
Chapter 2
Motion Detection in Static Backgrounds

Abstract Motion detection plays a fundamental role in any object tracking or video
surveillance algorithm, to the extent that nearly all such algorithms start with motion
detection. Actually, the reliability with which potential foreground objects in move-
ment can be identified, directly impacts on the efficiency and performance level
achievable by subsequent processing stages of tracking and/or object recognition.
However, detecting regions of change in images of the same scene is not a straight-
forward task since it does not only depend on the features of the foreground elements,
but also on the characteristics of the background such as, for instance, the presence
of vacillating elements. So, in this chapter, we have focused on the motion detec-
tion problem in the basic case, i.e., when all background elements are motionless.
The goal is to solve different issues referred to the use of different imaging sensors,
the adaptation to different environments, different motion speed, the shape changes of
the targets, or some uncontrolled dynamic factors such as, for instance,
gradual/sudden illumination changes. So, first, a brief overview of previous related
approaches is presented by analyzing factors which can make the system fail. Then,
we propose a motion segmentation algorithm that successfully deals with all the
arisen problems. Finally, performance evaluation, analysis, and discussion are car-
ried out.

Keywords Motion detection ·Background subtraction ·Visual surveillance · Image
segmentation · Computer vision

2.1 State of the Art

Motion detection plays a fundamental role in any object tracking or video surveillance
algorithm, to the extent that nearly all such algorithms start with motion detection.
Actually, the reliability with which potential foreground objects in movement can
be identified, directly impacts on the efficiency and performance level achievable
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Case Reference Frame Current Frame Background Subtraction Result

Ideal

General

Fig. 2.1 Background subtraction results by depending on foreground presence/absence in the
reference frame when a background(-frame) subtraction technique is used

by subsequent processing stages of tracking and/or recognition. However, detecting
regions of change in images of the same scene is not a straightforward task since
it does not only depend on the features of the foreground elements, but also on the
characteristics of the background such as, for instance, the presence of vacillating
elements. In this chapter we will study the motion detection on static scenes, that is,
the only elements in movement will be the targets. In that way, it is possible to analyze
and solve issues relative to the use of different imaging sensors, the adaptation to
different environments, and to some dynamic, uncontrolled factors such as (gradual
or global) changes in illumination.

From this starting point, any detected changed pixel will be considered as part of
a foreground object. For that reason, techniques based on temporal information by
using a thresholded frame difference could be fitted. By depending on the temporal
relationship between frames implied in the difference, two different approaches can
be defined. On the one hand, background(-frame) subtraction uses a reference frame
to represent the scene background. That frame is usually set to the first captured
image. Thus, a pixel is classified as foreground if its current value is considerably
different from its value in the reference frame. Although it could seem the perfect
solution, it is worth noting that two different situations can take place in real envi-
ronments (see Fig. 2.1):

1. Ideal situation. There are no foreground objects in the reference frame. In this
case, the resulting image would be the same as the desired segmentation result

2. General situation. Foreground objects may appear in the reference frame. Their
presence makes background subtraction fail by providing false positives due to
their position in the reference frame.

On the other hand, techniques based on temporally adjacent frames could be
considered. Basically, this time-differencing approach suggests that a pixel is moving
if its intensity has significantly changed between the current frame and the previous
one. That is, a pixel x belongs to a moving object if

|It (x) − It−1(x)| < τ (2.1)
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Fig. 2.2 Drawbacks of
adjacent frame difference
approach

(a)

(b) (c)

Fig. 2.3 Double-difference
image generation [2]

where It (x) represents the intensity value at pixel position x at time t and τ

corresponds to a threshold describing a significant intensity change.
Nevertheless, in spite of the fact that this method provides an easy, fast moving

object detection, it only works on particular conditions of object’s speed and frame
rate because they generate its two well-known difference drawbacks [1]: ghosting
and foreground aperture. So, as depicted in Fig. 2.2, the presence of an object in
the previous frame generates false alarms (ghosting), while the similarity between
pixels when object’s speed is too low or it becomes motionless, generates holes in
the segmentation result (foreground aperture).

Thus, as a solution, Kameda and Minoh [2] proposed a variation of this method:
a double-difference image. This approach operates a thresholded difference between
frames at time t and t − 1 and between frames at time t and t + 1, by combining
them with a logical AND (see Fig. 2.3). However, the object’s position is not esti-
mated in real time, an accurate motion detection is not allowed if the moving objects
have no enough texture, and the situation in which targets become motionless is not
considered.

