
Chapter 2
An Overview of Fractional Processes and
Fractional-Order Signal Processing Techniques

2.1 Fractional Processes

In this monograph, the term fractional processes refers to the following random
processes:

• Random processes with long range dependence (LRD);
• Multifractional processes which exhibit local memory/locally self-similar prop-

erty;
• Random processes with heavy-tailed distributions;
• Random processes which exhibit both LRD and heavy-tailed distribution proper-

ties;
• Random processes which exhibit both local memory and heavy-tailed distribution

properties.

It is known that a conventional (integer-order) random signal can be considered as
the solution of an integer-order differential equation with the white noise as the input
excitation. From the perspective of “signals and systems”, a conventional (integer-
order) random signal can be regarded as the output of an integer-order differential
system or integer-order filter with the white noise as the input signal [114, 204].
Similarly, other studies show in [164, 221, 271] that the fractional signals can be
taken as the solutions of constant-order fractional or variable-order fractional differ-
ential equations. Therefore, fractional signals can be synthesized by constant-order
fractional systems, or variable-order fractional systems with a wGn or a white stable
noise as the input signal, where the white stable noise is a cylindrical Wiener pro-
cesses on Hilbert spaces subordinated by a stable process [38, 121]. In this chapter,
fractional processes and FOSP techniques are introduced from the perspective of
fractional signals and fractional-order systems.
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2.1.1 Fractional Processes and Fractional-Order Systems

Review of Conventional Random Processes and Integer-Order Systems

A continuous-time LTI (linear time invariant) system can be represented by an
integer-order ordinary differential equation in the general form [114, 204]

N∑

j=0

ajy
(j)(t) =

M∑

i=0

bif
(i)(t), (2.1)

where f (t) is the input signal, and y(t) is the output signal of the LTI system with
proper initial conditions and N ≥ M . The transfer function of the continuous LTI
system under zero initial conditions is

H(s) =
∑M

i=0 bis
i

∑N
j=0 aj sj

. (2.2)

The output signal y(t) of the LTI system (2.1) can be written as

y(t) =
∫ t

0
h(t − τ)f (τ)dτ, (2.3)

under a zero state condition, where h(t) is the impulse response of the LTI sys-
tem. (2.3) is also called “zero-state response” of (2.1) under input or driving signal
f (t). In this monograph, all responses are in the sense of “zero-state response” un-
less otherwise indicated. A traditional stationary continuous random signal can be
expressed as the output of an LTI system with wGn (white Gaussian noise) as the
driving input signal,

y(t) =
∫ t

0
h(t − τ)ω(τ)dτ, (2.4)

where ω(t) is wGn, h(t) is the inverse Laplace transform of transfer function H(s),
that is h(t) = L−1[H(s)]. In the same way, a stationary stable continuous random
signal with heavy-tailed distribution can be considered as the output of an LTI sys-
tem with white stable noise as the input

y(t) =
∫ t

0
h(t − τ)ωα(τ)dτ, (2.5)

where ωα(t) is a white stable noise, which will be introduced in Chap. 3.
A linear discrete time-invariant (LDTI) system can be represented by a difference

equation of the following general form [114, 204]

N∑

j=0

ajy(n − j) =
M∑

i=0

bif (n − i), (2.6)
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where f (n) is the input sequence, and the y(n) is the output sequence of the LDTI
system with m ≤ n. The Z-transfer function of the LDTI system is

H(z) =
∑M

i=0 biz
−i

∑N
j=0 aj z−j

. (2.7)

A traditional stationary discrete random signal can be expressed as the output of an
LDTI system with the discrete wGn as the input,

y(n) = ω(n) ∗ h(n), (2.8)

where ω(n) is a discrete wGn, ‘∗’ is the convolution, and h(n) is the inverse
Z-transform of H(z), that is h(n) =Z−1[H(z)].

