
Chapter 2
Rank, Inner Product and Nonsingularity

2.1 Rank

Let A be an m × n matrix. The subspace of R
m spanned by the column vectors

of A is called the column space or the column span of A and is denoted by C (A).
Similarly the subspace of Rn spanned by the row vectors of A is called the row space
of A, denoted by R(A). Clearly R(A) is isomorphic to C (A′). The dimension of
the column space is called the column rank whereas the dimension of the row space
is called the row rank of the matrix. These two definitions turn out to be very short-
lived in any linear algebra book since the two ranks are always equal as we show in
the next result.

2.1 The column rank of a matrix equals its row rank.

Proof Let A be an m × n matrix with column rank r . Then C (A) has a basis of r

vectors, say b1, . . . , br . Let B be the m × r matrix [b1, . . . , br ]. Since every column
of A is a linear combination of b1, . . . , br , we can write A = BC for some r × n

matrix C. Then every row of A is a linear combination of the rows of C and therefore
R(A) ⊂ R(C). It follows by 1.7 that the dimension of R(A), which is the row rank
of A, is at most r . We can similarly show that the column rank does not exceed the
row rank and therefore the two must be equal. �

The common value of the column rank and the row rank of A will henceforth
be called the rank of A and we will denote it by rankA. It is obvious that rankA =
rankA′. The rank of A is zero if and only if A is the zero matrix.

2.2 Let A, B be matrices such that AB is defined. Then

rank(AB) ≤ min{rankA, rankB}.

Proof A vector in C (AB) is of the form ABx for some vector x, and therefore it
belongs to C (A). Thus C (AB) ⊂ C (A) and hence by 1.7,

R.B. Bapat, Linear Algebra and Linear Models, Universitext,
DOI 10.1007/978-1-4471-2739-0_2, © Springer-Verlag London Limited 2012

9

http://dx.doi.org/10.1007/978-1-4471-2739-0_2


10 2 Rank, Inner Product and Nonsingularity

rank(AB) = dimC (AB) ≤ dimC (A) = rankA.

Now using this fact we have

rank(AB) = rank
(
B ′A′) ≤ rankB ′ = rankB. �

2.3 Let A be an m × n matrix of rank r , r �= 0. Then there exist matrices B , C of
order m × r , r × n respectively such that rankB = rankC = r and A = BC. This
decomposition is called a rank factorization of A.

Proof The proof proceeds along the same lines as that of 2.1 so that we can write
A = BC where B is m × r and C is r × n. Since the columns of B are linearly
independent, rankB = r . Since C has r rows, rankC ≤ r . However, by 2.2, r =
rankA ≤ rankC and hence rankC = r . �

Throughout this monograph, whenever we talk of rank factorization of a matrix
it is implicitly assumed that the matrix is nonzero.

2.4 Let A, B be m × n matrices. Then rank(A + B) ≤ rankA + rankB .

Proof Let A = XY,B = UV be rank factorizations of A, B . Then

A + B = XY + UV = [X,U ]
[

Y

V

]
.

Therefore, by 2.2,

rank(A + B) ≤ rank [X,U ].
Let x1, . . . , xp and u1, . . . , uq be bases for C (X), C (U) respectively. Any vector in
the column space of [X,U ] can be expressed as a linear combination of these p + q

vectors. Thus

rank [X,U ] ≤ rankX + rankU = rankA + rankB,

and the proof is complete. �

The following operations performed on a matrix A are called elementary column
operations.

(i) Interchange two columns of A.
(ii) Multiply a column of A by a nonzero scalar.

(iii) Add a scalar multiple of one column to another column.

These operations clearly leave C (A) unaffected and therefore they do not change
the rank of the matrix. We may define elementary row operations similarly. The
elementary row and column operations are particularly useful in computations. Thus
to find the rank of a matrix we first reduce it to a matrix with several zeros by these
operations and then compute the rank of the resulting matrix.
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2.2 Inner Product

Let S be a vector space. A function which assigns a real number 〈x, y〉 to every
pair of vectors x, y in S is said to be an inner product if it satisfies the following
conditions:

(i) 〈x, y〉 = 〈y, x〉
(ii) 〈x, x〉 ≥ 0 and equality holds if and only if x = 0

(iii) 〈cx, y〉 = c〈x, y〉
(iv) 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.

