
2Vector Spaces, Affine Spaces, and Metric
Spaces

This chapter is only meant to give a short overview of the most important concepts
in linear algebra, affine spaces, and metric spaces and is not intended as a course;
for that we refer to the vast literature, e.g., [1] for linear algebra and [2] for metric
spaces. We will in particular skip most proofs.

In Sect. 2.1 on vector spaces we present the basic concepts of linear algebra:
vector space, subspace, basis, dimension, linear map, matrix, determinant, eigen-
value, eigenvector, and inner product. This should all be familiar concepts from a
first course on linear algebra. What might be less familiar is the abstract view where
the basic concepts are vector spaces and linear maps, while coordinates and matrices
become derived concepts. In Sect. 2.1.5 we state the singular value decomposition
which is used for mesh simplification and in the ICP algorithm for registration.

In Sect. 2.2 on affine spaces we only give the basic definitions: affine space,
affine combination, convex combination, and convex hull. The latter concept is used
in Delauney triangulation.

Finally in Sect. 2.3 we introduce metric spaces which makes the concepts of open
sets, neighborhoods, and continuity precise.

2.1 Vector Spaces and Linear Algebra

A vector space consists of elements, called vectors, that we can add together and
multiply with scalars (real numbers), such that the normal rules hold. That is,

Definition 2.1 A real vector space is a set V together with two binary operations
V × V → V : (u,v) �→ u + v and R× V → V : (λ,v) �→ λv, such that:
1. For all u,v,w ∈ V , (u + v) + w = u + (v + w).
2. For all u,v ∈ V , u + v = v + u.
3. There exists a zero vector 0 ∈ V , i.e., for any u ∈ V , u + 0 = u.
4. All u ∈ V has a negative element, i.e., there exists −u ∈ V such that u +

(−u) = 0.
5. For all α,β ∈ R and u ∈ V , α(βu) = (αβ)u.
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6. For all α,β ∈ R and u ∈ V , (α + β)u = αu + βu.
7. For all α ∈ R and u,v ∈ V , α(u + v) = αu + αv.
8. Multiplication by 1 ∈R is the identity, i.e., for all u ∈ V , 1u = u.

Remark 2.1 In the definition above the set R of real numbers can be replaced with
the set C of complex numbers and then we obtain the definition of a complex vector
space. We can in fact replace R with any field, e.g., the set Q of rational numbers,
the set of rational functions, or with finite fields such as Z2 = {0,1}.

Remark 2.2 We often write the sum u + (−v) as u − v.

We leave the proof of the following proposition as an exercise.

Proposition 2.1 Let V be a vector space and let u ∈ V be a vector.
1. The zero vector is unique, i.e., if 0′,u ∈ V are vectors such that 0′ + u = u, then

0′ = 0.
2. If v,w ∈ V are negative elements to u, i.e., if u + v = u + w = 0, then v = w.
3. Multiplication with zero gives the zero vector, i.e., 0u = 0.
4. Multiplication with −1 gives the negative vector, i.e., (−1)u = −u.

Example 2.1 The set of vectors in the plane or in space is a real vector space.

Example 2.2 The set R
n = {(x1, . . . , xn) | xi ∈ R, i = 1, . . . , n} is a real vector

space, with addition and multiplication defined as

(x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn), (2.1)

α(x1, . . . , xn) = (αx1, . . . , αxn). (2.2)

Example 2.3 The complex numbers C with usual definition of addition and multi-
plication is a real vector space.

Example 2.4 The set Cn with addition and multiplication defined by (2.1) and (2.2)
is a real vector space.

Example 2.5 Let Ω be a domain in R
n. A real function f : Ω → R is called a Cn

function if all partial derivatives up to order n exist and are continuous, the set of
these functions is denoted Cn(Ω), and it is a real vector space with addition and
multiplication defined as

(f + g)(x) = f (x) + g(x),

(αf )(x) = αf (x).
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Example 2.6 Let Ω be a domain in R
n. A map f : Ω → R

k is called a Cn map
if each coordinate function is a Cn function. The set of these functions is denoted
Cn(Ω,Rk) and it is a real vector space, with addition and multiplication defined as

(f + g)(x) = f (x) + g(x),

(αf )(x) = αf (x).

Example 2.7 The set of real polynomials is a real vector space.

Example 2.8 The set of solutions to a system of homogeneous linear equations is a
vector space.

Example 2.9 The set of solutions to a system of homogeneous linear ordinary dif-
ferential equations is a vector space.

Example 2.10 If U and V are real vector spaces, then U × V is a real vector space
too, with addition and multiplication defined as

(u1,v1) + (u2,v2) = (u1 + u2,v1 + v2),

α(u,v) = (αu, αv).

Example 2.11 Let a = t0 < t1 < · · · < tk = b be real numbers and let n,m ∈ Z0 be
non zero integers. The space

{
f ∈ Cn

([a, b]) | f |[t�−1,t�] is a polynomial of degree at most m, � = 1, . . . , k
}

is a real vector space.

2.1.1 Subspaces, Bases, and Dimension

A subset U ⊆ V of a vector space is called a subspace if it is a vector space itself.
As it is contained in a vector space we do not need to check all the conditions in
Definition 2.1. In fact, we only need to check that it is stable with respect to the
operations. That is,

Definition 2.2 A subset U ⊆ V of a vector space V is a subspace if
1. For all u,v ∈ U , u + v ∈ U .
2. For all α ∈ R and u ∈ U , αu ∈ U .

Example 2.12 The subset {(x, y,0) ∈ R
3 | (x, y) ∈R

3} is a subspace of R3.

Example 2.13 The subsets {0},V ⊆ V are subspaces of V called the trivial sub-
spaces.
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Example 2.14 If U,V ⊆ W are subspaces of W the U ∩ V is a subspace too.

Example 2.15 If U and V are vector spaces, then U ×{0} and {0}×V are subspaces
of U × V .

Example 2.16 The subsets R, iR ⊆ C of real and purely imaginary numbers, re-
spectively, are subspaces of C.

Example 2.17 The set of solutions to k real homogeneous linear equations in n

unknowns is a subspace of Rn.

Example 2.18 If m ≤ n then Cn([a, b]) is a subspace of Cm([a, b]).
Example 2.19 The polynomial of degree at most n is a subspace of the space of all
polynomials.

Definition 2.3 Let X ⊆ V be a non empty subset of a vector space. The subspace
spanned by X is the smallest subspace of V that contains X. It is not hard to see that
it is the set consisting of all linear combinations of elements from X,

spanX = {α1v1 + · · · + αnvn | αi ∈R,v1, . . . ,vn ∈ X,n ∈ N}. (2.3)

If spanX = V then we say that X spans V and X is called a spanning set.

Example 2.20 A non zero vector in space spans all vectors on a line.

Example 2.21 Two non zero vectors in space that are not parallel span all vectors in
a plane.

Example 2.22 The complex numbers 1 and i span the set of real and purely imagi-
nary numbers, respectively, i.e., span{1} = R ⊆ C and span{i} = iR ⊆ C.

Definition 2.4 The sum of two subspaces U,V ⊆ W is the subspace

U + V = span(U ∪ V ) = {u + v ∈ W | u ∈ U ∧ v ∈ V }. (2.4)

If U ∩ V = {0} then the sum is called the direct sum and is written as U ⊕ V .

Example 2.23 The complex numbers are the direct sum of the real and purely imag-
inary numbers, i.e., C = R⊕ iR.

