Chapter 2
Passive 3D Imaging

Stephen Se and Nick Pears

Abstract We describe passive, multiple-view 3D imaging systems that recover 3D
information from scenes that are illuminated only with ambient lighting. Much of
the material is concerned with using the geometry of stereo 3D imaging to formu-
late estimation problems. Firstly, we present an overview of the common techniques
used to recover 3D information from camera images. Secondly, we discuss camera
modeling and camera calibration as an essential introduction to the geometry of the
imaging process and the estimation of geometric parameters. Thirdly, we focus on
3D recovery from multiple views, which can be obtained using multiple cameras at
the same time (stereo), or a single moving camera at different times (structure from
motion). Epipolar geometry and finding image correspondences associated with the
same 3D scene point are two key aspects for such systems, since epipolar geometry
establishes the relationship between two camera views, while depth information can
be inferred from the correspondences. The details of both stereo and structure from
motion, the two essential forms of multiple-view 3D reconstruction technique, are
presented. Towards the end of the chapter, we present several real-world applica-
tions.

2.1 Introduction

Passive 3D imaging has been studied extensively for several decades and it is a
core topic in many of the major computer vision conferences and journals. Essen-
tially, a passive 3D imaging system, also known as a passive 3D vision system,
is one in which we can recover 3D scene information, without that system hav-
ing to project its own source of light or other source of electromagnetic radiation
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(EMR) onto that scene. By contrast, an active 3D imaging system has an EMR
projection subsystem, which is commonly in the infra-red or visible wavelength
region.

Several passive 3D information sources (cues) relate closely to human vision and
other animal vision. For example, in stereo vision, fusing the images recorded by our
two eyes and exploiting the difference between them gives us a sense of depth. The
aim of this chapter is to present the fundamental principles of passive 3D imaging
systems so that readers can understand their strengths and limitations, as well as how
to implement a subset of such systems, namely those that exploit multiple views of
the scene.

Passive, multiple-view 3D imaging originates from the mature field of pho-
togrammetry and, more recently, from the younger field of computer vision. In
contrast to photogrammetry, computer vision applications rely on fast, automatic
techniques, sometimes at the expense of precision. Our focus is from the computer
vision perspective.

A recurring theme of this chapter is that we consider some aspect of the geometry
of 3D imaging and formulate a linear least squares estimation problem to estimate
the associated geometric parameters. These estimates can then optionally be im-
proved, depending on the speed and accuracy requirements of the application, using
the linear estimate as an initialization for a non-linear least squares refinement. In
contrast to the linear stage, this non-linear stage usually optimizes a cost function
that has a well-defined geometric meaning.

Chapter Outline We will start with an overview of various techniques for passive
3D imaging systems, including single-view and multiple-view approaches. How-
ever, the main body of this chapter is focused on 3D recovery from multiple views,
which can be obtained using multiple cameras simultaneously (stereo) or a sin-
gle moving camera (structure from motion). A good starting point to understand
this subject matter is knowledge of the image formation process in a single camera
and how to capture this process in a camera model. This modeling is presented in
Sect. 2.3 and the following section describes camera calibration: the estimation of
the parameters in the developed camera model. In order to understand how to search
efficiently for left-right feature pairs that correspond to the same scene point in a
stereo image pair (the correspondence problem), a good understanding of two-view
geometry is required, which establishes the relationship between two camera views.
Hence Sect. 2.5 details this geometry, known as epipolar geometry, and shows how
it can be captured and used in linear (vector-matrix) form. Following this, we can
begin to consider the correspondence problem and the first step is to simplify the
search to be across the same horizontal scanlines in each image, by warping the
stereo image pair in a process known as rectification. This is described in Sect. 2.6.
The following section then focuses on the correspondence search itself and then
Sect. 2.8 details the process of generating a 3D point cloud from a set of image
correspondences.

With increasing computer processing power and decreasing camera prices, many
real-world applications of passive 3D imaging systems have been emerging in re-
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cent years. Thus, later in the chapter (Sect. 2.9), some recent applications involv-
ing such systems are presented. Several commercially available stereo vision sys-
tems will first be presented. We then describe 3D modeling systems that generate
photo-realistic 3D models from image sequences, which have a wide range of ap-
plications. Later in this section, passive 3D imaging systems for mobile robot pose
estimation and obstacle detection are described. Finally, multiple-view passive 3D
imaging systems are compared to their counterpart within active 3D imaging sys-
tems. This acts as a bridge to Chap. 3, where such systems will be discussed in
detail.

2.2 An Overview of Passive 3D Imaging Systems

Most cameras today use either a Charge Coupled Device (CCD) image sensor or a
Complementary Metal Oxide Semiconductor (CMOS) sensor, both of which capture
light and convert it into electrical signals. Typically, CCD sensors provide higher
quality, lower noise images whereas CMOS sensors are less expensive, more com-
pact and consume less power. However, these stereotypes are becoming less pro-
nounced. The cameras employing such image sensors can be hand-held or mounted
on different platforms such as Unmanned Ground Vehicles (UGVs), Unmanned
Aerial Vehicles (UAVs) and optical satellites.

Passive 3D vision techniques can be categorized as follows: (i) Multiple view
approaches, (ii) Single view approaches. We outline each of these in the following
two subsections.

2.2.1 Multiple View Approaches

In multiple view approaches, the scene is observed from two or more viewpoints,
by either multiple cameras at the same time (stereo) or a single moving camera at
different times (structure from motion). From the gathered images, the system is to
infer information on the 3D structure of the scene.

Stereo refers to multiple images taken simultaneously using two or more cam-
eras, which are collectively called a stereo camera. For example, binocular stereo
uses two viewpoints, trinocular stereo uses three viewpoints, or alternatively there
may be many cameras distributed around the viewing sphere of an object. Stereo de-
rives from the Greek word stereos meaning solid, thus implying a 3D form of visual
information. In this chapter, we will use the term stereo vision to imply a binocular
stereo system. At the top of Fig. 2.1, we show an outline of such a system.

If we can determine that imaged points in the left and right cameras correspond to
the same scene point, then we can determine two directions (3D rays) along which
the 3D point must lie. (The camera parameters required to convert the 2D image
positions to 3D rays come from a camera calibration procedure.) Then, we can in-
tersect the 3D rays to determine the 3D position of the scene point, in a process
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Fig. 2.1 Top: Plan view of
the operation of a simple
stereo rig. Here the optical
axes of the two cameras are
parallel to form a rectilinear
rig. However, often the
cameras are rotated towards
each other (verged) to
increase the overlap in their
fields of view. Center:

A commercial stereo camera,
supplied by Videre Design
(figure courtesy of [59]),
containing SRI’s Small
Vision System [26]. Bottom:
Left and right views of a
stereo pair (images courtesy

of [34])
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known as triangulation. A scene point, X, is shown in Fig. 2.1 as the intersection
of two rays (colored black) and a nearer point is shown by the intersection of two
different rays (colored blue). Note that the difference between left and right image
positions, the disparity, is greater for the nearer scene point. Note also that the scene
surface colored red cannot be observed by the right camera, in which case no 3D
shape measurement can be made. This scene portion is sometimes referred to as a
missing part and is the result of self-occlusion. A final point to note is that, although
the real image sensor is behind the lens, it is common practice to envisage and use
a conceptual image position in front of the lens so that the image is the same orien-
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tation as the scene (i.e. not inverted top to bottom and left to right) and this position
is shown in the figure.

Despite the apparent simplicity of Fig. 2.1(top), a large part of this chapter is
required to present the various aspects of stereo 3D imaging in detail, such as cal-
ibration, determining left-to-right image correspondences and dense 3D shape re-
construction. A typical commercial stereo camera, supplied by Videre Design.! is
shown in the center of Fig. 2.1, although many computer vision researchers build
their own stereo rigs, using off-the-shelf digital cameras and a slotted steel bar
mounted on a tripod. Finally, at the bottom of Fig. 2.1, we show the left and right
views of a typical stereo pair taken from the Middlebury webpage [34].

In contrast to stereo vision, structure from motion (SfM) refers to a single moving
camera scenario, where image sequences are captured over a period of time. While
stereo refers to fixed relative viewpoints with synchronized image capture, StM
refers to variable viewpoints with sequential image capture. For image sequences
captured at a high frame rate, optical flow can be computed, which estimates the
motion field from the image sequences, based on the spatial and temporal variations
of the image brightness. Using the local brightness constancy alone, the problem is
under-constrained as the number of variables is twice the number of measurements.
Therefore, it is augmented with additional global smoothness constraints, so that
the motion field can be estimated by minimizing an energy function [23, 29]. 3D
motion of the camera and the scene structure can then be recovered from the motion
field.

2.2.2 Single View Approaches

In contrast to these two multiple-view approaches, 3D shape can be inferred from
a single viewpoint using information sources (cues) such as shading, texture and
focus. Not surprisingly, these techniques are called shape from shading, shape from
texture and shape from focus respectively.

Shading on a surface can provide information about local surface orientations
and overall surface shape, as illustrated in Fig. 2.2, where the technique in [24] has
been used. Shape from shading [22] uses the shades in a grayscale image to infer
the shape of the surfaces, based on the reflectance map which links image inten-
sity with surface orientation. After the surface normals have been recovered at each
pixel, they can be integrated into a depth map using regularized surface fitting. The
computations involved are considerably more complicated than for multiple-view
approaches. Moreover, various assumptions, such as uniform albedo, reflectance
and known light source directions, need to be made and there are open issues with
convergence to a solution. The survey in [65] reviews various techniques and pro-
vides some comparative results. The approach can be enhanced when lights shin-
ing from different directions can be turned on and off separately. This technique is

Thttp://www.videredesign.com.
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Fig. 2.2 Examples of synthetic shape from shading images (left column) and corresponding shape
from shading reconstruction (right column)

known as photometric stereo [61] and it takes two or more images of the scene from
the same viewpoint but under different illuminations in order to estimate the surface
normals.

The foreshortening of regular patterns depends on how the surface slants away
from the camera viewing direction and provides another cue on the local surface
orientation. Shape from texture [17] estimates the shape of the observed surface
from the distortion of the texture created by the imaging process, as illustrated
in Fig. 2.3. Therefore, this approach works only for images with texture surfaces
and assumes the presence of a regular pattern. Shape from shading is combined
with shape from texture in [60] where the two techniques can complement each
other. While the texture components provide information in textured region, shad-
ing helps in the uniform region to provide detailed information on the surface
shape.

Shape from focus [37, 41] estimates depth using two input images captured from
the same viewpoint but at different camera depths of field. The degree of blur is
a strong cue for object depth as it increases as the object moves away from the
camera’s focusing distance. The relative depth of the scene can be constructed from



2 Passive 3D Imaging 41

N DHODOODOD FESEE
%éé D bDDD %g ;
.

Ohbdrchd B :'

&ﬂé?m:&abﬁial

Fig. 2.3 Examples of synthetic shape from texture images (a, ¢) and corresponding surface normal
estimates (b, d). Figure courtesy of [17]

the image blur where the amount of defocus can be estimated by averaging the
squared gradient in a region.

Single view metrology [13] allows shape recovery from a single perspective view
of a scene given some geometric information determined from the image. By ex-
ploiting scene constraints such as orthogonality and parallelism, a vanishing line
and a vanishing point in a single image can be determined. Relative measurements
of shape can then be computed, which can be upgraded to absolute metric measure-
ments if the dimensions of a reference object in the scene are known.

While 3D recovery from a single view is possible, such methods are often not
practical in terms of either robustness or speed or both. Therefore, the most com-
monly used approaches are based on multiple views, which is the focus of this chap-
ter. The first step to understanding such approaches is to understand how to model
the image formation process in the cameras of a stereo rig. Then we need to know
how to estimate the parameters of this model. Thus camera modeling and camera
calibration are discussed in the following two main sections.

2.3 Camera Modeling

A camera is a device in which the 3D scene is projected down onto a 2D image. The
most commonly used projection in computer vision is 3D perspective projection.
Figure 2.4 illustrates perspective projection based on the pinhole camera model,
where C is the position of the pinhole, termed the camera center or the center of
projection. Recall that, although the real image plane is behind the camera center, it
is common practice to employ a virtual image plane in front of the camera, so that
the image is conveniently at the same orientation as the scene.

Clearly, from this figure, the path of imaged light is modeled by a ray that passes
from a 3D world point X through the camera center. The intersection of this ray
with the image plane defines where the image, x., of the 3D scene point, X, lies.
We can reverse this process and say that, for some point on the image plane, its
corresponding scene point must lie somewhere along the ray connecting the center
of projection, C, and that imaged point, x.. We refer to this as back-projecting an
image point to an infinite ray that extends out into the scene. Since we do not know
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Fig. 2.4 Projection based on a pinhole camera model where a 3D object is projected onto the
image plane. Note that, although the real image plane is behind the camera center, it is common
practice to employ a virtual image plane in front of the camera, so that the image is conveniently
at the same orientation as the scene

how far along the ray the 3D scene point lies, explicit depth information is lost in the
imaging process. This is the main source of geometric ambiguity in a single image
and is the reason why we refer to the recovery of the depth information from stereo
and other cues as 3D reconstruction.

Before we embark on our development of a mathematical camera model, we
need to digress briefly and introduce the concept of homogeneous coordinates
(also called projective coordinates), which is the natural coordinate system of an-
alytic projective geometry and hence has wide utility in geometric computer vi-
sion.

