
Chapter 2
Definition of Reset Control System and Basic
Results

2.1 Preliminaries and Problem Setup

The main focus of the book will be on the use of single-input single-output reset
compensators having as reset condition the classical condition of zero input. There-
fore, the main goal will be to analyze and design reset control systems with linear
and time invariant base systems. This chapter will be devoted to the definition of
a reset control system, developing basic conditions for a system to be well-posed.
In addition, an analysis of the dependence of zero crossing instants with respect
to initial conditions will be given, showing the complex patterns that may result
depending on the dimension of the after-reset surface.

Consider the feedback control system of Fig. 2.1, where the system P , with state
xp , is described by

(P )

{
ẋp(t) = Apxp(t) + Bpu(t), xp(0) = xp0,

y(t) = Cpxp(t)
(2.1)

and the reset compensator R, with state xr , is modeled in principle by the impulsive
differential equation

(R)

{
ẋr (t) = Arxr (t) + Bre(t) if e(t) �= 0,

xr (t
+) = Aρxr (t) if e(t) = 0,

(2.2)

where xr (0) = xr0 and v(t) = Crxr (t). Here np is the dimension of the state xp , and
nr is the dimension of the state xr . In addition, xr (t

+), or simply x+
r , is the value

xr (t +ε) with ε → 0+. Aρ is a diagonal matrix with diagonal elements (Aρ)ii = 0 if
the compensator state component (xr )i is to be reset, and (Aρ)ii = 1 otherwise, i =
1, . . . , nr . In general, it is assumed that the first nρ̄ compensator state components
are not reset, and the last nρ compensator states are reset or set to zero at the reset
instants t in which the compensator input e(t) is zero. Thus, nr = nρ̄ + nρ and Aρ

is given by Aρ = diag(Inρ̄
,Onρ ). For the particular case corresponding to nρ̄ = 0
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Fig. 2.1 Reset controller R

applied to an LTI plant

and nr = nρ , that is, if Aρ is the zero matrix, the reset compensator will be referred
to as full reset. Otherwise, it will be referred to as partial reset.

The closed-loop autonomous unforced system is given by e(t) = −y(t), u(t) =
v(t), where by definition the closed-loop state of dimension n = np + nr is

x =
(

xp

xr

)
. (2.3)

The result is the closed-loop system (without exogenous inputs){
ẋ(t) = Ax(t) if x(t) /∈ M ,

x(t+) = ARx(t) if x(t) ∈ M
(2.4)

with x(0) = x0 and y(t) = Cx(t), and where x0 = ( xp0
xr0

)
, A = ( Ap BpCr

−BrCp Ar

)
, AR =

diag(Inp ,Aρ) = diag(Inp , (Inρ̄
,Onρ )), and C = (Cp 0).

Therefore, to complete the closed-loop system equations, the set M , which will
be referred to later as the reset surface, needs to be defined. Another set, the after-
reset surface MR , also plays an important role in the definition of closed-loop sys-
tem solutions. Note that reset actions occur when the state x(t) contacts the re-
set surface M at some instant t , that is, x(t) ∈ M , and then the state jumps to
ARx(t) ∈ MR . In general, the set MR will be defined as

MR = R(AR) ∩ N (C), (2.5)

where R(X) and N (X) stand for the image and the null subspace of the linear
operator given by the matrix X, respectively. Thus, MR is the set of states x that
belong both to the null space of C (and then the output is y = Cx = 0) and to the
image space of AR (they are the after-reset states). In addition, the set M is defined
as

M = N (C) \ MR (2.6)

where the after-reset states are removed from the reset surface. Otherwise, an infinite
number of resets would be produced after a reset action; in general, the reset system
(2.4) can exhibit rather complex behaviors that have been referred to as beating or
pulse phenomena in the literature on impulsive systems [1, 10]. They are related to
the fact that reset instants may not be well defined or may not be distinct; in addi-
tion, even if the reset instants are well defined and are distinct, they may converge
to a finite number and then the reset system exhibits Zenoness. This topic will be
analyzed in detail in Sect. 2.2.2; however, a common solution in practice to avoid
these behaviors is to use time regularization.
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A time regularization solution can be simply constructed adopting the scheme
proposed in [12]: the system (2.4) is modified including a temporal restriction over
the reset instants by simply avoiding resets if some minimum time between resets
Δm has not passed. Thus, the closed-loop system will be described by{

Δ̇(t) = 1, ẋ(t) = Ax(t), (x(t) /∈ M ) ∨ (Δ ≤ Δm),

Δ(t+) = 0, x(t+) = ARx(t), (x(t) ∈ M ) ∧ (Δ > Δm)
(2.7)

with Δ(0) = 0, x(0) = x0, and y(t) = Cx(t), and where the reset action is only
performed if the state x(t) contacts the reset surface M at some reset instant tj , j =
1,2, . . . , and in addition every reset interval Δk = tk − tk−1 satisfies Δk > Δm,
k = 1,2, . . . , where Δm > 0 is some given constant.

2.1.1 Reset Control System Solutions

The reset control system given by (2.4) or (2.7) is a special class of a system with
impulse effects, or an impulsive system. There is a large literature on impulsive sys-
tems [1, 5, 8, 10, 11, 14]. Most of the work has been done in the area of systems
with impulses at fixed instants, or systems with impulses dependent on the state.
The case in which reset and after-reset surfaces are time independent, which is usu-
ally referred to as autonomous impulsive systems, has attracted considerably less
attention in spite of being relevant for engineering applications including control
systems, this being the case of reset control systems. The framework developed in
[8] will be (partly) adopted here. The LTI system described by the first equation in
(2.4) will be referred to as the linear base system, or simply the base system, while
the second equation in (2.4) will be referred to as the resetting law.

Let D ⊂ R
n be an initial conditions set, and Ix0 ⊆ [0,∞), with x0 ∈ R

n, a dense
subset of [0,∞) such that Jx0 = [0,∞)\Ix0 is a countable set with a finite or infi-
nite number of elements; in fact, this set will be the set of reset times corresponding
to the initial condition x0. In general, an initial condition x0 may produce a finite
or infinite number of resets, depending on whether the set Jx0 is finite or infinite.
A function x : [0,∞)×D →R

n is a solution to the reset control system (2.4) if the
following conditions are satisfied:

1. x(·,x0) is left-continuous in t , that is, limτ→t− x(τ,x0) = x(t,x0) for all x0 ∈ D
and t ∈ (0,∞).

2. x(·,x0) is differentiable in t , and dx(t,x0)
dt

= Ax(t,x0), for all t ∈ Ix0 .
3. x(t+,x0) = ARx(t,x0), for all t ∈ Jx0 .

In addition, functions τk : D → [0,∞), k = 1,2, . . . , are defined such that τk(x0)

is the kth reset instant of the solution x(·,x0). Therefore, functions Δk : Rn →
[0,∞), k = 1,2, . . . , are defined such that Δk(x0) = τk(x0) − τk−1(x0) is the kth
reset interval, with τ0(x0) = 0 for any x0 ∈ R

n. The following result is directly
adapted from [1] with minimal effort.
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Proposition 2.1 For any initial condition x0 ∈ D , assume that τ1(x0) < τ2(x0) <

· · · < τk(x0) < · · · , and τk(x0) → ∞ as k → ∞, then there exists a unique solution
x(·,x0) (x(·) in short) to the reset control system (2.4) that can be written in the
form x(t,x0) = W(t,x0)x0 for t > 0, where the transition matrix W(t,x0) is given
by

W(t,x0) = eA(t−τk(x0))AReA(τk(x0)−τk−1(x0))AR · · ·AReAτ1(x0) (2.8)

for t ∈ (τk(x0), τk+1(x0)].

Proof Since reset instants are directly determined by the initial condition, for a
given initial condition x0 ∈ D and its reset instants tk = τk(x0), k = 1,2, . . . , the
system (2.4) is an impulsive system with impulses at fixed instants t1, t2, . . . , where
by assumption 0 = t0 < t1 < t2 < · · · . A direct application of Theorem 3.6 and
Corollary 3.2 in [1] gives the result. �

Note that in general if the formulation (2.7) for reset system is used then the
reset intervals are lower-bounded by the time regularization constant Δm, that is,
Δk(x0) > Δm, k = 1,2, . . . for any x0 ∈ R, and thus the assumptions of Propo-
sition 2.1 are clearly satisfied. If time regularization is not performed, deadlock
and beating could be present if τk+1(x0) = τk(x0) for some initial condition x0 and
some k; or even a Zeno solution may be obtained if τk(x0) < ∞ for k → ∞.