Definition 2.5 A finite subset X = {v1, . . . ,vn} ⊆ V is called linearly independent
if the only solution to the equation

α1v1 + · · · + αnvn = 0

is the trivial one, α1 = · · · = αn = 0. That is, the only linear combination that gives
the zero vector is the trivial one. Otherwise, the set is called linearly dependent.
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An important property of vector spaces is the existence of a basis. This is secured
by the following theorem, which we shall not prove.

Theorem 2.1 For a finite subset {v1, . . . ,vn} ⊆ V of a vector space the following
three statements are equivalent.
1. {v1, . . . ,vn} is a minimal spanning set.
2. {v1, . . . ,vn} is a maximal linearly independent set.
3. Each vector v ∈ V can be written as a unique linear combination

v = α1v1 + · · · + αnvn.

If {u1, . . . ,um} and {v1, . . . ,vn} both satisfy these conditions then m = n.

Definition 2.6 A finite set {v1, . . . ,vn} ⊆ V of a vector space is called a basis if it
satisfies one, and hence all, of the conditions in Theorem 2.1. The unique number
of elements in a basis is called the dimension of the vector space and is denoted
dimV = n.

Theorem 2.2 Let V be a finite dimensional vector space and let X ⊆ V be a subset.
Then the following holds:
1. If X is linearly independent then we can find a set of vectors Y ⊆ V such that

X ∪ Y is a basis.
2. If X is a spanning set then we can find a basis Y ⊆ X.

The theorem says that we always can supplement a linearly independent set to a
basis and that we always can extract a basis from a spanning set.

Corollary 2.1 If U,V ⊆ W are finite dimensional subspaces of W then

dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ). (2.5)

Example 2.24 Two vectors not on the same line are a basis for all vectors in the
plane.

Example 2.25 Three vectors not in the same plane are a basis for all vectors in
space.

Example 2.26 The vectors

ek = (0, . . . ,0︸ ︷︷ ︸
k−1

,1,0, . . . ,0︸ ︷︷ ︸
n−k

) ∈R
n, k = 1, . . . , n, (2.6)

are a basis for Rn called the standard basis, so dim(Rn) = n.

Example 2.27 The complex numbers 1 and i are a basis for C.
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Example 2.28 If U ∩ V = {0} are subspaces of a vector space and {u1, . . . ,uk} and
{v1, . . . ,v�} are bases for U and V , respectively, then {u1, . . . ,uk,v1, . . . ,v�} is a
basis for U ⊕ V .

Example 2.29 The monomials 1, x, . . . , xn are a basis for the polynomials of degree
at most n.

Example 2.30 The Bernstein polynomials Bn
k (x) = (

n
k

)
(1 − x)n−kxk , k = 0, . . . , n

are a basis for the polynomials of degree at most n.

2.1.2 Linear Maps, Matrices, and Determinants

A map between vector spaces is linear if it preserves addition and multiplication
with scalars. That is,

Definition 2.7 Let U and V be vector spaces. A map L : U → V is linear if:
1. For all u,v ∈ U , L(u + v) = L(u) + L(v).
2. For all α ∈ R and u ∈ U , L(αu) = αL(u).

Example 2.31 If V is a vector space and α ∈R is a real number then multiplication
by α: V → V : v �→ αv is a linear map.

Example 2.32 The map R → R : x �→ ax + b with b �= 0 is not linear, cf., Exer-
cise 2.7.

Example 2.33 Differentiation Cn([a, b]) → Cn−1([a, b]) : f �→ df
dx

is a linear map.

Example 2.34 If L1,L2 : U → V are two linear maps, then the sum L1 +L2 : U →
V : u �→ L1(u) + L2(u) is a linear map too.

Example 2.35 If α ∈ R and L : U → V is a linear map, then the scalar product
αL : U → V : u �→ αL(u) is a linear map too.

Example 2.36 If L1 : U → V and L2 : V → W are linear maps, then the composi-
tion L2 ◦ L1 : U → W is a linear map too.

Example 2.37 If L : U → V is linear and bijective, then the inverse map L−1 : V →
U is linear too.

Examples 2.34 and 2.35 show that the space of linear maps between two vector
spaces is a vector space.

Recall the definition of an injective, surjective, and bijective map.

Definition 2.8 A map f : A → B between two sets is
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• injective if for all x, y ∈ A we have f (x) = f (y) =⇒ x = y;
• surjective if there for all y ∈ B exists x ∈ A such that f (x) = y;
• bijective if it is both injective and surjective.

A map is invertible if and only if it is bijective.

Definition 2.9 Let L : U → V be a linear map. The kernel of L is the set

kerL = L−1(0) = {
u ∈ U | L(u) = 0

}
, (2.7)

and the image of L is the set

L(U) = {
f (u) ∈ V | u ∈ U

}
. (2.8)

We have the following.

Theorem 2.3 Let L : U → V be a linear map between two vector spaces. Then the
kernel kerL is a subspace of U and the image L(U) is a subspace of V . If U and
V are finite dimensional then
1. dimU = dim kerL + dimL(U);
2. L is injective if and only if ker(L) = {0};
3. if L is injective then dimU ≤ dimV ;
4. if L is surjective then dimU ≥ dimV ;
5. if dimU = dimV then L is surjective if and only if L is injective.

If L : U → V is linear and u1, . . . ,um is a basis for U and v1, . . . ,vm is a basis
for V , then we can write the image of a basis vector uj as L(uj ) = ∑n

i=1 aij vi .
Then the image of an arbitrary vector u =∑m

j=1 xj uj ∈ U is

L

(
m∑

j=1

xj uj

)

=
m∑

j=1

xjL(uj ) =
m∑

j=1

xj

n∑

i=1

aij vi

=
n∑

i=1

(
m∑

j=1

aij xj

)

vi =
n∑

i=1

yivi . (2.9)

We see that the coordinates yi of the image vector L(u) is given by the coordinates
xj of u by the following matrix equation:

⎛

⎜
⎝

y1
...

yn

⎞

⎟
⎠=

⎛

⎜
⎝

a11 . . . a1m

...
. . .

...

an1 . . . anm

⎞

⎟
⎠

⎛

⎜
⎝

x1
...

xm

⎞

⎟
⎠ . (2.10)

The matrix with entries aij is called the matrix for L with respect to the bases
u1, . . . ,um and v1, . . . ,vm. Observe that the columns consist of the coordinates of
the image of the basis vectors. Also observe that the first index i in aij gives the row
number while the second index j gives the column number.
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We denote the ith row in A by Ai_ and the j th column by A|j . That is,

A =
⎛

⎜
⎝

A1_
...

An_

⎞

⎟
⎠= (

A|1 . . . A|m
)
. (2.11)

Addition of linear maps now corresponds to addition of matrices,
⎛

⎜
⎝

a11 . . . a1m

...
. . .

...

an1 . . . anm

⎞

⎟
⎠+

⎛

⎜
⎝

b11 . . . b1m

...
. . .

...

bn1 . . . bnm

⎞

⎟
⎠

=
⎛

⎜
⎝

a11 + b11 . . . a1m + b1m

...
. . .

...

an1 + bn1 . . . anm + bnm

⎞

⎟
⎠ (2.12)

and scalar multiplication of linear maps corresponds to multiplication of a matrix
with a scalar

α

⎛

⎜
⎝

a11 . . . a1m

...
. . .

...

an1 . . . anm

⎞

⎟
⎠=

⎛

⎜
⎝

αa11 . . . αa1m

...
. . .

...

