property: If a and b are subsets of ω such that b \ a is infinite, then we call the set
[a, b]ω := {x ∈ [ω]ω : a ⊆ x ⊆ b} a doughnut. (Why such sets are called “dough-
nuts” is left to the reader’s imagination.) Now, a set A ⊆ [ω]ω is said to have the
doughnut property if there exists an doughnut [a, b]ω (for some a and b) such
that either [a, b]ω ⊆ A or [a, b]ω ∩ A = ∅. Obviously, every set with the Ramsey
property has also the doughnut property (consider doughnuts of the form [∅, b]ω).
On the other hand, it is not difficult to show that, in the presence of the Axiom of
Choice, there are sets with the doughnut property which fail to have the Ramsey
property (just modify the example given above).

NOTES

Ramsey’s Theorem. Frank Plumpton Ramsey (1903–1930), the elder brother of
Arthur Michael Ramsey (who was Archbishop of Canterbury from 1961 to 1974),
proved his famous theorem in [34] and the part of the volume in which his article
appeared was issued on the 16th of December in 1929, but the volume itself belongs
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to the years 1929 and 1930 (which caused some confusion about the year Ramsey’s
article was actually published). However, Ramsey submitted his paper already in
November 1928. For Ramsey’s paper and its relation to First-Order Logic, as well
as for an introduction to Ramsey Theory in general, we refer the reader to the clas-
sical textbook by Graham, Rothschild, and Spencer [16] (for Ramsey’s other papers
on Logic see [35]). In [34], RAMSEY’S THEOREM 2.1 appears as THEOREM A and
the FINITE RAMSEY THEOREM 2.3 is proved as a corollary and appears as THE-
OREM B. Although RAMSEY’S THEOREM is accurately attributed to Ramsey, its
popularisation stems from the classical paper of Erdős and Szekerés [9], where they
proved (independently of Ramsey) COROLLARY 2.4—which can be seen as a vari-
ant of the FINITE RAMSEY THEOREM 2.3 in a geometrical context (see also Morris
and Soltan [27]). The elegant proof we gave for COROLLARY 2.4 is due to Tarsy
(cf. Lewin [25] or Graham, Rothschild, and Spencer [16, p. 26]).

Schur’s Theorem. Schur’s original paper [36] was motivated by FERMAT’S LAST

THEOREM, and he actually proved the following result: For all natural numbers m,
if p is prime and sufficiently large, then the equation xm + ym = zm has a non-zero
solution in the integers modulo p. A proof of this theorem can also be found in
Graham, Rothschild, and Spencer [16, Section 3.1]. For some historical background
and for the early development of Ramsey Theory (before Ramsey) see Soifer [38].

The Paris–Harrington Result. As mentioned above, COROLLARY 2.6 is true but
unprovable in Peano Arithmetic (also called First-Order Arithmetic). This result was
the first natural example of such a statement and is due to Paris and Harrington [31]
(see also Graham, Rothschild, and Spencer [16, Section 6.3]). For other statements
of that type see Paris [30].

It is worth mentioning that Peano Arithmetic is, in a suitable sense, equivalent
to Zermelo–Fraenkel Set Theory with the Axiom of Infinity replaced by its negation,
which is a reasonable formalisation of standard combinatorial reasoning about finite
sets.

Rado’s Generalisation of the Finite Ramsey Theorem. THEOREM 2.7, which is the
only proper generalisation of the FINITE RAMSEY THEOREM shown in this book
so far, is due to Rado [32] (see also page 113, Problems 4 & 5 of Jech [23]).

Ramsey Sets and Doughnuts. Even though the Ramsey property and the dough-
nut property look very similar, there are sets which have the Ramsey property, but
which fail to have the doughnut property. For the relation between the doughnut
property and other regularity properties see for example Halbeisen [18] or Brendle,
Halbeisen, and Löwe [4] (see also Chapter 9 | RELATED RESULT 60).

RELATED RESULTS

0. Canonical Ramsey Theorem. The following result, known as the CANONICAL

RAMSEY THEOREM, is due to Erdős and Rado (cf. [8, Theorem I]): Whenever
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we have a colouring π of [ω]n, for some n ∈ ω, with an arbitrary (e.g., infinite)
set of colours, there exist an infinite set H ⊆ ω and a set I ⊆ {1,2, . . . , n}
such that for any ordered n-element subsets {k1 < . . . < kn}, {l1 < . . . < ln} ∈
[H ]n we have π({k1, . . . , kn}) = π({l1, . . . , ln}) ⇐⇒ ki = li for all i ∈ I . The
2n possible choices for I correspond to the so-called canonical colourings of
[ω]n. As an example let us consider the case when n = 2: Let π be an arbitrary
colouring of [ω]2 and let H ∈ [ω]ω and I ⊆ {1,2} be as above. Then we are in
exactly one of the following four cases for all {k1 < k2}, {l1 < l2} ∈ [H ]2 (cf.
[8, Theorem II]):
(1) If I = ∅, then π({k1, k2}) = π({l1, l2}).
(2) If I = {1,2}, then π({k1, k2}) = π({l1, l2}) iff {k1, k2} = {l1, l2}.
(3) If I = {1}, then π({k1, k2}) = π({l1, l2}) iff k1 = l1.
(4) If I = {2}, then π({k1, k2}) = π({l1, l2}) iff k2 = l2.
Obviously, if π is a finite colouring of [ω]n, then we are always in case (1),
which gives us just RAMSEY’S THEOREM 2.1.