In the VSAMproject, Collins et al. [1] described a different hybrid algorithm for
motion detection. Basically, a three-frame differencing operation, based on image
difference between frames at time t and t − 1 and the difference between t and
t − 2, is performed to determine regions of legitimate motion and to erase ghosting
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problem. Then, an adaptive background(-frame) subtraction, proposed by Kanade
et al. [3], was used to solve the foreground aperture problem. Nevertheless, although
the proposed algorithm solves issues of image difference and gives good results
in motion detection, the background update procedure fails when objects begin or
end their motion and/or there are luminance variations in the scene. Moreover, it
suffers a few drawbacks on variable depth shots since it was widely used in outdoor
environments with a low depth of field images.

With the aim of solving these problems, many techniques for a proper background
update have been developed. The simplest ones update the background by a convex
composition of background pixels a time t −1 and those at time t such that the update
weight for background pixels is eventually variable with pixel classification (light
weight for background pixels and heavy weight for foreground pixels).

On the contrary, Migliore et al. [4] claimed that it is possible to obtain a robust
pixel foreground classification without the need of previous background learning. For
that, they exploited a joint background subtraction and frame-by-frame difference to
properly classify pixels (see Algorithm 1). Then, the background model is selectively
updated according to such classification as pointed out by Wren et al. [5], by using
the following formula:

Bt = (1 − α)Bt−1 + αFt (2.2)

where the α value is different depending on pixel classification. So, it is set to 0 if
the pixel is classified as foreground by avoiding the background corruption; a low,
non-zero value is used to slowly update the model; and, finally, in the case when
any background element starts moving, a high α will allow to quickly restore the
background model.

Algorithm 1 Joint Difference Algorithm [4]
if ((|Ft (x) − Bt−1(x)| > τB) AND (|Ft (x) − Ft−1(x)| > τA)) then

Foreground Pixel;
else if ((|Ft (x) − Bt−1(x)| > τB) AND (|Ft (x) − Ft−1(x)| < τA)) then

Collect pixels in blobs;
if (� Foreground Pixels ≥ (γ ∗ (� Total Pixels))) then

Foreground Pixel; //foreground aperture problem solution
else

Background Pixel; //a background object suddenly starts moving at time t
end if

else if ((|Ft (x) − Bt−1(x)| < τB) AND (|Ft (x) − Ft−1(x)| > τA)) then
Background Pixel; //ghosting problem solution

else
// |Ft (x) − Bt−1(x)| < τB AND |Ft (x) − Ft−1(x)| < τA;
Background Pixel;

end if

However, despite its good performance, it has two important handicaps. On the
one hand, this method fails when a target stops or their speed is low. On the other
hand, given that difference thresholds are established for the whole image, various
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factors, such as nonstationary and correlated noise, ambient illumination, inadequate
contrast, and/or an object’s size not commensurate with the scene, can make the
approach fail.

2.2 Combination of Difference Approach

Our contribution at this stage is to provide a real-time algorithm for robust motion
detection. For that, a combination of difference (CoD) techniques is proposed since
it was proven that they provide a good performance. As presented by Migliore
et al. [4], it is possible to overcome adjacent difference problems by using a
background(-frame) subtraction.

The first issue to be solved is how to properly choose the threshold value because
it is a key parameter in the segmentation process since it can affect quite critically the
performance of successive steps. Although users can manually set a threshold value,
it is not a valid solution when autonomous systems are designed. In this context, a
common solution is to use a thresholding algorithm that automatically computes that
value.

Sezgin and Sankur [6] categorized automatic thresholding methods according to
the information they are exploiting, in:

• Histogram shape-based methods, where, for example, the peaks, valleys, and
curvatures of the smoothed histogram are analyzed

• Clustering-based methods divide the gray-level samples into two parts (back-
ground and foreground), or alternately are modeled as a mixture of Gaussians

• Entropy-based methods result in algorithms that use the entropy of the foreground
and background regions, the cross-entropy between the original and binarized
image, etc.

• Object attribute-based methods search a similarity measurement between the gray-
level and the binarized images such as fuzzy shape similarity, edge coincidence,
etc.