αan1 . . . αanm

⎞

⎟
⎠ . (2.13)

Composition of linear maps corresponds to matrix multiplication, which is defined
as follows. If A is a k × m matrix with entries aij and B is an m × n matrix with
entries bij then the product is an k × n matrix C = AB where the element cij is
the sum of the products of the elements in the ith row from A and the j th column
from B, i.e.,

cij = Ai_B|j =
m∑

k=1

aikbkj . (2.14)

The identity matrix is the n×n matrix with ones in the diagonal and zeros elsewhere,

I =

⎛

⎜⎜⎜⎜
⎝

1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

⎞

⎟⎟⎟⎟
⎠

. (2.15)

If A is an n × m matrix and B is an m × n matrix then

IA = A and BI = B. (2.16)

Definition 2.10 We say an n × n matrix A is invertible if there exists a matrix A−1

such that

AA−1 = A−1A = I. (2.17)
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Fig. 2.1 The matrix for a
linear map with respect to
different bases

The matrix A−1 is then called the inverse of A.

Theorem 2.4 Let A be the matrix for a linear map L : U → V with respect to the
bases u1, . . . ,um and v1, . . . ,vm for U and V , respectively. Then A is invertible if
and only if L is bijective. In that case A−1 is the matrix for L−1 with respect to the
bases v1, . . . ,vm and u1, . . . ,um.

An in some sense trivial, but still important special case is when U = V and the
map is the identity map id : u �→ u. Let S be the matrix of id with respect to the
bases u1, . . . ,um and û1, . . . , ûm. The j th column of S consists of the coordinates
of id(uj ) = uj with respect to the basis û1, . . . , ûm. Equation (2.10) now reads

û = Su, (2.18)

and gives us the relation between the coordinates u and û of the same vector u with
respect to the bases u1, . . . ,um and û1, . . . , ûm, respectively.

Now suppose we have a linear map L : U → V between two vector spaces, and
two pairs of different bases, u1, . . . ,um and û1, . . . , ûm for U and v1, . . . ,vn and
v̂1, . . . , v̂n for V . Let A be the matrix for L with respect to the bases u1, . . . ,um and
v1, . . . ,vn and let Â be the matrix for L with respect to the bases û1, . . . , ûm and
v̂1, . . . , v̂n. Let furthermore S be the matrix for the identity U → U with respect to
the bases u1, . . . ,um and û1, . . . , ûm and let R be the matrix for the identity V → V

with respect to the bases v1, . . . ,vn and v̂1, . . . , v̂n; then

Â = RAS−1, (2.19)

see Fig. 2.1. A special case is when U = V , vi = ui , and v̂i = ûi . Then we have
Â = SAS−1.

Definition 2.11 The transpose of a matrix A is the matrix AT which is obtained
by interchanging the rows and columns. That is, if A has entries aij , then AT has
entries αij , where αij = aji .

Definition 2.12 An n × n matrix A is called symmetric if AT = A.

Definition 2.13 An n × n matrix U is called orthogonal if UT U = I, i.e., if
U−1 = UT .

Definition 2.14 An n × n matrix A is called positive definite if xT Ax ≥ 0 for all
non zero column vectors x.



22 2 Vector Spaces, Affine Spaces, and Metric Spaces

Before we can define the determinant of a matrix we need the notion of permu-
tations.

Definition 2.15 A permutation is a bijective map σ : {1, . . . , n} → {1, . . . , n}. If
i �= j , then σij denotes the transposition that interchanges i and j , i.e., the permu-
tation defined by

σij (i) = j, σij (j) = i, σij (k) = k, if k �= i, j. (2.20)

It is not hard to see that any permutation can be written as the composition of a
number of transpositions σ = σikjk

◦ · · · ◦ σi2j2 ◦ σi1j1 . This description is far from
unique, but the number k of transpositions needed for a given permutation σ is either
always even or always odd. If the number is even σ is called an even permutation,
otherwise it is called an odd permutation. The sign of a sigma is now defined as

signσ =
{

1 if σ is even,

−1 if σ is odd.
(2.21)

Definition 2.16 The determinant of an n × n matrix A is the completely anti sym-
metric multilinear function of the columns of A that is 1 on the identity matrix. That
is,

det(A|σ(1), . . . ,A|σ(n)) = sign(σ )det(A|1,A|2, . . . ,A|n) (2.22)

det
(
A′|1 + A′′|1,A|2, . . . ,A|n

)= det
(
A′|1,A|2, . . . ,A|n

)

+ det
(
A′′|1,A|2, . . . ,A|n

)
, (2.23)

det
(
αA|1,A|2, . . . ,A|n

)= α det
(
A|1,A|2, . . . ,A|n

)
, (2.24)

det(I) = 1, (2.25)

where σ is a permutation. The determinant of A can be written

det A =
∑

σ

signσ

n∏

i=1

aiσ(i), (2.26)

where the sum is over all permutations σ of {1, . . . , n}.

The definition is not very practical, except in the case of 2×2 and 3×3 matrices.
Here we have

det

(
a11 a12
a21 a22

)
=
∣∣∣∣
a11 a12
a21 a22

∣∣∣∣= a11a22 − a12a21, (2.27)
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Fig. 2.2 The area and volume can be calculated as determinants: area = det(u,v) and volume =
det(u,v,w)

The determinant of a 2 × 2 matrix A can be interpreted as the signed area of the
parallelogram in R

2 spanned by the vectors A1_ and A2_, see Fig. 2.2.

det

⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ =
∣∣∣∣∣∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣
= a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31. (2.28)

The determinant of a 3 × 3 matrix A can be interpreted as the signed volume of the
parallelepiped spanned by the vectors A1_, A2_, and A3_, see Fig. 2.2. The same
is true in higher dimensions. The determinant of a n × n matrix A is the signed
n-dimensional volume of the n-dimensional parallelepiped spanned by the columns
of A.

For practical calculations one makes use of the following properties of the deter-
minant.

Theorem 2.5 Let A be an n × n matrix, then

det AT = det A. (2.29)

The determinant changes sign if two rows or columns are interchanged, in particular

det A = 0, if two rows or columns in A are equal, (2.30)

det A =
n∑

i=1

(−1)i+j aij det Aij , for i = 1, . . . , n, (2.31)

where Aij is the matrix obtained from A by deleting the ith row and j th column,
i.e., the row and column where aij appears. If B is another n × n matrix then

det(AB) = det(A)det(B). (2.32)

The matrix A is invertible if and only if det A �= 0, and in that case

det
(
A−1)= 1

det A
. (2.33)
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Fig. 2.3 The inner product between two vectors in the plane (or in space)

If A is invertible then A−1 has entries αij , where

αij = (−1)i+j det Aji

det A
. (2.34)

Suppose A and Â are matrices for a linear map L : V → V with respect to two
different bases. Then we have Â = SAS−1 where S is an invertible matrix. We now
have det Â = det(SAS−1) = det S det A det S−1 = det A. Thus, we can define the
determinant of L as the determinant of any matrix representation and we clearly see
that L is injective if and only if detL �= 0.

2.1.3 Euclidean Vector Spaces and Symmetric Maps

For vectors in the plane, or in space, we have the concepts of length and angles. This
then leads to the definition of the inner product, see Fig. 2.3. For two vectors u and
v it is given by

〈u,v〉 = u · v = ‖u‖‖v‖ cos θ, (2.35)

where ‖u‖ and ‖v‖ is the length of a u and v, respectively, and θ is the angle between
u and v.

A general vector space V does not have the a priori notions of length and angle
and in order to be able to have the concepts of length and angle we introduce an
abstract inner product.