Alternatively, if the initial instant is t0 �= 0 and the initial condition is x(t0) = x0,
then a solution x(t, t0, x0) is defined in a similar way.

In Sect. 2.2, a detailed analysis of beating, deadlock, and Zeno solutions in the
reset system (2.4) will be given. It will be shown that under mild conditions it does
not have these behaviors and that time regularization is not necessary to have well-
defined solutions for forward time.

2.1.2 Characterization of Reset Intervals

An important question that has not been previously approached in the reset control
literature is the analysis of reset instants for a given reset control system. For ex-
ample, given the base system of (2.4), it is not evident if every initial condition will
cross the reset surface M at some finite instant. Usually, since at least a reset action
is wanted for initial conditions in some set D , a common practice is to design the
base closed-loop system to have a pair of dominant complex poles, and thus to force
crossings after some arbitrarily large time.

In the following, it will be shown that this practice is, in fact, theoretically sup-
ported, and in addition an upper bound over resets intervals will be computed. In
general, the problem of computing crossings of the solution of a linear system gov-
erned by ẋ(t) = Ax(t), with an initial condition x0 ∈ R, with a given hyperplane,
is a particular instance of the reachability problem for linear systems. In general,
for arbitrary values of the state matrix A, it has been shown to be an open problem,
referred to as the continuous Skolem–Pisot problem [4, 9]. As discussed above,



2.1 Preliminaries and Problem Setup 61

this is a central problem in reset control where a base system has to be designed for
the reset system to perform crossings with a reset surface.

For the analysis of the crossings with the hyperplane defined by the row vector C,
that is, the instants t > 0 at which CeAtx0 = 0, it is convenient to use the equation
Ce(A+λI)tx0 = 0 for some λ ∈ R, obtaining the same results [4]. This is a simple,
but key simplifying result because all the eigenvalues of A can be assumed to have
non-positive real parts without loss of generality, for some λ properly chosen. In
addition, it has also been shown [4] that if for some initial condition x0 the matrix A

does not have dominant real eigenvalues and (A,C,x0) is reduced, the continuous
Skolem–Pisot problem always has a solution for that initial condition.

By definition, an eigenvalue of A is dominant if it is the rightmost placed eigen-
value of A in the complex plane. In addition, the term CeAtx0 can always be split as
CeAtx0 = y1(t) + y2(t), where by definition the dominant term y1(t) is not identi-
cally zero if (C,A,x0) is reduced, and in addition y2(t) tends to zero exponentially
fast as t increases. This means that a reset control system with such a matrix A will
always produce crossings for the initial condition x0. Note that the set of states x0
for which (A,C,x0) is not reduced has a linear subspace structure, and will be re-
ferred to as R̄. Note that if the modes corresponding to dominant eigenvalues are
unobservable then (A,C,x0) is not reduced for any x0 ∈ R

n, and thus R̄ = R
n,

but in the case they are observable, (A,C,x0) may not be reduced for some initial
condition x0 ∈R

n, and in general R̄ is not the empty set.
In general, if the matrix A ∈ R

n×n has eigenvalues λ1, λ2, . . . , λs such that ki =
index(λi), then it can be expressed as

A = (P1 . . . Ps )J

⎛
⎜⎝

Q1
...

Qs

⎞
⎟⎠ =

s∑
i=0

PiJ (λi)Qi, (2.9)

where J is the Jordan form, and J (λi) the Jordan segment associated to the eigen-
value λi . In addition, for a function f : R → R such that f (λi), f ′(λi), . . . ,
f (ki−1)(λi) exist for each i = 1, . . . , s, the value of f (A) can be determined by
using a generalization of the spectral theorem for non-diagonalizable matrices

f (A) =
s∑

i=1

ki−1∑
j=0

f (j)(λi)

j ! (A − λiI )jGi, (2.10)

where Gi = PiQi is the spectral projector corresponding to the eigenvalue λi .
In the case in which the matrix A is diagonalizable, the expression of f (A) is

much simpler since index(λi) = 1, for i = 1, . . . , s. In this case,

f (A) =
s∑

i=1

f (λi)Gi, (2.11)

where in addition the spectral projectors are simply given by Gi = viwT
i , with vi

and vj being the right-hand eigenvector and the left-hand eigenvector corresponding
to the eigenvalue λi , respectively.
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In the following, it will be shown how a reset control system produces an infinite
number of resets, and that the reset intervals are upper-bounded, if the base system
does not have real dominant eigenvalues.

Proposition 2.2 Consider the reset control system (2.4), where the matrix A does
not have real dominant eigenvalues, and a nonempty closed set of initial conditions
D ⊂ R

n \ R̄, then reset intervals are uniformly upper-bounded, that is, Δk(x0) =
τk+1(x0) − τk(x0) < ΔM , k = 1,2, . . . , for any x0 ∈ D and some finite constant
ΔM > 0.

Proof It is assumed, without loss of generality, that A has dominant imaginary
eigenvalues. The case in which A has a pair of dominant eigenvalues will be
considered in the following (with multiplicity not necessarily equal to one), the
more general case of multiple dominant eigenvalues is a bit more involved but
follows a similar reasoning. The eigenvalues of A are ordered in such a way that
its spectrum is σ(A) = {λ1, λ2, . . . , λs} = {iβ1,−iβ1, α3 + iβ3, . . . , αs + iβs}, and
αl < 0, l = 3, . . . , s. In addition, let kl, l = 1, . . . , s, be the index of each eigenvalue.
Then, the output y(t) of the reset control system can be expressed (using (2.9) and
(2.10) for computing eAt ) as

y(t) =
s∑

l=1

kl−1∑
j=0

tj eλl t

j ! C(A − λlI )jGlx0, (2.12)

where Gl is the spectral projector associated to the eigenvalue λl . It can be split in
two parts as y(t) = y1(t) + y2(t), where

y1(t) =
2∑

l=1

kl−1∑
j=0

tj eiβl t

j ! C(A − iβlI )jGlx0 (2.13)

and

y2(t) =
s∑

l=3

kl−1∑
j=0

tj eαl t eiβl t

j ! C(A − (αl + iβl)I )jGlx0. (2.14)

Here y2(t) tends to zero exponentially fast as t increases since αl < 0, l = n +
1, . . . , s, and thus it is clear that for any ε2 > 0 it is always possible to choose an
instant t2 large enough such that |y2(t)| < ε2‖x0‖, for t ≥ t2.

In addition, defining constant matrices Zlj = ∑kl−1
j=0

(A−iβlI )j Gl

j ! ∈ C and matrix

polynomials Pl(t) = (
∑kl−1

j=0 Zlj t
j ), the dominant term of the output y1(t) can be

expressed as

y1(t) = C
(
P1(t)e

iβl t + P2(t)e
−iβl t

)
x0

= C(P1,R(t) cos(β1t) + P1,I (t) sin(β1t))x0, (2.15)
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where P2(t) = P̄1(t), P1,R = 2 Real{P1}, and P1,I = 2 Imag{P1}. Now, for instants
tm = m 2π

β1
, with m ∈ N, the value of the dominant term is given simply by y1(tm) =

CP1,R(tm)x0, and since (C,A,x0) is reduced for any x0 ∈ D , and D is closed,
there must exist some lower bound ε1 > 0 such that |y1(tm)| > ε1‖x0‖, for any m

and x0 ∈ D . This can be shown by contradiction, if it were false then it would exist
a sequence of states {x01, x02, . . . } → x0 such as for any t > 0, ‖CP1,R(t)x0n‖ → 0
as n → ∞. Thus, since D is closed it must contain a state x0 such as (C,A,x0) is
not reduced, which is a contradiction. Also note that for an m1 large enough, the sign
of y1(tm) is constant for m > m1 (for example, choosing tm1 as the Cauchy’s bound
of the roots of the polynomial CP1,R(t)x0). It will be assumed that y1(tm1) > 0,
otherwise tm = mπ

