Chapter 2
Computational Capacity-Based Codesign
of Computer Systems

David J. Kuck

Abstract This paper proposes a fast, novel approach for the HW/SW codesign of
computer systems based on a computational capacity model. System node band-
widths and bandwidths used by the SW load underlie three sets of linear equations:
a model system representing a load running on a computer, a design equation and
objective function with goals as inputs, and a capacity sensitivity equation. These
are augmented with nonlinear techniques to analyze multirate HW nodes as well as
to synthesize system nodes when codesign goals exceed feasible engineering HW
choices. Solving the equations rapidly finds the optimal costs of a broad class of
architectures for a given computational load. The performance of each component
can be determined globally and for each computational phase. The ideas are devel-
oped theoretically and illustrated by numerical examples plus results produced by a
prototype CAPE tool implementation.

2.1 Introduction

System performance is dominated by the performance of individual system compo-
nents, and balanced component use in a computation. Designers of computer sys-
tems and system HW/SW components must face potential system performance in-
stabilities due to component nonlinear performance behavior and imbalanced use.
Instability appears in two forms: a given system yields widely varying performances
over program types, or a given program runs at widely varying performances across
(similar) system types. Both are common phenomena.

Traditionally, systems that are more stable and productive arise from application-
specialization of system components and architectures. Bandwidth metrics can be
used to characterize computations by their dominant constituent phases. Matching
system HW/SW components to dominant phases for given sets of computations can
increase stability. This can be achieved for any program by decreasing that pro-
gram’s performance deviation from the stable value expected for a target system
architecture.
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This leads to specialization in the marketplace—from embedded processors to
GPUs and HPC systems. As computer usage broadens, future designs will continue
moving toward more-specialized chips and SW that can exploit them effectively in
key markets. Computer system designers and application SW providers need tools
and analyses to help them design highly productive systems. Success will depend
upon developing methods that can approximate the analysis of future-oriented ap-
plications to drive the HW/SW co-design of products.

Significant changes are needed in several areas to meet these needs:
Future-oriented application workloads must be used in computer system design.
These may include libraries, reference platform application implementations, or
whole-application prototypes, plus the full range of data and usage scenarios.
Leading application development tools must drive the HW design to get top perfor-
mance and avoid regressions. Tools, compilers, and libraries must be available in
advance to allow SW developers to provide the applications above.

System and SW codesign process must allow architects to know deliverable design
performance in future markets. Beyond the above, this requires a fast, accurate,
mixed fidelity, and comprehensive codesign process.

The performance of a communication network, traffic system, or conference
room depends on intrinsic physical characteristics as well as type of load and exter-
nal ambient factors. For each, peak performance can be defined, but in these exam-
ples, noise, weather, and event type, respectively, affect usable capacity, in practice.
This notion, and the term capacity, have been used in several ways relative to com-
puter systems. This paper gives the term a precise, comprehensive meaning.

The paper’s contributions are a linear capacity-based codesign process and
model (Sects. 2.2, 2.3), methods of formulating and optimizing codesign equations
(Sects. 2.4, 2.5), initial numerical codesign results (Sect. 2.6), and an overview of
multirate nodes and nonlinearities (Sect. 2.7). Computer HW bandwidth, system ar-
chitecture, and applications load are all captured in the methodology described. SW
performance tuning is reviewed (Sect. 2.8).

2.1.1 Background: Performance Basics

Four main contributors determine computer system performance for a given compu-
tation: hardware, architecture, system software, and the application code (including
data sets) being run, expressed as in formula (2.1):

perf (computation(hw, arch, sw, code)) (2.1)

Performance can be expressed as the time consumed or as a rate delivered in
running a computation. We will discuss several performance metrics; specific engi-
neering details dictate which are used in a particular codesign effort.

o Computational capacity C [4, 5] is a fractional-use metric, ranging between 0 and
a maximum value (defined here), and it spans one or more HW components. It is



2 Computational Capacity-Based Codesign of Computer Systems 47

a joint property of the HW and the computation being performed. For simplicity,
we refer to it as capacity. At the computer control level, capacity is expressed as
Eq. (2.2).

clock frequency [clock cycles/sec]

C [instructi = 2.2
[instructions/sec] CPI [clock cycles/instruction] 2.2)

When operations are a more natural metric than instructions, we use operations
O, defined as processing a fixed number of bits. On other occasions, e.g. when
data paths are under discussion, capacity measured as BW used in [bits/sec] or
[words/sec] is most natural and this will be used throughout the paper.

e Bandwidth (BW) is the standard rate metric for HW design. We use BW to de-
scribe individual HW nodes in codesign problems, and as a surrogate for cost.
HW nodes have a path width measured in [bits], and a delay measured in [sec].
BW is expressed in Eq. (2.3).

. path width [bits]

delay [sec] 23

e BW used by a single HW node is written B" [bits/sec] as one capacity defini-
tion. Also, B* [ops or inst/sec] is required by specific codesign problems. Using
Eq. (2.2), assuming CPI i, = 1, i.e. one instruction issued per clock,

B_ Bl — clock frequency

hax = CPLo = clock frequency [inst/sec] (2.4)

e Time used in running a computation as defined with performance [sec] units as
Eq. (2.5), is particularly useful to compare several computer systems running one
code. In the form O = T"C, constant load O is forced through the knothole
of usable B in used-time 7". Thus O is a pivot point for time and capacity.
Expressions of T are time-domain (Eq. (2.5)) and of B or C are bandwidth- or
capacity-domain (Egs. (2.2), (2.3)) performance views, respectively.

(0]
TV = — 2.5
C (2.5)
. . 0]
C [operations or bits/sec] = T" (2.6)

e Efficiency is the ratio of delivered performance of one or more HW components to
its best possible performance, for a given computation defined in the BW domain.
Efficiency Eq. (2.7) is usually discussed globally, but Eq. (2.8) expresses a single
node x. Their numerators are used as perf functions, so Egs. (2.7) and (2.8) are
perf [cost surrogates.

<1 @7

E, =% (2.8)
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e Bandwidth wasted is an important diagnostic variable, and can be expressed
as Eq. (2.9). Combining Egs. (2.5), (2.7) and (2.9) for a uniprocessor gives
Eq. (2.10), where T™" is the time the computation requires with B¥*'® = (.
Equation (2.10) shows that to minimize execution time, for constant O and B,
BY3® must be minimized.

Bwaste:B_C:B_EB:B(l—E) (2.9)

. 19) Tmin 0
puz O T _ (2.10)
EB_ E  B-— Bvse

e Balance refers to a component pair working together perfectly on a computation,
and imbalance to one component slowing the other. Imbalanced computation is
sometimes referred to as component-saturated or component-bound computation.
Balance is closely related to capacity (see Definition 2.1, Sect. 2.3.1).

Generally, capacity and BW-domain analysis are useful for machine design in-
sight, and time-domain analysis is useful for comparing computational performance.
Throughout, we assume fixed O across changes to architectures and compilers—this
is an idealization, especially for parallelism which often leads to redundancy.

2.1.2 Performance Background Summary

Increasing the system clock frequency may boost a computation’s performance
directly (unless e.g. latency limits BW), for a fixed architecture. For a constant
clock, architecture, BW, SW, or a code’s data set affects performance. An impor-
tant premise for the following is that an initial computer system design is in place
for detailed analysis and improvement. The paper discusses methods for improving
various bottlenecked parts of a given HW/SW system.

2.2 Codesign Process

Codesign has been used by computer designers with many meanings. We have two
symmetrical reasons for using the term: our overall goal is to select HW component
speeds, compiler and application structures, and to synthesize specific architectural
components. Also, we drive the process using comprehensive measurements of ap-
plications running on existing architectures. We use global HW and SW data to-
gether, to improve both HW and SW in the codesign process.