Definition 2.17 An Euclidean vector space is a real vector space V equipped with a
positive definite, symmetric, bilinear mapping V × V → R : (u,v) �→ 〈u,v〉, called
the inner product, i.e., we have the following:
1. For all u,v ∈ V , 〈u,v〉 = 〈v,u〉.
2. For all u,v,w ∈ V , 〈u + v,w〉 = 〈u,w〉 + 〈v,w〉.
3. For all α ∈ R and u,v ∈ V , 〈αu,v〉 = α〈u,v〉.
4. For all u ∈ V , 〈u,u〉 ≥ 0.
5. For all u ∈ V , 〈u,u〉 = 0 ⇐⇒ u = 0.

Example 2.38 The set of vectors in the plane or in space equipped with the inner
product (2.35) is an Euclidean vector space. The norm (2.41) becomes the usual
length and the angle defined by (2.44) is the usual angle.
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Example 2.39 The set Rn equipped with inner product

〈
(x1, . . . , xn), (y1, . . . , yn)

〉= x1y1 + · · · + xnyn, (2.36)

is an Euclidean vector space.

Example 2.40 The space Cn([a, b]) of n times differentiable functions with contin-
uous nth derivative equipped with the inner product

〈f,g〉 =
∫ b

a

f (x)g(x)dx, (2.37)

is an Euclidean vector space. The corresponding norm is called the L2-norm.

Example 2.41 If (V1, 〈·, ·〉1) and (V2, 〈·, ·〉2) are Euclidean vector spaces, then V1 ×
V2 equipped with the inner product

〈
(u1, u2), (v1, v2)

〉= 〈u1, v1〉1 + 〈u2, v2〉2, (2.38)

is an Euclidean vector space.

Example 2.42 If (V , 〈·, ·〉) is an Euclidean vector space and U ⊆ V is a subspace
then U equipped with the restriction 〈·, ·〉|U×U of 〈·, ·〉 to U × U is an Euclidean
vector space too.

Example 2.43 The space C∞
0 ([a, b]) = {f ∈ C∞([a, b]) | f (a) = f (b) = 0} of in-

finitely differentiable functions that are zero at the endpoints equipped with the re-
striction of the inner product (2.37) is an Euclidean vector space.

If u1, . . . ,un is a basis for V , v =∑n
k=1 viui , and w =∑n

k=1 wiui then the inner
product of v and w can be written

〈v,w〉 =
n∑

k,�=1

vkw�〈uk,u�〉 = vT Gw, (2.39)

where v and w are the coordinates with respect to the basis u1, . . . ,un of v and w,
respectively, and G is the matrix

G =
⎛

⎜
⎝

〈u1,u1〉 . . . 〈u1,un〉
...

...

〈un,u1〉 . . . 〈un,un〉

⎞

⎟
⎠ . (2.40)

It is called the matrix for the inner product with respect to the basis u1, . . . ,un and
it is a positive definite symmetric matrix. Observe that we have the same kind of
matrix representation of a symmetric bilinear map, i.e., a map that satisfies condition
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(1), (2), and (3) in Definition 2.17. The matrix G is still symmetric but it need not
be positive definite.

Let û1, . . . , ûn be another basis, let Ĝ be the corresponding matrix for the inner
product, and let S be the matrix for the identity on V with respect to the two bases.
Then the coordinates of a vector u with respect to the bases satisfies (2.18) and we
see that ûT Ĝ̂v = uT ST ĜSv. That is, G = ST ĜS.

Definition 2.18 The norm of a vector u ∈ V in an Euclidean vector space (V , 〈·, ·〉)
is defined as

‖u‖ =√〈u,u〉. (2.41)

A very important property of an arbitrary inner product is the Cauchy–Schwartz
inequality.

Theorem 2.6 If (V , 〈·, ·〉) is an Euclidean vector space then the inner product sat-
isfies the Cauchy–Schwartz inequality

∣∣〈u,v〉∣∣≤ ‖u‖‖v‖, (2.42)

with equality if and only if one of the vectors is a positive multiple of the other.

Corollary 2.2 The norm satisfies the following conditions:
1. For all α ∈R and u ∈ V , ‖αu‖ = |α|‖u‖.
2. For all u,v ∈ V , ‖u + v‖ ≤ ‖u‖ + ‖v‖.
3. For all u ∈ V , ‖u‖ ≥ 0.
4. For all u ∈ V , ‖u‖ = 0 ⇐⇒ u = 0.

This is the conditions for an abstract norm on a vector space and not all norms
are induced by an inner product. But if a norm is induced by an inner product then
this inner product is unique. Indeed, if u,v ∈ V then symmetry and bilinearity imply
that

〈u + v,u + v〉 = 〈u,u〉 + 2〈u,v〉 + 〈v,v〉.
That is, the inner product of two vectors u,v ∈ V can be written as

〈u,v〉 = 1

2

(‖u + v‖2 − ‖u‖2 − ‖v‖2). (2.43)

The angle θ between two vectors u,v ∈ V in an Euclidean vector space (V , 〈·, ·〉)
can now be defined by the equation

cos θ = 〈u,v〉
‖u‖‖v‖ . (2.44)

Two vectors u,v ∈ V are called orthogonal if the angle between them is π
2 , i.e., if

〈u,v〉 = 0.
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Example 2.44 If (V , 〈·, ·〉) is an Euclidean vector space and U ⊆ V is a subspace
then the orthogonal complement

U⊥ = {
v ∈ V | 〈u,v〉 = 0 for all u ∈ U

}
(2.45)

is a subspace of V , and V = U ⊕ U⊥.

Definition 2.19 A basis e1, . . . , en for an Euclidean vector space is called orthonor-
mal if

〈ei , ej 〉 = δij =
{

1 if i = j ,

0 if i �= j .
(2.46)

That is, the elements of the basis are pairwise orthogonal and have norm 1.
If u1, . . . ,un is a basis for an Euclidean vector space V then we can construct an

orthonormal basis e1, . . . , en by Gram–Schmidt orthonormalization. The elements
of that particular orthonormal basis is defined as follows:

v� = u� −
�−1∑

k=1

〈u�, ek〉ek, e� = v�

‖v�‖ , � = 1, . . . , n. (2.47)

Definition 2.20 A linear map L : U → V between two Euclidean vector spaces is
called an isometry if it is bijective and 〈L(u),L(v)〉V = 〈u,v〉U for all u,v ∈ U .

So an isometry preserves the inner product. As the inner product is determined by
the norm it is enough to check that the map preserves the norm, i.e., if ‖L(u)‖V =
‖u‖U for all u ∈ U then L is an isometry.

Example 2.45 A rotation in the plane or in space is an isometry.

Example 2.46 A symmetry in space around the origin 0 or around a line through 0
is an isometry.

Theorem 2.7 Let L : U → V be a linear map between two Euclidean vector spaces.
Let u1, . . . ,um and v1, . . . ,vm be bases for U and V , respectively, and let A be
the matrix for L with respect to these bases. Let furthermore GU and GV be the
matrices for the inner product on U and V , respectively. Then L is an isometry if
and only if

AT GV A = GU . (2.48)

If u1, . . . ,um and v1, . . . ,vm both are orthonormal then GU = GV = I and the
equation reads

AT A = I, (2.49)

i.e., A is orthogonal.
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On a similar note, if u1, . . . ,um and û1, . . . , ûm are bases for an Euclidean vector
space U and u ∈ U then the coordinates u and û for u with respect to the two bases

are related by the equation û = Su, cf. (2.18). If G and Ĝ are the matrices for the
inner product with respect to the bases then we have

uT Gu = 〈u,u〉 = ûT Ĝû = (Su)T ĜSu = uT ST ĜSu,

i.e., we have

G = ST ĜS. (2.50)

If the bases both are orthonormal then G = Ĝ = I and we see that S is orthogonal.