2.3.1 Homogeneous Coordinates

We are all familiar with expressing the position of some point in a plane using a
pair of coordinates as [x, y]”. In general for such systems, n coordinates are used
to describe points in an n-dimensional space, R". In analytic projective geometry,
which deals with algebraic theories of points and lines, such points and lines are typ-
ically described by homogeneous coordinates, where n + 1 coordinates are used to
describe points in an n-dimensional space. For example, a general point in a plane is
described as x = [x1, x2, x3]7, and the general equation of a line is given by "x=0
where 1 =[I1, [, [3]7 are the homogeneous coordinates of the line.? Since the right
hand side of this equation for a line is zero, it is an homogeneous equation, and
any non-zero multiple of the point A[x7, x2, x3]7 is the same point, similarly any
non-zero multiple of the line’s coordinates is the same line. The symmetry in this

2You may wish to compare 17 x = 0 to two well-known parameterizations of a line in the (x, y)
plane, namely: ax + by + ¢ =0 and y = mx + ¢ and, in each case, write down homogeneous
coordinates for the point x and the line 1.
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equation is indicative of the fact that points and lines can be exchanged in many the-
ories of projective geometry; such theories are termed dual theories. For example,
the cross product of two lines, expressed in homogeneous coordinates, yields their
intersecting point, and the cross-product of a pair of points gives the line between
them.

Note that we can easily convert from homogeneous to inhomogeneous coordi-
nates, simply by dividing through by the third element, thus [x1, x>, x3]7 maps to
[;—é , % 17. A key point about homogeneous coordinates is that they allow the relevant
transformations in the imaging process to be represented as linear mappings, which
of course are expressed as matrix-vector equations. However, although the mapping
between homogeneous world coordinates of a point and homogeneous image coor-
dinates is linear, the mapping from homogeneous to inhomogeneous coordinates is
non-linear, due to the required division.

The use of homogeneous coordinates fits well with the relationship between im-
age points and their associated back-projected rays into the scene space. Imagine a
mathematical (virtual) image plane at a distance of one metric unit in front of the
center of projection, as shown in Fig. 2.4. With the camera center, C, the homoge-
neous coordinates [x, y, 117 define a 3D scene ray as [Ax, Ay, 21T, where A is the
unknown distance (A > 0) along the ray. Thus there is an intuitive link between the
depth ambiguity associated with the 3D scene point and the equivalence of homo-
geneous coordinates up to an arbitrary non-zero scale factor.

Extending the idea of thinking of homogeneous image points as 3D rays, con-
sider the cross product of two homogeneous points. This gives a direction that is
the normal of the plane that contains the two rays. The line between the two image
points is the intersection of this plane with the image plane. The dual of this is that
the cross product of two lines in the image plane gives the intersection of their asso-
ciated planes. This is a direction orthogonal to the normals of both of these planes
and is the direction of the ray that defines the point of intersection of the two lines
in the image plane. Note that any point with its third homogeneous element zero
defines a ray parallel to the image plane and hence meets it at infinity. Such a point
is termed a point at infinity and there is an infinite set of these points [x1, x2, 017
that lie on the line at infinity [0, 0, 117 ; Finally, note that the 3-tuple [0, 0, 0]” has
no meaning and is undefined. For further reading on homogeneous coordinates and
projective geometry, please see [21] and [12].

2.3.2 Perspective Projection Camera Model

We now return to the perspective projection (central projection) camera model and
we note that it maps 3D world points in standard metric units into the pixel coordi-
nates of an image sensor. It is convenient to think of this mapping as a cascade of
three successive stages:

1. A 6 degree-of-freedom (DOF) rigid transformation consisting of a rotation,
R (3 DOF), and translation, t (3 DOF), that maps points expressed in world
coordinates to the same points expressed in camera centered coordinates.
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2. A perspective projection from the 3D world to the 2D image plane.
3. A mapping from metric image coordinates to pixel coordinates.

We now discuss each of these projective mappings in turn.

2.3.2.1 Camera Modeling: The Coordinate Transformation

As shown in Fig. 2.4, the camera frame has its (X, Y) plane parallel to the image
plane and Z is in the direction of the principal axis of the lens and encodes depth
from the camera. Suppose that the camera center has inhomogeneous position C
in the world frame? and the rotation of the camera frame is R, relative to the world
frame orientation. This means that we can express any inhomogeneous camera frame
points as:

X.=R/'(X-C)=RX +t. 2.1)

Here R = R! represents the rigid rotation and t = —RCT(J represents the rigid trans-
lation that maps a scene point expressed in the world coordinate frame into a
camera-centered coordinate frame. Equation (2.1) can be expressed as a projective
mapping, namely one that is linear in homogeneous coordinates, to give:

X, X
Ye | [R t]|Y
Z. |~ [OT 1] Z

1 1

We denote P, as the 4 x 4 homogeneous matrix representing the rigid coordinate
transformation in the above equation.

2.3.2.2 Camera Modeling: Perspective Projection

Observing the similar triangles in the geometry of perspective imaging, we have

fo_Ze X _lo 2.2)

o Z o Ze
where (x¢, y.) is the position (metric units) of a point in the camera’s image plane
and f is the distance (metric units) of the image plane to the camera center. (This is
usually set to the focal length of the camera lens.) The two equations above can be
written in linear form as:

Xe fOOO);"
Ze|ye |=]0 f 0 Of} "
1 0 0 1 0 1‘

3We use a tilde to differentiate n-tuple inhomogeneous coordinates from (n + 1)-tuple homoge-
neous coordinates.
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We denote P, as the 3 x 4 perspective projection matrix, defined by the value of f,
in the above equation. If we consider an abstract image plane at f = 1, then points
on this plane are termed normalized image coordinates* and from Eq. (2.2), these
are given by

Xc

X = —, =
n Z. Yn

N|s=

2.3.2.3 Camera Modeling: Image Sampling

Typically, the image on the image plane is sampled by an image sensor, such as
a CCD or CMOS device, at the locations defined by an array of pixels. The final
part of camera modeling defines how that array is positioned on the [x., y.]” image
plane, so that pixel coordinates can be generated. In general, pixels in an image
sensor are not square and the number of pixels per unit distance varies between
the x. and y. directions; we will call these scalings m, and m,. Note that pixel
positions have their origin at the corner of the sensor and so the position of the
principal point (where the principal axis intersects the image plane) is modeled with
pixel coordinates [xq, yo]” . Finally, many camera models also cater for any skew,’
s, so that the mapping into pixels is given by:

X my S X X
y| =0 my yo|]| ¥
1 0 0 1 1

We denote P, as the 3 x 3 projective matrix defined by the five parameters m,, my,
s, xo and yp in the above equation.

2.3.2.4 Camera Modeling: Concatenating the Projective Mappings
We can concatenate the three stages described in the three previous subsections to
give
rAx=P.P,P.X
or simply
Ax = PX, (2.3)

where X is non-zero and positive. We note the following points concerning the above
equation

4We need to use a variety of image coordinate normalizations in this chapter. For simplicity, we
will use the same subscript n, but it will be clear about how the normalization is achieved.

3Skew models a lack of orthogonality between the two image sensor sampling directions. For most
imaging situations it is zero.



46 S. Se and N. Pears

1. For any homogeneous image point scaled to A[x, y, 1]7, the scale A is equal to
the imaged point’s depth in the camera centered frame (A = Z;).

2. Any non-zero scaling of the projection matrix A pP performs the same projection
since, in Eq. (2.3), any non-zero scaling of homogeneous image coordinates is
equivalent.

3. A camera with projection matrix P, or some non-zero scalar multiple of that, is
informally referred to as camera P in the computer vision literature and, because
of point 2 above, it is referred to as being defined up to scale.

The matrix P is a 3 x 4 projective camera matrix with the following structure:
P =K[RI|t]. (2.4)

The parameters within K are the camera’s intrinsic parameters. These parameters
are those combined from Sects. 2.3.2.2 and 2.3.2.3 above, so that:

oy S X0
K=|0 a |,
0 0 1

where o, = fm, and ay = fm, represent the focal length in pixels in the x and y
directions respectively. Together, the rotation and translation in Eq. (2.4) are termed
the camera’s extrinsic parameters. Since there are 5 DOF from intrinsic parameters
and 6 DOF from extrinsic parameters, a camera projection matrix has only 11 DOF,
not the full 12 of a general 3 x 4 matrix. This is also evident from the fact that we
are dealing with homogeneous coordinates and so the overall scale of P does not
matter.
By expanding Eq. (2.3), we have:

N homogeneous
OMOgENEOUs intrinsic extrinsic world
image camera camera coordinates
coordinates parameters parameters —_—
X
X oy S X0 Fir Fi2 13 Iy Y
Aoy =| 0 oy yo||ra1 r2 13 1y 7 | (2.5)
1 0 0 1 r31 r3 133 I 1

which indicates that both the intrinsic and extrinsic camera parameters are necessary
to fully define a ray (metrically, not just in pixel units) in 3D space and hence make
absolute measurements in multiple-view 3D reconstruction. Finally, we note that
any non-zero scaling of scene homogeneous coordinates [X, Y, Z, 117 in Eq. (2.5)
gives the same image coordinates® which, for a single image, can be interpreted as
ambiguity between the scene scale and the translation vector t.

5The same homogeneous image coordinates up fo scale or the same inhomogeneous image coor-
dinates.



2 Passive 3D Imaging 47
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Fig. 2.5 Examples of radial distortion effects in lenses: (a) No distortion (b) Pincushion distortion
(c) Barrel distortion (d) Fisheye distortion

2.3.3 Radial Distortion

Typical cameras have a lens distortion, which disrupts the assumed linear projective
model. Thus a camera may not be accurately represented by the pinhole camera
model that we have described, particularly if a low-cost lens or a wide field-of-
view (short focal length) lens such as a fisheye lens is employed. Some examples
of lens distortion effects are shown in Fig. 2.5. Note that the effect is non-linear
and, if significant, it must be corrected so that the camera can again be modeled
as a linear device. The estimation of the required distortion parameters to do this
is often encompassed within a camera calibration procedure, which is described in
Sect. 2.4. With reference to our previous three-stage development of a projective
camera in Sect. 2.3.2, lens distortion occurs at the second stage, which is the 3D to
2D projection, and this distortion is sampled by the image sensor.

Detailed distortion models contain a large number of parameters that model both
radial and tangential distortion [7]. However, radial distortion is the dominant factor
and usually it is considered sufficiently accurate to model this distortion only, using
a low-order polynomial such as:

|:xnd:| _ |:xn:| + |:xn:| (ker —|—k2r4),

Ynd Yn Yn

where [x,, y,]7 is the undistorted image position (i.e. that obeys our linear projec-
tion model) in normalized coordinates, [x,4, ynd]T is the distorted image position
in normalized coordinates, k; and k; are the unknown radial distortion parameters,
and r = /x2 + y2. Assuming zero skew, we also have

Xd | _ | X (x — xp) ) .
[W} B [y]+[(y—yo)](k1’ +kar®), (2.6)

where the distorted position [xg4, y7]7 is now expressed in pixel coordinates and
[x,y]T are the usual pixel coordinates predicted by the linear pinhole model. Note
that r is still defined in normalized image coordinates and so a non-unity aspect ratio
(my # my) in the image sensor does not invalidate this equation. Also note that both
Eq. (2.6) and Fig. 2.5 indicate that distortion increases away from the center of the
image. In the barrel distortion, shown in Fig. 2.5(c), distortion correction requires
that image points are moved slightly towards the center of the image, more so if they
are near the edges of the image. Correction could be applied to the whole image, as
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in dense stereo, or just a set of relevant features, such as extracted corner points.
Clearly, the latter process is computationally cheaper.

Now that we have discussed the modeling of a camera’s image formation process
in detail, we now need to understand how to estimate the parameters within this
model. This is the focus of the next section, which details camera calibration.

2.4 Camera Calibration

Camera calibration [8] is the process of finding the parameters of the camera that
produced a given image of a scene. This includes both extrinsic parameters R, t
and intrinsic parameters, comprising those within the matrix K and radial distortion
parameters, k1, k2. Once the intrinsic and extrinsic camera parameters are known,
we know the camera projection matrix P and, taking into account of any radial
distortion present, we can back-project any image pixel to a 3D ray in space. Clearly,
as the intrinsic camera calibration parameters are tied to the focal length, changing
the zoom on the lens would make the calibration invalid. It is also worth noting
that calibration is not always required. For example, we may be more interested in
approximate shape, where we need to know what objects in a scene are co-planar,
rather than their absolute 3D position measurements. However, for stereo systems
at least, camera calibration is commonplace.

Generally, it is not possible for an end-user to get the required calibration in-
formation to the required accuracy from camera manufacturer’s specifications and
external measurement of the position of cameras in some frame. Hence some sort of
camera calibration procedure is required, of which there are several different cate-
gories. The longest established of these is photogrammetric calibration, where cal-
ibration is performed using a scene object of precisely known physical dimensions.
Typically, several images of a special 3D target, such as three orthogonal planes with
calibration grids (chessboard patterns of black and white squares), are captured and
precise known translations may be used [58]. Although this gives accurate calibra-
tion results, it lacks flexibility due to the need for precise scene knowledge.

At the other end of the spectrum is self-calibration (auto-calibration) [21, 35],
where no calibration target is used. The correspondences across three images of the
same rigid scene provide enough constraints to recover a set of camera parameters
which allow 3D reconstruction up to a similarity transform. Although this approach
is flexible, there are many parameters to estimate and reliable calibrations cannot
always be obtained.

Between these two extremes are ‘desktop’ camera calibration approaches that use
images of planar calibration grids, captured at several unknown positions and ori-
entations (i.e. a single planar chessboard pattern is manually held at several random
poses and calibration images are captured and stored). This gives a good compro-
mise between the accuracy of photogrammetric calibration and the ease of use of
self-calibration. A seminal example is given by Zhang [64].

Although there are a number of publicly available camera calibration packages
on the web, such as the Caltech camera calibration toolbox for MATLAB [9] and in
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the OpenCV computer vision library [40], a detailed study of at least one approach
is essential to understand calibration in detail. We will use Zhang’s work [64] as a
seminal example and this approach consists of two main parts:

(1) A basic calibration that is based on linear least squares and hence has a closed-
form solution. In the formulation of the linear problem, a set of 9 parameters
needs to be estimated. These are rather complicated combinations of the cam-
era’s intrinsic parameters and the algebraic least squares minimization to deter-
mine them has no obvious geometric meaning. Once intrinsic parameters have
been extracted from these estimated parameters, extrinsic parameters can be
determined using the projective mapping (homography) associated with each
calibration grid image.