1. Ramsey numbers. The least number of people that must be invited to a party,
in order to make sure that n of them mutually shook hands before or m of
them mutually did not shake hands before, is denoted by R(n,m), and the num-
bers R(n,m) are called Ramsey numbers. Notice that by the FINITE RAMSEY

THEOREM, Ramsey numbers R(n,m) exist for all integers n,m ∈ ω. Very few
Ramsey numbers are actually known. It is easy to show that R(2,3) = 3 (in
general, R(2, n) = n), and we leave it as an exercise to show that R(3,3) = 6.
A comprehensive list of what is known about small Ramsey numbers is main-
tained by Radziszowski [33].

2. Monochromatic triangles in K6-free graphs. Erdős and Hajnal [10] asked for a
graph which contains no K6 (i.e., no complete graph on 6 vertices) but has the
property that whenever its edges are 2-coloured there must be a monochromatic
triangle. A minimal example for such a graph was provided by Graham [14]:
On the one hand he showed that if a 5-cycle is deleted from a K8, then the
resulting graph contains no K6 and has the property that whenever its edges
are 2-coloured there is a monochromatic triangle. On the other hand, if a graph
on 7 vertices contains no K6, then there is a 2-colouring of the edges with no
monochromatic triangle.

3. Hindman’s Theorem. If F ∈ [ω]<ω, then we write
∑

F for
∑

a∈F a, where as
usual we define

∑∅ := 0. HINDMAN’S THEOREM states that if ω is finitely
coloured, then there is an x ∈ [ω]ω such that {∑F : F ∈ [x]<ω ∧ F �= ∅} is
monochromatic (cf. Hindman [21, Theorem 3.1] or Hindman and Strauss [22,
Corollary 5.10] where references to alternative proofs are given on page 102).
Using HINDMAN’S THEOREM as a strong Pigeon-Hole Principle, Milliken
proved in [26] a strengthened version of RAMSEY’S THEOREM 2.1 which in-
cludes HINDMAN’S THEOREM as well as RAMSEY’S THEOREM 2.1. Since
Milliken’s result was proved independently by Taylor (cf. [39]), it is usually
called MILLIKEN–TAYLOR THEOREM. In order to state this result we have to
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introduce some notation. Two finite sets K1,K2 ⊆ ω are said to be unmeshed
if max(K1) < min(K2) or max(K2) < min(K1). If I and H are two sets of
pairwise unmeshed finite subsets of ω and every member of I is the union of
(finitely many) members of H , then we write I � H . Further, let 〈ω〉ω denote
the set of all infinite sets of pairwise unmeshed finite subsets of ω, and for
H ∈ 〈ω〉ω let 〈H 〉n := {I : |I | = n and I � H }. Now, the MILLIKEN–TAYLOR

THEOREM states as follows: If all the n-element sets of pairwise unmeshed fi-
nite subsets of ω are finitely coloured, then there exists an H ∈ 〈ω〉ω such that
〈H 〉n is monochromatic.

4. Colourings of the plane. Erdős [7] proved that there is a colouring of the
Euclidean plane with countably many colours, such that any two points at
a rational distance have different colours. This result was strengthened by
Komjáth [24] in the following way: Let Q be the set of rational numbers and
let Q := {(q,0) : q ∈ Q} be a copy of the rationals in the Euclidean plane.
Then there exists a colouring of the Euclidean plane with countably many
colours, such that for any rigid motion σ of the plane, every colour occurs
in σ [Q] = {σ(p) : p ∈ Q} exactly once.

5. Finite colourings of Q. If we colour the rational numbers Q with finitely many
colours, is there always an infinite homogeneous set which is order-isomorphic
to Q? In general, this is not the case: Let {qn : n ∈ ω} be an enumeration of Q
(see Chapter 4, in particular RELATED RESULT 14) and colour a pair {qi, qj }
blue if qi < qj ↔ i < j , otherwise, colour it red. Then it is easy to see that an
infinite homogeneous set which is order-isomorphic to Q would yield an infinite
decreasing sequence of natural numbers, which is obviously not possible. On
the other hand, for every positive integer n ∈ ω there is a smallest number tn ∈ ω

such that if [Q]n is finitely coloured then there is an infinite set X ⊆Q which is
order-isomorphic to Q such that [X]n is coloured with at most tn colours. For
this see Devlin [6] or Vuksanović [41], where it is shown that such numbers
exist and that the sequence of numbers tn coincides with the so-called tangent
numbers (cf. Sloane [37, A000182]). In particular, t1 = 1 and for n ≥ 2 we have
tn = ∑n−1

i=1

(2n−2
2i−1

)
ti tn−i .