Definition 2.21 A linear map L : V → V from an Euclidean vector space to itself
is called symmetric if

〈
L(u),v

〉= 〈
u,L(v)

〉
, for all u,v ∈ V. (2.51)

Example 2.47 The map f �→ f ′′ is a symmetric map of the space (C∞
0 ([a, b]), 〈·, ·〉)

to itself, where the inner product 〈·, ·〉 is given by (2.37).

If A is the matrix for a linear map L with respect to some basis and G is the
matrix for the inner product then L is symmetric if and only if AT G = GA. If
the basis is orthonormal then G = I and the condition reads AT = A, i.e., A is a
symmetric matrix.

2.1.4 Eigenvalues, Eigenvectors, and Diagonalization

Definition 2.22 Let L : V → V be a linear map. If there exist a non zero vector
v ∈ V and a scalar λ ∈ R such that L(v) = λv then v is called an eigenvector with
eigenvalue λ. If λ is an eigenvalue then the space

Eλ = {
v ∈ V | L(v) = λv

}
(2.52)

is a subspace of V called the eigenspace of λ. The dimension of Eλ is called the
geometric multiplicity of λ.

If u1, . . . ,um is a basis for V , A is the matrix for L in this basis and a vector v ∈ V

has coordinates v with respect to this basis then

L(v) = λv ⇐⇒ Av = λv (2.53)

We say that v is an eigenvector for the matrix A with eigenvalue λ.

Example 2.48 Consider the matrix
( 1 3

3 1

)
. The vector

( 1
1

)
is an eigenvector with

eigenvalue 4 and
( 1

−1

)
is an eigenvector with eigenvalue −2.
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Example 2.49 The exponential map exp is an eigenvector with eigenvalue 1 for the
linear map C∞(R) → C∞(R) : f �→ f ′.

Example 2.50 The trigonometric functions cos and sin are eigenvectors with eigen-
value −1 for the linear map C∞(R) → C∞(R) : f �→ f ′′.

We see that λ is an eigenvalue for L if and only if the map L−λ id is not injective,
i.e., if and only if det(L − λ id) = 0. In that case Eλ = ker(L − λ id). If A is the
matrix for L with respect to some basis for V then we see that

det(L − λ id) = det(A − λI) = (−λ)n + tr A(−λ)n−1 + · · · + det A (2.54)

is a polynomial of degree n in λ. It is called the characteristic polynomial of L

(or A). The eigenvalues are precisely the roots of the characteristic polynomial and
the multiplicity of a root λ in the characteristic polynomial is called the algebraic
multiplicity of the eigenvalue λ. The relation between the geometric and algebraic
multiplicity is given in the following proposition.

Proposition 2.2 Let νg(λ) = dim(Eλ) be the geometric multiplicity of an eigen-
value λ and let νa(λ) be the algebraic multiplicity of λ. Then 1 ≤ νg(λ) ≤ νa(λ).

The characteristic polynomial may have complex roots and even though they
strictly speaking are not eigenvalues we will still call them complex eigenvalues.
Once the eigenvalues are determined the eigenvectors belonging to a particular real
eigenvalue λ can be found by determining a non zero solution to the linear equation
L(u) − λu = 0 or equivalently a non zero solution to the matrix equation

⎛

⎜⎜⎜⎜
⎝

a1,1 − λ a1,2 . . . a1,n

a2,1 a2,2 − λ
. . .

...
...

. . .
. . . an−1,1

an,1 . . . an,n−1 an,n − λ

⎞

⎟⎟⎟⎟
⎠

⎛

⎜
⎝

u1
...

un

⎞

⎟
⎠=

⎛

⎜
⎝

0
...

0

⎞

⎟
⎠ . (2.55)

If V has a basis u1, . . . ,un consisting of eigenvectors for L, i.e., L(uk) = λkuk

then the corresponding matrix is diagonal

Λ =

⎛

⎜⎜⎜⎜
⎝

λ1 0 . . . 0

0 λ2
. . .

...
...

. . .
. . . 0

0 . . . 0 λn

⎞

⎟⎟⎟⎟
⎠

, (2.56)

and we say that L is diagonalizable. Not all linear maps (or matrices) can be diag-
onalized. The condition is that there is a basis consisting of eigenvectors and this is
the same as demanding that V =⊕

λ Eλ or that all eigenvalues are real and the sum
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of the geometric multiplicities is the dimension of V . If there is a complex eigen-
value then this is impossible. The same is the case if νg(λ) < νa(λ) for some real
eigenvalue λ.

Example 2.51 The matrix
( 0 −1

1 0

)
has no real eigenvalues.

Example 2.52 The matrix
(√

2 1
0

√
2

)
has the eigenvalue

√
2 which has algebraic mul-

tiplicity 2 and geometric multiplicity 1.

In case of a symmetric map the situation is much nicer. Indeed, we have the
following theorem, which we shall not prove.

Theorem 2.8 Let (V , 〈·, ·〉) be an Euclidean vector space and let L : V → V be
a symmetric linear map. Then all eigenvalues are real and V has an orthonormal
basis consisting of eigenvectors for L.

By choosing an orthonormal basis for V we obtain the following theorem for
symmetric matrices.

Theorem 2.9 A symmetric matrix A can be decomposed as A = UT ΛU, where Λ
is diagonal and U is orthogonal.

Let (V , 〈·, ·, 〉) be an Euclidean vector space and let h : V × V → R be a sym-
metric bilinear map, i.e., it satisfies condition (1), (2), and (3) in Definition 2.17.
Then there exists a unique symmetric linear map L : V → V such that h(u,v) =
〈L(u),v〉. Theorem 2.8 tells us that V has an orthonormal basis consisting of eigen-
vectors for L, and with respect to this basis the matrix representation for h is diag-
onal with the eigenvalues of L in the diagonal. Now suppose we have an arbitrary
basis for V and let G and H be the matrices for the inner product 〈·, ·〉 and the bi-
linear map h, respectively. Let furthermore A be the matrix for L. Then we have
H = AT G, or as both G and H are symmetric H = GA. That is, A = G−1H and the
eigenvalue problem Av = λv is equivalent to the generalized eigenvalue problem
Hv = λGv. This gives us the following generalization of Theorem 2.9.

Theorem 2.10 Let G,H be symmetric n×n matrices with G positive definite. Then
we can decompose H as H = S−1ΛS, where Λ is diagonal and S is orthogonal with
respect to G, i.e., ST GS = G.

2.1.5 Singular Value Decomposition

Due to its numerically stability the singular value decomposition (SVD) is exten-
sively used for practical calculations such as solving over- and under-determined
systems and eigenvalue calculations. We will use it for mesh simplification and in
the ICP algorithm for registration. The singular value decomposition can be formu-
lated as
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Theorem 2.11 Let L : V → U be a linear map between two Euclidean vector
spaces of dimension n and m, respectively, and let k = min{m,n}. Then there exist
an orthonormal basis e1, . . . , en for V , an orthonormal basis f1, . . . , fm for U , and
non negative numbers σ1 ≥ σ1 ≥ · · · ≥ σk ≥ 0, called the singular values, such that
L(u�) = σ�v� for � = 1, . . . , k and L(u�) = 0 for � = k + 1, . . . , n.

We see that σ1 = max{‖L(e)‖ | ‖e‖ = 1} and that e1 realizes the maximum. We
have in general that σ� = max{‖L(e)‖ | e ∈ span{e1, . . . , e�−1}⊥ ∧‖e‖ = 1} and that
e� realizes the maximum. The basis for V is simply given as f� = L(e�)‖L(e�)‖ when
L(e�) �= 0. If this gives f1, . . . , fk′ then the rest of the basis vectors are chosen as an
orthonormal basis for span{f1, . . . , fk′ }⊥. In terms of matrices it has the following
formulation.