(2) A refined calibration that is based on non-linear least squares and hence has
an iterative solution. Here it is possible to formulate a least squares error be-
tween the observed (inhomogeneous) image positions of the calibration grid
corners and the positions predicted by the current estimate of intrinsic and ex-
trinsic camera parameters. This has a clear geometric interpretation, but the
sum of squares function that we wish to minimize is non-linear in terms of the
camera parameters. A standard approach to solving this kind of problem is the
Levenberg-Marquardt (LM) algorithm, which employs gradient descent when
it is far from a minimum and Gauss-Newton minimization when it gets close to
a minimum. Since the LM algorithm is a very general procedure, it is straight-
forward to employ more complex camera models, such as those that include
parameters for the radial distortion associated with the camera lens.

The iterative optimization in (2) above needs to be within the basin of conver-
gence of the global minimum and so the linear method in (1) is used to determine an
initial estimation of camera parameters. The raw data used as inputs to the process
consists of the image corner positions, as detected by an automatic corner detector
[18, 52], of all corners in all calibration images and the corresponding 2D world po-
sitions, [X, Y17, of the corners on the calibration grid. Typically, correspondences
are established by manually clicking one or more detected image corners, and mak-
ing a quick visual check that the imaged corners are matched correctly using over-
laying graphics or text. A typical set of targets is shown in Fig. 2.6.

In the following four subsections we outline the theory and practice of camera
calibration. The first subsection details the estimation of the planar projective map-
ping between a scene plane (calibration grid) and its image. The next two subsec-
tions closely follow Zhang [64] and detail the basic calibration and then the refined
calibration, as outlined above. These subsections refer to the case of a single camera
and so a final fourth subsection is used to describe the additional issues associated
with the calibration of a stereo rig.

2.4.1 Estimation of a Scene-to-Image Planar Homography

A homography is a projective transformation (projectivity) that maps points to points
and lines to lines. It is a highly useful imaging model when we view planar scenes,



50 S. Se and N. Pears

Extrinsic parameters (camera-centered)

Fig. 2.6 Left: calibration targets used in a camera calibration process, image courtesy of Hao Sun.
Right: after calibration, it is possible to determine the positions of the calibration planes using the
estimated extrinsic parameters (Figure generated by the Camera Calibration Toolbox for Matlab,
webpage maintained at Caltech by Jean-Yves Bouguet [9])

which is common in many computer vision processes, including the process of cam-
era calibration.

Suppose that we view a planar scene, then we can define the (X, Y) axes of
the world coordinate system to be within the plane of the scene and hence Z =0
everywhere. Equation (2.5) indicates that, as far as a planar scene is concerned, the
imaging process can be reduced to:

Ax=K[r, r, t[Xx,v, 17,

where r; and r; are the first and second columns of the rotation matrix R, hence:

Ax=H[X, Y, 117, H=K[r; r» t]. 2.7)

The 3 x 3 matrix H is termed a planar homography, which is defined up to a scale
factor,” and hence has eight degrees of freedom instead of nine.
By expanding the above equation, we have:

X hit hiz hiz X
Ay |[=|ha hn hs||Y]. (2.8)
1 h31 h3p h33 1

If we map homogeneous coordinates to inhomogeneous coordinates, by dividing
through by A, this gives:

hX+hpY +hi3

X = 2.9)
h31X +h3Y + ha3
h21 X + hooY + ho3 2.10)

r= h31 X + h3pY +h33.

"Due to the scale equivalence of homogeneous coordinates.
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From a set of four correspondences in a general position,® we can formulate a
set of eight linear equations in the eight unknowns of a homography matrix. This
is because each correspondence provides a pair of constraints of the form given in
Egs. (2.9) and (2.10).

Rearranging terms in four pairs of those equations allows us to formulate the
homography estimation problem in the form:

Ah =0, @2.11)

where A is an 8 x 9 data matrix derived from image and world coordinates of cor-
responding points and h is the 9-vector containing the elements of the homography
matrix. Since A has rank 8, it has a 1-dimensional null space, which provides a
non-trivial (non-zero vector) solution for Eq. (2.11). This can be determined from a
Singular Value Decomposition (SVD) of the data matrix, which generates three ma-
trices (U, D, V) such that A = UDV’ . Here, D is a diagonal matrix of singular values
and U, V are orthonormal matrices. Typically, SVD algorithms order the singular
values in descending order down the diagonal of D and so the required solution,
corresponding to a singular value of zero, is extracted as the last column of V. Due
to the homogeneous form of Eq. (2.11), the solution is determined up to a non-
zero scale factor, which is acceptable because H is only defined up to scale. Often
a unit scale is chosen (i.e. ||h|| = 1) and this scaling is returned automatically in the
columns of V.

In general, a larger number of correspondences than the minimum will not ex-
actly satisfy the same homography because of image noise. In this case, a least
squares solution to h can be determined in an over-determined system of linear
equations. We follow the same procedure as above but this time the data matrix is of
size 2n x 9 where n > 4 is the number of correspondences. When we apply SVD,
we still select the last column of V' corresponding to the smallest singular value
in D. (Note that, in this case, the smallest singular value will be non-zero.)

Data normalization prior to the application of SVD is essential to give stable esti-
mates [21]. The basic idea is to translate and scale both image and world coordinates
to avoid orders of magnitude difference between the columns of the data matrix. Im-
age points are translated so that their centroid is at the origin and scaled to give a
root-mean-squared (RMS) distance of /2 from that origin, so that the ‘average’ im-
age point has coordinates of unity magnitude. Scene points should be normalized in
a similar way except that they should be scaled to give an RMS distance of +/3.

When using homogeneous coordinates, the normalizations can be applied using
matrix operators N;, Ny, such that new normalized coordinates are given as:

X, = N;x, X, =N;X

for the image points and scene points respectively. Suppose that the homography
computed from normalized coordinates is H, then the homography relating the orig-
inal coordinates of the correspondences is given as

H=N;'AN;.

8No three points collinear.
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2.4.2 Basic Calibration

From the known planar scene target and the resulting image, a scene-to-image planar
homography can be estimated as described in the previous subsection. Suppose that
we describe such a homography as a set of 3 x 1 column vectors, i.e. H = [hy hy h3],
then comparing this to Eq. (2.7) we have:

lgh; =Kry, Aghy =Krp, (2.12)

where Ay is a scale factor, accounting for the particular scale of an estimated ho-
mography. Noting that the columns of the rotation matrix, ry, rp are orthonormal:

riry=hTK 7K 'hy =0, (2.13)
r'r;=rir, = h K TK'h =h]KTK 'h,. (2.14)

These equations provide one constraint each on the intrinsic parameters.
We construct a symmetric matrix B such that

Bi1 Bz Bis
B=K Tkl = B By By
B3 By3 Bsj

Let the ith column vector of H be h; = [hy;, ha;, h3i]7, we have:
h/Bh; =v/b,
where
Vij = [hiih1j, hiihoj + hoihyj, hoihoj, hsihyj + hiihsj, haihaj + hoihsj, haihs;]"
and b is the vector containing six independent entries of the symmetric matrix B:
b =[B1, B2, Bx, Bi3, B3, B3]

Therefore, the two constraints in Egs. (2.13) and (2.14) can be rewritten as:

VTZ b=0
[(Vu—vzz)T] e

If n images of the planar calibration grid are observed, n sets of these equations
can be stacked into a matrix-vector equation as:

Vb =0,

where V is a 2n x 6 matrix. Although a minimum of three planar views allows us
to solve for b, it is recommended to take more and form a least squares solution. In
this case, the solution for b is the eigenvector of V7'V associated with the smallest
eigenvalue. Once b is estimated, we know the matrix B up to some unknown scale
factor, A g, and all of the intrinsic camera parameters can be computed by expanding
the right hand side of B = A3K~TK~! in terms of its individual elements. Although
this is somewhat laborious, it is straightforward algebra of simultaneous equations,
where five intrinsic camera parameters plus one unknown scale factor can be derived
from the six parameters of the symmetric matrix B. Zhang [64] presents the solution:
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_ (B12B13 — B11B23)
(B11Bx — B},)
_ [BZ, + yo(B12B13 — Bi1B23)]

Ap = B33 Bo
AB
oy = | —
* B
ApB11
dy= | ———
(B11B22 — Byy)
_ —B]z()l)%ay
= »
syo  Biza?
xX0=—— ——.
Oty )\.B

Once K is known, the extrinsic camera parameters for each image can be com-
puted using Eq. (2.12):

ri=igK 'hy
r=AipK 'hy
r3=r; xnr
t=AryK 'hs,
where
1 1

AH = = .
IK=Thy|| K~ hy|l

The vectors ry, r will not be exactly orthogonal and so the estimated rotation matrix

does not exactly represent a rotation. Zhang [64] suggests performing SVD on the

estimated rotation matrix so that USV? = R. Then the closest pure rotation matrix

in terms of Frobenius norm to that estimated is given as R’ = UV’ .

2.4.3 Refined Calibration

After computation of the linear solution described above, it can be iteratively re-
fined via a non-linear least squares minimization using the Levenberg-Marquardt
(LM) algorithm. As previously mentioned, the camera parameters can be extended
at this stage to include an estimation for the lens distortion parameters, to give us
the following minimization:

n m
f’=frgn{zz i, —fii,j(K,kl,kz,Ri,ti,Xj)”z ;

i=1 j=1
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where x; ; is the image of world point X; in image i and X; ; is the predicted pro-
jection of the same world point according to Eq. (2.7) (using estimated intrinsic and
extrinsic camera parameters) followed by radial distortion according to Eq. (2.6).

The vector p contains all of the free parameters within the planar projection (ho-
mography) function plus two radial distortion parameters k| and k, as described in
Sect. 2.3.3. Initial estimates of these radial distortion parameters can be set to zero.
LM iteratively updates all parameters according to the equation:

Pi+1 =Pk + 0Pk
spr = —(J7J+ 2, diag(s7)) "W,

where J is the Jacobian matrix containing the first derivatives of the residual e with
respect to each of the camera parameters.

Thus computation of the Jacobian is central to LM minimization. This can be
done either numerically or with a custom routine, if analytical expressions for the
Jacobian entries are known. In the numerical approach, each parameter is incre-
mented and the function to be minimized (the least squares error function in this
case) is computed and divided by the increment, which should be the maximum of
1076 and 10™* x | p; |, where p; is some current parameter value [21]. In the case of
providing a custom Jacobian function, the expressions are long and complicated in
the case of camera calibration, and so the use of a symbolic mathematics package
can help reduce human error in constructing the partial differentials.

Note that there are LM implementations available on many platforms, for exam-
ple in MATLAB’s optimization toolbox, or the C/C++ levmar package. A detailed
discussion of iterative estimation methods including LM is given in Appendix 6 of
Hartley and Zisserman’s book [21].

2.4.4 Calibration of a Stereo Rig

It is common practice to choose the optical center of one camera to be the origin
of a stereo camera’s 3D coordinate system. (The midpoint of the stereo baseline,
which connects the two optical centers is also occasionally used.) Then, the relative
rigid location of cameras, [R, t], within this frame, along with both sets of intrinsic
parameters, is required to generate a pair of projection matrices and hence a pair
of 3D rays from corresponding image points that intersect at their common scene
point.

The previous two subsections show how we can calculate the intrinsic parameters
for any single camera. If we have a stereo pair, which is our primary interest, then
we would compute a pair of intrinsic parameter matrices, one for the left camera
and one for the right. In most cases, the two cameras are the same model and hence
we would expect the two intrinsic parameter matrices to be very similar.

Also, we note that, for each chessboard position, two sets of extrinsic parame-
ters, [R, t], are generated, one for the left camera’s position relative to the calibra-
tion plane and one for the right. Clearly, each left-right pair of extrinsic parameters
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should have approximately” the same relationship, which is due to the fixed rigid
rotation and translation of one camera relative to another in the stereo rig.

Once two sets of intrinsic parameters and one set of extrinsic parameters encod-
ing the relative rigid pose of one camera relative to another has been computed, the
results are often refined in a global stereo optimization procedure, again using the
Levenberg-Marquardt approach. To reduce n sets of relative extrinsic parameters
to one set, we could choose the set associated with the closest calibration plane or
compute some form of robust average.

All parameter estimates, both intrinsic and extrinsic, can be improved if the LM
optimization is now performed over a minimal set of parameters, since the extrin-
sic parameters are reduced from 12 (two rotations and two translations) to 6 (one
rotation and one translation) per calibration grid location. This approach ensures
global rigidity of the stereo rig going from left to right camera. An implementa-
tion of global stereo optimization to refine stereo camera parameters is given in the
Caltech camera calibration toolbox for MATLAB [9].

2.5 Two-View Geometry

3D reconstruction from an image pair must solve two problems: the correspondence
problem and the reconstruction problem.

e Correspondence problem. For a point X in the left image, which is the correspond-
ing point X’ in the right image, where x and x" are images of the same physical
scene point X?

e Reconstruction problem. Given two corresponding points x and x’, how do we
compute the 3D coordinates of scene point X?

Of these problems the correspondence problem is significantly more difficult as
it is a search problem whereas, for a stereo camera of known calibration, reconstruc-
tion to recover the 3D measurements is a simple geometric mechanism. Since we
have sets of three unique points, (x, x’, X), this mechanism is called triangulation
(not to be confused with surface mesh triangulation, described in Chap. 4).

This section is designed to give the reader a good general grounding in two-view
geometry and estimation of the key two-view geometric relations that can be useful
even when extrinsic or intrinsic camera calibration information is not available.'?
As long as the concept of epipolar geometry is well understood, the remaining main
sections of this chapter can be followed easily.

9<Approximately’, because of noise in the imaged corner positions supplied to the calibration pro-
cess.