The goals of codesign using global architecture and SW measurements are to
avoid design instabilities and regressions by exploring all important aspects of the
design space in advance. The codesign process begins with an existing architecture
or design, and existing/proposed applications, to produce optimal designs. However,
when major performance increments are required to meet design goals, architectural
synthesis steps are introduced (Sect. 2.7).
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2.2.1 Three Dimensions of Codesign

Performance, cost and load are the three dimensions considered in capacity-based
codesign. The codesign process can accept each as input, and produce each as out-
put; parameters not specified as input are computed as process output.

Performance: As input, a designer chooses specific overall goals or bounds on the
performance of specific nodes. The codesign process computes the performance
for nodes with unspecified goals.

Cost: A designer can choose specific overall cost goals or bounds for particular
nodes; the process computes costs for all other nodes. Cost units can be defined
flexibly (to include power, $, etc. as above); here total BW is a cost surrogate.

Load: This is determined by expected market usage of each application and may be
hard to specify. The codesign process can reflect variation in BW used per code
type (codelet, see Sect. 2.2.2.1) and weights of percent codelet usage. As output,
the process can describe performance and cost ranges, when driven by inputs of
load uncertainty.

These three dimensions are considered simultaneously here, not incrementally
as in current practice. The codesign process we describe cannot be fully automated.
Ultimately, designer interaction is integral to the codesign process, e.g. feasible en-
gineering choices for HW nodes and BW values. The key contribution of this ap-
proach, however, is to automate far more of the design process than is currently
possible without the capacity-based model.

The three codesign dimensions are shown in Fig. 2.1, which illustrates several
important points in the space. Suppose an existing design lies at point 1 in Fig. 2.1.
We position the origin of the performance/cost plane in codesign 3-space at the SW
load’s initial measurement. If the load is constant, cost-performance tradeoffs can
be made in the plane shown. Two important codesign transitions within that plane
are shown as points 2 and 3.



50 D.J. Kuck

For any given system and load, the question of reducing its cost arises. In general,
it is possible to maintain performance and move horizontally in the cost-reduction
direction to the minimum perf/cost contour shown passing through point 2. Round
point 1 is shown widened a bit, expressing the desirability of taking this step while
also allowing for a wider application range. This widening is done by shifting phase
weights to represent alternate paths through programs or shifts in usage fractions
of various applications, and varying BW used, as may happen with mobile devices
that operate over a range of data input BWs. Finally, shifting from point 2 to point 3
enhances performance to a perf/cost contour between points 1 and 2 and further
enhances the load with a widened point 3.

The progression of Fig. 2.1 continues with shifts off the original load plane. For
example, to transitions within the original perf/cost plane, but to enhanced loads,
or to a completely different perf/cost plane for a family of market-focused systems.
A client microprocessor may be applicable to a family of hand-held devices with
new application loads, but only after re-engineering by changing design BW goals as
well as load characteristics—i.e. using new sets of codelets in the codesign process.

2.2.2 Models

The models used for codesign must cover the complete range of HW and SW uses.
Each codesign problem considers a system of linked HW nodes (a HW connec-
tion exists from each node to at least one other system node); similarly we consider
directly or indirectly linked SW units. A single application is assumed to be con-
trol/data dependence linked. To include multiprogrammed systems, applications that
share HW concurrently can be regarded as indirectly linked.

2.2.2.1 SW Models

SW load on a system will be represented by a collection of computational phases
that exhibit steady-state B* on each HW node. Transient B* behavior is captured
by phase transitions. We represent phases by canonical patterns called codelets. The
two codelet parameters of interest are B“ and weights representing percent-used of
total computation time. Ideally, this method will be used to represent every impor-
tant computation in the design space of interest, in contrast to the benchmark suites
frequently used as simplifications. We define the key SW terms:

Codelet: The term codelet is used to represent a small, parameterized segment of
code that has properties useful in codesign. Ideal codelets will be discussed here,
but the codesign process can proceed using only approximations of the ideal, as
will be discussed later. The characteristics defining codelets and their use are:

1. Each codelet has approximately steady-state B", constant B* provides ideal
codesign results
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2. Adequate dynamic coverage of important applications

3. Maximum codelet reuse across applications—minimal number of codelet
classes stored in repository

4. Codelets are compiler recognizable and achieve optimized performance via
compilation—codelet size is small enough to analyze automatically, but large
enough for maximal system performance.

Phase: A phase is a sequence of executed instructions with relatively uniform B"
throughout each phase executed for each modeled system component. In prac-
tice, a phase will always be measured dynamically in 100s to 1000s of instruc-
tions, as BY uniformity cannot be observed at the finest granularity. A single
phase may represent a single simple algorithm in a monoprogrammed system, or
several simple algorithms in a multiprogrammed system.

Computation: A computation is a sequence of phases. Any idle time encountered
in a running computer is ignored.

SW Modeling Objective: The objective of SW modeling is to map phases discovered
in real application computations to codelets in a codelet repository used with a
range of data sets per codelet.

The codesign process does not depend critically on finding ideal codelets, but
the accuracy and optimality of results will erode as the load is represented by cruder
approximations of ideal codelets. For example, a special-purpose design for a partic-
ular algorithm whose computation consists of a single phase simplifies the codesign
process; highly efficient designs are possible in this case (Sect. 2.4.4). When com-
putations include more phases/codelets, phase transitions from one phase to another
tend to cause performance sensitivity and can lead to instabilities (Sect. 2.6.2).

2.2.2.2 Computer System HW Models

HW is represented by nodes with peak BW values; this can be extended beyond BW
to include power consumption, physical area, $ cost, and so on. Fidelity [2] in a given
system refers to the node resolution on which a designer chooses to focus, e.g. at a
high level one could choose a microprocessor, memory, bus, and network as nodes,
and combine these four nodes with a large set of nodes representing individual disks
and other I/O devices and controllers. The nodes can be chosen at any fidelity and
nodes of various fidelities may be used in one model.

We represent a computer system architecture by a graph consisting of nodes
denoting computer system HW components chosen at any fidelity level, con-
nected by arcs, denoting only graph connectivity, i.e. arcs have infinite BW, zero-
delay and bidirectional capability. Multiple arcs incident to a node are multi-
plexed/demultiplexed to and from the node. The following are several types of
nodes.

Linear nodes: Linear nodes correspond to most low-level system components (e.g.
register or arithmetic op). As in Eq. (2.3), their path width is measured in bits and
delay is measured in time. Node x has linear behavior if its BW is constant and
its capacity is a linear function of other node capacities (Egs. (2.29a), (2.29b)).
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Nonlinear nodes: As the modeling abstraction level rises, to vector processors,
caches or multicore chips, modeling is harder. A nonlinear node has a BW that is
a nonlinear function of its linear sub-nodes’ capacities. Nonlinear node BW de-
pends on the computation being done, as well as the point at which performance
is measured, see [3].

Latency: Since latency is delay, the denominator of Eq. (2.3) can be used as a la-
tency surrogate. HW components with BW and latency design issues are repre-
sented as two nodes. A memory unit with BW determined by read/write (r/w)
cycle time, whose latency depends on wire length (e.g. off-chip delay), is rep-
resented by a memory BW supernode (Sect. 2.7) containing two linear nodes:
latency and r/w BW. The total delay in Eq. (2.3) is #ia¢ + f/w. For word size w,
we have Eqgs. (2.11), and (2.12). Bpem is not a linear function of its constituent
BWs, latency or r/w time. In a plot of Ciem VvS. Cyjw, for a given Byjy, vary-
ing latency (e.g. disk rotation time) defines a Crpem family of load-based Bmem
values.

w
Bimem = ———— 2.11
mem flat + tr/w ( )
Bodm = B! + By, (2.12)

2.2.3 Model Philosophy and Codesign Realities

Several realities separate linear analysis and linear performance response from the
real design world. These range from the nonlinearities of HW nodes, through SW
variations, to measurement issues, as discussed throughout the paper.