β
, m ∈ N, may be chosen. Therefore, it is possible to find a large

enough instant t2 such as ε2 < ε1 and thus | y2(tm)
y1(tm)

| <
ε2‖x0‖
ε1‖x0‖ = ε2

ε1
< 1, and then it is

true that y(tm) = y1(tm)(1 + y2(tm)
y1(tm)

) > 0, provided that tm > max{tm1, t2}. A similar
reasoning may be applied to show that y(tn) < 0, with tn = n π

β1
, for some tn >

max{tn1, t2}, where n1 is computed in a similar way. As a result, the output of the
reset system y(t) = CeAtx0, for some initial condition x0 ∈ R

n, is equal to 0 for t <

tm, with the upper bound tm being independent of the initial condition ‖x0‖. Then,
since the reset action is only active for t > Δm, Δ1(x0) = τ1(x0) < Δm + tm =: ΔM .
Obviously, the rest of the reset intervals are also upper-bounded by ΔM , and thus
the proof is complete. �

2.2 Zenoness, Beating, and Deadlock

In control practice, it is required that the reset control system solutions x(t,x0) be
well defined in the sense that they exist and are unique for any t > 0, as given in
Proposition 2.1. As it has been previously discussed, this may be complicated by the
fact that these solutions may exhibit complex phenomena such as non-continuability
of solutions or deadlock, beating or livelock, and Zenoness. These concepts will be
used as defined in [8]. Deadlock occurs when the state x(t) cannot evolve in time
because no continuation, continuous or discrete, is possible. To avoid deadlock, a
typical assumption (adapted from [8]) is that

(A1) ∀x(t) ∈ MR, ∃ε > 0 such that ∀δ ∈ (0, ε) x(t + δ) /∈ M ,

that is, the after-reset states evolve with the continuous base dynamics for some
finite time interval. Beating appears when the system solution encounters the reset
surface after resetting, which in our case is simply avoided by assuming that

(A2) MR ∩ M = ∅,

that is, assuming that the after-reset states are not elements of the reset surface.
Finally, a Zeno solution exists if a system solution has infinitely many reset actions
in a finite time.

By definition, the reset control system (2.4), with sets MR and M , is well-
posed if it satisfies conditions (A1) and (A2) (and thus it does not exhibit beating or
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deadlock, but Zeno solutions may exist in principle). Note that in the reset control
system (2.4), the reset action occurs at the instants t at which the output y(t) is zero.
The set MR is defined as in (2.5), that is, as the set of states that belong both to the
null space of C (and then the output is y = Cx = 0) and to the image space of AR

(they are the after reset states). In addition, the set M will be defined as in (2.6),
where the points that are the after-reset states are removed from the reset surface to
satisfy condition (A2), otherwise an infinite number of resets may be produced after
a reset action, and beating would be present.

2.2.1 Well-posedness: Beating and Deadlock

To have well-defined solutions to the reset systems as given in last section, reset
instants have to be well defined and distinct. In general, two phenomena that have
to be avoided are deadlock (non-continuability of solutions), and beating or live-
lock. Another important type of solutions like Zeno solutions will be treated in next
section. In general, a reset control system as defined by (2.4)–(2.6) does not exhibit
beating, once the surfaces MR and M are defined according to (2.5) and (2.6),
respectively. On the other hand, additional assumptions have to be made to avoid
deadlock.

Proposition 2.3 The reset control system (2.4)–(2.6) is well-posed if the after-reset
surface MR is a subset of the observable subspace of the linear base system, that is,

MR ∩ N (Obase) = {0} (2.16)

where

Obase =

⎛
⎜⎜⎜⎝

C

CA
...

CAn−1

⎞
⎟⎟⎟⎠ .

Proof Beating is avoided by defining the after-reset surface MR by (2.6). Thus, the
proof is centered around deadlock. In general, given any initial condition x0 ∈ D , the
reset surface M is first contacted at the instant t1 = τ1(x0). Then the reset instant
t1 is simply given by t1 = inf{t > 0|x(t,x0) ∈ M }, and thus is a solution of the
equation CeAt1x0 = 0. In addition, it must be true that eAt1x0 /∈ R(AR) according
to the definitions of the after-reset and reset surfaces as given by (2.5) and (2.6),
respectively. For simplicity, consider first that the closed-loop state matrix A has
distinct eigenvalues, then the matrix exponential may be computed by using the
Caley–Hamilton method, that is,

eAt1 = α0I + α1A + · · · + αn−1A
n−1, (2.17)
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where αi , i = 0, . . . , n − 1, are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

eλ1t1 = α0 + α1λ1 + · · · + αn−1λ
n−1
1 ,

eλ2t1 = α0 + α1λ2 + · · · + αn−1λ
n−1
2 ,

· · ·
eλnt1 = α0 + α1λn + · · · + αn−1λ

n−1
n .

(2.18)

Using the vector notation λT = (λ1 λ2 . . . λn), αααT = (α0 α1 . . . αn−1) and eλt1 =∑n
i=1 eλi ti ei , where ei stands for the unit vector (0 . . . 0 1 0 . . . 0)T in which the

ith component is 1, (2.18) can be compactly written as

eλt1 = V (λ)T α, (2.19)

where V (λ) is a (nonsingular) Vandermonde matrix. Now, by eliminating α from
(2.17) and (2.19) the equation 0 = CeAt1 x0 is transformed into

0 = αT

⎛
⎜⎜⎜⎝

C

CA
...

CAn−1

⎞
⎟⎟⎟⎠x0 = eλt1

T
U(λ)Obasex0, (2.20)

where U(λ) = V (λ)−1. Now, if condition (2.16) is satisfied, then the right-hand
side of (2.20) is an analytical function (in fact, a sum of exponentials) that is not
zero for all t ≥ 0. As a result, it has no isolated zeros, and then the reset instant
t1 is lower-bounded. In other words, solutions of (2.20) may not be obtained for
arbitrarily small values of the reset instant t1, and thus deadlock does not occur if
condition (2.16) is satisfied.

In the case in which the eigenvalues of A may be repeated, a similar ar-
gument may be applied. Note that eAt1 may be written as the infinite series

D(A) = ∑∞
i=0

Aiti1
i! . Thus the polynomial D(λ) = ∑∞

i=0
λi t i1
i! can be factorized as

D(λ) = Q(λ)P (λ) + R(λ), with R(λ) = 0, or deg(R) < deg(P ) = n. In addi-
tion, R has degree no greater than n − 1, and thus R(λ) = ∑n−1

j=0 αjλ
j . Since

the characteristic polynomial is zero for the eigenvalues of A, D(λk) = R(λk) for

k = 0,1, . . . , n − 1. And then D(λk) = ∑∞
i=0

λi
kt

i
1

i! = eλkt1 = R(λk) = ∑n−1
j=0 αjλ

j
k

for k = 0,1, . . . , n − 1. This can be compactly expressed as V T (λ)α = eλt1 , and the
expression (2.19) is obtained.

Now, if A has r different eigenvalues with respective multiplicity order ni , and as
a consequence the characteristic polynomial is p(λ) = ∏r

i=1(λ − λi)
ni , then again

there exist unique polynomials Q and R such as D(λ) = Q(λ)P (λ) + R(λ) where
D(λ) = eλt1 and R = 0 or deg(R) < deg(P ). Here R can be expressed as R(λ) =∑n−1

i=0 αiλ
i , where the coefficients are unique. Since p and its derivatives up to order
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nr are zero at λi ,

djD(λi)

dλj
= djR(λi)

dλj
∀i = 1,2, . . . , r, ∀j = 0,1, . . . , ni − 1. (2.21)

This can be expressed by μ = Wα, where

μ =
r∑

i=1

ni−1∑
j=0

eie
λi t1 ⊗ ej λ

j
i , (2.22)

W =
⎛
⎝ r∑

i=1

ni−1∑
j=0

ei ⊗ ej eT
i

∂jV (λ)

∂λ
j
i

⎞
⎠ . (2.23)

By using arguments based on the Lagrange–Hermite interpolation problem, it
can be shown that, in fact, the matrix W is invertible. And then an expression sim-
ilar to (2.20) may be obtained. Using similar arguments as those after (2.20), the
proposition is proved for the general case of repeated eigenvalues. �

Obviously, a reset control system will be well-posed if the base linear system is
observable. But some unobservable base linear systems can also define well-posed
reset control systems. Therefore, note that in the proof of Proposition 2.3 no par-
ticular structure of the matrices A, C, and AR has been used. Thus, the result is in
general valid for any reset system given by (2.4) with arbitrary values of those matri-
ces. In the following, two examples corresponding to an ill-posed (not well-posed)
reset system and a well-posed reset control system are given.