• The spatial methods use higher order probability distributions and/or correlation
between pixels

• Local methods adapt the threshold value on each pixel to the local image charac-
teristics.

Despite the wide variety of possibilities, the existing methods only work well
when the images to be thresholded satisfy their assumptions about the distribution
of the gray-level values over the image. So, situations such as shape deformations of
the interest object, the relationship of the foreground object’s size with respect to the
background, or overlapping of background and target gray-level distributions, make
them fail. For all that, it was necessary to design a new way to automatically obtain
the threshold value.

Our contribution at this point is an adaptive dynamic thresholding method such
that it is capable of adapting to non-uniform-distributed resolution, inadequate illu-
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Fig. 2.4 Perspective projec-
tion model

mination gradient in the scene, shadows, and gradual as well as sudden changes in
illumination. The main idea is to divide each captured image in regions such that
a threshold is obtained for each described area. A key issue is the way regions are
defined since it is resolution-dependent and, therefore, camera-dependent. In this
manuscript, two different kind of cameras are considered:

1. Perspective cameras, often referred as pinhole cameras, are optical imaging
devices which follow the perspective projection model in order to obtain an
image (see Fig. 2.4). Basically, the beams of light bouncing off an object are
redirected by a lens to the image plane as if it was a rectilinear propagation of
light through a small hole

2. Fisheye cameras, on the contrary, are imaging systems combining a fisheye lens
with a conventional camera. They are usually used to present a small display
of a large structure. For that, they use a lens with a wide field of view (fisheye
lens) that allows them to take a hemispherical image. Their main advantages
with respect to the catadioptric sensors (i.e., the combination of a conventional
camera and mirrors) are, first, that they do not exhibit a dead area, and, second,
a fisheye lens does not increase the size and the weakness (in the sense of the
complete scene is visible, without loss of information due to dead areas) of the
imaging system with respect to a conventional camera. In this case, as shown
in Fig. 2.5, the projection model consists of a projection onto a virtual unitary
sphere, followed by a perspective projection onto an image plane.

Therefore, the image generated in both cases is different as depicted in Fig. 2.6.
Perspective cameras obtained a rectangular image that, in most practical situations,
accurately satisfies the extrinsic perspective assumptions. So, for each pixel, the set
of 3D points projecting to the pixel (i.e., whose possibly-blurred images are centred
on the pixel) is a straight line in 3D space, and all the light rays meet at a single 3D
point (the optical centre). On the contrary, fisheye cameras capture circular images
such that objects close to the focal point are clear and distinguishable to the user,
while the level of detail decreases as objects move further away from the point of
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Fig. 2.5 The mapping of a scene point X into a sensor plane to a point u” for a fisheye lens (courtesy
of Mičušík [7])

Fig. 2.6 Sample images captured at the same position by a perspective camera (left) and a fisheye
camera (right)

interest. Thus, the fisheye strategy magnifies the area of interest (located in the focal
point) to show the detail, whereas the context is maintained by preserving continuity
at the periphery. As a consequence, image distribution is not homogeneous in terms
of resolution.

The key concept is to divide an image into the proper regions such that the resulting
subimages keep the features of the original images, specially in terms of resolution
distribution. So, rectangular regions are described for perspective images, where
resolution is approximately uniform along the whole image while a fisheye image
is divided into sector portions (see Fig. 2.7). Note that circular regions are not used,
even though resolution is laid out in that way. It is because a circular region would
cover a 180◦ 3D area and the neighborhood similarity could not be exploited.
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Fig. 2.7 Example of image division depending on the kind of camera used

Once the shape of the image regions is determined, a new issue arises: their size.
This parameter is important in terms of noise influence as well as uniformity in
illumination and gray level. It mainly depends on the position of the camera with
respect to the scene such that when the further a camera is, the smaller regions have to
be defined. This is because the size of scene elements is proportional to the distance
between the camera and those elements.

Note that each region should be identified by a unique value that allows to
properly choose the threshold. In particular, statistic functions are commonly used.
The statistic which is the most appropriate, largely depends on the input image,
although simple and fast functions include the mean, median, or mean of minimum
and maximum values of the local intensity distribution. In our case, we have used
the mean value to describe each image region.