The flow of performance data ranges from continuous (server workloads) to ir-
regularly discrete (laptop use: computation bursts commingled with idle time), and
data measurement qualities range from nearly ideal (simulator probes) to crude (Mi-
crosoft process-level tools). But if we regard the modeling process as a linear scaling
of input data, then even crude approximations can be effectively scaled, if an inverse
process exists to carry computed design results faithfully back to the input space. In
general, virtual HW nodes may be used, if based on appropriate measurement and
analysis [2]. For example, a page fault node can be used if there is a way of translat-
ing results to and from memory system design (i.e. by virtualizing and devirtualizing
the instruction stream measurements).

Figure 2.2 outlines the process of system modeling and obtaining a capacity-
based design. The two parameters needed for linear modeling are BW and capacity
for each linear node in the model. The details of determining node BW may vary
(theoretical peak, microbenchmarking, etc.) but as long as we interpret the results
similarly, the method doesn’t depend on specific choices. Also, capacity must first
be measured and then interpreted for resulting designs.

Mapping is straightforward for linear nodes, following Sects. 2.3, 2.4, and 2.5,
and the results are easily mapped back to real hardware. Nonlinear nodes can be
dealt with using nonlinear models.
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2.3 Linear Computational Capacity Theory

Capacity analysis can be defined on a per computation basis across a system: some
simple examples follow.

2.3.1 General Equations for Single Phase Computations

2.3.1.1 Capacity Definitions

For a given system, we define the computational capacity of a node pair (x, y) as its
effective processing bandwidth (BW), either x- or y-bound. The physical definitions
of Sect. 2.1.1 will not be detailed further, as specific engineering abstraction and
measurement of the real world is required for each codesign problem. The BWs of
system nodes x and y are represented by B, and By, respectively, according to some
abstraction of the system. B, and By represent amounts of those BW's actually used
in a computation, by nodes x and y, respectively, giving Egs. (2.13).

0< By <B, and 0<B}”,§By (2.13)

We define the x-y BW ratio in Eq. (2.14) and the x-y used-BW ratio for a given
steady-state computation in Eq. (2.15)

B,y
Axy = B. (2.14)
X
= B; = ! (2.15)
T B T ‘
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Definition 2.1 (Node Saturation & Balance) Any node x is saturated by a compu-
tation if BY = B,. A pair of nodes (x, y) is balanced if both are saturated, which
implies that ty y = ay y.

The following holds for any system under a wide range of conditions (e.g. nodes
reflect complete connected HW configuration, continuous operation, no deadlock,
etc.), which we assume throughout.

Assumption 1 A running codelet saturates one or more nodes of a given system at
each time step.

2.3.1.2 Two Node Systems

Without loss of generality, we analyze the two node system from the point of view
of node x.

Definition 2.2 (Computational Capacity with Saturated Node) The computational
capacity of node x is defined as Eq. (2.16), so from the above we have Eq. (2.17).

C, = B! (2.16)

X

. (2.17)
B! if BY < By node x unsaturated

{ B, if BY = B, node x saturated
Cx =

In terms of the activity on node y, the second case can be rewritten assuming that
node y is saturated, as Eq. (2.18), which we define as the computational capacity
of node x relative to saturated node y, Eq. (2.19). Because By and B, are defined
as non-zero (Eq. (2.13)), capacity is defined only for a pair of nodes that are both
actually used a computation. Summarizing, for a pair of nodes, at least one of which
is saturated,

B = (m>3x — jiyxBy, for BY =B, (2.18)
Hx,y :
Cy = iy By = B" (2.19)

Saturated Node Capacity
c B, if BY = B, and (B;‘ =B, or B)Lf < By), i.e.ayy > fhx,y
"7 | ewyBe/ttey =ty xBy if BY < By and BY =By, ie. oy y < [ixy

(2.20)
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2.3.1.3 Greater than Two Node Systems

Systems of more than two nodes may lead to neither node x nor node y being
saturated, unlike the above discussion. This can happen because a system need only
have a single saturated node (Assumption 1). Analysis of a multinode system can be
built from node-pair analysis, and if one of a pair is saturated, the analysis proceeds
as above. Otherwise, a pair of nodes x and y, neither of which is saturated, gives
Eq. (2.21). In this case, it is impossible to bound the oy y /iy, y ratio relative to 1 as
for the saturated node case in Eq. (2.20). Following Definition 2.2, and since node
xis

BY<B,, and B'<B, 2.21)
Cy =B} for By < B, (2.22)

unsaturated (Eq. (2.21)) we write Eq. (2.22). Furthermore, expanding Eq. (2.15),

Bu
By = B—ZB}“ =y for B)", < B, (2.23)
y

Combining Egs. (2.22) and (2.23), analogously to Eq. (2.19), we have

Definition 2.3 (Computational Capacity with No Saturated Node) The computa-
tional capacity of unsaturated node x relative to unsaturated node y is defined as

Cy =B} =[lyx B; for neither node saturated. (2.24)

Combining (2.22) and (2.24) we have Eq. (2.25).

Unsaturated Node Capacity

B! if BY < B, (2.25)
C, =

wyxBy if By < By and By < By,

Comparing Eq. (2.20) and (2.25) we see that Bs in Eq. (2.20) become B“s in
Eq. (2.25), and the condition By = By in Eq. (2.20) becomes By < By in Eq. (2.25).
Finally, as nodes x and y saturate, Egs. (2.20) and (2.25) become identical.

2.3.1.4 General Two-Node Capacity Rule

Combining Egs. (2.20), (2.22), and (2.25), the general rules are summarized in Ta-
ble 2.1 (Rule 4 is appended for completeness). At this point the relation between
B" and C can be clarified. Definition 2.2 sets them equal, and in subsequent sec-
tions we will generalize the notion of capacity to nodes with multiple connections.
However, we use both terms to distinguish contexts. B* refers to the empirical mea-
surements that are used to define u (Eq. (2.15)), while C terms are variables used
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Table 2.1 Two-node Conditions
capacity rules
pacty Capacity Equations B, By Rule
B = L B | saturated don’t care 1
x yx Dy
C=
x w,.B unsaturated | saturated 2
y.x "y
i, .C unsaturated | unsaturated | 3
yx Ty
C = 1 C unsaturated | unsaturated | 4
y X,y T X
Codelet 1
2 2
- mem 1 d, «e} +f, Codezletz ,
Bl =4/3 B, =2 < e +f
c, <t + [,
processor - ' o+
B,-2 Bl =1 b, «1,xe,
_ mem 2 /
Bm, =1 B, =1

Fig. 2.3 Processor and heterogeneous memory system

to define capacities, (i.e. BW used) in new designs. Finally, u values are held in-
variant throughout this paper (cf. Sect. 2.5.3). In other words, while B values may
change when a given program is run on various machines, once a p value is com-
puted for a computation on any machine, that SW property remains invariant across
all machines.

Definition 2.4 (Relative Saturation and Saturation State) The n-node relative satu-
ration vector is o = (o1, ..., 0,) where 0 < o; = C;/B; = E; < 1. If neither node
of the pair (x, y) is saturated and o, > oy, node x is relatively saturated to node y,
ox,y =0y/oy < 1.d? is called the saturation state vector, where o; =1 if node i is
saturated, and 0 otherwise. o varies with a design’s B values.