10Extrinsic parameters are always not known in a structure from motion problem, they are part of
what we are trying to solve for. Intrinsic parameters may or may not be known, depending on the
application.
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2.5.1 Epipolar Geometry

Epipolar geometry establishes the relationship between two camera views. When we
have calibrated cameras and we are dealing with metric image coordinates, it is de-
pendent only on the relative pose between the cameras. When we have uncalibrated
cameras and we are dealing with pixel-based image coordinates, it is additionally
dependent on the cameras’ intrinsic parameters, however, it is independent of the
scene.

Once the epipolar geometry is known, for any image point in one image, we know
that its corresponding point (its match) in the other image, must lie on a line, which
is known as the epipolar line associated with the original point. This epipolar con-
straint greatly reduces the correspondence problem from a 2D search over the whole
image to a 1D search along the epipolar line only, and hence reduces computational
cost and ambiguities.

The discussion here is limited to two-view geometry only. A similar constraint
called the trifocal tensor is applicable for three views, but is outside the scope of
this chapter. For further information on the trifocal tensor and n-view geometries,
please refer to [21].

As shown in Fig. 2.7(a), the image points x and x’, world point X and the camera
centers are co-planar and this plane is called the epipolar plane, which is shaded
in the figure. If we only know x, how is the corresponding point x" constrained?
The line I’ is the intersection of the epipolar plane with the second image plane.
I is called the epipolar line, which is the image in the second view of the ray back-
projected from x. As the point x lies on I, the correspondences search does not
need to cover the entire image but can be restricted only to the line I'. In fact, if any
point on epipolar line 1 has a corresponding point in the second image, it must lie on
epipolar line I’ and vice-versa. Thus 1 and I are called conjugate epipolar lines.

The epipole is the point of intersection of the line joining the camera centers with
the image plane. The epipole e is the projection of the second camera center on the
first image, while the epipole € is the projection of the first camera center on the
second image.

In essence, two-view epipolar geometry describes the intersection of the image
planes with the pencil of planes having the baseline as the pencil axis, as illustrated
in Fig. 2.7(b). Note that the baseline is the line joining the two camera centers.!!
All epipolar lines intersect at the epipole of the respective image to give a pencil of
epipolar lines in each image. Note that the epipoles are not necessarily within the
boundaries of the image. A special case is when the cameras are oriented in the same
direction and they are separated by a translation parallel to both image planes. In this
case, the epipoles are at infinity and the epipolar lines are parallel. Furthermore, if
the translation is in the X direction only and the cameras have the same intrinsic
parameters, the conjugate epipolar lines lie on the same image rows. This is an ideal
set up when we search for correspondences between the two images. However, we

'The length of the baseline is the magnitude of the extrinsic translation vector, t.
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epipolar
plane

epipolar
A line

baseline
(b)

Fig. 2.7 (a) The epipolar geometry establishes the relationship between the two camera views.
(b) The epipolar planes rotate around the baseline and all epipolar lines intersect at the epipole

may prefer some camera vergence to improve the field-of-view overlap between the
two cameras and, in this case, the images need to be warped so that the epipolar lines
become horizontal again. This rectification process is discussed later in the chapter.

The epipolar constraint can be represented algebraically by a 3 x 3 matrix called
the fundamental matrix (F), when we are dealing with raw pixel coordinates, and by
the essential matrix (E) when the intrinsic parameters of the cameras are known and
we are dealing with metrically expressed coordinates (e.g. millimeters) in the image
plane.

2.5.2 Essential and Fundamental Matrices

Both the essential and fundamental matrices derive from a simple co-planarity con-
straint. For simplicity it is best to look at the epipolar relation using the essential
matrix first and then adapt it using the camera intrinsic parameters to obtain a rela-
tion for pixel-based image coordinates, which involves the fundamental matrix.
Referring to Fig. 2.8, we have a world point X that projects to points x. and X/, in
the image planes. These image plane points are expressed as 3-vectors, so that they
are effectively the 3D positions of the imaged points expressed metrically in their
own camera frame, hence the subscript c. (Note also that they can be regarded as
normalized homogeneous image coordinates, with the scale set to the focal length,
f, although any non-zero scale would suffice.) We know that the three vectors Cx,,
C’x. and t are co-planar, so we can choose one of the two camera frames to ex-
press this co-planarity, using the scalar triple product. If we choose the right frame
(primed), then we must rotate vector Cx, using rotation matrix R, to give:

xi.T (t x Rx.) =0.

Expressing the cross product with t by the multiplication with the skew-symmetric
matrix [t],, we have:

X/C[t]x Rx. =0,
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Fig. 2.8 The essential matrix E = [t],R encodes the epipolar geometry. It is used to relate the
correspondences X, and x|, between two images, when these image locations are expressed in
metric units. If pixel-based coordinates are used (for example, if intrinsic camera parameters are
unknown) epipolar geometry is encoded by the fundamental matrix F

where
0 —1; 1
(t], = Iz 0 —Ix
—ty 1y 0
and thus we have:
E =[t]R (2.15)
and
X Ex, =0. (2.16)

Thus the essential matrix encapsulates only extrinsic parameters, namely, the ro-
tation and translation associated with the relative pose of the two cameras. The
implication of this is that, in applications where R and t have not been computed in
a calibration procedure, they may be recoverable from an estimate of E, which will
be discussed further in Sect. 2.8.2 in the context of structure from motion.

In many practical situations, we also need to deal with uncalibrated cameras
where the intrinsic parameters are unknown (i.e. the mapping between metric image
coordinates and raw pixel values is unknown). The shifting and scaling operations
required for this conversion can be encapsulated in matrices K and K/, as follows:

/ 1,/
x = Kx,, X =Kx,,

where K and K’ are the 3 x 3 matrices containing the intrinsic camera parameters
for the two cameras. Inserting these relations into Eq. (2.16) gives:

XTKTEK 'x=0
xXTFx=0
thus
F=KTeEK™! =K~ T[t],RK™!
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and we can see that the fundamental matrix encapsulates both intrinsic and extrinsic
parameters. The interpretation of the epipolar constraint given by the fundamental
matrix, is that, if points x and x’ correspond, then X’ must lie on the epipolar line
given by I' = Fx and therefore the dot product between x’ and Fx is zero.

Some key properties of the fundamental matrix are summarized below:

o If F is the fundamental matrix between camera P and camera P’, then F7 is the
fundamental matrix between camera P’ and camera P.

e F is a projective mapping taking a point to a line. If 1 and I’ are corresponding (i.e.
conjugate) epipolar lines, then any point x on 1 maps to the same line I'. Hence,
there is no inverse mapping (zero determinant, rank 2).

e F has seven degrees of freedom. While a 3 x 3 homogeneous matrix has eight
independent ratios, there is also an additional constraint that the determinant of F
is zero (F is rank 2), which further removes one degree of freedom.

e For any point x in the first image, the corresponding epipolar line in the second
image is I = Fx. Similarly, I = F7x’ represents the epipolar line in the first image
corresponding to X" in the second image.

e The epipoles are determined as the left and right nullspaces of the fundamen-
tal matrix. This is evident, since each epipole is on every epipolar line in their
respective image. This is written as €71 = ¢’ Fx = 0 Vx, hence e'” F = 0. Simi-
larly 17e = x'7 Fe = 0 Vx/, hence Fe = 0.

e The SVD (Singular Value Decomposition) of F is given as F = Udiag(o1, 02, 0) VI
where U = [uy, up, €], V= [vy, v2, e]. Thus finding the column in V that corre-
sponds to the zero singular value gives a simple method of computation of the
epipoles from the fundamental matrix.

e For cameras with some vergence (epipoles not at infinity) to give camera projec-
tion matrices: P = K[1|0] and P’ = K'[R|t], then we have: F = K-T[t]xRK™! =
[K't] K'RK~! =K ~TRKT [KRT t], [21].

2.5.3 The Fundamental Matrix for Pure Translation

If the two identical cameras (K = K') are separated by a pure translation (R = 1), the
fundamental matrix has a simple form, which can be shown to be [21]:

0 —e ¢
F=[Kt]y = [e/]x =| e 0 —e
-, e 0

In this case, the epipoles are at the same location in both images. If the transla-
tion is parallel to the image plane, the epipoles are at infinity with e, = ¢, =0 and
the epipolar lines are parallel in both images. When discussing rectilinear stereo
rigs and rectification later, we will be particularly interested in the case when the
translation is parallel to the camera’s x-axis, in which case the epipolar lines are
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parallel and horizontal and thus correspond to image scan (raster) lines. In this case
¢ =[1,0,0]7 and the fundamental matrix is:

00 O
F={0 0 -1
01 O

and hence the relationship between corresponding points x and x’ is given by
x'TFx = 0 which reduces to y = y'.

2.5.4 Computation of the Fundamental Matrix

As the fundamental matrix is expressed in terms of corresponding image points,
F can be computed from image correspondences alone. No camera calibration in-
formation is needed and pixel coordinates are used directly. Note that there are de-
generate cases in the estimation of F. These occur in two common and well-known
instances: (i) when the relative pose between the two views can be described by a
pure rotation and (ii) when the scene is planar. For now we consider scenarios where
such degeneracies do not occur and we return to them later.
By expanding X' Fx = 0 where x =[x, y, 1]” and X’ =[x/, y’, 1] and

fit fiz fi3
F=| /a1 f2 fs3
1 2 f3

we obtain:

X' xfir+ Xy +x fiz+yxfu+ Yy +y fa3+xf3 +yfn+ f13=0.

As each feature correspondence provides one equation, for n correspondences, we
get the following set of linear equations:

[ fun
fi2
f13
XXy oxXpoypx oy oy ooy L] g,
: : : : : R Jo |=0 (2.17)
x,/qxn xy/z)’n x,; Y,an y,;yn y,/z Xy yn 1 J23
f31
f32
| /33

or more compactly,
Af=0,

where A is termed the data matrix and f is the vector of unknown elements of F.
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The eight-point algorithm'? [27] can be used as a very simple method to solve
for F linearly using eight correspondences. As this is a homogeneous set of equa-
tions, f can only be determined up to a scale factor. With eight correspondences,
Eq. (2.17) can be solved by linear methods, where the solution is the nullspace of A.
(This can be found from the column in V that corresponds to the zero singular value
in D in the singular value decomposition A = UDV.) However, a solution with a
minimal set of correspondences is often inaccurate, particularly if the correspon-
dences are not well spread over the images, or they may not provide enough strong
constraints if some of them are near-collinear or co-planar. It is preferable to use
more than eight correspondences, then the least squares solution for f is given by
the singular vector corresponding to the smallest singular value of A.

Note that this approach is similar to that for determining the homography matrix,
discussed earlier in Sect. 2.4.1. As with that approach, it is essential to normalize
the pixel coordinates of each image before applying SVD [19, 21], using a mean-
centering translation and a scaling so that the RMS distance of the points to the
origin is /2. When using homogeneous coordinates, this normalization can be ap-
plied using matrix operators N, N’, such that new normalized image coordinates are
given as x,, = Nx, x, = N'x’.

In general the solution for F, (the subscript n now denotes that we have based
the estimate on normalized image coordinates) will not have zero determinant (its
rank will be 3 and not 2), which means that the epipolar lines will not intersect at
a single point. In order to enforce this, we can apply SVD a second time, this time
to the initially estimated fundamental matrix so that F,, = UDV’. We then set the
smallest singular value (in the third row and third column of D) to zero to produce
matrix D’ and update the estimate of the fundamental matrix as F,, = UD'V”.

Of course, the estimate of F, maps points to epipolar lines in the normalized
image space. If we wish to search for correspondences within the original image
space, we need to de-normalize the fundamental matrix estimate as F = N’ TE,N.

Typically, there are many correspondences between a pair of images, including
mostly inliers but also some outliers. This is inevitable, since matching is a local
search and ambiguous matches exist, which will be discussed further in Sect. 2.7.
Various robust methods for estimating the fundamental matrix, which address the
highly corrupting effect of outliers, are compared in [55]. In order to compute F
from these correspondences automatically, a common method is to use a robust
statistics technique called Random Sample Consensus (RANSAC) [16], which we
now outline:

1. Extract features in both images, for example, from a corner detector [18].

2. Perform feature matching between images (usually over a local area neighbor-
hood) to obtain a set of potential matches or putative correspondences.

3. Repeat the following steps N times:

12There are several other approaches, such as the seven-point algorithm.
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Table 2.1 Number of
samples required to get at
least one good sample with

Sample size s e=10% ¢ =20% ¢ =30 % ¢ =40 % ¢ =50 %

99 % probability for various 4 5 9 17 34 72
sample size s and outlier 5 6 12 26 57 146
fraction & 6 7 16 37 97 293
7 8 20 54 163 588
8 9 26 78 272 1177

e Select eight putative correspondences randomly.
e Compute F using these eight points, as described above.
e Find the number of inliers'? that support F.

4. Find the F with the highest number of inliers (largest support) among the N trials.

5. Use this F to look for additional matches outside the search range used for the
original set of putative correspondences.

6. Re-compute a least squares estimate of F using all inliers.

Note that re-computing F in the final step may change the set of inliers, as the
epipolar lines are adjusted. Thus, a possible refinement is to iterate computation of a
linear least squares estimate of F and its inliers, until a stable set of inliers is achieved
or some maximum number of iterations is reached. The refinement achieved is often
considered to be not worth the additional computational expense if processing time
is considered important or if the estimate of F is to be used as the starting point for
more advanced iterative non-linear refinement techniques, described later.