The next step is to determine the proper CoD techniques to achieve our goal,
i.e., an accurate segmentation. As depicted in Fig. 2.8 and sketched in Algorithm 2,
different situations have been studied:

1. The ideal case. The reference frame for the background(-frame) subtraction is
free of foreground objects. Thus, three different situations could be faced by the
adjacent frame differencing:

• There are no foreground objects in the previous frame. In this case, pixels
are classified as foreground when both the adjacent difference and the back-
ground(-frame) subtraction are greater than or equal to their corresponding
thresholds

• A foreground object appears in the previous frame. So, one or both of the
adjacent difference drawbacks can occur. The ghosting problem is solved by
taking into account that the background(-frame) subtraction does not identify
those pixels as foreground. With regard to the foreground aperture drawback, it
will be solved as follows. When the foreground objects have a similar texture,
they are correctly identify by the background(-frame) subtraction, but not by
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the adjacent difference. The way we have solved this situation is considering
what makes a pixel be in this situation. Therefore, on the one hand, they must
satisfy a gray-level similarity relationship because they belong to the same
homogeneous texture. And, on the other hand, the other requirement refers to
those pixels that are classified as a foreground object in the previous frame.
So, it is necessary to use both constraints to obtain a successful result since
whether the similarity criterion was only used, many false alarms could be
generated

• The last case takes place when a foreground object stops moving. Again, this
situation has been solved by means of a similarity criterion

2. The general case. Any foreground object appears in the reference frame. The
difference between this case and the previous one is that an element initially
considered as a background element can become foreground at any time. Thus,
when it starts moving, it leaves behind a hole which will be wrongly classified
as foreground. Taking advantage of this knowledge, a new method to detect
and solve this situation has been designed. Mainly, it consists of a comparison
between the segmentation results of the current frame and the content of that
blob in the reference frame. Each time a blob results from a background element
movement, it has been identified that a hole should be removed. So, those pixels
are now reclassified as background and background frame is updated with the
new information. Again, performance in the different conditions considered in
the ideal case was also analyzed by using similar solutions for them (see Fig. 2.8).

Note that color images have been used as input in the examples depicted in
Fig. 2.8. However, with the aim of obtaining a general solution that is able to run
over both color and gray-level images, a preprocessing takes place. Basically, this
preprocessing consists of obtaining a gray-level image composed of the intensity
channel in the Hue-Saturation-Intensity (HSI) system. Despite other color spaces are
available such as, for instance, Lab, YUV, XYZ, etc. HSI is used because it encodes
color information by separating an overall intensity value I from two values encoding
‘chromaticity’—hue H and saturation S—(see Appendix A for further information).
This might also provide better support for computer vision algorithms because it can
normalize small lighting changes and focus on the two chromaticity parameters that
are more associated with the intrinsic character of a surface rather than the source
that is lightning it. In addition, with the purpose of reducing lighting influence on the
algorithm’s performance, a difference normalization is carried out. Mathematically,
it can be expressed as follows:

|
(

σ 2
P

σ 2
C

∗ (NgrayC − μC )

)
− NgrayP | (2.3)

where the indexes C and P , respectively, correspond to current and previous
(reference image in case of the background subtraction) frame; Ngray represents
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the gray level for the considered pixel, while σ 2 and μ, respectively, refer to the
standard deviation and the average of the image intensities.

In addition, take into account that two consecutive morphological operations are
applied on the binary image resulting from the segmentation process in order to
suppress small errors in the background/foreground classification method. So, first,
a 3 × 3 erode filter is used to erase isolated points or lines caused by different
dynamic factors such as sensor noise, non-uniform attenuation, or blinking of the
lights. Then, a foreground region recovery is achieved by means of a 3 × 3 expand
filter. It is specially useful when two different parts of the same interest object appear
divided due to capture and/or segmentation errors.

Another important issue is sudden, global changes in illumination. A common
way to solve this situation consists of generating an alarm when a considerable part
of the image (usually two thirds of the image) has changed, that is, has been classified
as foreground. Although it works well in most cases, it fails when that change is due
to target’s proximity to the camera. This situation has been solved by comparing
the amount of foreground pixels detected in the current frame and in the previous
one. So, it is assumed that a global illumination has occurred when more than two-
thirds of the image are classified as foreground and the amount of foreground pixels
detected in the current frame is greater than 1.5 times the amount detected in the
previous frame. Note that this kind of illumination change makes necessary to set a
new reference frame for the background(-frame) subtraction technique. Moreover,