2.2.1.1 Example (Ill-posed Reset System)

This example is used in [12] for analyzing some weak points in the definition of
reset systems given in [3]. Consider a reset system (2.4) with the following system
matrices

A =
⎛
⎝−1 0 0

0 −1 −1
0 1 −1

⎞
⎠ , AR =

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ , C = (

1 0 0
)
, (2.24)

where in addition the sets MR and M are defined according to (2.5) and (2.6) as

MR = R(AR) ∩ N (C) = span
{
(0,1,0)T

}
,

and

M = N (C) \ MR = span
{
(0,1,0)T , (0,0,1)T

}∖
span

{
(0,1,0)T

}
.

Note that this reset system cannot be realized as a control reset system with the
structure of Fig. 2.1.
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In [12], it is correctly argued that for any initial condition x0 = (0, a,0)T ∈ MR ,
the solution is ill-defined since the continuous dynamics makes the system instantly
evolve to the set MR and then the system instantly resets once the reset surface
is reached, making infinitely many resets without leaving the reset surface; in fact,
there is deadlock. Note that this is due to the fact that the after-reset surface MR is
a subset of the unobservable subspace of the linear base system, which is given in
this case by

N

⎛
⎝

⎛
⎝ C

CA

CA2

⎞
⎠

⎞
⎠ = N

⎛
⎝

⎛
⎝ 1 0 0

−1 0 0
1 0 0

⎞
⎠

⎞
⎠ = N (C) ⊃ MR. (2.25)

2.2.1.2 Example (Well-posed Reset Control System)

This example, adapted from [3], shows how an unobservable linear base system
may define a well-posed reset system, as long as the unobservable subspace does
not contain after-reset states. Consider a reset control system (2.4)–(2.6) with

A =
⎛
⎝0 0 1

1 −0.2 1
0 −1 −1

⎞
⎠ , AR =

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ , C = (

0 1 0
)

(2.26)

that has an unobservable mode corresponding to a stable pole–zero cancellation in
the linear base system, where the plant has a transfer function P(s) = s+1

s(s+0.2)
, and

the base compensator is C(s) = 1
s+1 (corresponding to a first order reset element—

FORE). In addition, the after-reset and reset surfaces are given by MR = R(AR) ∩
N (C) = span{(1,0,0)T } and M = N (C) \ MR = span{(1,0,0)T , (0,0,1)T } \
span{(1,0,0)T }, respectively. In this case, the set MR is not a subset of the linear
base system unobservable subspace given by

N

⎛
⎝

⎛
⎝ C

CA

CA2

⎞
⎠

⎞
⎠ = N

⎛
⎝

⎛
⎝ 0 1 0

1 −0.2 1
−0.2 −0.96 −0.2

⎞
⎠

⎞
⎠ = span

{
(1,0,−1)T

}
.

(2.27)
As a result, Proposition 2.3 may be used to ensure that the system is well-posed.

Figure 2.2 shows the system solutions corresponding to two initial conditions.

2.2.2 Zeno Solutions

In principle, the reset control system (2.4) may exhibit Zeno solutions even in the
case where it is well-posed (assuming that condition (2.16) is satisfied). Zeno solu-
tions are solutions to (2.4) that have an infinite number of jumps in a compact time
interval. However, as it will be shown in the following, condition (2.16) is sufficient
to avoid the existence of Zeno solutions.
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Fig. 2.2 System solution for the well-posed reset system example

Proposition 2.4 The reset system (2.4)–(2.6) does not have Zeno solutions if MR ∩
N (Obase) = {0}.
Proof The basic idea of the proof consists of showing that the reset system (2.4)–
(2.6), with an initial condition in MR , can only have finite sequences of reset in-
tervals Δk, k = 1,2, . . . ,m − 1 such as Δm−1 < Δm−2 < · · · < Δ1 = ε, for some
ε > 0 arbitrarily small but fixed, and some finite positive integer m. In fact, in the
following it will be shown that at most there will be sequences of length m−1, with
m being the dimension of the after-reset surface MR .

Without loss of generality, it is considered that the plant state equations (2.1) are
given in an observer canonical form, that is,

Ap =

⎛
⎜⎜⎜⎝

0 0 · · · 0 −a0
1 0 · · · 0 −a1
...

...
. . .

...
...

0 0 · · · 1 −anp−1

⎞
⎟⎟⎟⎠ , Bp =

⎛
⎜⎜⎜⎝

b0
b1
...

bnp−1

⎞
⎟⎟⎟⎠ , Cp = (

0 0 . . . 1
)
,

(2.28)
then C = (0,0, . . . ,1,0, . . . ,0) and thus

Obase =

⎛
⎜⎜⎜⎜⎜⎜⎝

C

CA
...

CAnp−1

...

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0 1 0 . . . 0
0 0 · · · 0 1 −anp−1 X . . . X
...

...
. . .

...
...

...
...

. . .
...

1 −anp−1 · · · X X X X · · · X
...

...
. . .

...
...

...
...

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(2.29)
where X stands for a non (necessarily) zero term.
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For simplicity, the case of full reset is approached at first. Thus, an after-reset
state x ∈ MR is given by

x = (x1, x2, . . . , xnp−2, xnp−1,0,0, . . . ,0)T (2.30)

for some values x1, . . . , xnp−1 ∈ R, with np being the number of plant states. Thus,
m = np − 1 in the case of full reset.

Let us start with the case m = 1, which corresponds to second order plants and
full reset compensators of arbitrary order. In this case, if the reset control system
is well-posed, it is well known that the reset is periodic after reaching the set MR

from any initial condition; thus starting from MR , the reset will be periodic and
Zeno solutions are not possible. In fact, there exists no initial condition in the set
MR that contacts M in an arbitrarily small time since reset intervals are constant.

The case m = 2 is analyzed in the following. Consider an initial condition x0 =
x1 ∈ MR , that is, x1 = (x1, x2,0,0, . . . ,0)T . If the solution x(t,0,x1) contacts the
reset surface MR at time t1 = ε1, thus Δ1 = ε1, for some ε1 > 0 arbitrarily small,
then

0 = CeAε1 x1 = Cx1 + ε1CAx1 + ε2
1

2
CA2x1 + · · · . (2.31)

Since the control system (2.4)–(2.6) is well-posed, the right-hand side of (2.31)
is not identically zero for any x1 ∈ MR . Now using the special structure given in
(2.29), one obtains

0 = x2 + ε1

2
x1 + O

(
ε2

1

)
, (2.32)

where the terms of order ε2
1 and higher maybe be neglected, in principle. Note that

for (2.32) to be satisfied for an arbitrarily small ε1 > 0 it must be true that x1 �= 0
and x2 �= 0.

In addition, the following after-reset state x2 is given by x2 = ARx(t1,0,x1) =
(x1 +O(ε2

1), x2 +ε1x1 +O(ε2
1),0,0, . . . ,0)T . Repeating the argument, the solution

x(t, t1,x2) will again contact M at the instant t2 = t1 + Δ2. If Δ2 = ε2 ≤ ε1 for
some ε2 > 0, then it is verified that

0 = x2 + ε1x1 + ε2

2
x1 + O

(
ε2

1

)
, (2.33)

where the properties O(ε2
2) = O(ε2

1) for ε2 ≤ ε1 and O(kε) = O(ε), for a real con-
stant k, have been used. Now, using (2.32) and (2.33), the result is that given some
ε1 > 0 arbitrarily small, ε2 = −ε1 + O(ε2

1) < 0, which is absurd. Thus, by con-
tradiction it is true that ε2 > ε1, and thus any initial condition in the set MR that
produces a first reset interval ε1 > 0 arbitrarily small, gives a larger second reset
interval ε2 > 0. Thus Zeno solutions do not exist in this case either.