Theorem 2.12 Let A be an m × n matrix and let k = min{m,n}. Then A can be
decomposed as A = UΣVT , where U is an orthogonal m × m matrix, V is an
orthogonal n × n matrix, and Σ is a diagonal matrix with non zero elements σ1 ≥
σ1 ≥ · · · ≥ σk ≥ 0 in the diagonal.

The singular values are the square root of the eigenvalues of AT A, which is a
positive semi definite symmetric matrix. The columns of V, and hence the rows
of VT , are the eigenvectors for AT A.

Example 2.53
(

0 −1
1 0

)
=
(

0 −1
1 0

)(
1 0
0 1

)(
1 0
0 1

)
.

Example 2.54

(√
2 1

0
√

2

)
=
(√

6
3 −

√
3

3√
3

3

√
6

3

)(
2 0
0 1

)( √
3

3

√
6

3

−
√

6
3

√
3

3

)

.

Example 2.55

(
1 1 1
1 1 −1

)
=
(√

2
2 −

√
2

2√
2

2

√
2

2

)(
2 0 0
0

√
2 0

)
⎛

⎜
⎝

√
2

2

√
2

2 0

0 0 1√
2

2 −
√

2
2 0

⎞

⎟
⎠ .

Definition 2.23 The Moore–Penrose pseudo inverse of a matrix A is the matrix
A+ = VΣ+UT where A = UΣVT is the singular value decomposition of A and
Σ+ is a diagonal matrix with 1

σ1
, . . . , 1

σk
in the diagonal. So AA+ is a diagonal

m × m matrix with 1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
m−k

in the diagonal and A+A is a diagonal n × n

matrix with 1, . . . ,1︸ ︷︷ ︸
k

,0, . . . ,0︸ ︷︷ ︸
n−k

in the diagonal.
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Fig. 2.4 There is a unique translation that maps a point P to another point P ′. If it also maps

Q to Q′ then
−−→
PP ′ = −−→

QQ′. Composition of translations corresponds to addition of vectors,−−→
PP ′′ = −−→

PP ′ + −−−→
P ′P ′′

Observe that the pseudo inverse of Σ is Σ+.

Example 2.56 If we have the equation Ax = b and A = UΣVT is the singular value
decomposition of A, then U and VT are invertible, with inverse U−1 = UT and

VT −1 = V, respectively. We now have ΣVT x = UT b and the best we can do is to
let VT x = Σ+UT b and hence x = VΣ+UT b = A+b. If we have an overdetermined
system we obtain the least square solution, i.e., the solution to the problem

min
x

‖Ax − b‖2. (2.57)

If we have an underdetermined system we obtain the least norm solution, i.e., the
solution to the problem

min
x

‖x‖2, such that Ax = b. (2.58)

2.2 Affine Spaces

We all know, at least intuitively, two affine spaces, namely the set of points in a
plane and the set of points in space. If P and P ′ are two points in a plane then
there is a unique translation of the plane that maps P to P ′, see Fig. 2.4. If the
point Q is mapped to Q′ then the vector from Q to Q′ is the same as the vector
from P to P ′, see Fig. 2.4. That is, we can identify the space of translation in
the plane with the set of vectors in the plane. Under this identification addition
of vectors corresponds to composition of translations, see Fig. 2.4. Even though
we often identify our surrounding space with R

3 and we can add elements of R3 it
does obviously not make sense to add two points in space. The identification with R

3

depends on the choice of coordinate system, and the result of adding the coordinates
of two points depends on the choice of coordinate system, see Fig. 2.5.
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Fig. 2.5 If we add the
coordinates of points in an
affine space then the result
depends on the choice of
origin

What does make sense in the usual two dimensional plane and three dimensional
space is the notion of translation along a vector v. It is often written as adding a
vector to a point, x �→ x + v. An abstract affine space is a space where the notation
of translation is defined and where this set of translations forms a vector space.
Formally it can be defined as follows.

Definition 2.24 An affine space is a set X that admits a free transitive action of
a vector space V . That is, there is a map X × V → X : (x,v) �→ x + v, called
translation by the vector v, such that
1. Addition of vectors corresponds to composition of translations, i.e., for all x ∈ X

and u,v ∈ V , x + (u + v) = (x + u) + v.
2. The zero vector acts as the identity, i.e., for all x ∈ X, x + 0 = x.
3. The action is free, i.e., if there for a given vector v ∈ V exists a point x ∈ X such

that x + v = x then v = 0.
4. The action is transitive, i.e., for all points x,y ∈ X exists a vector v ∈ V such that

y = x + v.
The dimension of X is the dimension of the vector space of translations, V .

The vector v in Condition 4 that translates the point x to the point y is by Con-
dition 3 unique, and is often written as v = −→xy or as v = y − x. We have in fact a
unique map X × X → V : (x,y) �→ y − x such that y = x + (y − x) for all x,y ∈ X.
It furthermore satisfies
1. For all x,y, z ∈ X, z − x = (z − y) + (y − x).
2. For all x,y ∈ X and u,v ∈ V , (y + v) − (x + u) = (y − x) + v − u.
3. For all x ∈ X, x − x = 0.
4. For all x,y ∈ X, y − x = −(x − y).

Example 2.57 The usual two dimensional plane and three dimensional space are
affine spaces and the vector space of translations is the space of vectors in the plane
or in space.

Example 2.58 If the set of solutions to k real inhomogeneous linear equations in n

unknowns is non empty then it is an affine space and the vector space of translations
is the space of solutions to the corresponding set of homogeneous equations.

Example 2.59 If (X,U) and (Y,V ) are affine spaces then (X × Y,U × V ) is an
affine space with translation defined by (x,y) + (u,v) = (x + u,y + v).
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A coordinate system in an affine space (X,V ) consists of a point O ∈ X, called
the origin, and a basis v1, . . . ,vn for V . Any point x ∈ X can now be written as

x = O + (x − O) = O +
n∑

k=1

xkvk, (2.59)

where the numbers x1, . . . , xn are the coordinates for the vector x − O with respect
to the basis v1, . . . ,vn, they are now also called the coordinates for x with respect
to the coordinate system O,v1, . . . ,vn.

2.2.1 Affine and Convex Combinations

We have already noticed that it does not make sense to add points in an affine space,
or more generally to take linear combination of points, see Fig. 2.5. So when a
coordinate system is chosen it is important to be careful. It is of course possible to
add the coordinates of two points and regard the result as the coordinates for a third
point. But it is not meaningful. In fact, by changing the origin we can obtain any
point by such a calculation.

But even though linear combination does not make sense, affine combination
does.

Definition 2.25 A formal sum
∑k

�=1 α�x� of k points x1, . . . ,xk is called an affine
combination if the coefficients sum to 1, i.e., if

∑k
�=1 α� = 1. Then we have

k∑

�=1

α�x� = O +
k∑

�=1

α�(x� − O), (2.60)

where O ∈ X is an arbitrary chosen point.

Observe that in the last sum we have a linear combination of vectors so the ex-
pression makes sense. If we choose an other point O ′ then the vector between the
two results are

(

O +
k∑

�=1

α�(x� − O)

)

−
(

O ′ +
k∑

�=1

α�

(
x� − O ′)

)

= (
O − O ′)+

k∑

�=1

α�

(
(x� − O) − (

x� − O ′))

= (
O − O ′)+

k∑

�=1

α�

(
(x� − x�) + (

O − O ′))
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Fig. 2.6 The plane spanned
by three points

= (
O − O ′)−

(
k∑

�=1

α�

)
(
O − O ′)

= (
O − O ′)− (

O − O ′)= 0. (2.61)

That is, the result does not depend on the auxiliary point O .