6. Symmetry and colourings. Banakh and Protasov investigated in [2] the follow-
ing problem: Is it true that for every n-colouring of the group Zn there exists
an infinite monochromatic subset of Zn which is symmetric with respect to a
central reflection. It turns out that the answer is always positive (for all n). How-
ever, there exists a 4-colouring of Z3 without infinite, symmetric, monochro-
matic set. For more general results we refer the reader to Banakh, Verbitski, and
Vorobets [3].

7. Wieferich primes∗. The so-called Wieferich primes were first introduced by
Wieferich in [42] in relation to FERMAT’S LAST THEOREM. As mentioned
above, the only known Wieferich primes (less than 1.25 · 1015) are 1093 and
3511 (found in 1913 and 1922, respectively). It is not known if there are in-
finitely many primes of this type, even though it is conjectured that this is the
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case (see for example Halbeisen and Hungerbühler [19]). Moreover, it is not
even known whether there are infinitely many non-Wieferich primes—although
it is very likely to be the case.

8. Sums and products. As a consequence of RAMSEY’S THEOREM we see that
if ω is finitely coloured, then there are infinite sequences of positive integers
(x0, x1, . . . , xk, . . .) and (y0, y1, . . . , yk, . . .) such that {xi +xj : i, j ∈ ω∧i < j}
as well as {yi · yj : i, j ∈ ω ∧ i < j} is monochromatic (but not necessarily of
the same colour). On the other hand, it is known (cf. Hindman and Strauss [22,
Chapter 17.2]) that one can colour the positive integers with finitely many
colours in such a way that there is no infinite sequence (x0, x1, . . . , xk, . . .) such
that {xi + xj : i, j ∈ ω ∧ i < j} ∪ {xi · xj : i, j ∈ ω ∧ i < j} is monochromatic.

9. The graph of pairwise sums and products∗. One can show that if ω is 2-
coloured, then there are infinitely many pairs of distinct positive integers x and
y such that x + y has the same colour as x · y. For this consider the graph on ω

with n joined to m if for some distinct x, y ∈ ω we have x+y = n and x ·y = m.
Now, notice that it is enough to show that this so-called graph of pairwise sums
and products contains infinitely many triangles (cf. Halbeisen [17]).

Suppose now that ω is finitely coloured. Are there two distinct positive in-
tegers x and y such that x + y has the same colour as x · y ? This problem—
which is equivalent to asking whether the chromatic number of the graph of
pairwise sums and products is finite or infinite—is still open (cf. Hindman and
Strauss [22, Question 17.18]). A partial result is given in Halbeisen [17], where
it is shown that such numbers x and y exist if ω is 3-coloured.

10. Problems in Ramsey Theory∗. For a variety of open problems from Ramsey
Theory we refer the reader to Graham [15] (it might be worth mentioning that
Graham is offering modest rewards for most of the presented problems).

11. Applications of Ramsey Theory to Banach Space Theory. There are many—
and sometimes quite unexpected—applications of Ramsey Theory to Banach
Space Theory (see for example Odell [28], Gowers [13], or Argyros and Todor-
čević [1]). Let us mention just the following two applications:

An unexpected application of Ramsey Theory to Banach Space Theory is
due to Brunel and Sucheston [5]: If x1, x2, . . . is an infinite normalised basic
sequence in a Banach space X and εn ↘ 0 (a sequence of positive real num-
bers which tends to 0), then one can find an infinite subsequence y1, y2, . . . of
x1, x2, . . . which has the following property: For any positive n ∈ ω, any se-
quence of scalars (a1, . . . , an) ∈ [−1,1]n and any natural numbers n ≤ i0 <

. . . < in−1 and n ≤ j0 < . . . < jn−1 we have
∣∣∣∣∣
∥∥∥∥∥

n∑
k=1

akyik

∥∥∥∥∥ −
∥∥∥∥∥

n∑
k=1

akyjk

∥∥∥∥∥
∣∣∣∣∣ < εn.
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The limit ‖∑n
k=1 akẽk‖ we obtain for each finite sequence (a1, . . . , an) ∈

[−1,1]n leads to the sequence ẽ1, ẽ2, . . . , and the Banach space generated by
ẽ1, ẽ2, . . . is called a spreading model of X. The notion of spreading models was
generalised (e.g., using the MILLIKEN–TAYLOR THEOREM) and investigated
by Halbeisen and Odell in [20].

Another example is due to Gowers [11, 12] (see also Todorčević [40, Sec-
tion 2.3]), who discovered the long sought Block Ramsey Theorem—a gen-
uinely new Ramsey-type result—for Banach spaces, which he used to prove
his famous DICHOTOMY THEOREM (see also Gowers [13, Section 5] or
Odell [29]): Every Banach space X contains a subspace Y which either has
an unconditional basis or is hereditarily indecomposable (i.e., Y contains no
subspaces having a non-trivial complemented subspace).
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