In R
n, 〈x, y〉 = x′y = x1y1 +· · ·+ xnyn is easily seen to be an inner product. We

will work with this inner product while dealing with R
n and its subspaces, unless

indicated otherwise.
For a vector x, the positive square root of the inner product 〈x, x〉 is called the

norm of x, denoted by ‖x‖. Vectors x, y are said to be orthogonal or perpendicular
if 〈x, y〉 = 0, in which case we write x ⊥ y.

2.5 If x1, . . . , xm are pairwise orthogonal nonzero vectors then they are linearly
independent.

Proof Suppose c1x1 + · · · + cmxm = 0. Then

〈c1x1 + · · · + cmxm,x1〉 = 0

and hence
m∑

i=1

ci〈xi, x1〉 = 0.

Since the vectors x1, . . . , xm are pairwise orthogonal, it follows that c1〈x1, x1〉 = 0
and since x1 is nonzero, c1 = 0. Similarly we can show that each ci is zero. There-
fore the vectors are linearly independent. �

A set of vectors x1, . . . , xm is said to form an orthonormal basis for the vector
space S if the set is a basis for S and furthermore, 〈xi, xj 〉 is 0 if i �= j and 1 if i = j .

We now describe the Gram–Schmidt procedure which produces an orthonormal
basis starting with a given basis, x1, . . . , xn.

Set y1 = x1. Having defined y1, . . . , yi−1, we define

yi = xi − ai,i−1yi−1 − · · · − ai1y1

where ai,i−1, . . . , ai1 are chosen so that yi is orthogonal to y1, . . . , yi−1. Thus we
must solve 〈yi, yj 〉 = 0, j = 1, . . . , i − 1. This leads to

〈xi − ai,i−1yi−1 − · · · − ai1y1, yj 〉 = 0, j = 1, . . . , i − 1

which gives

〈xi, yj 〉 −
i−1∑

k=1

aik〈yk, yj 〉 = 0, j = 1, . . . , i − 1.
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Now since y1, . . . , yi−1, is an orthogonal set, we get

〈xi, yj 〉 − aij 〈yj , yj 〉 = 0

and hence,

aij = 〈xi, yj 〉
〈yj , yj 〉 ; j = 1, . . . , i − 1.

The process is continued to obtain the basis y1, . . . , yn of pairwise orthogonal vec-
tors. Since x1, . . . , xn are linearly independent, each yi is nonzero. Now if we set
zi = yi

‖yi‖ , then z1, . . . , zn is an orthonormal basis. Note that the linear span of
z1, . . . , zi equals the linear span of x1, . . . , xi for each i.

We remark that given a set of linearly independent vectors x1, . . . , xm, the Gram–
Schmidt procedure described above can be used to produce a pairwise orthogonal
set y1, . . . , ym, such that yi is a linear combination of x1, . . . , xi−1, i = 1, . . . ,m.
This fact is used in the proof of the next result.

Let W be a set (not necessarily a subspace) of vectors in a vector space S. We
define

W⊥ = {
x : x ∈ S, 〈x, y〉 = 0 for all y ∈ W

}
.

It follows from the definitions that W⊥ is a subspace of S.

2.6 Let S be a subspace of the vector space T and let x ∈ T . Then there exists a
unique decomposition x = u + v such that u ∈ S and v ∈ S⊥. The vector u is called
the orthogonal projection of x on the vector space S.

Proof If x ∈ S then x = x + 0 is the required decomposition. Otherwise, let
x1, . . . , xm be a basis for S. Use the Gram–Schmidt process on the set x1, . . . , xm, x

to obtain the sequence y1, . . . , ym, v of pairwise orthogonal vectors. Since v is
perpendicular to each yi and since the linear span of y1, . . . , ym equals that of
x1, . . . , xm, then v ∈ S⊥. Also, according to the Gram–Schmidt process, x − v is
a linear combination of y1, . . . , ym and hence x − v ∈ S. Now x = (x − v)+ v is the
required decomposition. It remains to show the uniqueness.

If x = u1 + v1 = u2 + v2 are two decompositions satisfying u1 ∈ S, u2 ∈ S,
v1 ∈ S⊥, v2 ∈ S⊥; then

(u1 − u2) + (v1 − v2) = 0.

Since 〈u1 − u2, v1 − v2〉 = 0, it follows from the preceding equation that 〈u1 −
u2, u1 −u2〉 = 0. Then u1 −u2 = 0 and hence u1 = u2. It easily follows that v1 = v2.
Thus the decomposition is unique. �

2.7 Let W be a subset of the vector space T and let S be the linear span of W . Then

dim(S) + dim
(
W⊥) = dim(T ).