Example 2.60 The line spanned by two different points x and y in an affine space
consists of affine combinations of the two points, that is, the points (1 − t)x + ty =
x + t (y − x), t ∈R.

Example 2.61 The plane spanned by three points in space (not on the same line)
consists of all affine combinations of the three points, see Fig. 2.6.

Unless the vector space of translations is equipped with an inner product there is
no notion of lengths in an affine space. But for points on a line the ratio of lengths
makes sense. Let x1,x2,y1,y2 be four points on a line and choose a non zero vec-
tor v on the line, e.g., the difference between two of the given points. Then there
exist numbers t1, t2 ∈ R such that we have y1 − x1 = t1v and y2 − x2 = t2v. The
ratio between the line segments x1y2 and x2y2 is now defined as t1

t2
. If we had cho-

sen another vector w then v = αw and yk − xk = tkαw and the ratio αt1
αt2

= t1
t2

is the
same. Observe that we even have a well defined signed ratio.

Definition 2.26 A convex combination of points x1, . . . ,xk is an affine combina-
tion

∑k
�=1 α�x� where all the coefficients are non negative, i.e., α� ≥ 0 for all

� = 1, . . . , k.

Example 2.62 The line segment between two points consists of all convex combi-
nation of the two points.

Let X be an affine space of dimension n and let x0, . . . ,xn be n+1 points that are
affinely independent, i.e., none of the points can be written as an affine combination
of the others. This is equivalent to the vectors x1 −x0, . . . ,xn −x0 being linearly in-
dependent. Then any point y in X can be written uniquely as an affine combination
of the given points, y =∑n

k=0 αkxk . The numbers α0, . . . , αn are called barycentric
coordinates for y with respect to the points x0, . . . ,xn. The case n = 2 is illustrated
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Fig. 2.7 The barycentric coordinates of a point y = α0x0 + α1x1 + α2x2 can be given in terms of
the ratio between different line segments

in Fig. 2.7 where two different geometric interpretations of the barycentric coordi-
nates are shown.

2.2.2 Affine Maps

Definition 2.27 An affine map between two affine spaces X and Y is a map f :
X → Y that preserves affine combinations, i.e.,

f

(
k∑

�=1

αkxk

)

=
k∑

�=1

αkf (xk). (2.62)

There is a close connection between affine maps between X and Y and linear maps
between their vector spaces of translations U and V . More precisely we have the
following proposition.

Proposition 2.3 Let f be an affine map between two affine spaces (X,U) and
(Y,V ). Then there is a unique linear map L : U → V such that f (x + v) =
f (x) + L(v) for all x ∈ X and u ∈ U .

We see that L(v) = f (x + v) − f (x) and it turns out that this expression does
not depend on x and that L is linear. If we now choose an origin O ∈ X and O ′ ∈ Y

then

f (O + v) = O ′ + (
f (O) − O ′)+ L(v) = O ′ + y + L(v). (2.63)

and we see that f is the sum of the linear map L and the translation defined by
y = f (O) − O ′ ∈ V .

Definition 2.28 A hyperplane in an affine space X is a subset, H , of the form

H = f −1 = {
x ∈ X | f (x) = c

}
, (2.64)

where f : X → R is affine and c ∈R.
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Fig. 2.8 To the left a convex
set and to the right a non
convex set

If x1, . . . , xn are coordinates for points in X with respect to some coordinate
system, then a hyperplane is given by an equation of the form

a1x1 + · · · + anxn = c. (2.65)

A half space is defined in a similar manner.

Definition 2.29 A half space in an affine space X is a subset, H , of the form

H = f −1 = {
x ∈ X | f (x) ≥ c

}
, (2.66)

where f : X → R is affine and c ∈R.

If x1, . . . , xn are coordinates for points in X with respect to some coordinate
system, then a half space is given by an equation of the form

a1x1 + · · · + anxn ≥ c. (2.67)

2.2.3 Convex Sets

Definition 2.30 A subset C ⊆ X of an affine space is called convex if for each pair
of points in C the line segment between the points are in C, see Fig. 2.8.

Definition 2.31 Let A ⊆ X be an arbitrary subset of an affine space X. The convex
hull of A is the smallest convex set containing A and is denoted CH(A).

There are alternative, equivalent, definitions of the convex hull.
1. The convex hull is the intersection of all convex sets containing A:

CH(A) =
⋂

A⊆C
C is convex

C. (2.68)

2. The convex hull is the intersection of all half spaces containing A:

CH(A) =
⋂

A⊆H
H is a half space

H. (2.69)
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Fig. 2.9 All convex
combinations of two, three,
and nine points

Fig. 2.10 From left to right,
a simplex in dimension 1, 2,
and 3

3. The convex hull is the set of all convex combinations of points in A:

CH(A) =
{

k∑

�=1

αkxk

∣∣∣∣

k∑

�=1

αk = 1 ∧ α1, . . . , αk ≥ 0 ∧ x1, . . . ,xk ∈ A

}

, (2.70)

see Fig. 2.9

Definition 2.32 A simplex is the convex hull of n + 1 affinely independent points
in a n dimensional affine space, see Fig. 2.10

Example 2.63 The convex hull of two points is the line segment between the two
points, a two simplex.

Example 2.64 The convex hull of three points is a triangle, and its interior a three
simplex.

Example 2.65 The convex hull of the unit circle S1 = {(x, y) ∈ R
2 | x2 + y2 = 1} is

the closed disk {(x, y) ∈ R
2 | x2 + y2 ≤ 1}.

2.3 Metric Spaces

A metric space is a space where an abstract notion of distance is defined. When we
have such a notion we can define continuity of mappings between metric spaces, the
notion of convergence and of open and closed sets, and the notion of neighborhoods
of a point.

Definition 2.33 A metric space (X,d) is a set X equipped with a map d : X ×X →
R that satisfies the following three conditions:
1. Symmetry, for all x, y ∈ X: d(x, y) = d(y, x).
2. The triangle inequality, for all x, y, z ∈ X: d(x, z) ≤ d(x, y) + d(y, z).
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Fig. 2.11 To the left an open set, there is room for a ball around each point. To the right a non
open set, any ball around a point on the boundary is not contained in the set

3. Positivity, for all x, y ∈ X: d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.

Example 2.66 if V, 〈·, ·〉 is an Euclidean vector space and ‖ · ‖ is the corresponding
norm, then V equipped with the distance d(u,v) = ‖v − u‖ is a metric space.

Example 2.67 If (X,V ) is an affine space and V is an Euclidean vector space with
norm ‖ · ‖, then X equipped with the distance d(x,y) = ‖y − x‖ is a metric space.

Example 2.68 If Y ⊆ X is a subset of a metric space (X,d), then Y equipped with
the restriction of d to Y × Y is a metric space.

Example 2.69 If (X1, d1) and (X2, d2) are metric spaces then the Cartesian product
X1 × X2 equipped with the distance d((x1,x2), (y1,y2)) = d1(x1,y1) + d2(x2,y2)

is a metric space.

Example 2.70 If X is an arbitrary set and we define d by

d(x, y) =
{

1 if x �= y,

0 if x = y,
(2.71)

then (X,d) is a metric space. This metric is called the discrete metric.

Definition 2.34 Let (X,d) be a metric space. The open ball with radius r > 0 and
center x ∈ X is the set B(x, r) = {y ∈ X | d(x, y) < r}.