2.3.2 Example: Single Processor-Heterogeneous Memory

To illustrate the use of the theory of Sect. 2.3.1, consider the simple machine model
in Fig. 2.3, with two memory units and one processor. This could be an abstraction
of a system with a register set, memory and arithmetic unit, for example. The nodes
are marked with BW values, and the codelets shown are assumed to execute in a
loop indexed by i. Architectural assumptions play an important part here, so we
sketch those used in this example.
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Counting clocks in a cycle-level execution diagram for this model can give B“
values by simply counting cycles used in a periodic instruction pattern. Assume that
data are initially stored in mem 2. Codelet 1 execution starts by fetching e and fi
from mem?2, and writing them one clock later, respectively, in mem1. When both
arguments are in meml, processing begins with two multiplies followed by an add.
The d result is then written back directly to mem?2, completing the first iteration of
the codelet execution. Other iterations are overlapped, so eventually a steady state
execution pattern emerges in a 3-clock cycle.

In practice, these numbers would be collected from running computations on a
real system using hardware performance monitoring tools, or could be collected
from a simulator for an emerging design. B” boxes correspond to the system load,
codelet 1. The overbar on fﬁ;z indicates mem?2 saturation. If this system were
improved by increasing B,,,, mem]l would saturate before the processor because
om, > 0p. Codelet 2 will be discussed in Sect. 2.6.1.

2.4 Single Phase Codesign Equations

2.4.1 Capacity Equation Generation

For a single codelet, equations may be generated for each arc in a graph to capture
all BW and capacity information, but this is not necessary. The (n — 1) arcs in a
spanning tree for an n-node graph, is the minimum needed to capture each node in
relation to some other node, but no equations need to be written for arcs that close
cycles in the graph.

2.4.1.1 Capacity Equation Generation Algorithm

This algorithm suffices to capture the capacity equations for any graph.

Step 1. Start with any node and build a spanning tree for the entire graph from that
root.

Step 2. Write capacity equations for each arc in the spanning tree using Table 2.1.
As saturation patterns for a new design are unknown, codesign model equations
(Sect. 2.4.3) use only Rule 3 in either orientation. (Initial equations can capture
the original system and computation by using all three rules, for 2, 1, and 0
nodes saturated, respectively.)

Step 3. This generates n — 1 equations for a graph of n nodes, as there is one equa-
tion per arc in the spanning tree. If we think of capacity as a nodal relation on a
spanning tree, transitive relations may be formed between non-adjacent nodes
in the graph. This idea and Definition 2.4 are useful in analyzing the sensitiv-
ity of solutions (as in the example of Sect. 2.3.2) or in expediting specialized
solutions for specified nodes.
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Fig. 2.4 Two-node graph

2.4.2 Codesign Equations

We assume that p values are constant, while B and C values are variables, i.e. that
we are designing HW (B values) to suit given SW () needs. In Sect. 2.5.3, the
design of SW in terms of HW will be discussed briefly.

Physical constraints as well as capacity equations are needed to form a complete
design equation set. This section contains examples of linear capacity and physical
equations that describe a computer system and computation. The nodes can repre-
sent any fidelity, but at a high level one may choose multirate nodes whose behaviors
vary, depending on their load. Multirate and nonlinear nodes will be discussed fur-
ther in Sect. 2.7. For this section, it suffices to assume that nodes are chosen at a
level that allows linear performance equations to hold.

Physical Constraints It is generally true that for any node x, 0 < BY < B,. This
follows from obvious physical considerations, and because capacity is defined only
for nodes where B* > 0 (Eq. (2.13)). To formulate general equations, we represent
unknown B¥ by C variables, so we rewrite 0 < C, < By as two inequalities which
must be satisfied in all solutions:

By —Cy>0 (2.26)
Cy >0 (2.27)

2.4.3 Single Phase Models and Characteristic Equation

We introduce the form of the general design equations by starting with a single
phase running on simple systems.

Two Node Systems Figure 2.4, the two node graph case, with saturated node x,
has the initial capacity

Jiry By —Cy =0 (2.28)

Equation (2.28) using Rule 2 of Table 2.1 (rewriting Cyx = C,). To cover all
possible BW values in system designs executing this computation, Fig. 2.4 is rep-
resented by either of Egs. (2.29a), (2.29b) (Rule 3 Table 2.1) as in general, given a
constant p value, either node x or node y may be saturated in a solution for partic-
ular B values (Eq. (2.29a) reduces to Eq. (2.28) if node x is saturated). For any two
node system with B, = By and B} = B;‘, , node x will saturate in a new design with
B, « By, while node y will saturate if By > B),. Equation (2.29a) for constant fiyy,
defines x as a linear node relative to other nodes y. For B, > B, Fig. 2.5 shows the
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Fig. 2.5 Linear node-pair
capacity

i
i
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behavior of Fig. 2.4, beginning with the slope of Eq. (2.29a) (Rules 3, 4; Table 2.1),
then Cy = B, when By, saturates (Rule 1; horizontal break), and becomes undefined
for Cy > By (no Rule). Since By > By, Rule 3 applies until C; > By. A spanning
tree has n — 1 nodes, so Fig. 2.4 has one capacity equation. Following Eqgs. (2.26)
and (2.27), the physical equations are Egs. (2.30) and (2.31).

Cy=pxyCx (2.29a)
or
Cy =y Cy (2.29b)
By —Cy,>0, and B,—-C,>0 (2.30)
Cy>0, and C,>0 (2.31)

‘We combine these in the single-phase model system, Eq. (2.32) as the product of
computational parameter matrix M containing parameters p, 0 and +1, and design
vector d, partitioned into b and c. Capacity vector ¢ corresponds to the performance
of a given design, measured in B, and bandwidth vector b represents the cost of
obtaining that performance, measured in B. The positions of equality and inequality
signs in Eq. (2.32) denote numbers of equalities (starting at =) and inequalities
(starting at <), and O is a zero column.

0 0 pyy -1 B =0
b 1 0 -1 0 Bx >0
Md=M I:;] =10 1 0 -1 Cy (2.32)
- 0 0 1 0 Cx >0
0O 0 O 1 Y
My My 0 M
M=|My My|=|1 -I (2.33)
Mz Mz 0o I

General Systems The above discussion easily generalizes to a system of n nodes.
M is a (3n — 1) x 2n matrix representing the computation. The 2n columns corre-
spond to a B and C per node. The 3n — 1 rows include n — 1 capacity equation rows
plus 2n for physical inequalities, while b and ¢ are n-element vectors representing
bandwidth and capacity, respectively. We can partition M as Eq. (2.33), where M is
a matrix of u, 0 and —1 values, [ is the identity, and O the null matrix. M1 and M,
are (n — 1) x n, and the other M;; are n x n matrices. As each C; represents one
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node’s performance, by combining these we can summarize the overall system per-
formance as a linear metric where the w; represent design-importance or emphases
on each node’s contribution to overall system performance.

perf (overall system) = Cyysem = Z w; C; (2.34)

nodes

From Eq. (2.32), we derive the single-phase characteristic equation of an n-node
computation, Eq. (2.35), where the inequalities of Eqgs. (2.30) and (2.31) have been
augmented with one slack variable per physical equation (indicated by primes) to
obtain a (3n — 1) x 4n underdetermined system of equations. Identical graph topolo-
gies arising from distinct architectures lead to equations of the same nonzero pat-
terns, but represent distinct architectural behavior via distinct u values per position.

Md =My, ]

=0 (2.35)

The characteristic equation contains complete information about performance
and cost for any HW system running the single-phase computation used to generate
it. The specifics of each computation are represented by p values. The solution
will have k > 1 saturated nodes. Myriad real HW systems are described by one
characteristic equation, in general. Section 2.5.6, gives codesign optimizations for
selecting a few practical candidate system designs.