In the RANSAC approach, N is the number of trials (putative F computations)
needed to get at least one good sample with a high probability (e.g. 99 %). How
large should N be? The probability p of getting a good sample is given by:

p=1-(1-1-¢")",

where ¢ is the fraction of outliers (incorrect feature correspondences) and s is the
number of correspondences selected for each trial. The above equation can be re-
arranged as:

_ log(1—p)
~log(1— (1 —¢)%)"
The number of samples required for various sample size and outlier fraction based
on Eq. (2.18) are shown in Table 2.1. It can be seen that the number of samples gets
higher as the outlier fraction increases.
By repeatedly selecting a group of correspondences, the inlier support would be
high for a correct hypothesis in which all the correspondences within the sample

(2.18)

13 An inlier is a putative correspondence that lies within some threshold of its expected position
predicted by F. In other words image points must lie within a threshold from their epipolar lines
generated by F.
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size, s, are correct. This allows the robust removal of outliers and the computation
of F using inliers only. As the fraction of outliers may not be known in advance,
an adaptive RANSAC method can be used where the number of outliers at each
iteration is used to re-compute the total number of iterations required.

As the fundamental matrix has only seven degrees of freedom, a minimum of
seven correspondences are required to compute F. When there are only seven cor-
respondences, det(F) = 0 constraint also needs to be imposed, resulting in a cubic
equation to solve and hence may produce up to three solutions and all three must be
tested for support. The advantage of using seven correspondences is that fewer trials
are required to achieve the same probability of getting a good sample, as illustrated
in Table 2.1.

Fundamental matrix refinement techniques are often based on the Levenberg-
Marquardt algorithm, such that some non-linear cost function is minimized. For
example a geometric cost function can be formulated as the sum of the squared dis-
tances between image points and the epipolar lines generated from their associated
corresponding points and the estimate of F. This is averaged over both points in a
correspondence and over all corresponding points (i.e. all those that agree with the
estimate of F). The minimization can be expressed as:

N

1

F= mFm(N Z(d(x;, FX,’)2 + d(Xi, FTX;)2)> ;
i=1

where d(x,1) is the distance of a point x to a line 1, expressed in pixels. For more

details of this and other non-linear refinement schemes, the reader is referred to [21].

2.5.5 Two Views Separated by a Pure Rotation

If two views are separated by a pure rotation around the camera center, the baseline
is zero, the epipolar plane is not defined and a useful fundamental matrix cannot
be computed. In this case, the back-projected rays from each camera cannot form a
triangulation to compute depth. This lack of depth information is intuitive because,
under rotation, all points in the same direction move across the image in the same
way, regardless of their depth. Furthermore, if the translation magnitude is small, the
epipolar geometry is close to this degeneracy and computation of the fundamental
matrix will be highly unstable.

In order to model the geometry of correspondences between two rotated views,
a homography, described by a 3 x 3 matrix H, should be estimated instead. As
described earlier, a homography is a projective transformation (projectivity) that
maps points to points and lines to lines. For two identical cameras (K = K'), the
scene-to-image projections are:

x = K[1|0]X, x = K[R|0]X
hence

x = KRK™!x = Hx. (2.19)
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Fig. 2.9 The homography PR \

induced by a plane &, where /\ '-,II
a point x in the first image
can be transferred to the point L : |
x’ in the second image T

We can think of this homography as a mapping of image coordinates onto normal-
ized coordinates (centered on the principal point at a unit metric distance from the
camera). These points are rotated and then multiplying by K generates the image
coordinates on the focal plane of the second, rotated camera.

2.5.6 Two Views of a Planar Scene

A homography should also be estimated for planar scenes where correspondences
cannot uniquely define the epipolar geometry and hence the fundamental matrix.
Similar to Eq. (2.7), the 2D-to-2D projection of the world plane & in Fig. 2.9 to the
left and right images are given by:

Axx=H,.X, Avx =HoX,

where Hy, H,s are 3 x 3 homography matrices (homographies) and x, X are homo-
geneous image coordinates. The planar homographies form a group and hence we
can form a composite homography as H = H,/H_ ! and it is straightforward to show
that:

Ax = Hx.

Figure 2.9 illustrates this mapping from x to x" and we say that a homography is
induced by the plane 7. Homography estimation follows the same approach as was
described in Sect. 2.4.1 for a scene-to-image planar homography (replacing X with
x and x with X" in Egs. (2.8) to (2.10)).

Note that a minimum of four correspondences (no three points collinear in either
image) are required because, for the homography, each correspondence generates a
pair of constraints. Larger numbers of correspondences allow a least squares solu-
tion to an over-determined system of linear equations. Again suitable normalizations
are required before SVD is applied to determine the homography.

A RANSAC-based technique can also be used to handle outliers, similar to the
fundamental matrix estimation method described in Sect. 2.5.4. By repeatedly se-
lecting the minimal set of four correspondences randomly to compute H and count-
ing the number of inliers, the H with the largest number of inliers can be chosen.
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Additional matches that are not in the original set of putative correspondences can be
obtained using the best H. Then, H can be re-computed using all supporting matches
in a linear least squares minimization using SVD.

Finally we note that, as in the case of the fundamental matrix, a non-linear opti-
mization can be applied to refine the homography solution, if required by the appli-
cation. The interested reader is referred to [21] for the details of the geometric cost
function to be minimized.

2.6 Rectification

Typically, in a stereo rig, the cameras are horizontally displaced and rotated towards
each other by an equal amount (verged), in order to overlap their fields of view. In
this case, epipolar lines lie at a variety of angles across the two images, complicat-
ing the search for correspondences. In contrast, if these cameras had their principal
axes parallel to each other (no vergence) and the two cameras had identical intrin-
sic parameters, conjugate (corresponding) epipolar lines would lie along the same
horizontal scanline in each image, as observed in Sect. 2.5.3. This configuration
is known as a standard rectilinear stereo rig. Clearly it is desirable to retain the
improved stereo viewing volume associated with verged cameras and yet have the
simplicity of correspondence search associated with a rectilinear rig.

To achieve this we can warp or rectify the raw images associated with the verged
system such that corresponding epipolar lines become collinear and lie on the same
scanline. A second advantage is that the equations for 3D reconstruction are very
simply related to image disparity after image rectification, since they correspond to
those of a simple rectilinear stereo rig. This triangulation computation is described
later in the chapter.

Rectification can be achieved either with camera calibration information, for ex-
ample in a typical stereo application, or without calibration information, for exam-
ple in a typical structure from motion application. We discuss the calibrated case
in the following subsection and give a brief mention of uncalibrated approaches in
Sect. 2.6.2.

2.6.1 Rectification with Calibration Information

Here we assume a calibrated stereo rig, where we know both the intrinsic and the
extrinsic parameters. Knowing this calibration information gives a simple rectifica-
tion approach, where we find an image mapping that generates, from the original
images, a pair of images that would have been obtained from a rectilinear rig. Of
course, the field of view of each image is still bound by the real original cameras, and
so the rectified images tend to be a different shape than the originals (e.g. slightly
trapezoidal in a verged stereo rig).
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Depending on the lenses used and the required accuracy of the application, it
may be considered necessary to correct for radial distortion, using estimated pa-
rameters k; and k from the calibration. To do the correction, we employ Eq. (2.6)
in order to compute the unknown, undistorted pixel coordinates, [x, y]7, from the
known distorted coordinates, [xg, yd]T. Of course, an iterative solution is required
for this non-linear equation and the undistorted pixel coordinates can be initialized
to the distorted coordinates at the start of this process.

Assuming some vergence, we wish to map the image points onto a pair of (vir-
tual) image planes that are parallel to the baseline and in the same plane. Thus we
can use the homography structure in Eq. (2.19) that warps images between a pair
of rotated views. Given that we already know the intrinsic camera parameters, we
need to determine the rotation matrices associated with the rectification of the left
and right views. We will assume that the origin of the stereo system is at the optical
center of the left camera and calibration information gives [R, t] to define the rigid
position of the right camera relative to this. To get the rotation matrix that we need
to apply to image points of the left camera, we define the rectifying rotation matrix
as:

T
Iy

Rrect = I‘g )
ry
where r;, i = 1...3 are a set of mutually orthogonal unit vectors. The first of these
is in the direction of the epipole or, equivalently, the direction of the translation to
the right camera, t. (This ensures that epipolar lines will be horizontal in the rectified
image.) Hence the unit vector that we require is:
t
It
The second vector r; is orthogonal to the first and obtained as the cross product of t

and the original left optical axis [0, 0, 1]7 followed by a normalization to unit length
to give:

r

T
Iy = [_ty’t)mo] .

1
[t} +13
The third vector is mutually orthogonal to the first two and so is computed using the
cross product as r3 =TIy X Ia.
Given that the real right camera is rotated relative to the real left camera, we need
to apply a rotation RR,.; to the image points of the right camera. Hence, applying
homographies to left and right image points, using the form of Eq. (2.19), we have:

—1
Xrect = KRpeer K™ X
Xpor = K'RRyecrK ™ 'X,

rect

where K and K’ are the 3 x 3 matrices containing the intrinsic camera parameters
for the left and right cameras respectively. Note that, even with the same make and
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Fig. 2.10 An image pair before rectification (a) and after rectification (b). The overlay shows
that the corresponding left and right features lie on the same image row after rectification. Figure
courtesy of [43]

model of camera, we may find that the focal lengths associated with K and K’ are
slightly different. Thus we need to scale one rectified image by the ratio of focal
lengths in order to place them on the same focal plane.

As the rectified coordinates are, in general, not integer, resampling using some
form of interpolation is required. The rectification is often implemented in reverse,
so that the pixel values in the new image plane can be computed as a bilinear inter-
polation of the four closest pixels values in the old image plane. Rectified images
give a very simple triangulation reconstruction procedure, which is described later
in Sect. 2.8.1.2.

2.6.2 Rectification Without Calibration Information

When calibration information is not available, rectification can be achieved using
an estimate of the fundamental matrix, which is computed from correspondences
within the raw image data. A common approach is to compute a pair of rectifying
homographies for the left and right images [20, 33] so that the fundamental matrix
associated with the rectified images is the same form as that for a standard rectilinear
rig and the ‘new cameras’ have the same intrinsic camera parameters. Since such
rectifying homographies map the epipoles to infinity ([1, 0, 0]7), this approach fails
when the epipole lies within the image. This situation is common in structure from
motion problems, when the camera translates in the direction of its Z-axis. Several
authors have tackled this problem by directly resampling the original images along
their epipolar lines, which are specified by an estimated fundamental matrix. For
example, the image is reparameterized using polar coordinates around the epipoles
to reduce the search ambiguity to half epipolar lines [42, 43]. Figure 2.10 shows
an example of an image pair before and after rectification for this scheme, where
the corresponding left and right features lie on the same image row afterwards.
Specialized rectifications exist, for example [10] which allows image matching over
large forward translations of the camera although, in this scheme, rotations are not
catered for.
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2.7 Finding Correspondences

Finding correspondences is an essential step for 3D reconstruction from multiple
views. The correspondence problem can be viewed as a search problem, which asks,
given a pixel in the left image, which is the corresponding pixel in the right image?
Of course there is something of a circular dependency here. We need to find corre-
spondences to determine the epipolar geometry, yet we need the epipolar geometry
to find (denser) correspondences in an efficient manner. The RANSAC sampling
approach described earlier, showed us how to break into this loop. Once we have
the epipolar geometry constraint, the search space is reduced from a 2D search to
the epipolar line only.

The following assumptions underpin most methods for finding correspondences
in image pairs. These assumptions hold when the distance of the world point from
the cameras is much larger than the baseline.

e Most scene points are visible from both viewpoints.
e Corresponding image regions are similar.

Two questions are involved: what is a suitable image element to match and what
is a good similarity measure to adopt? There are two main classes of correspondence
algorithms: correlation-based and feature-based methods. Correlation-based meth-
ods recover dense correspondences where the element to match is an image window
centered on some pixel and the similarity measure is the correlation between the
windows. Feature-based methods typically establish sparse correspondences where
the element to match is an image feature and the similarity measure is the distance
between descriptors of the image features.

2.7.1 Correlation-Based Methods

If the element to match is only a single image pixel, ambiguous matches ex-
ist. Therefore, windows are used for matching in correlation-based methods and
the similarity criterion is a measure of the correlation between the two windows.
A larger window gives larger image context which can reduce the probability of
ambiguities, but this has its own problems which will be discussed in Sect. 2.8.1.1.
The selected correspondence is given by the window that maximizes a similarity
criterion or minimizes a dissimilarity criterion within a search range. Once a match
is found, the offset between the two windows can be computed, which is called the
disparity from which the depth can be recovered. Some commonly used criteria for
correlation-based methods are described next.

Based on the rectified images in Fig. 2.11, we define the window function, where
m, an odd integer, is the image window size so that:

Wm(x,y)={(u,v)\x—(’"—;l)gusww,

y—mfviww}.

5 (2.20)
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Fig. 2.11 Correlation-based methods look for the matching image window between the left and
right rectified images. An m by m window centering at the pixel is used for correlation (Raw
image pair courtesy of the Middlebury Stereo Vision Page [34], originally sourced from Tsukuba
University)

The dissimilarity can be measured by the Sum of Squared Differences (SSD) cost
for instance, which is the intensity difference as a function of disparity d:

SSDG,y.dy= Y [huv) — L —d, ],
(u,0) €W (x,y)

where [; and I, refer to the intensities of the left and right images respectively.

If two image windows correspond to the same world object, the pixel values
of the windows should be similar and hence the SSD value would be relatively
small. As shown in Fig. 2.11, for each pixel in the left image, correlation-based
methods would compare the SSD measure for pixels within a search range along
the corresponding epipolar line in the right image. The disparity value that gives the
lowest SSD value indicates the best match.

A slight variation of SSD is the Sum of Absolute Differences (SAD) where the
absolute values of the differences are added instead of the squared values:

SAD(x,y. )= Y |hGu.v) =L —d.v)|.
(u, )Wy (x,y)

This cost measure is less computationally expensive as it avoids the multiplication
operation required for SSD. On the other hand, the SSD cost function penalizes the
large intensity difference more due to the squaring operation.