2.2 Inner Product 13

Proof Suppose dim(S) = m, dim(W⊥) = n and dim(T ) = p. Let x1, . . . , xm and
y1, . . . , yn be bases for S, W⊥ respectively. Suppose

c1x1 + · · · + cmxm + d1y1 + · · · + dnyn = 0.

Let u = c1x1 + · · · + cmxm, v = d1y1 + · · · + dnyn. Since xi , yj are orthogonal
for each i, j ; u and v are orthogonal. However u + v = 0 and hence u = v = 0.
It follows that ci = 0, dj = 0 for each i, j and hence x1, . . . , xm, y1, . . . , yn is a
linearly independent set. Therefore m + n ≤ p. If m + n < p, then there exists a
vector z ∈ T such that x1, . . . , xm, y1, . . . , yn, z is a linearly independent set. Let
M be the linear span of x1, . . . , xm, y1, . . . , yn. By 2.6 there exists a decomposition
z = u+v such that u ∈ M , v ∈ M⊥. Then v is orthogonal to xi for every i and hence
v ∈ W⊥. Also, v is orthogonal to yi for every i and hence 〈v, v〉 = 0 and therefore
v = 0. It follows that z = u. This contradicts the fact that z is linearly independent
of x1, . . . , xm, y1, . . . , yn. Therefore m + n = p. �

The proof of the next result is left as an exercise.

2.8 If S1 ⊂ S2 ⊂ T are vector spaces, then: (i) (S2)
⊥ ⊂ (S1)

⊥. (ii) (S⊥
1 )⊥ = S1.

Let A be an m × n matrix. The set of all vectors x ∈ R
n such that Ax = 0 is

easily seen to be a subspace of Rn. This subspace is called the null space of A, and
we denote it by N (A).

2.9 Let A be an m × n matrix. Then N (A) = C (A′)⊥.

Proof If x ∈ N (A) then Ax = 0 and hence y′Ax = 0 for all y ∈ R
m. Thus x is

orthogonal to any vector in C (A′). Conversely, if x ∈ C (A′)⊥, then x is orthogonal
to every column of A′ and therefore Ax = 0. �

2.10 Let A be an m × n matrix of rank r . Then dim(N (A)) = n − r .

Proof We have

dim
(
N (A)

) = dim
(
C

(
A′)⊥)

by 5.5

= n − dim
(
C

(
A′)) by 2.7

= n − r.

That completes the proof. �

The dimension of the null space of A is called the nullity of A. Thus 2.10 says
that the rank plus the nullity equals the number of columns. For this reason we will
refer to 2.10 as the “rank plus nullity” theorem.
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2.3 Nonsingularity

Suppose we have m linear equations in the n unknowns x1, . . . , xn. The equations
can conveniently be expressed as a single matrix equation Ax = b, where A is the
m × n matrix of coefficients. The equation Ax = b is said to be consistent if it has
at least one solution, otherwise it is inconsistent. The equation is homogeneous if
b = 0. The set of solutions of the homogeneous equation Ax = 0 is clearly the null
space of A.

If the equation Ax = b is consistent then we can write

b = x0
1a1 + · · · + x0

nan

for some x0
1 , . . . , x0

n where a1, . . . , an are the columns of A. Thus b ∈ C (A). Con-
versely, if b ∈ C (A) then Ax = b must be consistent. If the equation is consistent
and if x0 is a solution of the equation then the set of all solutions of the equation is
given by

{
x0 + x : x ∈ N (A)

}
.

Clearly, the equation Ax = b has either no solution, a unique solution or infinitely
many solutions.

A matrix A of order n × n is said to be nonsingular if rankA = n, otherwise the
matrix is singular.

2.11 Let A be an n × n matrix. Then the following conditions are equivalent:

(i) A is nonsingular, i.e., rankA = n.
(ii) For any b ∈ Rn, Ax = b has a unique solution.

(iii) There exists a unique matrix B such that AB = BA = I .

Proof (i) ⇒ (ii). Since rankA = n we have C (A) = R
n and therefore Ax = b has a

solution. If Ax = b and Ay = b then A(x − y) = 0. By 2.10, dim(N (A)) = 0 and
therefore x = y. This proves the uniqueness.

(ii) ⇒ (iii). By (ii), Ax = ei has a unique solution, say bi , where ei is the i-th
column of the identity matrix. Then B = (b1, . . . , bn) is a unique matrix satisfying
AB = I . Applying the same argument to A′ we conclude the existence of a unique
matrix C such that CA = I . Now B = (CA)B = C(AB) = C.