Example 2.71 If X is equipped with the discrete metric and x ∈ X is an arbitrary
point then

B(x, r) =
{

{x} if r ≤ 1,

X if r > 1.

Definition 2.35 Let X be a metric space. A subset U ⊆ X is called an open set if
there for all points x ∈ U exists an open ball B(x, r) ⊆ U , see Fig. 2.11.

Example 2.72 If X is equipped with the discrete metric then all subsets are open.
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Theorem 2.13 If X is a metric space then the set of open sets has the following
three properties:
1. The empty set ∅ and the whole space X are open sets.
2. If Ui , i ∈ I is an arbitrary collection of open sets then their union

⋃
i∈I Ui is an

open set.
3. If U1, . . . ,Un is a finite collection of open sets then their intersection U1 ∩ · · · ∩

Un is an open set.

The three properties above are the defining properties of a topological space
which is a more general concept. There exist many topological spaces that are not
induced by a metric.

Definition 2.36 Let X be a metric space. A subset F ⊆ X is called a closed set if
the complement X \ F is open.

Example 2.73 If X is equipped with the discrete metric then all subsets are closed.

Theorem 2.13 implies that the closed sets have the following three properties:
1. The empty set ∅ and the whole space X are closed sets.
2. If Fi , i ∈ I is an arbitrary collection of closed sets then their intersection

⋂
i∈I Fi

is a closed set.
3. If F1, . . . ,Fn is a finite collection of closed sets then their union F1 ∪ · · · ∪ Fn is

an closed set.

Definition 2.37 Let A ⊆ X be a subset of a metric space. The interior A◦ of A

is the largest open set contained in A. The closure A is the smallest closed set
containing A.

The interior and closure of a subset A of X can equivalently be defined as

A◦ = {
x ∈ A | ∃r > 0 : B(x, r) ⊆ A

}
, (2.72)

A = {
x ∈ X | ∀r > 0 : B(x, r) ∩ A �= ∅}. (2.73)

In other words all points in the interior has a surrounding ball contained in A, and
all balls centered at points in the closure intersects A.

A subset A of a metric space X is a neighborhood of a set B ⊆ X if B ∈ A◦, i.e.,
if and only if there for each x ∈ Y exists an r > 0 such that B(x, r) ⊆ A.

Definition 2.38 A sequence (xn)n∈N in a metric space (X,d) is called convergent
with limit x if

∀ε > 0 ∃n0 ∈ N : n > n0 =⇒ d(x, xn) < ε. (2.74)

We write xn → x for n → ∞ or limn→∞ xn = x. The formal definition of conti-
nuity is as follows.



2.3 Metric Spaces 41

Definition 2.39 Let (X,d) and (Y, d ′) be metric spaces. A map f : X → Y is a
continuous in a point x ∈ X if

∀ε > 0 ∃δ > 0 : ∀y ∈ X : d(x, y) < δ =⇒ d ′(f (x), f (y)
)
< ε.

A map f : X → Y is a continuous map if it is continuous at all points of X and it
is a homeomorphism if it is bijective, continuous and the inverse f −1 : Y → X is
continuous too.

There are alternative definitions of continuity.

Theorem 2.14 Let (X,d) and (Y, d ′) be metric spaces. A map f : X → Y is a con-
tinuous map if and only if for all convergent sequences (xn)n∈N in X, the sequence
(f (xn))n∈N is convergent in Y and limn→∞ f (xn) = f (limn→∞ xn).

Theorem 2.15 Let (X,d) and (Y, d ′) be metric spaces. A map f : X → Y is a
continuous map if and only if for all open set U ⊆ Y the preimage f −1(U) = {x ∈
X | f (x) ∈ U} is an open set in X.

The last concept we need is compactness.

Definition 2.40 A subset C of a metric space X is called compact if always when
C is covered by a collection of open sets, i.e., C ⊆⋃

i∈I Ui , where Ui is open for
all i ∈ I , then there exists a finite number of Ui1, . . . ,Uin of the given open sets that
cover C, i.e., C ⊆ Ui1 ∪ · · · ∪ Uin .

There is an alternative definition of compact sets.

Theorem 2.16 A subset C of a metric space X is compact if and only if each se-
quence (xn)n∈N in C has a convergent sub sequence (xnk

)k∈N.

Theorem 2.17 If C is a compact subset of a metric space X then C is closed and
bounded.

If X = R
n then the converse is true.

Theorem 2.18 A subset C of Rn is compact if and only if C is closed and bounded.

One of the important properties of compact sets is the following result.

Theorem 2.19 A continuous function f : C → R on a compact set has a minimum
and a maximum, i.e., there exist x0, x1 ∈ C such that f (x0) ≤ f (x) ≤ f (x1) for all
x ∈ C.
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2.4 Exercises

Exercise 2.1 Prove Proposition 2.1.

Exercise 2.2 Prove that the examples in Examples 2.1–2.11 are vector spaces.

Exercise 2.3 Prove that if V is a vector space and U ⊆ V satisfies the conditions in
Definition 2.2 then U is a vector space.

Exercise 2.4 Prove that the examples in Examples 2.13–2.19 are subspaces.

Exercise 2.5 Prove Corollary 2.1.

Exercise 2.6 Show that the monomials as well as the Bernstein polynomials are a
basis, cf. Examples 2.29 and 2.30.

Exercise 2.7 Show that the map R → R : x �→ ax + b is linear if and only if b = 0.

Exercise 2.8 Prove that the maps in Examples 2.31–2.37 are linear.

Exercise 2.9 Prove that the spaces in Examples 2.38–2.43 are Euclidean vector
spaces.

Exercise 2.10 Prove the Cauchy–Schwartz inequality, Theorem 2.6. Hint: first
note that the theorem is trivial if one of the vectors is the zero vector. Next, use
〈u − αv,u − αv〉 = ‖u − αv‖2 ≥ 0 for all α ∈ R and find the α that minimize the
expression.

Exercise 2.11 Prove the statements in Example 2.44.

Exercise 2.12 Prove that the map in Example 2.47 is symmetric.

Exercise 2.13 Prove the statements in Examples 2.49 and 2.50.

Exercise 2.14 Prove Theorem 2.9. Hint: use Theorem 2.8.

Exercise 2.15 Prove Theorem 2.12. Hint: use Theorem 2.11.

Exercise 2.16 Prove the statements in Example 2.56.

Exercise 2.17 Prove that the spaces in Examples 2.57–2.59 are affine spaces.

Exercise 2.18 Prove Proposition 2.3.
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Exercise 2.19 Determine the convex hull of the set

A = {
(x, y) ∈R

2 | x = 0 ∧ y > 0
}∪ {(x, y) ∈R

2 | x > 0 ∧ xy = 1
}
.

Exercise 2.20 Prove that the spaces in Examples 2.66–2.70 are metric spaces.

Exercise 2.21 Prove the statements in Examples 2.71, 2.72, and 2.73.

Exercise 2.22 Let A be a real n × m matrix of rank m ≤ n, let x ∈ R
m, and let

b ∈R
n. What is the solution to

min
x

f (x)|‖x‖=1,

where

f (x) = xT AT Ax?

Hint: try first the case where A is a 2 × 2-matrix, e.g., AT A = [ 5 −1
−1 5

]
.

Exercise 2.23 What are the solutions to

max
x

f (x),

where

f (x) = bT x
‖b‖‖x‖?

Exercise 2.24 What geometric object do the points x ∈ R
3, fulfilling the equation

nT x = α,

describe? Here n ∈ R
3 and α ∈ R. Please explain.
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