The intensities between the two image windows may vary due to illumination
changes and non-Lambertian reflection. Even if the two images are captured at the
same time by two cameras with identical models, non-Lambertian reflection and
differences in the gain and sensitivity can cause variation in the intensity. In these
cases, SSD or SAD may not give a low value even for the correct matches. For
these reasons, it is a good idea to normalize the pixels in each window. A first level
of normalization would be to ensure that the intensities in each window are zero-
mean. A second level of normalization would be to scale the zero-mean intensities
so that they either have the same range or, preferably, unit variance. This can be
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achieved by dividing each pixel intensity by the standard deviation of window pixel
intensities, after the zero mean operation, i.e. normalized pixel intensities are given
as:

o

where I is the mean intensity and o7y is the standard deviation of window intensities.
While SSD measures the dissimilarity and hence the smaller the better, Normalized
Cross-Correlation (NCC) measures the similarity and hence, the larger the better.
Again, the pixel values in the image window are normalized first by subtracting
the average intensity of the window so that only the relative variation would be
correlated. The NCC measure is computed as follows:

Z(,,,U)ewm(x,y)(ll(% v) — I_[)(Ir(u —d,v) — I_r)

NCC(x,y,d) = — —,
VE et i v) = T2 — d, v) = T)?

where

— 1 — 1
I=— > Lwv), TL=— Y Luv).

T )W (x.y) T ) W (x.y)

2.7.2 Feature-Based Methods

Rather than matching each pixel, feature-based methods only search for correspon-
dences to a sparse set of features, such as those located by a repeatable, well-
localized interest point detector (e.g. a corner detector). Apart from locating the
features, feature extraction algorithms also compute some sort of feature descriptors
for their representation, which can be used for the similarity criterion. The correct
correspondence is given by the most similar feature pair, the one with the minimum
distance between the feature descriptors.

Stable features are preferred in feature-based methods to facilitate matching be-
tween images. Typical examples of image features are edge points, lines and corners.
For example, a feature descriptor for a line could contain the length, the orientation,
coordinates of the midpoint or the average contrast along the edge line. A problem
with linear features is that the matching can be poorly localized along the length of
a line particularly if a linear feature is fragmented (imagine a smaller fragment from
the left image sliding along a larger fragment from the right image). This is known
as the aperture problem, referring to the fact that a local match ‘looks through’ a
small aperture.

As a consequence, point-based features that are well-localized in two mutually
orthogonal directions, have been preferred by researchers and practitioners in the
field of computer vision. For example, the Harris corner detector [18] extracts points
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Fig. 2.12 Wide baseline matching between two images with SIFT. The size and orientation of the
squares correspond to the scale and orientation of the matching SIFT features

that differ as much as possible from neighboring points. This is achieved by looking
for high curvatures in two mutually orthogonal directions, as the gradient is ill-
defined in the neighborhood of corners. The corner strength or the grayscale values
in a window region around each corner could be used as the descriptor. Another
corner detector SUSAN [52] detects features based on the size, centroid and second
moments of the local areas. As it does not compute image derivatives, it is robust to
noise and does not require image smoothing.

Wide baseline matching refers to the situation where the two camera views differ
considerably. Here, matching has to operate successfully over more difficult con-
ditions, since there are larger geometric and photometric variations between the
images.

In recent years, many interest point detection algorithms have been proposed that
are scale invariant and viewpoint invariant to a certain extent which facilitates wide
baseline matching. An interest point refers to an image feature that is stable under
local and global perturbation and the local image structure is rich in terms of local
image contents. These features are often described by a distinctive feature descrip-
tor which is used as the similarity criterion. They can be used even when epipolar
geometry is not yet known, as such distinctive descriptors allow correspondences to
be searched over the whole image relatively efficiently.

For example, the Scale Invariant Feature Transform (SIFT) [28] and the Speeded-
Up Robust Feature (SURF) [2] are two popular features which were developed for
image feature generation in object recognition applications. The SIFT feature is de-
scribed by a local image vector with 128 elements, which is invariant to image trans-
lation, scaling, rotation and partially invariant to illumination changes and affine or
3D projections.

Figure 2.12 shows an example of matching SIFT features across large baseline
and viewpoint variation. It can be seen that most matches are correct, thanks to the
invariance and discriminative nature of SIFT features.
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Table 2.2 Different types of 3D reconstruction

S. Se and N. Pears

A priori knowledge

3D reconstruction

Intrinsic and extrinsic parameters

Intrinsic parameters only

Absolute 3D reconstruction

Metric 3D reconstruction (up to a scale factor)

No information Projective 3D reconstruction

2.8 3D Reconstruction

Different types of 3D reconstruction can be obtained based on the amount of a priori
knowledge available, as illustrated in Table 2.2. The simplest method to recover 3D
information is stereo where the intrinsic and extrinsic parameters are known and the
absolute metric 3D reconstruction can be obtained. This means we can determine
the actual dimensions of structures, such as: height of door =1.93 m.

For structure from motion, if no such prior information is available, only
a projective 3D reconstruction can be obtained. This means that 3D structure
is known only up to an arbitrary projective transformation so we know, for
example, how many planar faces the object has and what point features are
collinear, but we do not know anything about the scene dimensions and an-
gular measurements within the scene. If intrinsic parameters are available, the
projective 3D reconstruction can be upgraded to a metric reconstruction, where
the 3D reconstruction is known up to a scale factor (i.e. a scaled version of
the original scene). There is more detail to this hierarchy of reconstruction
than we can present here (for example affine 3D reconstruction lies between
the metric and projective reconstructions) and we refer the interested reader
to [21].

2.8.1 Stereo

Stereo vision refers to the ability to infer information on the 3D structure and dis-
tance of a scene from two or more images taken from different viewpoints. The
disparities of all the image points form the disparity map, which can be displayed
as an image. If the stereo system is calibrated, the disparity map can be converted to
a 3D point cloud representing the scene.

The discussion here focuses on binocular stereo for two image views only. Please
refer to [51] for a survey of multiple-view stereo methods that reconstruct a com-
plete 3D model instead of just a single disparity map, which generates range image
information only. In such a 3D imaging scenario, there is at most one depth per im-
age plane point, rear facing surfaces and other self-occlusions are not imaged and
the data is sometimes referred to as 2.5D.
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Fig. 2.13 A sample disparity map (b) obtained from the left image (a) and the right image (c).
The disparity value for the pixel highlighted in red in the disparity map corresponds to the length
of the line linking the matching features in the right image. Figure courtesy of [43]

2.8.1.1 Dense Stereo Matching

The aim of dense stereo matching is to compute disparity values for all the im-
age points from which a dense 3D point cloud can be obtained. Correlation-based
methods provide dense correspondences while feature-based methods only provide
sparse correspondences. Dense stereo matching is more challenging than sparse cor-
respondences as textureless regions do not provide information to distinguish the
correct matches from the incorrect ones. The quality of correlation-based match-
ing results depends highly on the amount of texture available in the images and the
illumination conditions.

Figure 2.13 shows a sample disparity map after dense stereo matching. The dis-
parity map is shown in the middle with disparity values encoded in grayscale level.
The brighter pixels refer to larger disparities which mean the object is closer. For
example, the ground pixels are brighter than the building pixels. An example of cor-
respondences is highlighted in red in the figure. The pixel itself and the matching
pixel are marked and linked on the right image. The length of the line corresponds
to the disparity value highlighted in the disparity map.

Comparing image windows between two images could be ambiguous. Various
matching constraints can be applied to help reduce the ambiguity, such as:

Epipolar constraint
Ordering constraint
Uniqueness constraint
Disparity range constraint

The epipolar constraint reduces the search from 2D to the epipolar line only, as
has been described in Sect. 2.5. The ordering constraint means that if pixel b is to
the right of a in the left image, then the correct correspondences a’ and b" must also
follow the same order (i.e. b’ is to the right of @’ in the right image). This constraint
fails if there is occlusion.

The uniqueness constraint means that each pixel has at most one corresponding
pixel. In general, there is a one-to-one correspondence for each pixel, but there is
none in the case of occlusion or noisy pixels.
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Fig. 2.14 The effect of window size on correlation-based methods: (a) input images (b) dispar-
ity map for a small correlation window (c) disparity map for a large correlation window (Raw
image pair courtesy of the Middlebury Stereo Vision Page [34], originally sourced from Tsukuba
University)

The disparity range constraint limits the disparity search range according to the
prior information of the expected scene. Maximum disparity sets how close the ob-
ject can be while the minimum disparity sets how far the object can be. Zero dispar-
ity refers to objects at infinity.

One important parameter for these correlation-based methods is the window size
m in Eq. (2.20). While using a larger window size provides more intensity variation
and hence more context for matching, this may cause problems around the occlusion
area and at object boundaries, particularly for wide baseline matching.

Figure 2.14 shows the effect of window size on the resulting disparity map. The
disparity map in the middle is for a window size of 3 x 3. It can be seen that,
while it captures details well, it is very noisy, as the smaller window provides less
information for matching. The disparity map on the right is for a window size of
15 x 15. It can be seen that while it looks very clean, the boundaries are not well-
defined. Moreover, the use of a larger window size also increases the processing time
as more pixels need to be correlated. The best window size is a trade-off between
these two effects and is dependent on the level of fine detail in the scene.

For local methods, disparity computation at a given point depends on the inten-
sity value within a local window only. The best matching window is indicated by the
lowest dissimilarity measure or the highest similarity measure which uses informa-
tion in the local region only. As pixels in an image are correlated (they may belong
to the same object for instance), global methods could improve the stereo matching
quality by making use of information outside the local window region.

Global methods perform optimization across the image and are often formulated
as an energy minimization problem. Dynamic programming approaches [3, 5, 11]
compute the minimum-cost path through the matrix of all pair-wise matching costs
between two corresponding scanlines so that the best set of matches that satisfy
the ordering constraint can be obtained. Dynamic programming utilizes information
along each scanline independently, therefore, it may generate results that are not
consistent across scanlines.

Graph cuts [6, 25] is one of the current state-of-the-art optimization techniques.
These approaches make use of information across the whole image and produce
high quality disparity maps. There is a trade-off between stereo matching quality
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and the processing time. Global methods such as graph cuts, max flow [45], and
belief propagation [53, 54] produce better disparity maps than local methods but
they are very computationally intensive.

Apart from the algorithm itself, the processing time also depends on the image
resolution, the window size and the disparity search range. The higher the image
resolution, the more pixels need to be processed to produce the disparity map. The
similarity measure needs to correlate more pixels for a larger window size. The
disparity search range affects how many such measures need to be computed in
order to find the correct match.

Hierarchical stereo matching methods have been proposed by down-sampling the
original image into a pyramid [4, 44]. Dense stereo matching is first performed on
the lowest resolution image and disparity ranges can be propagated back to the finer
resolution image afterwards. This coarse-to-fine hierarchical approach allows fast
computation to deal with a large disparity range, as a narrower disparity range can
be used for the original image. Moreover, the more precise disparity search range
helps to obtain better matches in the low texture areas.

The Middlebury webpage [34] provides standard datasets with ground truth in-
formation for researchers to benchmark their algorithms so that the performance
of various algorithms can be evaluated and compared. A wide spectrum of dense
stereo matching algorithms have been benchmarked, as illustrated in Fig. 2.15 [46].
Researchers can submit results of new algorithms which are ranked based on various
metrics, such as RMS error between computed disparity map and ground truth map,
percentage of bad matching pixels and so on. It can be observed from Fig. 2.15 that
it is very difficult to understand algorithmic performance by qualitative inspection
of disparity maps and the quantitative measures presented in [46] are required.

2.8.1.2 Triangulation

When the corresponding left and right image points are known, two rays from the
camera centers through the left and right image points can be back-projected. The
two rays and the stereo baseline lie on a plane (the epipolar plane) and form a tri-
angle, hence the reconstruction is termed ‘triangulation’. Here we describe trian-
gulation for a rectilinear arrangement of two views or, equivalently, two rectified
views.

After image rectification, the stereo geometry becomes quite simple as shown
in Fig. 2.16, which shows the top-down view of a stereo system composed of two
pinhole cameras. The necessary parameters, such as baseline and focal length, are
obtained from the original stereo calibration. The following two equations can be
obtained based on the geometry:

, X
xcsz
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19 — Belief propagation 11— GC + occlusions 20 — Layered stereo

10 — Graph cuts 6 — Max flow

#2 — Dynamic progr.

14 — Realtime SAD *3 — Scanline opt. 7 — Pixel-to-pixel stereo *]1 - SSD+MF

Fig. 2.15 Comparative disparity maps for the top fifteen dense stereo matching algorithms in [46]
in decreasing order of performance. The fop left disparity map is the ground truth. Performance
here is measured as the percentage of bad matching pixels in regions where there are no occlusions.
This varies from 1.15 % in algorithm 19 to 5.23 % in algorithm 1. Algorithms marked with a % were
implemented by the authors of [46], who present a wider range of algorithms in their publication.
Figure courtesy of [46]

Fig. 2.16 The stereo
geometry becomes quite
simple after image
rectification. The world
coordinate frame is arbitrarily
centered on the right camera.
B is the stereo baseline and f
is the focal length. Disparity
is given by d = x, — x/.

ZA
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where x.. and x, are the corresponding horizontal image coordinates (in metric units)
in the right and left images respectively, f is the focal length and B is the baseline
distance.

Disparity d is defined as the difference in horizontal image coordinates between
the corresponding left and right image points, given by:

fB
d= Xe — )Cé = 7
Therefore,

B
z=18

d

, , (2.21)

X — Zx, v — Zy.,

f f

where y/. is the vertical image coordinates in the right image.

This shows that the 3D world point can be computed once disparity is available:
(x.,y.,d) — (X,Y, Z). Disparity maps can be converted into depth maps using
these equations to generate a 3D point cloud. It can be seen that triangulation is
straightforward compared to the earlier stages of computing the two-view relations
and finding correspondences.

Stereo matches are found by seeking the minimum of some cost functions across
the disparity search range. This computes a set of disparity estimates in some dis-
cretized space, typically integer disparities, which may not be accurate enough for
3D recovery. 3D reconstruction using such quantized disparity maps leads to many
thin layers of the scene. Interpolation can be applied to obtain sub-pixel disparity
accuracy, such as fitting a curve to the SSD values for the neighboring pixels to find
the peak of the curve, which provides more accurate 3D world coordinates.