In the rest of the proof, the terms O(εm
1 ) are directly neglected for simplicity. For

the case m = 3, consider an initial condition x0 = x1 = (x1, x2, x3,0,0, . . . ,0)T ∈
MR . Applying a similar argument, the result is now that if a sequence of decreasing



70 2 Definition of Reset Control System and Basic Results

reset intervals {ε1, ε2, ε3} exists, with ε1 ≥ ε2 ≥ ε3 > 0 and ε1 being arbitrarily
small, then

x3 + ε1

2
x2 + ε2

1

6
x1 =0,

x3 +
(

ε1 + ε2

2

)
x2 +

(
ε2

1

2
+ ε1ε2

2
+ ε2

2

6

)
x1 =0,

x3 +
(

ε1 + ε2 + ε3

2

)
x2 +

(
(ε1 + ε2)

2

2
+ (ε1 + ε2)ε3

2
+ ε2

3

6

)
x1 =0,

(2.34)

and now, eliminating x1, x2, and x3, after some computation, ε3 is given as a func-
tion of ε1 and ε2 by the second order equation

(ε1 + ε2)ε2 + (ε1 + 2ε2)ε3 + ε2
3 = 0 (2.35)

having the solutions ε3 = −ε2 < 0 and ε3 = −(ε1 + ε2) < 0, which is a contradic-
tion. Thus, no initial condition in MR can produce a sequence of resets intervals
that converge to zero, and again Zeno solutions do not exist for the case m = 3.

For the general case in which the dimension of MR is m, with initial state x0 =
x1 = (x1, x2, . . . , xm,0,0, . . . ,0)T , a similar reasoning results in the set of equations

m∑
k=1

εm−1
1

(m + 1 − k)!xk =0,

m∑
i=1

i∑
k=1

εm−i
2 εi−k

1

(m + 1 − i)!(i − k)!xk =0,

. . .

m∑
i=1

i∑
k=1

εm−i
m (ε1 + · · · + εm−1)

i−k

(m + 1 − i)!(i − k)! xk =0,

(2.36)

which results in an algebraic equation of order m in εm, with the solutions εm =
−εm−1, εm = −(εm−1 + εm−2), . . . , εm = −(εm−1 + εm−2 + · · · + ε1). And again,
a sequence of reset intervals {ε1, ε2, . . . , εm} with ε1 ≥ ε2 ≥ · · · ≥ εm > 0 and ε1

arbitrarily small cannot exist, showing that a Zeno solution is not possible in the
full-reset case.

The case of partial-reset can be conveniently transformed into the full-reset form
by a change of coordinates, by a simple resorting of coordinates so that the bijectiv-
ity is guaranteed. We will consider the system structure decomposition by writing
the states as xT = (xT

p ,xρ̄
T ,xT

ρ ) where xp ∈ R
np stands for the states of the plant,

xρ̄ ∈ R
nρ̄ for the non-resetting compensator states, and xρ ∈ R

nρ for the resetting
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compensator states. Define the linear transformation T from R
n to R

n such that

T x = T

⎛
⎝xp

xρ̄

xρ

⎞
⎠ =

⎛
⎝xρ̄

xp

xρ

⎞
⎠ = z, (2.37)

that is,

T =
⎛
⎝0nρ̄×np Inρ̄×nρ̄

0nρ̄×nρ

Inp×np 0np×nρ̄
0np×nρ

0nρ×np 0nρ×nρ̄
Inρ×nρ

⎞
⎠ . (2.38)

Note that T is a square matrix, all of whose entries are 0 or 1, and in each row
and column of T there is precisely one 1. This means that T is a permutation matrix.
Clearly, such a matrix is unitary, hence orthogonal, so T T = T −1. The nonsingular
matrix T allows us to rewrite the dynamical system via a similarity transformation
(congruence transformation):

ż(t) = Āz(t) if z(t) /∈ M̃ ,

z
(
t+

) = ĀRz(t) if z(t) ∈ M̃ ,

y(t) = CT T z(t) = C̄z(t),

(2.39)

where Ā = T AT T , ĀR = T ART T , and C̄ = CT T , and in addition the reset sur-
face is transformed into M̃ = {z ∈Rn : T T z ∈ M }. Note that C̄ = CT T = enp+nρ̄

so that the output is not changed by the transformation, i.e., y(t) = znp+nρ̄
(t) as

expected. Henceforth, (2.39) is in full-reset form. Since observability is invariant
under similarity transformations, it is clear that (2.4)–(2.6) is well-posed if and only
if (2.39) is well-posed. Finally, to complete the proof it is necessary to show that the
observability matrix has the structure given in (2.29) (using state transformations
if needed). This is simply done by considering the substate z1 = ( xρ̄

xp

)
. In general,

there always exists a state transformation of z = ( z1
xρ

)
to w = ( w1

xρ

)
such that the

state submatrix corresponding to z1 is in the observability staircase form, and thus
the observability matrix has the structure given in (2.29) once unobservable states
are eliminated. This concludes the proof. �

2.2.2.1 Example: Well-posed Reset Control System with Partial Reset

Consider a reset control system (2.4)–(2.6) where the plant, with state xp = (
x1
x2

)
, is

given by the state space model

Ap =
(

0 1
1 −1

)
, Bp =

(
1
0

)
, Cp = (

0 1
)
, (2.40)
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and the reset compensator, with state xr = (
x3
x4

)
, is given by

Ar =
(

0 0
0 0

)
, Br =

(
1
1

)
, Cr = (

1 1
)
, Aρ =

(
1 0
0 0

)
,

(2.41)
that is, the reset control system has a partial reset compensator: it is a parallel con-
nection of an integrator and a Clegg integrator, where only the state x4 is set to zero
at the reset instants.

The closed-loop system is defined by the matrices

A =

⎛
⎜⎜⎝

0 1 1 1
1 −1 0 0
0 −1 0 0
0 −1 0 0

⎞
⎟⎟⎠ , AR =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠ , C = (

0 1 0 0
)
,

(2.42)
and the closed-loop state x = (x1 x2 x3 x4 )T .

This reset control system is well-posed, since

MR = span

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ , N (Obase) = span

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0
0

−1
1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ , (2.43)

and then MR ∩ N (Obase) = {0}. Following the reasoning given in the proof of
Proposition 2.4, the closed-loop state x can be transformed into a state z in which
the observability matrix has the form (2.29). In this case, this is obtained with z =
(x3 x1 x2 x4 )T . Thus, the initial conditions that produce a crossing in an arbitrarily
small time ε > 0 are of the form z1 = (1 − ε

2 0 0 )T , or equivalently,

x1 =
(
−ε

2
0 1 0

)T

. (2.44)

Now, the second after-reset state is given by

x2 = AReAε
(
−ε

2
0 1 0

)T =
( ε

2
0 1 0

)T

, (2.45)

and, according to Proposition 2.4, x2 cannot produce a new crossing in a time less
than or equal to ε. This fact can be verified by computing solutions to the implicit
equation 0 = CeAt (α 0 1 0 )T for t , given α ∈ R. The solution is shown in Fig. 2.3,
where t = τ1((α 0 1 0 )T ) is given.

Note that for t to have an arbitrarily small value, an initial condition x1 in the
after-reset surface must have the form (2.44), that is, α = −ε/2 in Fig. 2.3. Then, as
a result the state after the first reset x2 has the form (2.45), that is, α = +ε/2 (see
also Fig. 2.3). And then the value of the second reset instant can be obtained from
Fig. 2.3. The result is that if the first reset instant is arbitrarily small, then the second
reset instant is arbitrarily close to 3.15.
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Fig. 2.3 First reset instant as a function of α

2.3 Reset Instants and the After-Reset Surface Dimension

In general, reset instants tk = τk(x0), k = 1,2, . . . , can take different and complex
patterns for different initial conditions x0 ∈ D , and in fact this is a key property of
reset control systems since it determines the way in which the reset instants evolve
and also some important properties. For example, the fact that τ1(x0) has a dis-
continuity in the example of the last section (Fig. 2.3) is directly related with the
non-existence of Zeno solutions.

A useful property is that functions τk(x0) are homogeneous (of degree 0) since
τk(αx0) = τk(x0), for any α > 0 and k = 1,2, . . . . If the set of initial conditions is D ,
this means that the computation of reset intervals can be simplified, for example, to
those states that are elements of the unit ball (centered at the origin). On the other
hand, the set of not reduced states R̄, as defined before Proposition 2.2, can be
obtained by using the spectral projectors of the corresponding eigenvalues.