Similarly, a stationary stable discrete random signal with heavy-tailed distribu-
tion can be considered as the output of a discrete LTI system with discrete white
stable noise as the input,

y(n) = ωα(n) ∗ h(n), (2.9)

where ωα(n) is the discrete white stable noise [215, 253].

Constant-Order Fractional Processes and Constant-Order Fractional Systems

Similar to the integer-order continuous-time LTI system, a constant-order fractional
linear continuous time-invariant (FLTI) system can be described by a fractional-
order differential equation of the general form [164, 221]

N∑

j=0

ajD
νj y(t) =

M∑

i=0

biD
μi f (t), (2.10)

where f (t) is the input, y(t) is the output of the FLTI system, and Dα denotes the
fractional derivative of order α. The transfer function of the continuous FLTI system
under zero initial conditions is [164, 221]

H(s) =
∑M

i=0 bis
νi

∑N
j=0 aj s

μj
, Re(s) > 0. (2.11)

The output y(t) of an FLTI system can also be described as

y(t) =
∫ t

0
h(t − τ)f (τ)dτ, (2.12)

where h(t) is the impulse response of the FLTI system (2.11), and f (t) is the input.
A constant-order fractional stationary continuous random signal can be regarded as
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the output of an FLTI system with wGn as the input,

y(t) =
∫ t

0
h(t − τ)ω(τ)dτ, (2.13)

where ω(t) is the wGn, h(t) is the inverse Laplace transform of H(s) in (2.11). In
the same way, a constant-order fractional stable continuous random signal can be
considered as the output of an FLTI system with the white stable noise as the input,

y(t) =
∫ t

0
h(t − τ)ωα(τ)dτ, (2.14)

where ωα(t) is the white stable noise.
Similar to the LDTI system, a constant-order fractional linear discrete time-

invariant (FLDTI) system can be represented by a constant-order fractional differ-
ence equation with the general form [164, 220]

N∑

j=0

ajD
νj y(n) =

M∑

i=0

biD
μi f (n), (2.15)

where f (n) is the input, y(n) is the output of the FLDTI system, and Dα denotes
the fractional difference operator (delay) of order α, that is Dαy(n) = y(n−α). The
transfer function of the FLDTI system is [164, 220]

H(z) =
∑M

i=0 biz
−νi

∑N
j=0 aj z

−μj
, |z| = 1. (2.16)

A constant-order fractional discrete random signal can be considered as the output
of an FLDTI system with discrete wGn as the input,

y(n) = ω(n) ∗ h(n), (2.17)

where ω(n) is the discrete wGn, ‘∗’ is the convolution, and h(n) is the inverse
Z-transform of H(z). A constant-order fractional stable discrete random signal can
be considered as the output of a discrete FLDTI system with discrete white stable
noise as the input,

y(n) = ωα(n) ∗ h(n), (2.18)

where ωα(n) is the discrete white stable noise.
Compared with the constant-order fractional processes, the distributed-order

fractional processes and multifractional processes are more complex. Distributed-
order fractional processes can be considered as the output of the combination of the
constant-order fractional-order systems [180]. Multifractional processes can be con-
sidered as the output of a variable-order fractional system which can be represented
by a variable-order fractional differential equation. Different from the constant-
order fractional systems which can be simply described by transfer functions, the
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variable-order fractional systems cannot be simply expressed using the Laplace
transform, because it is difficult to calculate the Laplace transformation of variable-
order fractional differential equations. Variable-order fractional processes will be
discussed in Chap. 4.

2.1.2 Stable Processes

Definition 2.1 A random variable X is stable or stable in the broad sense, if for X1

and X2 independent copies of X and any positive constants a and b,

aX1 + bX2
d= cX + d, (2.19)

for some positive c and d ∈R. The random variable is strictly stable or stable in the
narrow sense if (2.19) holds with d = 0, for all choices of a and b.

A random variable is symmetric stable if it is stable and symmetrically distributed

around 0, e.g. X
d= −X. Here

d= means the equivalence in distribution.