2.4.4 Observations

Obs. SPI: For a single phase computation, it is always possible to design an n-node
system with all nodes saturated.

Obs. SP2: Any one node’s performance can be set to an arbitrary goal (Sect. 2.5.2)
while maintaining Obs. SP1.

Obs. SP3: In any single-phase computation with some unsaturated nodes, changing
the BW of saturated nodes changes system-wide performance; for any unsatu-
rated node x, changing B, such that B, < B, does not affect performance.

Observations SP1 and SP2 show how effectively the codesign process can be car-
ried out for single phase computations. They provide a heuristic justification for the
many demonstrations since the beginning of computing history that HW specialized
to a single algorithm can be far more cost-effective than general purpose systems.
In the future, massively multicore chips could allocate substantial real estate to an
extensive set of algorithm-level processors. By Obs. SP3, unsaturated node BWs
can float until they all reach saturation in the form of Obs. SP1.
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2.5 Multiphase Codesign Equations

2.5.1 Multiphase Model and Characteristic Equations

Adding multiple computational phases does not affect the vector b in Eq. (2.32), as
the machine BW is defined by one set of nodes used in all phases. However, using
the designed HW, each phase generally produces distinct performance characteris-
tics. Thus, if a computation has m phases, the ¢ vector becomes m times larger than
for the single-phase case. We represent the collection of phase performance vectors
in Eq. (2.36), where m phases are represented in Eq. (2.37).

Md = M[b,¢*]" (2.36)
C=1[b1, ... ,cml” (2.37)

As an example, expanding on Sect. 2.4.3, we show a 2-node two-phase model
system in Eq. (2.38). Assume that in the second phase the saturation is reversed from
Fig. 2.4; y is saturated and x is not. Per phase, this gives one capacity equation; third
subscripts denote phase numbers. In the Mppy partition of M (Eq. (2.38)), rows 3-6
are physical equations of the form B — C > 0 (Eq. (2.30)); the next four rows are an
identity matrix corresponding to Eq. (2.31) for the two phases. There are n elements
in b and in each ¢ vector, for a total of n(m + 1) columns in M and rows in d.

_Mcloc Q
Md = Mphy gloc
i Mcglob gglob
[0 0 gyt =1 0 0 0 07 =0
0 0 0 0 -1 pypo O 0
1 —1 0 0| B ]>0
1 -1 0 0 By
1 -1 0 0 Cx,l
1 ~1 0 0|Gn
= 1 0 0||Cualso @
1 0 0 Cy,2
1 0 0 ||cg®
1 0 0 Cglob
LYy
00 ¢ 0 ¢ 0 —1 0 =0
10 0 0 o3 0 b 0 —1]

In general, we will write a block of equations as above for each of m phases,
so from Eq. (2.32), M is an m(3n — 1) x (m 4+ 1)n matrix. Some nodes may not
be used in a particular phase, e.g. no disk accesses are made, so, as capacity Cyy
is undefined for unused node y (Eq. (2.13)), it may be dropped from the equation
set for that phase. In solving such systems, we can drop nodes for phases whose
use approaches the machine’s zero value. This leads to a linear system where each
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phase is reduced in size to represent those nodes active per phase. Generalizing
Sect. 2.4.3 with slack variables leads to an underdetermined system, as each phase
is underdetermined.

Global component performance in the multiphase case is determined by con-
tributions from each phase. Each phase has a weight ¢;, 1 < j < m, defined
by some combination of the running time of an application segment, the impor-
tance of an application containing the segment, etc. The multiphase global perfor-
mance of a HW node x is Eq. (2.39). The last two global performance rows of
the model system Eq. (2.38) correspond to Eq. (2.39), for each node, x and y. For
an n-node system, this adds » more rows and columns to Eq. (2.38), so M is an
[m(3n — 1) 4+ n] x [(m 4 2)n] matrix. Equation (2.38) yields all BW and perfor-
mance values for a computation on a computer system, given the p ratios and ¢
weights.

global perf(node x) = C¥** = > ¢;Cy (2.39)
phases j

The ¢; phase-weights are functions of node BW in general, because running
times of individual phases may vary relative to each other based on specific node
BWs. Boosting the BW during the design process of node x, unsaturated in phase k,
can reduce the running time of phases for nodes that were B,-bound. In principle,
we should readjust the ¢;(x) values for all nodes (or the most sensitive nodes). As
the sizes of changes may be small, and ¢; also depends on other qualitative weights,
we avoid the complexity of varying ¢ ;, which could be done iteratively.

For multiphase systems, we expand the characteristic equation (Eq. (2.35)) to
include global performance equations, and augmenting Eq. (2.38) with 2mn slack
variables yields Eq. (2.40), an underdetermined multiphase characteristic equation,
where M is a [(3m 4+ 1)n — m] x (3m + 2)n matrix.

M/d/ — M/[Q/, g/lOC’ g/glob]T =0 (240)

2.5.2 Codesign Equation

For system design, we rewrite Eq. (2.38) as the multiphase codesign equation,
Eq. (2.41). Chosen coefficients of b and c2'°° are removed from M and d, and corre-
sponding positions are set to constant goal values in g with appropriate sign changes.
The codesign equation can be used to set any BW, capacity or weight goals a de-
signer chooses to target. This reduces the number of columns of M and the size of d
by g, the number of elements moved to g. A codesign study may select < n global
performance equations of the form Eq. (2.39), so [m(3n — 1) + p] x [(m +2)n — g],
p <n is the size of M. In a codesign study, the g values may be chosen to sweep
out regions of the overall design space to find optimal designs. See Sect. 2.6.

b — bgoal
Md=M| > [>| 0 |=g (2.41)
Cglob > cgoal -
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2.5.3 Software Design Equations

Although it will not be explored in any detail here, the model Eq. (2.38) has a second
interpretation. This paper assumes BWs are variables and p values are constants.
Inverting these relationships, assume a fixed HW system, and instead of Eq. (2.38),
write Eq. (2.42), where B is a matrix of BW values and u is a vector of measured
or unknown g values. Setting capacity and i goals allows the computation of C
and p values, by reasoning analogous to the ideas of this paper. A key difference
of SW tuning for given HW, from HW design is that via ¢!°°, each phase can be
tuned to achieve desired C and p values, allowing more degrees of freedom than
choosing node BW values. It can be viewed as a way of tuning codelets to specific
applications. Substantial tuning work may be involved, but performance targets are
guaranteed if it succeeds. Some performance tuning methods related to the equations
of this paper (ranging from basic capacity to sensitivity analysis) are outlined in
Sect. 2.8.

Bd = B[, ¢, #"]" (2.42)

2.5.4 Multiphase Performance Observations

Obs. MPI: Generally, no system can have all nodes remain saturated throughout a
multiphase computation.

Obs. MP2: For a given computation on a well-designed system, each phase satu-
rates some node(s); and each node will be saturated by at least one phase.

Obs. MP3: Linearly scaling all linear model BWs by factor a scales all phase and
global capacities by a factor of a.

These observations raise a question. Since we cannot achieve saturation of all
nodes throughout a multiphase computation, how should a good design be defined?
As discussed earlier, the benefits of a design are represented by capacities, and the
costs of obtaining capacities are BWs. A desirable goal is minimizing BW wasted
per node, BI.WaSte = (B; — C;), summed across all nodes. It is exactly the achieve-
ment of all-node saturation that is made by optimized single phase computations,
Obs. SP1. From Eq. (2.10) minimizing BW waste is equivalent to minimizing time,
overall.