In the rest of this section, it is assumed that the reset control systems are well-
posed and that their base systems have a state matrix A with a simple pair of com-
plex dominant eigenvalues λ1 = α1 + iβ1 and λ2 = α1 − iβ1 (with index 1). As far as
the computation of the set of not reduced states R̄ is concerned, it may be assumed
that α1 = 0 without loss of generality. Thus, for an initial condition x0 the output
dominant term before the first reset instant is given by (using (2.15))

y1(t) = C
(
Re{G1} cos(β1t) + Im{G1} sin(β1t)

)
x0, (2.46)
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where G1 is the spectral projector given by G1 = v1wT
1 , and v1 and w1 are the right

and the left eigenvectors, respectively. Thus, the set R̄ can be simply computed as

R̄ = N

{(
C Re{G1}
C Im{G1}

)}
, (2.47)

where Re{G1} and Im{G1} stands for the real and imaginary parts of G1, respec-
tively. And thus the set of reduced states is given simply by R

n \ R̄.
The order of the reset control system, and in particular the dimension of the

after-reset surface, is key in the analysis of the reset instants, thus in the following
different cases corresponding to dimensions of the after-reset surface 1, 2, and ≥ 3
are treated separately.

2.3.1 dim(MMMRRR) = 1

In this case, since the after-reset surface has dimension 1, any initial condition
x0 ∈ MR can be generated by one vector u, that is, x0 = αu for some α ∈ R. Thus,
simply by using the homogeneity property of the functions tk = τk(x0), k = 1,2, . . . ,
it is clear that τk(x0) = τk(αu) = τk(u), that is, they are all constant functions over
the set MR , as long as (C,A,u) is reduced (otherwise there are no crossings). In
other words, starting from an initial condition in the after-reset surface, the reset
instants are periodic.

For initial conditions that are not elements of the after-reset surface, the first reset
instant is in general different. Using Proposition 2.2, if the reset system has a pair of
dominant complex eigenvalues then the first reset instant is uniformly bounded, that
is, ‖τ1(x0)‖ < Δ, for some upper bound Δ > 0 and for any initial condition x0 such
that (C,A,x0) is reduced. In the case in which (C,A,x0) is not reduced, τ1(x0) is
not necessarily bounded, that is, the initial condition may not cross the reset surface.

2.3.1.1 Example

Consider the reset control system (2.4)–(2.6) where the plant, with state xp = (
x1
x2

)
,

is given by the state space model

Ap =
(

0 0
1 −1

)
, Bp =

(
1
0

)
, Cp = (

0 1
)
, (2.48)

and the reset compensator, with state xr = x3, is given by

Ar = −1, Br = 1, Cr = 1, Aρ = 0, (2.49)

that is, the reset compensator is FORE, and the state x3 is set to zero at the reset
instants.
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The closed-loop system is given by the matrices

A =
⎛
⎝0 0 1

1 −1 0
0 −1 −1

⎞
⎠ , AR =

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ , C = (

0 1 0
)
, (2.50)

and the closed-loop state is x = (x1 x2 x3 )T .
It can be easily checked that the system is well-posed since the base linear system

is observable. By definition, the after-reset surface is given by

MR = span

⎧⎨
⎩

⎛
⎝1

0
0

⎞
⎠

⎫⎬
⎭ . (2.51)

Now, the subspace of not reduced states R̄ is computed. The closed-loop state
matrix A has the eigenvalues λ1 = −0.12 + j0.74, λ2 = −0.12 − j0.74, and λ3 =
−1.75. Thus, the reset control system has two complex dominant eigenvalues, with
their spectral projectors being

G1 =
⎛
⎝0.41 − j0.28 0.15 + j0.34 0.12 − j0.41

0.12 − 0.j41 0.29 + j0.14 −0.16 − j0.34
0.16 + j0.34 −0.27 + j0.07 0.29 + j0.14

⎞
⎠ , G2 = G


1.

(2.52)
The subspace of not reduced states is R̄ = N

((
C Re{G1}
C Im{G1}

))
, which in this example

has dimension 1 and is given by

R̄ = span

⎧⎨
⎩

⎛
⎝−0.41

0.55
0.72

⎞
⎠

⎫⎬
⎭ . (2.53)

Since, according to (2.51) and (2.53), every nonzero after-reset state is reduced,
it results in that the reset instants are periodic as discussed above. However, note that
if the initial condition is not an after-reset state, two types of solutions may occur
(see Figs. 2.4–2.5):

• solutions with no crossings if

x0 = α

⎛
⎝−0.41

0.55
0.72

⎞
⎠ ,

for some real number α, and
• solutions with a first crossing at a finite time and then an infinite number of peri-

odic crossings.
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Fig. 2.4 Closed-loop output for three different initial conditions

Fig. 2.5 Control input for three different initial conditions

2.3.2 dim(MMMRRR) = 2

The case of dim(MR) = 2 is slightly more involved since, as it will be described
below, the resets instants are not periodic in general, and a large variety of solutions
may appear regarding the number and structure of crossings associated to a given
initial condition. By simplicity, the particular case of a third order plant and a full
reset compensator is considered. Without loss of generality, consider an observer
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canonical form realization of the plant, that is,

Ap =
⎛
⎝0 0 −a0

1 0 −a1
0 1 −a2

⎞
⎠ , Bp =

⎛
⎝b0

b1
b2

⎞
⎠ , Cp = (

0 0 1
)
. (2.54)

Thus an after-reset state x ∈ MR is given by

x = (x1, x2,0,0, . . . ,0)T (2.55)

for some values
(
x1
x2

) ∈ R
2. Using again the fact that tk = τk(x0), k = 1,2, . . . , are

homogeneous, for the systems solutions with an initial condition in the after-reset
surface it is enough to check the reset instants in some subset of R2, for example,
the unit circle. Using polar coordinates

(
x1
x2

) = (
ρ cos θ
ρ sin θ

)
, for ρ ∈ [0,∞), θ ∈ [0,2π),

it is true that

τk

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

ρ cos θ

ρ sin θ

0
...

0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ = τk

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

cos θ

sin θ

0
...

0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ (2.56)

for k = 1,2, . . . . As a result the reset instants are functions of the single parameter θ .
In general, the system’s solutions may exhibit no crossings, a finite number of

crossings, or infinitely many crossings. If the initial condition is an after-reset state,
that is, x0 ∈ MR , no crossings or a finite number of crossings may occur if some of
the after-reset states are not reduced. Otherwise, an infinite number of crossings is
produced.

2.3.2.1 Example

Consider again the reset control system with a FORE compensator, with parameters
Ar = −1, Br = 1, and Cr = 1, and a plant given by the state space model

Ap =
⎛
⎝0 0 −0.35

1 0 −2.40
0 1 −4.35

⎞
⎠ , Bp =

⎛
⎝3

1
0

⎞
⎠ , Cp = (

0 0 1
)
. (2.57)

The reset control system is well-posed since the base linear system is observable.
Using the parameter θ as in (2.56), the function τ1 can be computed by solving the
implicit equation

CeAt1

⎛
⎜⎜⎝

cos θ

sin θ

0
0

⎞
⎟⎟⎠ = 0 (2.58)
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Fig. 2.6 Reset instants corresponding to after-reset states as a function of the parameter θ

for t1 = τ1(θ). The result is given in Fig. 2.6, where it can be seen that the mapping
τ1 has a discontinuity at θ = π , and in addition it results in the reset instants being
uniformly bounded for initial conditions in the after-reset surface. This is due to the
fact that all the after-reset states are reduced, as it will be seen below.

The after-reset surface is given by

MR = span

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ (2.59)

and the subspace of not reduced states by

R̄ = N

((
C Re{G1}
C Im{G1}

))
= span

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

0.20
0.31
0.92
0.16

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

−0.81
0.47

−0.05
0.35

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭ , (2.60)

thus it can be easily checked that MR ∩R̄ = {∅}, which means that all the after-reset
states are reduced. In Figs. 2.7 and 2.8, several simulations corresponding to differ-
ent initial conditions in the after-reset surface MR are shown, including closed-loop
outputs and control inputs. Note that since the after-reset states are reduced, there are
an infinite number of resets corresponding to each initial condition, and as indicated
above, a bound over the reset intervals may be found.