Definition 2.2 A real random variable X is SαS, if its characteristic function is of
the form

ϕ(t) = exp{jat − γ |t |α}, (2.20)

where 0 < α ≤ 2 is the characteristic exponent, γ > 0 the dispersion, and −∞ <

a < ∞ the location parameter.

When α = 2, X is Gaussian.
The problem of estimating the parameters of an α-stable distribution is difficult,

because majority of the stable family lacks any known closed-form density func-
tions. Since most of the conventional methods in mathematical statistics depend on
an explicit form for the density function, these methods cannot be used in estimating
the parameters of the α-stable distributions. Fortunately, some numerical methods
can be used in the literature for the parameter estimation of symmetric α-stable dis-
tributions [215]. The most frequently used method for estimating the parameters of
the SαS law with 1 ≤ α ≤ 2 is suggested in [92]. Let F(·) be a distribution function.
Then, its f fractile xf is defined by

F(xf ) = f, (2.21)

where f is restricted to be 0 < f < 1. The order statistics X(1), . . . ,X(N) of a ran-
dom sequence X1, . . . ,XN satisfy X(1) ≤ · · · ≤ X(N).

Let X1, . . . ,XN be a random sample sequence from an unknown distribution
F(x), whose order statistics are X(1), . . . ,X(N). Specifically, assuming that 0 ≤ i ≤
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N and 2i−1
2N

≤ f < 2i+1
2N

, then

x̂f = X(i) + [X(i+1) − X(i)] f − q(i)

q(i + 1) − q(i)
, (2.22)

where

q(i) = 2i − 1

2N
. (2.23)

If i = 0 or i = N , then x̂f = X(1) and x̂f = X(N), respectively.
McCulloch generalized the above method to provide consistent estimates for α

and c [199]. He also eliminated the asymptotic bias in the Fama-Roll estimators of
α and c. Specifically, for the symmetric stable law, the fractile estimate υ̂α is that

υ̂α = x̂0.95 − x̂0.05

x̂0.75 − x̂0.25
. (2.24)

Thus, a consistent estimate α̂ can be found by searching tables in [199], with a
matched value of υ̂α . For fixed α, the following quantity

υc = x̂0.75 − x̂0.25

c
, (2.25)

is independent of α. x̂0.75 and x̂0.25 are all consistent estimators, with the following
parameter a consistent estimator of c

ĉ = x̂0.75 − x̂0.25

υc(̂α)
. (2.26)

McCulloch’s method provides consistent estimators for all four parameters, with
−1 ≤ β ≤ 1 and α ≥ 0.6 [199].

2.1.3 Fractional Brownian Motion

The definition of ‘one-sided’ fBm based on the Riemann-Liouville fractional inte-
gral, was introduced in [20].

Definition 2.3 The ‘one-sided’ fBm is defined as

BH (t) = 1

Γ (H + 1/2)

∫ t

0
(t − τ)H−1/2ω(τ)dτ, 1/2 < H < 1, (2.27)

where ω(t) is wGn.

According to the definition of Riemann-Liouville fractional integral, the fBm can
be considered as the (α + 1)th integration of wGn.

BH (t) = 0D
−1−α
t ω(t). (2.28)
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So, from the perspective of fractional signals and fractional-order systems, fBm can
be generated by (α + 1)th integrator with wGn as the input. Besides the above ‘one-
sided’ fBm definition, another frequently used stochastic integral form definition of
fBm with index H (0 < H < 1) [144, 193] will be introduced in Chap. 3.

The index H is the Hurst parameter which determines the type of fBm. When
H = 0.5, fBm is the conventional Brownian motion; when H > 0.5 the increments
of the fBm process are positively correlated [22].