2.5.5 Overall System Optimization

In the multiphase case, using Eq. (2.39) the overall system performance correspond-
ing to Eq. (2.34) is Eq. (2.43). For n nodes and m phases, the overall system cost
is Eq. (2.44), so the objective of minimizing total wasted BW, B¥*'®, Eq. (2.45), is
the difference between Eqs. (2.43) and (2.44). In a codesign problem, certain BW
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values and performance goals may be chosen a priori, using Eq. (2.45) to minimize
the remaining unknown cost (BW) values.

perf (overall system) = Cgystem = Z w; Z ¢;Ci; (2.43)
nodes  phases

cost (overall system) = Bgystem = Z B; (2.44)
nodes

The system codesign problem formulation thus becomes the optimization prob-
lem of minimizing an objective function (Eq. (2.45)), subject to a set of linear con-
straints (Eq. (2.41)), a linear programming formulation of system codesign. Eval-
uating simplex solutions at many design points can lead to nonlinear surfaces in
codesign space (see Sect. 2.6).

n m
min B:;,ifé?n = minZ(B,- — Wi Z(bl Ci,j) (245)
i=1 j=1

2.5.6 Sensitivity Analysis

Several sensitivities are of interest in codesign studies.

Definition 2.4 (continued) The n-node m-phase generalization of relative satu-
ration state (Definition 2.4, Sect. 2.3.1) is the n x m saturation matrix ) =
loy,....,0,]1 =1[C;i j/Bil =[E; ;] =loi ], where ng., 1 < j < m has the form
of Definition 2.4. Each set of X' values defines a computation’s saturation state X°,
where o; ; = 1 for saturated node i in phase j, and O otherwise. X varies with
phases as well as the B values chosen in each design.

The collective performance- or cost-sensitivity of a given computer system and
computation set can be analyzed by examining the saturation matrix. We define
capacity sensitivity, relating all nodes i to any particular node y in phase j, as
Eq. (2.46). Similarly, bandwidth sensitivity relating all nodes i to any particular
node y in phase j is defined as Eq. (2.47). Using Definition 2.4 for y =i, the rela-
tion between Egs. (2.46) and (2.47) is ¥, = E ® X(; ® is the Hadamard product.

d0;. i Wi i
L= i | By |
oy = [8@, ]} B [ B; ] =[o¢,i,] (2.46)
30’,',]- )
E/By = |: 9B, i| = [—Myi,jcy)j/Bl- ] = [Ol/?yi,j] (2.47)

X, offers a view of the most effective BW changes to reduce a design’s relative
saturation (or efficiency) sensitivity, across all node BWs in the codesign process.
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X, provides a similar effect in reducing the sensitivity of a key node across the
capacity sensitivities of all other nodes. Both could be phase-weighted in practice.

This section shows that capacity sensitivity, Eq. (2.46), a function of the model
system, joins the model system and codesign optimization equations as a third key
element in understanding the codesign problem.

2.6 Using the Codesign Model

Next we explore some codesign issues by sweeping through parts of the design
space for noncontrived, simple 3-node, 2-phase examples. Realistic numbers of
nodes and phases would make the picture more complex, but follow similar patterns.
Sections 2.6.1 and 2.6.2 concern cost and performance sensitivity, respectively, and
performance sensitivity is broken into several cases in Sect. 2.6.2. We define per-
formance stability as the ratio of maximum to minimum performance over a collec-
tion of computations; when an empirical threshold is exceeded, a system is said to
be unstable. Potential sources of performance sensitivity and nonlinearity that are
discussed here and can lead to instability include variations in saturation state by
discrete choices of node BW values, architecture changes, and variations in phase
weights. A prototype codesign tool CAPE was used to produce the figures shown.

2.6.1 Cost Reduction

Computer manufacturers build only a discrete set of computer systems, and these
are made from a discrete set of subsystems, each of which is built from a discrete set
of components. For example, most sizes and speeds of memory along a continuum
are not feasible design choices for real memory systems—designers use what is
reasonable to fabricate in volume. A codesign tool must be constrained to choose
among these engineering options. Linear analyses over ranges of discrete constraint
choices create nonlinear codesign surfaces that approximate design realities.
Consider the 3-nodes of Fig. 2.3, plus a second phase codelet 2, which yields
By, =17/18, EZ” =36/18 =2, and B, =22/18 = 11/9. In contrast to phase 1,
meml is saturated here, SO iy, m,,2 = B,‘flz/Bm1 =0.9442=0.472, and (s, p,2 =
B, /B, =1.22/0.944 = 1.29. Assuming that ¢; = ¢, = 0.5, we can find minimum
cost solutions among discrete BW values, satisfying engineering codesign con-
straints. We define system performance in terms of the processor as C ;g,lOb =(Cpa1+
Cp.2)/2 =1.11. Varying processor and memory BW with a step size of 0.1 to sim-
ulate engineering constraints, while maintaining original performance, Table 2.2
shows several cost-reduced solutions relative to the original Bsyseem = 5 (Eq. (2.44)).
These range from Bgystem = 4.1, an 18% cost reduction, to Bgystem = 4.3. The range
of BW options covered may have important engineering consequences. For exam-
ple, the mem1 and proc BWs are reduced from the original design, while mem?2
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Table 2.2 Low cost

solutions vs. orig. cost =5 Bsystem C}g’lOb Bandwidths

Cost ml m2 p

4.100 1.7000 1.2000 12000
4.200 1.7000 1.2000 13000
4.200 1.8000 1.2000 12000
4.200 1.9000 1.1000 12000
4.300 1.7000 1.2000 14000
4.300 1.8000 1.2000 13000
4.300 1.9000 1.1000 13000
4.300 1.9000 1.2000 12000
4.300 2 1 13000
4.300 2 1.1000 12000

ranges up to 20% higher than the original. From a design flexibility point of view,
note that for each component, this approach provides the designer with component
BW choices in a 15% to 20% range. Table 2.2 is the type of tool output that brings
designers’ decision-making into the codesign process.

Variations of the performance goal for a single node can be satisfied by linearly
scaling system cost. However, when minimum cost is sought, or two or more node
performance goals change independently, the resulting cost surface can become non-
linear. For example, the most demanding performance goal can require dispropor-
tionate BW for that node compared to other nodes. We refer to this as a nonlinear
cost function of performance.

2.6.2 Performance Sensitivities and Instabilities

We consider performance (Eq. (2.1)), in Sect. 2.6.2.1 with variable HW/architecture
and constant SW/code, and in Sect. 2.6.2.2 with variable SW/code and constant
HW/architecture. Exploring the solution space at phase transitions in computa-
tions reveals a source of nonlinear performance behavior caused by saturation state
changes (Sect. 2.5.6). For each HW node i, as a program’s C; ; changes across
phase j transitions or within phases as data sets vary, the ¥ row values change,
and as a program is moved from one machine to another, the column values also

change. Clg,k)b, as a function of By, and B,,,, exhibits three distinct linear regions
in Fig. 2.6, where three planes (breaks at dotted lines) form a performance surface
viewed from below (higher is better). The heavy line shows the B, = 0.8 con-
tour. Discrete choices of node BW values and variations in phase weights are other
potential sources of performance sensitivity and instability (in cases of extreme sen-
sitivity).