(iii) ⇒ (i). Suppose (iii) holds. Then any x ∈R
n can be expressed as x = A(Bx)

and hence C (A) = R
n. Thus rankA, which by definition is dim(C (A)) must

be n. �

The matrix B of (ii) of 2.11 is called the inverse of A and is denoted by A−1.
If A,B are n × n matrices, then (AB)(B−1A−1) = I and therefore (AB)−1 =

B−1A−1. In particular, the product of two nonsingular matrices is nonsingular.
Let A be an n × n matrix. We will denote by Aij the submatrix of A obtained by

deleting row i and column j . The cofactor of aij is defined to be (−1)i+j |Aij |. The
adjoint of A, denoted by adj A, is the n×n matrix whose (i, j)-entry is the cofactor
of aji .
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From the theory of determinants we have

n∑

j=1

aij (−1)i+j |Aij | = |A|

and for i �= k,

n∑

j=1

aij (−1)i+k|Akj | = 0.

These equations can be interpreted as

A adjA = |A|I.
Thus if |A| �= 0, then A−1 exists and

A−1 = 1

|A| adjA.

Conversely if A is nonsingular, then from AA−1 = I , we conclude that |AA−1| =
|A||A−1| = 1 and therefore |A| �= 0. We have therefore proved the following result.

2.12 A square matrix is nonsingular if and only if its determinant is nonzero.

An r × r minor of a matrix is defined to be the determinant of an r × r submatrix
of A.

Let A be an m × n matrix of rank r , let s > r , and consider an s × s minor of A,
say the one formed by rows i1, . . . , is and columns j1, . . . , js . Since the columns
j1, . . . , js must be linearly dependent then by 2.12 the minor must be zero.

Conversely, if A is of rank r then A has r linearly independent rows, say the rows
i1, . . . , ir . Let B be the submatrix formed by these r rows. Then B has rank r and
hence B has column rank r . Thus there is an r × r submatrix C of B , and hence
of A, of rank r . By 2.12, C has a nonzero determinant.

We therefore have the following definition of rank in terms of minors: The rank
of the matrix A is r if (i) there is a nonzero r × r minor and (ii) every s × s minor,
s > r , is zero. As remarked earlier, the rank is zero if and only if A is the zero
matrix.

2.4 Frobenius Inequality

2.13 Let B be an m × r matrix of rank r . Then there exists a matrix X (called the
left inverse of B), such that XB = I .

Proof If m = r then B is nonsingular and admits an inverse. So suppose r < m. The
columns of B are linearly independent. Thus we can find a set of m − r columns,
which, together with the columns of B , form a basis for Rm. In other words, we can
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find a matrix U of order m× (m− r) such that [B,U ] is nonsingular. Let the inverse
of [B,U ] be partitioned as

[
X
V

]
where X is r × m. Since
[

X

V

]
[B,U ] = I,

we have XB = I . �

We can similarly show that an r × n matrix C of rank r has a right inverse, i.e.,
a matrix Y such that CY = I . Note that a left inverse or a right inverse is not unique,
unless the matrix is square and nonsingular.

2.14 Let B be an m × r matrix of rank r . Then there exists a nonsingular matrix P

such that

PB =
[
I

0

]
.

Proof The proof is the same as that of 2.13. If we set P = [
X
V

]
then P satisfies the

required condition. �

Similarly, if C is r × n of rank r then there exists a nonsingular matrix Q such
that CQ = [I,0]. These two results and the rank factorization (see 2.3) immediately
lead to the following.

2.15 Let A be an m × n matrix of rank r . Then there exist nonsingular matrices P ,
Q such that

PAQ =
[
Ir 0
0 0

]
.

Rank is not affected upon multiplying by a nonsingular matrix. For, if A is m×n

and P is nonsingular of order m then

rankA = rank
(
P −1PA

)

≤ rank(PA)

≤ rankA.

Hence rank(PA) = rankA. A similar result holds for post-multiplication by a
nonsingular matrix.

2.16 If A is an n × n matrix of rank r then there exists an n × n matrix Z of rank
n − r such that A + Z is nonsingular.

Proof By 2.15 there exist nonsingular matrices P,Q such that

PAQ =
[
Ir 0
0 0

]
.
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Set

Z = P −1
[

0 0
0 In−r

]
Q−1.

Then A + Z = P −1Q−1 which is nonsingular. �

Observe that 2.16 may also be proved using rank factorization; we leave this as
an exercise.

2.17 The Frobenius Inequality Let A, B be n × n matrices. Then

rank(AB) ≥ rankA + rankB − n.