2.1.4 Fractional Gaussian Noise

fGn is the derivative of fBm [193]. So, the fGn can be expressed as the αth order
integration of wGn

YH (t) = 0D
−α
t ω(t), (2.29)

where ω(t) is the wGn. The Hurst parameter of fGn is related to α by H = 1/2 +α.
Therefore, from the perspective of fractional signals and fractional-order systems
the fGn can be simulated by the αth integrator with wGn as the input.

fGn has some distinctive properties. The power spectrum of fGn has an inverse
power-law form, and the autocorrelation function of fGn has the power-law decay.
Different from the i.i.d. random signals characterized by mean, variance or other
high-order statistic properties, fGn is mainly characterized by the Hurst parameter
(Hurst exponent) H ∈ (0,1), which was named after the hydrologist Hurst who
pioneered the field of research in the fifties [123]. There are a number of practical
methods which can be used to estimate the Hurst parameter. The best known Hurst
exponent estimator is the Rescaled Range method (R/S), which was first proposed
by Hurst in the hydrological context. A variety of other estimation techniques exist,
such as the Aggregated Variance method [22], the Absolute Value method [297],
the Periodogram method [97], the fractional Fourier transform (FrFT) based method
[60], Koutsoyiannis’ method [153], and so on. A comprehensive evaluation of these
Hurst estimators is provided in Chap. 3.

2.1.5 Fractional Stable Motion

The fractional stable motion, which exhibits both the LRD and heavy-tailed dis-
tribution properties, is a generalization of fBm. The linear fractional stable mo-
tion (LFSM) was studied in [253]. From the perspective of fractional signals and
fractional-order systems, the fractional stable motion can be expressed as the output
of an (α + 1)th fractional integrator with white stable noise as the input,

Yα,H (t) = 0D
−1−λ
t ωα(t), 0 < λ < 1/2, (2.30)

where H = 1/α + λ, and ωα(t) is the α-stable noise [253].
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2.1.6 Fractional Stable Noise

The fractional stable noise provides the increments of fractional stable motion. So,
the fractional stable noise can be constructed as the output of an αth fractional inte-
grator with white stable noise as the input

Yα,H (t) = 0D
−λ
t ωα(t), 0 < λ < 1/2, (2.31)

where H = 1/α + λ, and ωα(t) is the α-stable noise [253]. The fractional stable
noise will be introduced in detail in Chap. 3.

2.1.7 Multifractional Brownian Motion

Based on the definition of ‘one side’ fBm, Lim provided the definition of the
Riemann-Liouville fractional integral based mBm in [172].

Definition 2.4 The Riemann-Liouville fractional integral based mBm can be de-
scribed as

BH(t)(t) = 1

Γ (H(t) + 1/2)

∫ t

0
(t − τ)H(t)−1/2ω(τ)dτ, 1/2 < H(t) < 1, (2.32)

where ω(t) is wGn.

Therefore, we can consider mGn as the output of [α(t) + 1]th variable-order
fractional integrator with wGn as the input.

BH(t)(t) = 0D
−1−α(t)
t ω(t). (2.33)

Time-dependent local Hölder exponent H(t) is the generalization of the constant
Hurst parameter H [232]. Obviously, fBm is a special case of the mBm with a
constant Hölder exponent H(t) = H . The properties of the mBm will be introduced
in Chap. 4.

2.1.8 Multifractional Gaussian Noise

mGn is defined as the derivative of mBm. Therefore, we can consider mGn as the
output of α(t)th variable-order fractional integrator with wGn as the input. The mGn
YH(t)(t) can be described as

YH(t)(t) = 0D
−α(t)
t ω(t), (2.34)
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where ω(t) is wGn. The local Hölder exponent H(t) of mBm is related to α(t) by
H(t) = 1/2 + α(t). Similar to the mBm which is the generalization of fBm, mGn
is the generalization of fGn, and fGn is a special case of the mGn with a constant
local Hölder exponent H(t) = H .

2.1.9 Multifractional Stable Motion

The multifractional stable motion, which exhibits both the local self-similarity and
heavy-tailed distribution properties, is a generalization of mBm. The multifractional
stable motion Yα,H(t)(t) is presented as

Yα,H(t)(t) = 0D
−1−λ(t)
t ωα(t), 0 < λ(t) < 1/2, (2.35)

where ωα(t) is α-stable noise [253]. The local Hölder exponent H(t) of multifrac-
tional stable motion is related to α and λ(t) by H(t) = 1/α + λ(t). mBm is the
special case of the multifractional stable motion with stable distribution parameter
α = 2.