By taking the derivatives of Eq. (2.21), the standard deviation of depth is given
by:

ZZ

AZ =—Ad,

Bf
where Ad is the standard deviation of the disparity. This equation shows that the
depth uncertainty increases quadratically with depth. Therefore, stereo systems typ-
ically are operated within a limited range. If the object is far away, the depth esti-
mation becomes more uncertain. The depth error can be reduced by increasing the
baseline, focal length or image resolution. However, each of these has detrimen-
tal effects. For example, increasing the baseline makes matching harder and causes
viewed objects to self-occlude, increasing the focal length reduces the depth of field,
and increasing image resolution increases processing time and data bandwidth re-
quirements. Thus, we can see that design of stereo cameras typically involves a
range of performance trade-offs, where trade-offs are selected according to the ap-
plication requirements.

Figure 2.17 compares the depth uncertainty for three stereo configuration as-
suming a disparity standard deviation of 0.1 pixel. A stereo camera with higher
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Fig. 2.17 A plot illustrating the stereo uncertainty with regard to image resolution and baseline
distance. A larger baseline and higher resolution provide better accuracy, but each of these has
other costs

resolution (dashed line) provides better accuracy than the one with lower resolu-
tion (dotted line). A stereo camera with a wider baseline (solid line) provides better
accuracy than the one with a shorter baseline (dashed line).

A quick and simple method to evaluate the accuracy of 3D reconstruction, is to
place a highly textured planar target at various depths from the sensor, fit a least
squares plane to the measurements and measure the residual RMS error. In many
cases, this gives us a good measure of depth repeatability, unless there are signif-
icant systematic errors, for example from inaccurate calibration of stereo camera
parameters. In this case, more sophisticated processes and ground truth measure-
ment equipment are required. Capturing images of a target of known size and shape
at various depths, such as a textured cube, can indicate how reconstruction performs
when measuring in all three spatial dimensions.

2.8.2 Structure from Motion

Structure from motion (SfM) is the simultaneous recovery of 3D structure and cam-
era relative pose (position and orientation) from image correspondences and it refers
to the situation where images are captured by a moving camera. There are three sub-
problems in structure from motion.

e Correspondence: which elements of an image frame correspond to which ele-
ments of the next frame.
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e Ego-motion and reconstruction: determination of camera motion (sometimes
called ego-motion) and structure of the observed world.

e Segmentation: extraction of regions corresponding to one or more moving ob-
jects.

The third sub-problem is a relatively recent problem in structure from motion,
where some objects in the scene may have moved between frames. For dynamic
scenes, features belonging to moving objects could be identified and removed as
outliers. Alternatively one could consider an environment to contain an unknown
number (n) of independently moving objects and a static environment as n + 1
SfM sub-problems, each having their own F matrix. However, for the following
discussion, we assume that the scene is static, without any moving objects.

By matching features between frames, we obtain at least eight correspondences
from which the fundamental matrix can be recovered as described in Sect. 2.5.4.
Without camera calibration parameters, only the projective reconstruction can be
obtained where orthogonal lines in the world may not be reconstructed as orthogo-
nal. While this may be useful by itself, most practical applications require at least
metric reconstruction where the reconstructed 3D model is a scaled version of the
real scene.

Metric reconstruction requires camera intrinsic parameters which can be esti-
mated from the images themselves using self-calibration (auto-calibration) tech-
niques [21, 35] developed in recent years. Such methods exploit some prior informa-
tion of the scene itself such as parallel lines, vanishing points and so on. For better
accuracy and more robustness, the camera intrinsic parameters can be obtained with
a calibration procedure using a known calibration grid, as discussed in Sect. 2.4.

Once the camera intrinsic parameters are known, the essential matrix E can be
computed from the fundamental matrix. According to Eq. (2.15), the motion can
be recovered from E, where t is determined up to a scale factor only (since we can
multiply Eq. (2.16) by an arbitrary non-zero scale factor). The physical insight into
this is that the same image disparity between a pair of views can occur for a point
close to the camera positions and a point n-times the distance away with n-times the
translation. Effectively we have scaled similar triangles in the triangulation-based
reconstruction process.

SVD can be applied to extract t and R from E as follows [21]. Application of
SVD gives the factorization E = UDV’ . By defining:

0 -1 0 0 1 0
W=(1 0 0], Z=|-1 0 0],
0 0 1 0 00

the solution is given by:
R=uUwv!l or uw’v’
t=+tus,

where u3 is the third column of matrix U. With two possible choices of R and t,
there are four possible solutions. Testing with a single point to determine if it is in
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front of both cameras is sufficient to decide among the four different solutions. For
further details, please refer to [21].

Once t (up to scale) and R have been extracted from E, the sparse scene structure
can be recovered by computing the intersection between the back-projected rays. In
general, due to measurement noise, these will not intersect in 3D space. The simplest
solution is to compute the mid-point of the shortest perpendicular line between the
two rays. However, a refined solution is to choose a reconstructed scene point X,
such that it minimizes the sum of square errors between the actual image positions
and their positions predicted by their respective camera projection matrices. The
scene structure is only determined up to a scale factor but in some applications this
could be constrained, for example, if some measurement is known in the scene,
or the translation can be estimated from the wheel odometry of a mobile robot.
In summary, this method first estimates the intrinsic camera parameters (or uses
an existing calibration) after which the extrinsic camera parameters are recovered.
Both the intrinsic and extrinsic camera parameters are then used to compute the
scene structure.

Alternatively, bundle adjustment‘4 offers a more accurate method that simultane-
ously optimizes the 3D structure and the 6-DOF camera pose (extrinsic camera pa-
rameters) for each view in an image sequence [57]. Sometimes the intrinsic camera
parameters are also refined in the procedure. This is a batch process that iteratively
refines the camera parameters and the 3D structure in order to minimize the sum
of the reprojection errors. (A reprojection error is the Euclidean distance between
an image feature and its reprojection into the image plane after computing the 3D
world coordinate and the camera pose associated with that image point.) Since a
specific reprojection error is only dependent on its own scene point and own view-
point, the structure of the equations is sparse. Thus, even though bundle adjustment
is thought to be fairly computationally expensive, exploitation of sparse linear al-
gebra algorithms can significantly mitigate this. Such procedures are referred to as
sparse bundle adjustment.

Using consecutive video frames gives poor 3D accuracy due to the very short
baseline. An image pair formed by a larger time increment would provide better
3D information. However, if the time increment is too large, the camera could have
moved significantly and it would be harder to establish correct correspondences.
One possible solution to this is to track features over several short baseline frames
using a small, local area-based search, before computing 3D from a pair of frames
tracked over a significantly longer baseline.

2.9 Passive Multiple-View 3D Imaging Systems

Examples of passive multiple-view 3D imaging systems and their applications will
now be presented, including stereo cameras, 3D modeling and mobile robot naviga-

14Bundle adjustment methods appeared several decades ago in the photogrammetry literature and
are now used widely in the computer vision community.
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tion. 3D modeling systems generate photo-realistic 3D models from sequences of
images and have a wide range of applications. For mobile robot applications, pas-
sive multiple-view 3D imaging systems are used for localization, building maps and
obstacle avoidance.

2.9.1 Stereo Cameras

Stereo cameras can be custom-built by mounting two individual cameras on a rigid
platform separated by a fixed baseline. However, it is important that, for non-static
scenes or for mobile platforms, the two cameras are synchronized so that they cap-
ture images at the same time. In order to obtain absolute 3D information, as dis-
cussed earlier in Table 2.2, the stereo camera needs to be calibrated to recover the
intrinsic and extrinsic parameters. It is also critical that the relative camera pose
does not change over time, otherwise, re-calibration would be required.

Commercial off-the-shelf (COTS) stereo vision systems have been emerging in
recent years. These cameras often have a fixed baseline and are pre-calibrated by
the vendor. Typically, they are nicely packaged and convenient to use and an exam-
ple was given earlier in Fig. 2.1. The Point Grey Research Bumblebee camera'” is
another example, which comes pre-calibrated and an application programming in-
terface (API) is provided to configure the camera and grab images, as well as rectify
the images and perform dense stereo matching.

It is desirable to obtain disparity maps in real-time in many applications, for ex-
ample obstacle detection for mobile robots. Hardware-accelerated correlation-based
stereo systems are now commercially available, which can offer a high update rate
required for mobile robot navigation, as well as to free up the processor for other
tasks.

The Tyzx DeepSea G2 stereo vision system'® provides real-time embedded 3D
vision processing without the use of separate computer. The custom image pro-
cessing chip (an Application-Specific Integrated Circuit or ASIC), a Field Pro-
grammable Gate Array (FPGA) and an embedded PowerPC are all enclosed in the
self-contained camera package. Different baselines and lens options are available.
Real-time 3D depth data can be obtained via an Ethernet connection. Figure 2.18
shows that the Tyzx system is used on a rugged military Unmanned Ground Vehicle
(UGV) for obstacle detection [62].

Videre Design [59] offers fixed baseline and variable baseline stereo cameras, as
well as a stereo camera with onboard processing. Their stereo on a chip (STOC)
camera performs stereo processing onboard the camera and these are available with
different fixed baselines. The fixed baseline cameras are pre-calibrated at the factory
while the variable baseline cameras can be field-calibrated, offering flexibility for
different range requirements.

Shttp://www.ptgrey.com/products/stereo.asp.
1ohttp://www.tyzx.com/products/DeepSeaG2.html.
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Fig. 2.18 A military UGV (Unmanned Ground Vehicle) equipped with the Tyzx DeepSea G2
stereo vision system [62]. Image courtesy of iRobot Corporation

Dense stereo matching can be highly parallelized, therefore such algorithms are
highly suitable to run on graphics processing units (GPUs) to free up the CPU for
other tasks. GPUs have a parallel throughput architecture that supports executing
many concurrent threads, providing immense speed-up for highly parallelized algo-
rithms. A dense stereo matching algorithm has been implemented on a commodity
graphics card [63] to perform several hundred millions of disparity evaluations per
second. This corresponds to 20 Hz for 512 x 512 image resolution with 32 disparity
search range, therefore real-time performance can be achieved without the use of
specialized hardware.

2.9.2 3D Modeling

The creation of photo-realistic 3D models of observed scenes has been an active
research topic for many years. Such 3D models are very useful for both visualization
and measurements in various applications such as planetary rovers, defense, mining,
forensics, archeology and virtual reality.

Pollefeys et al. [43] and Nister [38] presented systems which create surface mod-
els from a sequence of images taken with a hand-held video camera. The camera
motion is recovered by matching corner features in the image sequence. Dense
stereo matching is carried out between the frames. The input images are used as
surface texture to produce photo-realistic 3D models. These monocular approaches
only output a scaled version of the original scene, but can be scaled with some prior
information. Moreover, it requires a long processing time.

The objective of the DARPA Urbanscape project [36] is to develop a real-time
data collection and processing system for the automatic geo-registered 3D recon-
struction of urban scenes from video data. Multiple video streams as well as Global
Positioning System (GPS) and Inertial Navigation System (INS) measurements are
collected to reconstruct photo-realistic 3D models and place them in geo-registered
coordinates. An example of a large-scale 3D reconstruction is shown in Fig. 2.19.
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Fig. 2.19 An example of 3D modeling of urban scene from the Urbanscape project. Figure cour-
tesy of [36]

Fig. 2.20 The user points the stereo camera freely at the scene of interest (left) and the photo-re-
alistic 3D model of the scene is generated (right). Figure adapted from [47]

A stereo-camera based 3D vision system is capable of quickly generating cal-
ibrated photo-realistic 3D models of unknown environments. Instant Scene Mod-
eler (iISM) can process stereo image sequences captured by an unconstrained hand-
held stereo camera [47]. Dense stereo matching is performed to obtain 3D point
clouds from each stereo pair. 3D point clouds from each stereo pair are merged
together to obtain a color 3D point cloud. Furthermore, a surface triangular mesh
is generated from the point cloud. This is followed by texture mapping, which in-
volves mapping image textures to the mesh triangles. As adjacent triangles in the
mesh may use different texture images, seamlines may appear unless texture blend-
ing is performed. The resulting photo-realistic 3D models can be visualized from
different views and absolute measurements can be performed on the models. Fig-
ure 2.20 shows the user pointing the hand-held COTS stereo camera to freely scan
the scene and the resulting photo-realistic 3D model, which is a textured triangular
mesh.

For autonomous vehicles and planetary rovers, the creation of 3D terrain models
of the environment is useful for visualization and path planning [1]. Moreover, the
3D modeling process achieves significant data compression, allowing the transfer of
data as compact surface models instead of raw images. This is beneficial for plane-
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Fig. 2.21 First image of a sequence captured by an autonomous rover in a desert in Nevada (left).
Terrain model generated with virtual rover model inserted (right). Resulting terrain model and
rover trajectory (bottom). Figure courtesy of [1]

Fig. 2.22 Mars Exploration Rover stereo image processing (/eft) and the reconstructed color 3D
point cloud (right), with a virtual rover model inserted. Figure courtesy of [31]

tary rover exploration due to the limited bandwidth available. Figure 2.21 shows a
photo-realistic 3D model created from a moving autonomous vehicle that traveled
over 40 m in a desert in Nevada.