Figure 2.7 shows a C ,g;lOb vs. By, slice through the surface of Fig. 2.6 for B, =
0.775, cutting across three regions. This value illustrates some difficulties of doing
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Fig. 2.6 Processor
performance vs. memory BW
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reduced-performance and cost redesign of the original system. The * on the right is
the original design point, with Clg,10b = 1.11. The (m, my) balance points for each
phase can be computed using pyy = ayy (Definition 2.1). With B, = 0.775 for
phase 1, tmmy = %mymys SO Biny = By /Mmyma,1 = 0.775/0.75 = 1.033, and for
phase 2, B,,, = 1.64. These breaks are shown in Fig. 2.7 labeled as balance points
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for each of the phases. For B, = 1, they define three saturation states,

0 0 0 0 0 1
> lseft =|1 1}, cener = |0 1], and rsight =10 0},
0 0 1 0 11
following Definition 2.4, Sect. 2.5.6, with o= [p,my, my]. BY®® > 0 is indicated
by 0-rows, which right-state designs offset by B,,, insensitivity.

2.6.2.1 Sensitivity of Performance to the System

Consider the system sensitivity caused by saturation state transitions in moving an
application from one system to a similar one. In the leftmost region of Fig. 2.7 (B,
saturated in both phases), if B,,, values differ on two similar architectures perfor-
mance will be affected more than in the other two regions due to a linear tradeoff
between B,,, and processor performance. In the center region, the performance ben-
efit of incremental B, change is about half as great. The rightmost region is insen-
sitive, as C), is independent of B,,. Two machines to the right of the ¢> balance
point show no performance change as By, varies; two machines to the left of the ¢,
balance point show a 20% performance variation in the region graphed.

Analyzing this via Eq. (2.46), with B,,, values at phase balance points and p’s
computed from data above gives

—pm,1Cpa _ —1.33x 0.7

/
OBp By, ¢1 bal = Br% = T (1.033)?2 =—-0.87
1
/ _ _//mel,2cp,2 _ —1.64 x 0.89 _
GBP Biu1, ¢ bal — B2 - (164)2 =-0.54

mi

The numerical sensitivity at the left balance point exceeds that at the right by a
factor of 1.6, and evaluation at the midpoints of the two sloping lines yields a ratio
of 1.4, in general agreement with the plot for related concepts. Similar results can
be obtained for B,,, sensitivity, corresponding to a slice across Fig. 2.6 along the
By, axis.

To explain how real-world design efforts might produce systems with perfor-
mance sensitivity that varies more than necessary, imagine two design teams, one
working to the left of the phase 1 balance point, and one to the right. Assume that
neither team has a global view of the design space beyond what typical simulation
studies allow [9]. The first team will be more easily inclined to increase By, based
on incremental studies, subject to cost constraints. In competition with other teams
working in the leftmost region, under fixed cost budgets, team 1 designers could
make bigger design errors, by insufficiently incrementing B, , than team 2 or other
design teams working to the right of the balance point. In general, operating at a
balance point is locally optimal, but without global oversight all design teams are
likely to err. Adding more-detailed nodes at sensitive points provides zoom-in on
hot spot design.
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2.6.2.2 Sensitivity of Performance to the SW Load

Future workloads are impossible to know with certainty, but the capacity-based
process allows approximating them as changes to current workloads. Varying BW
used and codelet weights allows approximation of new paths through existing ap-
plications (data set changes), emerging algorithms and applications (codelet varia-
tions), and ranges of data rate inputs. Driving the linear analysis with such perturba-
tions also leads to nonlinear performance surfaces. To simulate uncertainty in data-
dependent program paths, or application market-importance variation over time, we
can vary the phase weights in some range (UB — LB), where LB < ¢1, ¢>» < UB,
> = 1, using a constant increment. The choice of UB and LB depend on spe-
cific design constraints. This has the effect of varying C; ; in saturation states.

Figure 2.8 plots the combinatorial magnitude of the distribution of phase weights,
ranging here from O to 1 in steps of 0.2. The maximum variation of C f,l()b in this
example is 30%—from 0.80 to 1.04. The details are not shown, but as the phase
weight range increases, maximum proc performance variation increases: from 9%
(not shown for phase weight range 0.3 to 0.7) to 30% (Fig. 2.8). Comparison at the
two balance points (Fig. 2.7) shows greater stability at the ¢; balance point; the
opposite of the HW stability conclusion (Sect. 2.6.2.1). The explanation of this may
depend on the higher peak and average performance values achieved for higher By, .
Thus, load instability can be manifest on a single system by running two similar
applications, or one application with varying data sets.
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2.6.2.3 Performance Instability Conclusions

Explaining performance instability is a complex subject, and one simple example
can only provide an illustration. This section demonstrated performance variations
in one application under architectural changes in Fig. 2.7, where the left region
demonstrates a 20% performance range, and load changes in Fig. 2.8, where 10% to
30% performance variations arise as a function of one computation’s phase weight
variation on a fixed architecture.

For this simple system, it is easy to demonstrate the basic mechanisms by which
instabilities in real computer systems arise. This heuristic discussion proves nothing
about instability, but points the way to more analytical methods for finding and
evaluating performance instabilities based on BW/architectural change as well as
load change.

2.6.3 Architectural Variations Affecting Capacity

Using the methods of this section, a design space can be explored for critical archi-
tectural changes. For example, given an accurate laptop model for a comprehensive
workload, how would a solid-state disk noticeably improve performance. By reduc-
ing disk latency appropriately, the shift from hard drive to SSD could be modeled,
and those phases (applications) could be discovered for which delivered processor
performance increased significantly. Further, designers could examine the potential
of small on-chip RAM supplemented by SSD.

The appropriate model could be driven by C and p values estimated from the
original system—on-chip RAM and SSD latencies would be much reduced, while
page faults would increase. The tool would show performance improvement per ap-
plication together with sensitivities to the C and p parameter estimates. This could
quickly provide a crude view of potential architecture vs. market tradeoffs, together
with some sensitivities.

2.7 Multirate Nodes

The two types of multirate node have BWs that vary with computational load.

Supernode: A supernode is any connected set of linear nodes. It can be used to de-
note a subsystem’s variable performance behavior in either HW (e.g. memory
latency) or architecture (e.g. queues with variable internal latency).

Nonlinear node: A nonlinear node’s BW is a nonlinear function of other nodes’
capacities. Examples include a parallel processor, cache hierarchy or vector
processing unit.

Multirate nodes arise in two ways:
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1. A designer chooses a model fidelity that includes supernodes or nonlinear
nodes, forcing their analysis.

2. Capacity analysis yields a BW objective exceeding current technology lim-
its, forcing multirate node synthesis.

Analysis: Most RTL-level component performance responses are linear relative to
BW or latency. But when architecturally linked and driven by applications im-
perfectly matched to the architecture, overall performance response can be non-
linear. Multirate node C and p values generally depend nonlinearly on HW
component size metrics and how the computation interacts with the detailed
node structure, e.g. loop vectorization or blocking for cache reuse [2].

Synthesis: When linear analysis applied to performance enhancement of a design
calls for a node BW that is infeasible using available linear components, a
multirate node may be synthesized. Using performance objectives obtained by
the capacity-based solver as the multirate node BW requirement, a secondary
method can specify its internal structure, e.g. the required number of cores for
a multicore component.