2.1.10 Multifractional Stable Noise

In the same way, a multifractional stable noise can be considered as the λ(t)th inte-
gration of an α-stable process. The multifractional stable noise is presented as

Yα,H(t)(t) = 0D
−λ(t)
t ωα(t), 0 < λ(t) < 1/2, (2.36)

where ωα(t) is α-stable noise [253]. Multifractional stable noise exhibits local self-
similarity and heavy-tailed distribution. mGn is the special case of the multifrac-
tional stable noise with stable distribution parameter α = 2.

2.2 Fractional-Order Signal Processing Techniques

In this monograph, like the conventional signal processing methods, FOSP tech-
niques include fractional random signals simulation, fractional filter, fractional sys-
tems modeling, and so on. The FOSP techniques are briefly summarized in this
section.

2.2.1 Simulation of Fractional Random Processes

As stated above, random processes can be generated by performing time domain
integer-order filtering on a white Gaussian process [107, 204]. Similarly, the frac-
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Fig. 2.1 Fractional Gaussian
noise simulation

Fig. 2.2 Fractional stable noise simulation

tional random processes can be simulated by performing the time domain fractional-
order filtering on a white Gaussian process or a white α-stable process. Different
types of fractional filters generate different fractional random signals. For example,
fractional Gaussian noise and fractional stable noise can be simulated by a constant-
order fractional filter. Figures 2.1 and 2.2 illustrate the simulations of fractional
Gaussian noise and fractional stable noise, respectively. The constant-order frac-
tional integrated or filtered signals exhibit the LRD property, that is, the power-law
decay of the autocorrelation. Similarly, multifractional Gaussian signals and mul-
tifractional stable signals can be simulated by variable-order fractional filters. The
output signals of the variable-order fractional filters exhibit the local memory prop-
erty.

2.2.2 Fractional Filter

It has been introduced in the above subsection that the fractional filters can be
used to generate the fractional random signals. Similar to the classification of the
fractional signals in this monograph, the fractional filters can also be classified
into three types: constant-order fractional filters, distributed-order fractional filters,
and variable-order fractional filters. Fractional-order filters are different from the
integer-order filters. Integer-order filters generate the short-range dependence on the
input signal; constant-order fractional filters generate the LRD property; variable-
order fractional filters generate the local memory property. The distributed-order
filters can be considered as the summation of the constant-order fractional filters.
In this monograph, the constant-order and distributed-order fractional filters are
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studied. The constant-order fractional filters will be introduced in Chap. 5, and the
distributed-order fractional filters will be studied in Chap. 7.

2.2.3 Fractional-Order Systems Modeling

It has been introduced in Sect. 2.1 that a traditional stationary integer-order random
signal can be considered as the output of an LTI system with wGn as the input. The
continuous-time LTI system can be characterized by a linear difference equation
known as an ARMA model in the discrete case. An ARMA(p, q) process Xt is
defined as

Φ(B)Xt = Θ(B)εt , (2.37)

where εt is a wGn, and B is the backshift operator. However, the ARMA model
can only capture the short-range dependence property of the system. In order to
capture the LRD property of the fractional system, the FARIMA(p, d, q) model
was proposed [37]. An FARIMA(p, d, q) process Xt is defined as [37]

Φ(B)(1 − B)dXt = Θ(B)εt , (2.38)

where d ∈ (−0.5,0.5), and (1 − B)d is the fractional differencing operator.
Furthermore, the locally stationary long memory FARIMA(p, dt , q) model

Φ(B)(1 − B)dt Xt = Θ(B)εt , (2.39)

was suggested in [30], where {εt } is a wGn and dt is a time-varying parameter. The
locally stationary long memory FARIMA(p, dt , q) model can capture the local self-
similarity of the systems. Besides the above mentioned fractional system models,
other fractional models will be introduced in Chaps. 5 and 6.