One of the key technologies required for planetary rover navigation is the ability
to sense the nearby 3D terrain. Stereo cameras are suitable for planetary exploration
thanks to their low power and low mass requirements and the lack of moving parts.
The NASA Mars Exploration Rovers (MERs), named Opportunity and Spirit, both
use passive stereo image processing to measure geometric information about the
environment [31]. This is done by matching and triangulating pixels from a pair
of rectified stereo images to generate a 3D point cloud. Figure 2.22 shows an ex-
ample of the stereo images captured and the color 3D point cloud generated which
represents the imaged terrain.
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Fig. 2.23 3D model of a mock crime scene obtained with a hand-held stereo camera. Figure
courtesy of [48]

Fig. 2.24 Underground mine 3D model (left) and consecutive 3D models as the mine advances
(right). The red and blue lines on the left are geological features annotated by geologists to help
with the ore body modeling. Figure courtesy of [48]

Documenting crime scenes is a tedious process that requires the investigators
to record vast amounts of data by using video, still cameras and measuring de-
vices, and by taking samples and recording observations. With passive 3D imaging
systems, 3D models of the crime scene can be created quickly without much dis-
turbance to the crime scene. The police can also perform additional measurements
using the 3D model after the crime scene is released. The 3D model can potentially
be shown in court so that the judge and the jury can understand the crime scene bet-
ter. Figure 2.23 shows a 3D reconstruction of a mock crime scene generated from a
hand-held stereo sequence within minutes after acquisition [48].

Photo-realistic 3D models are useful for survey and geology in underground min-
ing. The mine map can be updated after each daily drill/blast/ore removal cycle to
minimize any deviation from the plan. In addition, the 3D models can also allow
the mining companies to monitor how much ore is taken at each blast. Figure 2.24
shows a photo-realistic 3D model of an underground mine face annotated with ge-



86 S. Se and N. Pears

Fig. 2.25 3D reconstruction of a building on the ground using video (left) and using infra-red
video (right) captured by an UAV (Unmanned Aerial Vehicle). Figure courtesy of [50]

ological features and consecutive 3D models of a mine tunnel created as the mine
advances [48].

Airborne surveillance and reconnaissance are essential for successful military
missions. Unmanned Aerial Vehicles (UAVs) are becoming the platform of choice
for such surveillance operations and video cameras are among the most common
sensors onboard UAVs. Photo-realistic 3D models can be generated from UAV video
data to provide situational awareness as it is easier to understand the scene by visu-
alizing it in 3D. The 3D model can be viewed from different perspectives and allow
distance measurements and line-of-sight analysis. Figure 2.25 shows a 3D recon-
struction of a building on the ground using video and infra-red video captured by an
UAV [50]. The photo-realistic 3D models are geo-referenced and can be visualized
in 3D Geographical Information System (GIS) viewers such as Google Earth.

2.9.3 Mobile Robot Localization and Mapping

Mobile robot localization and mapping is the process of simultaneously tracking
the position of a mobile robot relative to its environment and building a map of the
environment. Accurate localization is a prerequisite for building a good map and
having an accurate map is essential for good localization. Therefore, Simultaneous
Localization and Mapping (SLAM) is a critical underlying capability for successful
mobile robot applications. To achieve a SLAM capability, high resolution passive
vision systems can capture images in milliseconds, hence they are suitable for mov-
ing platforms such as mobile robots.

Stereo vision systems are commonly used on mobile robots, as they can measure
the full six degrees of freedom (DOF) of the change in robot pose. This is known
as visual odometry. By matching visual landmarks between frames to recover the
robot motion, visual odometry is not affected by wheel slip and hence is more accu-
rate than the wheel-based odometry. For outdoor robots with GPS receivers, visual
odometry can also augment the GPS to provide better accuracy, and it is also valu-
able in environments where GPS signals are not available.
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Fig. 2.26 (a) Autonomous rover on a gravel test site with obstacles (b) Comparison of the esti-
mated path by SLAM, wheel odometry and DGPS (Differential GPS). Figure courtesy of [1]

Unlike in 3D modeling where correlation-based dense stereo matching is typ-
ically performed, feature-based matching is sufficient for visual odometry and
SLAM; indeed, it is preferable for real-time robotics applications, as it is computa-
tionally less expensive. Such features are used for localization and a feature map is
built at the same time.

The MERSs Opportunity and Spirit are equipped with visual odometry capabil-
ity [32]. An update to the rover’s pose is computed by tracking the motion of
autonomously-selected terrain features between two pairs of stereo images. It has
demonstrated good performance and successfully detected slip ratios as high as
125 % even while driving on slopes as high as 31 degrees.

As SIFT features [28] are invariant to image translation, scaling, rotation, and
fairly robust to illumination changes and affine or even mild projective deforma-
tion, they are suitable landmarks for robust SLAM. When the mobile robot moves
around in an environment, landmarks are observed over time but from different
angles, distances or under different illumination. SIFT features are extracted and
matched between the stereo images to obtain 3D SIFT landmarks which are used
for indoor SLAM [49] and for outdoor SLAM [1]. Figure 2.26 shows a field trial
of an autonomous vehicle at a gravel test site with obstacles and a comparison of
rover localization results. It can be seen that the vision-based SLAM trajectory is
much better than the wheel odometry and matches well with the Differential GPS
(DGPS).

Monocular visual SLAM applications have been emerging in recent years and
these only require a single camera. The results are up to a scale factor, but can be
scaled with some prior information. MonoSLAM [14] is a real-time algorithm which
can recover the 3D trajectory of a monocular camera, moving rapidly through a pre-
viously unknown scene. The SLAM methodology is applied to the vision domain of
a single camera, thereby achieving real-time and drift-free performance not offered
by other structure from motion approaches.

Apart from localization, passive 3D imaging systems can also be used for obsta-
cle/hazard detection in mobile robotics. Stereo cameras are often used as they can
recover the 3D information without moving the robot. Figure 2.27 shows the stereo
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Left image Left image
Right image Right image

Fig. 2.27 Examples of hazard detection using stereo images: a truck (left) and a person (right)

images and the hazard maps for a truck and a person respectively. Correlation-based
matching is performed to generate a dense 3D point cloud. Clusters of point cloud
that are above the ground plane are considered as hazards.

2.10 Passive Versus Active 3D Imaging Systems

Before concluding, we briefly compare passive multiple-view 3D imaging systems
and their active imaging counterpart, as a bridge between this and the following
chapter. Passive systems do not emit any illumination and only perceive the ambient
light reflected from the scene. Typically this is reflected sunlight when outdoors, or
the light reflected from standard room lighting when indoors. On the other hand, ac-
tive systems include their own source of illumination, which has two main benefits:

e 3D structure can be determined in smooth, textureless regions. For passive stereo,
it would be difficult to extract features and correspondences in such circum-
stances.

e The correspondence problem either disappears, for example a single spot of light
may be projected at any one time, or is greatly simplified by controlling the struc-
ture of the projected light.

The geometric principle of determining depth from a light (or other EMR) pro-
jector (e.g. laser) and a camera is identical to the passive binocular stereo situation.
The physical difference is that, instead of using triangulation applied to a pair of
back-projected rays, we apply triangulation to the axis of the projected light and a
single back-projected ray.

Compared with active approaches, passive systems are more computationally in-
tensive as the 3D data is computed from processing the images and matching image
features. Moreover, the depth data could be noisier as it relies on the natural texture
in the scene and ambient lighting condition. Unlike active scanning systems such as
laser scanners, cameras could capture complete images in milliseconds, hence they
can be used as mobile sensors or operate in dynamic environments. The cost, size,
mass and power requirements of cameras are generally lower than those of active
Sensors.
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2.11 Concluding Remarks

One of the key challenges for 3D vision researchers is to develop algorithms to
recover accurate 3D information robustly under a wide range of illumination condi-
tions which can be done by humans so effortlessly. While 3D passive vision algo-
rithms have been maturing over the years, this is still an active topic in the research
community and at major computer vision conferences. Many algorithms perform
reasonably well with test data but there are still challenges to handle scenes with
uncontrolled illumination. Other open issues include efficient global dense stereo
matching, multi-image matching and fully automated accurate 3D reconstruction
from images.

Passive 3D imaging systems are becoming more prevalent as cameras are getting
cheaper and computers are fast enough to handle the intensive processing require-
ments. Thanks to hardware acceleration and GPUs, real-time applications are more
common, leading to a growing number of real-world applications.

After working through this chapter, you should be able to:

e Explain the fundamental concepts and challenges of passive 3D imaging systems.
e Explain the principles of epipolar geometry.

e Solve the correspondence problem by correlation-based and feature-based tech-
niques (using off-the-shelf feature extractors).

Estimate the fundamental matrix from correspondences.

Perform dense stereo matching and compute a 3D point cloud.

Explain the principles of structure from motion.

Provide example applications of passive 3D imaging systems.

2.12 Further Reading

Two-view geometry is studied extensively in [21], which also covers the equiva-
lent of epipolar geometry for three or more images. The eight-point algorithm was
proposed in [19] to compute the fundamental matrix, while the five-point algorithm
was proposed in [39] for calibrated cameras. Reference [57] provides a good tutorial
and survey on bundle adjustment, which is also covered in textbooks [15, 21] and a
recent survey article [35].

Surveys such as [46] serve as a guide to the extensive literature on stereo imaging.
Structure from motion is extensively covered in review articles such as [35]. A step-
by-step guide to 3D modeling from images is described in detail in [30]. Non-rigid
structure from motion for dynamic scenes is discussed in [56].

Multiple-view 3D vision continues to be a highly active research topic and some
of the major computer vision conferences include: the International Conference
on Computer Vision (ICCV), IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) and the European Conference on Computer Vision (ECCV).
Some of the relevant major journals include: International Journal of Computer
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Vision (IJCV), IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) and Image and Vision Computing (IVC).

The International Society for Photogrammetry and Remote Sensing (ISPRS) pro-
ceedings and archives provide extensive literature on photogrammetry and related
topics.

The following web sites provide comprehensive on-line resources for computer
vision including 3D passive vision topics and are being updated regularly.

e CVonline (http://homepages.inf.ed.ac.uk/rbf/CVonline/) provides an on-line com-
pendium of computer vision.

e VisionBib.Com (http://www.visionbib.com) contains annotated bibliography on a
wide range of computer vision topics, as well as references to available datasets.

e Computer Vision online (http://www.computervisiononline.com) is a portal with
links to software, hardware and datasets.

e OpenCV (http://opencv.willowgarage.com) is an open-source computer vision li-
brary.

2.13 Questions

1. What are the differences between passive and active 3D vision systems?

2. Name two approaches to recover 3D from single images and two approaches to
recover 3D from multiple images.

3. What is the epipolar constraint and how can you use it to speed up the search for
correspondences?

4. What are the differences between essential and fundamental matrices?

5. What is the purpose of rectification?

6. What are the differences between correlation-based and feature-based methods
for finding correspondences?

7. What are the differences between local and global methods for dense stereo

matching?

What are the differences between stereo and structure from motion?

9. What are the factors that affect the accuracy of stereo vision systems?

®©

2.14 Exercises

Experimenting with stereo imaging requires that you have two images of a scene
from slightly different viewpoints, with a good overlap between the views, and a
significant number of well distributed corner features that can be matched. You will
also need a corner detector. There are many stereo image pairs and corner detector
implementations available on the web [40]. Of course, you can collect your own
images either with a pre-packaged stereo camera or with a pair of standard digital
cameras. The following programming exercises should be implemented in a lan-
guage of your choice.


http://homepages.inf.ed.ac.uk/rbf/CVonline/
http://www.visionbib.com
http://www.computervisiononline.com
http://opencv.willowgarage.com

Passive 3D Imaging 91

. Fundamental matrix with manual correspondences. Run a corner detector on the

image pair. Use a point-and-click GUI to manually label around 20 well dis-
tributed correspondences. Compute the fundamental matrix and plot the conju-
gate pair of epipolar lines on the images for each correspondence. Experiment
with different numbers and combinations of correspondences, using a minimum
of eight in the eight-point algorithm. Observe and comment on the sensitivity of
the epipolar lines with respect to the set of correspondences chosen.

. Fundamental matrix estimation with outlier removal. Add 4 incorrect corner cor-

respondences to your list of 20 correct ones. Observe the effect on the computed
fundamental matrix and the associated (corrupted) epipolar lines. Augment your
implementation of fundamental matrix estimation with the RANSAC algorithm.
Use a graphical overlay on your images to show that RANSAC has correctly
identified the outliers, and verify that the fundamental matrix and its associated
epipolar lines can now be computed without the corrupting effect of the outliers.

. Automatic feature correspondences. Implement a function to automatically

match corners between two images according to the Sum of Squared Differ-
ences (SSD) measure. Also, implement a function for the Normalized Cross-
Correlation (NCC) measure. Compare the matching results with test images of
similar brightness and also of different brightness.

. Fundamental matrix from automatic correspondences. Use your fundamental

matrix computation (with RANSAC) with the automatic feature correspon-
dences. Determine the positions of the epipoles and, again, plot the epipolar lines.

The following additional exercises require the use of a stereo rig, which could be a
pre-packaged stereo pair or a home-made rig with a pair of standard digital cameras.
The cameras should have a small amount of vergence to overlap their fields of view.

5.

Calibration. Create your own calibration target by printing off a chessboard pat-
tern and pasting it to a flat piece of wood. Use a point-and-click GUI to semi-
automate the corner correspondences between the calibration target and a set
of captured calibration images. Implement a camera calibration procedure for a
stereo pair to determine the intrinsic and extrinsic parameters of the stereo rig.
If you have less time available you may choose to use some of the calibration
libraries available on the web [9, 40].

Rectification. Compute an image warping (homography) to apply to each image
in the stereo image pair, such that conjugate epipolar lines are horizontal (parallel
to the x-axis) and have the same y-coordinate. Plot a set of epipolar lines to check
that this rectification is correct.

Dense stereo matching. Implement a function to perform local dense stereo
matching between left and right rectified images, using NCC as the similarity
measure, and hence generate a disparity map for the stereo pair. Capture stereo
images for a selection of scenes with varying amounts of texture within them and
at varying distances from the cameras, and compare their disparity maps.

. 3D reconstruction. Implement a function to perform a 3D reconstruction from

your disparity maps and camera calibration information. Use a graphics tool to
visualize the reconstructions. Comment on the performance of the reconstruc-
tions for different scenes and for different distances from the stereo rig.
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