In the case in which the initial condition is not an after-reset surface state, it may
occur that no crossings are produced. This is, in fact, the case for initial conditions in
the set R̄ given by (2.60). Otherwise, an infinite number of crossings are produced
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Fig. 2.7 Closed-loop output for three initial conditions in the after-reset surface

Fig. 2.8 Control input for three initial conditions in the after-reset surface

in this example. Different simulations for not reduced initial conditions are shown
in Figs. 2.9–2.10
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Fig. 2.9 Closed-loop output for three initial conditions (not reduced)

Fig. 2.10 Control input for three initial conditions (not reduced)

2.3.3 dim(MMMRRR) ≥ 3

For higher order reset control systems, the functions τk , k = 1,2, . . . , depend on
more than one parameter, and in general they can be described by the values of τ1

over the unit ball in R
m, where m is the number of the after-reset states. In general,

the function τ1 can exhibit an infinite number of discontinuities over that domain
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even in the case m = 2, resulting in very complex patterns of the resets instants as a
function of the initial condition. A detailed analysis of these patterns is still an open
issue. In the following, an example corresponding to a second order partial reset
compensator and a third order plant is analyzed.

2.3.3.1 Example

In this example, a PI + CI compensator is used. It consists of a parallel connection
of a PI compensator and a Clegg integrator, and it is a partial reset compensator.
Consider the PI + CI compensator with a state space realization given by

Ar =
(

0 0
0 0

)
, Br =

(
1
1

)
,

Cr = (
0.2 0.2

)
, Dr = 0.2, Aρ =

(
1 0
0 0

)
(2.61)

and a third order plant given by

Ap =
⎛
⎝−2.20 −1.32 −0.72

2 0 0
0 1 0

⎞
⎠ , Bp =

⎛
⎝1

0
0

⎞
⎠ , Cp = (

0 0 1.33
)
.

(2.62)
In addition, closed-loop state matrices are

A =

⎛
⎜⎜⎜⎜⎝

−2.20 −1.32 −0.99 0.20 0.2
2 0 0 0 0
0 1 0 0 0
0 0 −1.33 0 0
0 0 −1.33 0 0

⎞
⎟⎟⎟⎟⎠ , C = (

0 0 1.33 0 0
)
, (2.63)

and

AR =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠ . (2.64)

In this case, the base system is unobservable, with the unobservable subspace in
this case being given by

N (Obase) = span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0
0
0

−1
1

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

; (2.65)
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Fig. 2.11 Closed-loop output for three initial conditions in the after reset surface

however, the reset control system is well-posed since the after-reset surface is

MR = span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

1
0
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
1
0
0
0

⎞
⎟⎟⎟⎟⎠ ,

⎛
⎜⎜⎜⎜⎝

0
0
0
1
0

⎞
⎟⎟⎟⎟⎠

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.66)

and MR ∩ N (Obase) = {0}. In addition, it can be checked that the after reset states
are not reduced, in other words, assuming initial conditions in the after-reset surface
there are always an infinite number of crossings.

In Fig. 2.11, closed-loop outputs corresponding to different initial conditions are
obtained. Also in Fig. 2.12 the different control inputs are shown. Note that in gen-
eral, as the dimension of the after-reset surface increases, the structure of the reset
instants becomes not that simple, for example, in the interval [0,15]s one initial con-
dition does not produce a crossing while the others produce five reset actions. As a
conclusion, as the dimension of the after reset surface increases, the reset instants
occur with more complex patterns.

2.4 Reset Control Systems with Exogenous Inputs

As it is usual in control practice, reset control systems are driven by external or ex-
ogenous inputs such as reference or disturbance signals. In this case, well-posedness
of the reset control system can be analyzed using the arguments given in previous
sections, if the exogenous inputs are generated by an exosystem.
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Fig. 2.12 Control input for three initial conditions in the after-reset surface

Consider the reset control system of Fig. 2.1, where the plant and the reset com-
pensator are given by (2.1) and (2.2), respectively, and with a reference input r and
a disturbance input d generated by exosystems, with the state space models

{
ẇ1(t) = A1w1(t), w1(0) = w10,

r(t) = C1w1(t),
(2.67)

with w1 ∈R
m1 , and

{
ẇ2(t) = A2w2(t), w2(0) = w20,

d(t) = C2w2(t),
(2.68)

with w2 ∈ R
m2 . These exosystems allow the generation of signals like steps, ramps,

sinusoids, . . . . Now, the feedback connection is given by e = r − y and u = v + d ,
and the base linear closed-loop system may be described by

ẋ(t) = Ax(t) +
(

0
Br

)
r(t) +

(
0

Bp

)
d(t) (2.69)

where x = (xp

xr

)
, and xp and xr are the plant and compensator states. In addition,

the reset instants are defined as those instants t at which the closed-loop output
y(t) = Cx(t) is equal to the reference signal r(t) = C1w1(t). Define the augmented
state z as z = (wT

1 wT
2 xT )T . Then, the reset map can be defined in the augmented
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state space by

ĀR =

⎛
⎜⎜⎝

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 Aρ

⎞
⎟⎟⎠ (2.70)

and the after-surface M̄R and the reset surface M̄ as

M̄R = R(ĀR) ∩ N (C̄),

M̄ = N (C̄) \ M̄R

(2.71)

with C̄ = (C1 0 −Cp 0 ). Finally, the closed-loop system in the augmented state
space is given by {

ż(t) = Āz(t) if z(t) /∈ M ,

z(t+) = ĀRz(t) if z(t) ∈ M
(2.72)

with the state space matrix

Ā =

⎛
⎜⎜⎝

A1 0 0 0
0 A2 0 0
0 BpC2 Ap BpCr

BrC1 0 −BrCp Ar

⎞
⎟⎟⎠ . (2.73)

In the augmented space state representation, Propositions 2.3 and 2.4 can be
directly applied, giving the next result.

Proposition 2.5 Consider the reset control system of Fig. 2.1, with the plant and
reset compensator given by (2.1) and (2.2), respectively, and with inputs r and d

generated by the exosystems (2.67)–(2.68). If M̄R ∩ N (Ōbase) = {0}, where Ōbase
is the observability matrix

Ōbase =

⎛
⎜⎜⎜⎝

C̄

C̄Ā
...

C̄Ān+m1+m2−1

⎞
⎟⎟⎟⎠ (2.74)

then

1. The reset system is well-posed.
2. The reset system does not have Zeno solutions.

Proof The augmented state can be partitioned as z = (z1
xr

)
, and thus the state matrix

(2.73) is partitioned as

Ā =
(

Āp B̄pCr

BrC̄p Ar

)
, (2.75)
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where

Āp =
⎛
⎝A1 0 u 0

0 A2 u 0
0 BpC2uAp

⎞
⎠ , B̄p =

⎛
⎝ 0

0
Bp

⎞
⎠ , C̄p = (

C1 0 −Cp

)
. (2.76)

Part 1 of the proposition is a direct application of Proposition 2.3 to the system (2.72)
defined by the matrices Ā, ĀR , and C̄. On the other hand, since the state matrix Ā

has the structure given in (2.75), it always possible to make a state transformation of
z1 in such a way that corresponding principal minor be in the observer form. Thus,
the reasoning used in the proof of Proposition 2.4 may be used to prove Part 2. �

In general, a simple sufficient condition for the well-posedness of a reset control
system with exogenous inputs it that the augmented closed-loop system (2.72) be
observable, that is, the matrix Ōbase be full rank.

2.4.1 A Well-posed Reset Control System with Exogenous Input

A simple example is shown here to illustrate Proposition 2.5. Consider the reset
control system of Fig. 2.1, consisting of the feedback interconnection of a Clegg
integrator and an integrator. The Clegg integrator has the state equations

⎧⎪⎪⎨
⎪⎪⎩

ẋr (t) = r(t), xr (t) − r(t) �= 0,

xr (t
+) = 0, xr (t) − r(t) = 0,

v(t) = xr(t).