2.2.4 Realization of Fractional Systems

Realization of fractional systems includes the realization of analogue fractional sys-
tems and the realization of digital fractional systems.

Analogue Realization of Fractional Systems

Analogue fractional systems, such as the fractional controllers and fractional filters,
can be used widely in engineering. All fractional systems rely on the fractional-
order integrator and the fractional-order differentiator as basic elements. Many ef-
forts have been made to design analogue fractional-order integrators and differentia-
tors. Most of these analogue realization methods are based on networks of resistors,
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Fig. 2.3 RC transmission line circuit

Fig. 2.4 RC domino ladder circuit

Fig. 2.5 RC binary tree circuit

capacitors or inductors. Figures 2.3, 2.4 and 2.5 illustrate the analogue realization
of fractional-order operators using resistor and capacitor networks.

In order to make the analogue fractional device simple and accurate, some re-
searchers have concentrated on smart materials which exhibit realistic fractional
behavior. In this monograph, the analogue realization of constant-order fractional-
order differentiator/integrator and variable-order fractional differentiator/integrator
was based on an electrical element named ‘Fractor’ (Fig. 2.6), manufactured by
Bohannan [27, 28]. The Fractor was originally made from Lithium Hydrazinium
Sulfate (LiN2H5SO4) which exhibits realistic fractional behavior 1/(jωC)λ over a
large range of frequency, where α ≈ 1/2 [261]. Now, the Fractor is being made from
Lithium salts. The analogue realization of fractional systems will be introduced in
Chaps. 5 and 6.
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Fig. 2.6 Fractor

Digital Realization of Fractional Systems

Based on the definition of fractional calculus, the calculation of the output of a
fractional system depends on the long-range history of the input. Because of the
limitation of calculation speed and storage space, the digital realization of fractional
systems is difficult. The commonly used methods of approximate digital realization
of fractional systems are frequency domain methods and time domain methods.
Currently both methods offer limited success in fitting the fractional system.

Frequency domain methods include Oustaloup method [227], Carlson method
[237], Matsuda method [237], and so on. Frequency-domain fitting techniques can
fit the magnitude of the frequency response very well, but cannot guarantee the sta-
ble minimum-phase fitting. Time domain methods are mainly based on fitting the
impulse response or the step response of the system. An effective time domain im-
pulse response invariant discretization method was discussed in [59, 62, 63, 182].
There, a technique for designing discrete-time infinite impulse response (IIR) fil-
ters to approximate the continuous-time fractional-order filters is proposed, keeping
the impulse response of the continuous-time fractional-order filter and the impulse
response of the approximate discrete-time filter almost the same.

2.2.5 Other Fractional Tools

Besides the above FOSP techniques, there are other FOSP techniques too, such as
fractional Hilbert transform, fractional spectrum analysis, fractional B-spline, and
so on. These FOSP techniques provide new options for analyzing complex signals.

Fractional Hilbert Transform

The fractional Hilbert transform (FHT), the generalization of the conventional
Hilbert transform, was proposed in [176]. FHT has been successfully used in digital
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Fig. 2.7 Block diagrams for
the different implementations
of the fractional Hilbert
transform. (a) Spatial filter.
(b) FrFT method.
(c) Generalized definition

image processing. There are three commonly used definitions of FHT. The first def-
inition is based on modifying the spatial filter with a fractional parameter, and the
second one is based upon the fractional Fourier plane for filtering. The third defi-
nition is the combination of these two definitions. The transfer function of the first
definition is [176]

H̃P (ν) = exp(+iφ)u(ν) + exp(−iφ)u(−ν), (2.40)

where P is the fractional order, u(ν) is a step function, and φ = Pπ/2. The second
type FHT is defined as [176]

VQ = F−QH1F
Q, (2.41)

where Fα is the FrFT operation of order α, Q is a fractional parameter, and

H̃1(ν) = exp

(
+i

π

2

)
u(ν) + exp

(
−i

π

2

)
u(−ν). (2.42)

The third definition of FHT is [176]

VQ = F−QHP FQ. (2.43)

Figure 2.7 illustrates the three definitions of FHT.