2.8 Related Work

Discussion of compute vs. memory or I/O bound programs, the von Neumann archi-
tecture bottleneck, and designing systems to match given applications or algorithms,
have driven computer design for 50 years [6]. Obtaining, analyzing and interpreting
large volumes of performance data present major obstacles that have been addressed
in many ways. Deterministic and stochastic models with sampling from the appli-
cation level (benchmarks) to the trace level (HW performance counters) followed
by various discrete event simulators and statistical models are used in specialized
or combined ways. Stochastic methods tend to work well for steady-state computa-
tions, while discrete event simulation handles all situations but much more slowly.
Multiple system types have evolved to cover multiple market needs.
Capacity-based codesign can handle at linear programming speeds, both steady-
state and transient system behavior. Codelet coverage is the key need; it can succeed
either by reuse of common source- or assembly-codelets. The method explicitly rep-
resents the performance of phases and whole computations, so solutions can yield
extensive architectural insight (Sect. 2.6). The method’s speed of solving codesign
problems depends on solving LP problems, doing sensitivity analyses, and exploring
design space in various ways. Several statistical methods are emerging [7] that may
help in reducing the time and enhancing the insights of design space exploration.
Another codesign issue is application performance enhancement. Potential ap-
proaches are given in Sects. 2.5.3 and 2.5.6 to find hotspots by roughening pro-
files across whole computations. Many papers discuss the two- node case [1]
seeks memory-processor balance (Definition 2.1) through formulas to analyze loops
for compiler transformations. Using two node capacity Eq. (2.29b) with variable
txy and constant Cy, switches the Fig. 2.5 labels (Sect. 2.5.3); [10] explores the
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Cy = Cy, = By, case (roofline model). For several algorithms, [8] uses memory
access intensity analysis—equivalent to BW sensitivity (Eq. (2.47)) with saturated
memory—to predict when blocking performance-sensitive loops will be beneficial.

The potential to partition design space and move toward specialized systems for
distinct applications exists within this method. This can be done manually by iter-
atively removing similarly performing phases. Perhaps algebraic analysis may lead
to semi-automatic methods of partitioning the computational parameter matrix.

2.9 Conclusions

A number of codesign problems have been posed, together with capacity-based
methods of finding BWs of HW system nodes that satisfy given goals, for a given
set of computations. System recommendation is a related problem, i.e. for a fixed
set of computations, select one of several specific systems as the best in perf/cost.
Also, codesign can be expressed as solving for SW variables in terms of fixed HW.
The ideas presented can be used for many specific problems, but there are some
underlying commonalities:

1. Top-down codesign of optimal systems

e Mixed fidelity modeling allows focus on exactly those parts of the HW system
of interest

e All computations are modeled by weighted combinations of SW repository
codelets

2. Simultaneous use of comprehensive load and BW information

e LP equations are optimized faster than discrete event simulation, combining
SW and HW specifics

e Global sweeps of 3D codesign space show parametric relations among many
optimal design points

3. Design of robust, focused-system families under uncertainty

o Perfect solutions (B%**® = () for single phases, optimal designs for applica-
tion classes
e Pre-Si exploration of design sensitivities; market-segment design partitioning.

Key features of the approach include:

e Rich codelet set relative to benchmark/trace-driven simulation helps prevent ap-
plication performance regressions

e Capturing system-wide interactions avoids the local optimization traps typical in
component-wise design

e Automating the process overcomes design complexities that overwhelm human
designers

e Meeting infeasible goals with higher-performance synthesis, only when needed.

The consequences are savings of human design and CAE machine time, as well as
better system designs.



2 Computational Capacity-Based Codesign of Computer Systems 73

Acknowledgements David Wong and Ahmed Sameh provided many insights in developing this
material; David Wong designed and implemented the CAPE tool.

References

10.

. Carr, S., Kennedy, K.: Improving the ratio of memory operations to floating-

point operations in loops. ACM Trans. Program. Lang. Syst. 16, 1768-1810 (1994).
doi:http://doi.acm.org/10.1145/197320.197366

Emer, J., Ahuja, P, Borch, E., Klauser, A., Luk, C.K., Manne, S., Mukherjee, S., Patil, H.,
Wallace, S., Binkert, N., Espasa, R., Juan, T.: Asim: A performance model framework. Com-
puter 35, 68-76 (2002). doi:http://doi.ieeecomputersociety.org/10.1109/2.982918

Jalby, W., Wong, D., Kuck, D., Acquaviva, J.T., Beyler, J.C.: Measuring computer perfor-
mance. In this volume

Kuck, D.: Computer system capacity fundamentals. Tech. Rep. Technical Note 851, National
Bureau of Standards (1974)

Kuck, D.: The Structure of Computers and Computations. Wiley, New York (1978)

Kuck, D.J., Kumar, B.: A system model for computer performance evaluation. In: Proc. 1976
ACM SIGMETRICS Conf. on Computer Performance Modeling Measurement and Evalua-
tion, pp. 187-199. ACM, New York (1976). doi:http://doi.acm.org/10.1145/800200.806195
Lee, B., Brooks, D.: Spatial sampling and regression strategies. IEEE MICRO 27, 74-93
(2007). doi:http://doi.ieeecomputersociety.org/10.1109/MM.2007.61

Liu, L., Li, Z., Sameh, A.: Analyzing memory access intensity in parallel programs on mul-
ticore. In: Proc. 22nd Annual Int’l. Conf. Supercomput., ICS 08, pp. 359-367. ACM, New
York (2008). doi:http://doi.acm.org/10.1145/1375527.1375579

Uhlig, R.A., Mudge, T.N.: Trace-driven memory simulation: A survey. ACM Comput. Surv.
29, 128-170 (1997)

Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual performance model
for multicore architectures. Commun. ACM 52, 65-76 (2009). doi:http://doi.acm.org/10.1145/
1498765.1498785


http://doi.acm.org/10.1145/197320.197366
http://doi.ieeecomputersociety.org/10.1109/2.982918
http://doi.acm.org/10.1145/800200.806195
http://doi.ieeecomputersociety.org/10.1109/MM.2007.61
http://doi.acm.org/10.1145/1375527.1375579
http://doi.acm.org/10.1145/1498765.1498785
http://doi.acm.org/10.1145/1498765.1498785

2 Springer
http://www.springer.com/978-1-4471-2436-8

High-Performance Scientific Computing

Algorithms and Applications

Berry, M.W.; Gallivan, K.A,; Gallopoulos, E.; Grama, A.;
Philippe, B.; Saad, ¥.; Saied, F. (Eds.)

2012, XM, 350 p., Hardcover

ISBEN: 978-1-4471-2436-8



	Chapter 2: Computational Capacity-Based Codesign of Computer Systems
	2.1 Introduction
	2.1.1 Background: Performance Basics
	2.1.2 Performance Background Summary

	2.2 Codesign Process
	2.2.1 Three Dimensions of Codesign
	2.2.2 Models
	2.2.2.1 SW Models
	2.2.2.2 Computer System HW Models

	2.2.3 Model Philosophy and Codesign Realities

	2.3 Linear Computational Capacity Theory
	2.3.1 General Equations for Single Phase Computations
	2.3.1.1 Capacity Deﬁnitions
	2.3.1.2 Two Node Systems
	2.3.1.3 Greater than Two Node Systems
	2.3.1.4 General Two-Node Capacity Rule

	2.3.2 Example: Single Processor-Heterogeneous Memory

	2.4 Single Phase Codesign Equations
	2.4.1 Capacity Equation Generation
	2.4.1.1 Capacity Equation Generation Algorithm

	2.4.2 Codesign Equations
	Physical Constraints

	2.4.3 Single Phase Models and Characteristic Equation
	Two Node Systems
	General Systems

	2.4.4 Observations

	2.5 Multiphase Codesign Equations
	2.5.1 Multiphase Model and Characteristic Equations
	2.5.2 Codesign Equation
	2.5.3 Software Design Equations
	2.5.4 Multiphase Performance Observations
	2.5.5 Overall System Optimization
	2.5.6 Sensitivity Analysis

	2.6 Using the Codesign Model
	2.6.1 Cost Reduction
	2.6.2 Performance Sensitivities and Instabilities
	2.6.2.1 Sensitivity of Performance to the System
	2.6.2.2 Sensitivity of Performance to the SW Load
	2.6.2.3 Performance Instability Conclusions

	2.6.3 Architectural Variations Affecting Capacity

	2.7 Multirate Nodes
	2.8 Related Work
	2.9 Conclusions
	 References