(2.77)

In addition, consider a sinusoidal reference input r(t) = a sin(ωt + φ), for some
given constants a, ω > 0, and φ. It is given by the exosystem

{
ẇ1(t) = ( 0 ω

−ω 0

)
w1(t), w1(0) = ( a sinφ

a cosφ

)
,

r(t) = (1 0 )w1.
(2.78)

Since a disturbance signal is not considered in this example, Proposition 2.5 can
be used by eliminating the row and column blocks corresponding to the disturbance
exosystem in the matrices Ā, ĀR , and C̄. The result is

Ā =

⎛
⎜⎜⎝

0 ω 0 0
−ω 0 0 0
0 0 0 1
1 0 −1 0

⎞
⎟⎟⎠ , C̄ = (

1 0 −1 0
)
. (2.79)
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Fig. 2.13 Reference signal and closed-loop output corresponding to a well-posed reset control
system

Now, the observability matrix of the (augmented) base system is

Ōbase =

⎛
⎜⎜⎝

1 0 −1 0
0 ω 0 −1

−(1 + ω2) 0 1 0
0 −ω(1 + ω2) 0 1

⎞
⎟⎟⎠ (2.80)

which is full rank for any ω > 0 (and does not depend on a), and thus the sys-
tem is well-posed for any sinusoidal reference input. Figures 2.13 and 2.14 show
a simulation of the reset control system for ω = 0.5 rad/s, with an initial condition
w1(0) = (1 − 1)T for the exosystem, and with zero initial condition for the Clegg
integrator and the integrator.

2.4.2 A Reset Control System with Zeno Solutions

In general, Proposition 2.5 gives a simple and checkable condition for well-
posedness of the reset control system of Fig. 2.1 with exogenous inputs, for the
plant and compensator given by (2.1) and (2.2), respectively. For well-posedness,
the result may be also used for any reset system that can be expressed as (2.72) with
arbitrary values of Ā, ĀR , and C̄, since no particular structure of these matrices is
used to prove the result. However, for avoiding Zeno solutions the structure of these
matrices, related with (2.1) and (2.2), is a central part of the result. Thus, a reset
control system with a different structure may have Zeno solutions, this is the case,
for example, corresponding to a non-strictly proper plant in Fig. 2.1.



2.4 Reset Control Systems with Exogenous Inputs 87

Fig. 2.14 Control input corresponding to a well-posed reset control system

In the following, an example developed in [6] is shown here to illustrate the
existence of Zeno solutions in reset control systems with external inputs, where the
plant is simply P(s) = 1. The resulting feedback system is a Clegg integrator with
unity feedback. In addition, a sinusoidal reference input is also considered. The
state space models (2.77) and (2.78) are again used, as a result the augmented state
matrices are in this case (the row and column block corresponding to the plant are
simply removed)

Ā =
⎛
⎝ 0 ω 0

−ω 0 0
1 0 −1

⎞
⎠ , ĀR =

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠ , C̄ = (

1 0 −1
)
, (2.81)

and the observability matrix of the augmented base system is given by

Ōbase =
⎛
⎝ 1 0 −1

−1 ω 1
1 − ω2 −ω −1

⎞
⎠ (2.82)

which is full rank for any ω > 0. Although Proposition 2.5 cannot be used in this
case because the plant does not fit the model (2.2), the well-posedness can be assured
since Ōbase is full rank. However, the well-posedness argument cannot be used for
assessing the existence of Zeno solutions. In fact, this system has a Zeno solution
with sequences of reset instants {tk}, k = 1,2, . . . , converging to t∗ = nπ for every
integer n ≥ 1.

Figure 2.15 (top) shows the output response y(t) of the closed loop (and output of
the Clegg integrator) to the sinusoidal reference w(t) = sinωt . It can be shown that
a Zeno behavior appears to the left of every t = kπ , k = 1,2,3, . . . . The solution



88 2 Definition of Reset Control System and Basic Results

Fig. 2.15 (Top) Response y(t) to a sinusoidal reference of a feedback loop with a Clegg integrator;
(Bottom) detailed zoom of the three first visible resets close to t = π

starting from the right of every y(kπ) = 0 escapes the Zeno behavior until it again
reaches another Zeno point at t = (k + 1)π .

Figure 2.15 (bottom) plots a detailed zoom of the first three visible resets close to
t = π . These reset times are t1 ≈ 2.28, t2 ≈ 2.92, and t3 ≈ 3.12. In fact, there exists
an infinite sequence of resets {tk} converging to t∞ = π .

It is illustrative to see in Fig. 2.16 the time response of this system in a three-
dimensional plot that shows the time evolution of the state (w11,w12, xp)� =
(r, ṙ, y)�. The first two coordinates are from the exosystem, and the first one is
the reference r(t) to the closed loop, in this case r(t) = sinωt and ṙ(t) = cosωt ,
with ω = 1. Thus the trajectory lies entirely within the cylinder r2 + ṙ2 = 1.

The three-dimensional plot reveals clearly that, in the state space (r, ṙ, y),
there are actually two Zeno accumulation points, namely Z1 = (0,1,0) and Z2 =
(0,−1,0). The first one corresponds in the time domain (Fig. 2.15) to the zero
crossings of the reference for t = 2kπ and the second one for t = (2k + 1)π , with k

integer.
Figure 2.16 also shows two relevant planes: the null space N (C) of C =

(1,0,−1), that is, the plane y = r that triggers the reset action, and the plane MR

given by y = 0 where the state is projected immediately after a reset y(t+k ) = 0.
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Fig. 2.16 Trajectory (r(t), ṙ(t), y(t)) with Zeno behavior

The analysis of Zeno behavior in dynamical systems is an involved topic, and
we will not address it here rigorously. Notice from the previous proposition in this
section that the reset control systems that we are interested in (well-posed) do not
have Zeno behavior. However, in order to give an idea of the asymptotic behavior
close to the Zeno limit, let us complete the example with a simplified study based
on the Poincaré map. We refer the interested reader to the literature, for example,
[8], [7], and [13] for a full exploration of these features.

From Fig. 2.16 it is clear that from any initial condition the state evolves until it
reaches the reset condition at (rk, ṙk, yk) with yk = rk and then resets to the point
xk = (rk, ṙk,0). Then, it flows again until a new reset condition holds and a new
reset moves the state to xk+1 = (rk+1, ṙk+1,0). The sequence of after-reset points
{xk} defines a discrete-time map, or iteration xk → xk+1, called the Poincaré map
of the reset system. Note that, since r2

k + ṙ2
k = 1 for all k, the Poincaré sequence

{xk} ∈ P is here defined on a one-dimensional manifold P given by r2 + ṙ2 = 1
and y = 0.

Since P is one-dimensional, the Poincaré map can be determined also from the
time domain plots of r(t) and y(t) in Fig. 2.15, for if we determine the sequence of
reset times {tk}, then the Poincaré sequence is {xk} = {(sin tk, cos tk,0)}. In Fig. 2.15
(bottom), we see the first three reset times t1 ≈ 2.28, t2 ≈ 2.92, and t3 ≈ 3.12. These
tk tend from the left to t∞ = π . Let us suppose that we start at t = tk with y(tk) = 0.
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The evolution of the Clegg integrator state is governed by:

ẏ = r(t) − y(t) = sin t − y(t), y(tk) = 0.

Since tk tends to π , a key simplifying assumption is that, in the limit, we can ap-
proximate sin t by −(t −π). This simplification is also helpful because the Poincaré
maps give rise to implicit equations not solvable analytically. In this way, close to
t = π , we have:

ẏ = −(t − π) − y(t), y(tk) = 0,

having the solution

y(t) = (tk − π − 1)e−(t−tk) − t + π + 1, t ≥ tk.

To determine the next reset time tk+1, we have to impose the condition y(tk+1) =
r(tk+1). Again we replace r(tk+1) = sin tk+1 by −(tk+1 −π). Thus the Poincaré map
tk → tk+1 is given implicitly by the condition

−(tk+1 − π) = (tk − π − 1)e−(tk+1−tk) − tk+1 + π + 1.

Introduce the change of variables tk − π = dk , with dk → 0−. Using the asymp-
totic approximation e−(tk+1−tk) = e−(dk+1−dk) ≈ 1 − (dk+1 − dk) gives rise to

−dk+1 = (dk − 1)(1 − dk+1 + dk) − dk+1 + 1,

from which we can solve explicitly dk+1 = d2
k /(dk − 1). This law for dk → 0−

approaches dk+1 = −d2
k , or equivalently, approaches the limit relation

|tk+1 − π | = |tk − π |2

which proves that there exists an infinite sequence of reset times tk tending to π and
governed, in the limit, by a quadratic recurrence law. This explains why in Fig. 2.15
there are only a few visible resets: to detect the reset at tk = π + dk , we should
implement a simulation step size smaller than |dk|, that, from the quadratic law
|dk+1| = |dk|2, decreases very fast with k, implying a strong computational cost.
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