Fractional Power Spectrum Density

Definitions of fractional spectrum density (FPSD) fall into two types: FrFT based
and FLOM based. FrFT based FPSD was developed from combining the conven-
tional PSD and the FrFT method. FPSD exhibits distinctive superiority to non-
stationary signals. FrFT based fractional power spectrum is defined as

P α
εε(μ) = lim

T →∞
E|ξα,T (μ)|2

2T
, (2.44)

where ξα,T (μ) is the αth FrFT of εT (t), and εT (t) is the truncation function in
[−T ,T ] of the sample function of the random process ε(t).

FLOM based fractional power spectra include the covariation spectrum and the
fractional low-order covariance spectrum [184].
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Definition 2.5 The covariations spectrum is defined as [215]

φ̃c
xx(ω) =F[Rc

xx(τ )] =
∫ ∞

−∞
Rc

xx(τ )e−jωτ dτ

=
∫ ∞

−∞
[x(t), x(t − τ)]αe−jωτ dτ, (2.45)

where [x(t), x(t − τ)]α is the covariation defined as

[x(t), x(t − τ)]α = E[x(t)(x(t − τ))〈p−1〉]
E(|x(t − τ)p|) γx(t−τ), 1 ≤ p < α, (2.46)

where γy is the scale parameter of Y , and z〈α〉 = |z|α sgn(z).

Definition 2.6 Fractional low-order covariance spectrum is defined as

φ̃d
xx(ω) =F(Rd

xx(τ )) =
∫ ∞

−∞
Rd

xx(τ )e−jωτ dτ, (2.47)

where

Rd
xx(τ ) = E[x(t)〈A〉x(t − τ)〈B〉], 0 ≤ A <

α

2
, 0 ≤ B <

α

2
. (2.48)

FLOM based fractional power spectrum techniques have been successfully used
in time delay estimation [184].

Fractional Splines

Fractional B-splines can be considered as the generalization of the usual integer-
order B-splines. There are three commonly used definitions of fractional B-splines,
they are causal fractional B-splines, anti-causal fractional B-splines, and non-causal
symmetric fractional B-splines [25, 222, 308]. Fractional causal B-splines are de-
fined by taking the (a + 1)th fractional difference of the one-sided power function.

Definition 2.7 The fractional causal B-splines are specified in the Fourier domain

β̂α+(ω) =
(

1 − ejω

jω

)α+1

. (2.49)

Definition 2.8 The anti-causal B-splines of degree α is defined in Fourier domain
as

β̂α−(ω) =
(

ejω − 1

jω

)α+1

. (2.50)
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Definition 2.9 The non-causal symmetric fractional B-splines of degree α is de-
fined in Fourier domain as

β̂α∗ (ω) =
∣∣∣∣
sinω/2

ω/2

∣∣∣∣
α+1

. (2.51)

2.3 Chapter Summary

This chapter provides an overview of basic concepts of fractional processes and
FOSP techniques from the perspective of fractional signals and fractional-order
systems. Section 2.1 deals with the constant-order fractional-order processes and
variable-order fractional processes. All these fractional processes can be generated
by fractional-order systems driven by white Gaussian noise. Section 2.2 briefly in-
troduced some FOSP techniques including fractional processes simulation, frac-
tional filter, fractional systems modeling, analogue/digital realization of fractional
systems, and other fractional tools. All discussions on FOSP techniques are cen-
tered around fractional calculus, FrFT and α-stable distribution. A detailed intro-
duction of constant-order fractional processes and multifractional-processes will be
provided in the following two chapters, respectively. The constant-order fractional
signal processing techniques, variable-order fractional signal processing techniques
and distributed-order filters will be introduced in Chaps. 5, 6 and 7, respectively.
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