Proof By 2.16 there exists a matrix Z of rank n − rankA such that A + Z is non-
singular. We have

rankB = rank
(
(A + Z)B

)

= rank(AB + ZB)

≤ rank(AB) + rank(ZB) by 2.4

≤ rank(AB) + rank(Z)

= rank(AB) + n − rankA.

Hence rank(AB) ≥ rankA + rankB − n. �

2.5 Exercises

1. Find the rank of the following matrix for each real number α:
⎡

⎢⎢
⎣

1 4 α 4
2 −6 7 1
3 2 −6 7
2 2 −5 5

⎤

⎥⎥
⎦ .

2. Let {x1, . . . , xp}, {y1, . . . , yq} be linearly independent sets in R
n, where p <

q ≤ n. Show that there exists i ∈ {1, . . . , q} such that {x1, . . . , xp, yi} is linearly
independent.

3. Let X = {x1, . . . , xn}, Y = {y1, . . . , yn} be bases for Rn and let S ⊂ X be a set
of cardinality r , 1 ≤ r ≤ n. Show that there exists T ⊂ Y of cardinality r such
that (X \ S) ∪ T is a basis for Rn.

4. Let A be an m×n matrix and let B be obtained by changing any k entries of A.
Show that

rankA − k ≤ rankB ≤ rankA + k.

5. Let A, B , C be n × n matrices. Is it always true that rank(ABC) ≤ rank(AC)?
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6. Find two different rank factorizations of the matrix
⎡

⎢⎢
⎣

1 1 2 0
2 −3 1 1
3 −2 3 1
5 −5 4 2

⎤

⎥⎥
⎦ .

7. Let A, B , C, D be n × n matrices such that the matrix
[

A B

C D

]

has rank n. Show that |AD| = |BC|.
8. Which of the following functions define an inner product on R3?

(i) f (x, y) = x1y1 + x2y2 + x3y3 + 1
(ii) f (x, y) = 2x1y1 + 3x2y2 + x3y3 − x1y2 − x2y1

(iii) f (x, y) = x1y1 + 2x2y2 + x3y3 + 2x1y2 + 2x2y1
(iv) f (x, y) = x1y1 + x2y2
(v) f (x, y) = x3

1y3
1 + x3

2y3
2 + x3

3y3
3 .

9. Find the orthogonal projection of [2,1,0] on the space spanned by [1,−1,1],
[0,1,1].

10. The following vectors form a basis for R3. Use the Gram–Schmidt procedure
to convert it into an orthonormal basis.

x = [
2 3 −1

]
, y = [

3 1 0
]
, z = [

4 −1 2
]
.

11. Let A be an n × n matrix. Show that A is nonsingular if and only if Ax = 0 has
no nonzero solution.

12. Let A be a nonsingular matrix, let B = A−1, and suppose A, B are conformally
partitioned as

A =
[
A11 A12
A21 A22

]
, B =

[
B11 B12
B21 B22

]
.

Then assuming the inverses exist, show that

B11 = (
A11 − A12A

−1
22 A21

)−1 = A−1
11 + A−1

11 A12B22A21A
−1
11 ,

B22 = (
A22 − A21A

−1
11 A12

)−1 = A−1
22 + A−1

22 A21B11A12A
−1
22 ,

B12 = −A−1
11 A12B22 = −B11A12A

−1
22 .

13. Let A be an n×n matrix and let b ∈R
n. Show that A is nonsingular if and only

if Ax = b has a unique solution.
14. Let A be an n × n matrix with only integer entries. Show that A−1 exists and

has only integer entries if and only if |A| = ±1.
15. Compute the inverses of the following matrices:

(i)
[

a b
c d

]
, where ad − bc �= 0

(ii)
[ 2 −1 0

2 1 −1
1 0 4

]
.
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16. Let A, B be matrices of order 9 × 7 and 4 × 3 respectively. Show that there
exists a nonzero 7 × 4 matrix X such that AXB = 0.

17. Let A, X, B be n×n matrices. Prove the following generalization of the Frobe-
nius Inequality:

rank(AXB) ≥ rank(AX) + rank(XB) − rank(X).

18. Let A, B , C, D be n × n matrices such that A is nonsingular and suppose
AC = CA. Then show that

∣∣
∣∣
A B

C D

∣∣
∣∣ = |AD − CB|.

19. Let P be an orthogonal matrix and let Q be obtained by deleting the first row
and column of P . Show that p11 and |Q| are equal in absolute value.
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