Algorithm 2 Combination of Differences (CoD)
for each pixel x do

if (|Ft (x) − B(x)| ≥ τB(x)) then
if (|Ft (x) − Ft−1(x)| ≥ τA(x)) then

Foreground Pixel;
else if ((|Ft (x) − Ft−1(x)| < τS) AND (Foreground(Ft−1(x)))) then

Foreground Pixel; // Foreground Aperture
else

Background Pixel;
end if

else if ((|Ft (x) − Ft−1(x)| ≥ τA(x)) AND (|Ft (x) − B(x)| < τB(x))) then
Background Pixel; // Ghosting problem

else
Background Pixel;

end if
end for
Collect pixels in blobs;
for each pixel x do

if (Foreground(Ft−1(x))) then
if (NO (|Ft (x) − Ft−1(x)| < τS)) then

Pixel Re-classification (From Foreground to Background); //It is a hole
Update background reference frame

end if
end if

end for
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Fig. 2.8 Performance result samples over different situations considered in order to determine the
proper combination of difference techniques for an accurate segmentation

some lighting sources require several milliseconds to stabilize. For that reason, when
a global illumination change has been detected, the system waits for some frames
(typically five frames in our experiments) before resetting all its parameters.

2.3 Experimental Results

In this section, we evaluate the performance of the proposed segmentation procedure.
For that, two different kind of experiments have been carried out. First, the CoD’s per-
formance is assessed by using the video images provided by three different image
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datasets in the literature: the Wallflower Dataset [8], the image dataset developed
for the Forth ACM International Workshop on Video Surveillance & Sensor Net-
works (VSSN06) [9], and the Audiovisual People Dataset, courtesy of Engineering
and Physical Sciences Research Council funded MOTINAS project (EP/D033772/1)
[10]. Although there exist other datasets such as, for instance, PETS 2006 Benchmark
Data [11], to name any, they have not been used here since they aim at a different
goal such as the identification of an unattended luggage. Finally, the results over our
own dataset composed of both perspective and fisheye images are presented. Note
that the qualitative results are displayed as binary images where pixels of interest are
coded by the white color, while the background is identified by the black color.

2.3.1 Principles for Performance Evaluation and Comparison

The performance of a motion segmentation technique can be evaluated visually and
quantitatively based on the task requirements. So, on the one hand, a qualitative/visual
evaluation can be achieved by displaying a flicker animation [12] or a short movie file
containing a registered pair of images that are played in fast succession at intervals
of about a second each, among others. In that way, in the absence of change, one
perceives a steady image, while when changes are present, the changed regions appear
to flicker. The estimated change mask can be also superimposed on each image (e.g.,
as a semitransparent overlay, with different colors for different types of change).

On the other hand, a quantitative evaluation is more challenging. First, because of
the difficulty of establishing a valid ground truth, that is, the process of defining the
correct answer for what exactly the algorithm is expected to produce. Arriving at the
ground truth is an image analysis that is known to be difficult and time-consuming
[13], since it is usually done by human beings and the same human observer can
generate different segmentations for the same data at two different times. A secondary
issue is to define the relative importance of the different types of errors. There are
several standard methods for comparing the ground truth to a candidate binary change
mask. The following amounts are generally involved:

• True positives (TP): the number of foreground pixels correctly detected
• False positives (FP): the average of false alarms per frame, i.e., the number of

background pixels incorrectly detected as foreground
• True negatives (TN): the number of background pixels correctly detected
• False negatives (FN): the average of false misses, that is, the number of foreground

pixels incorrectly detected as background.

From them, Rosin and Ioannidis [14] described three methods for quantifying
method’s performance:

• The Percentage Correct Classification (PCC), also called accuracy, is used as a
statistical measurement of how well the segmentation process identifies or excludes
foreground pixels. Mathematically, it can be expressed as follows:
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PCC = T P + T N

T P + F P + T N + F N
(2.4)

So, an accuracy of 100 % means that the measured values are exactly the same as
the given values in the ground truth.

• The Jaccard coefficient (JC) is a statistic used for comparing the similarity and
diversity of sample sets and is defined as:

JC = T P

T P + F P + F N
(2.5)

• The Yule coefficient (YC) is a statistic summarizing the extent to which two variables
are independent or not, as in the case of the correlation coefficient. It is obtained
as follows:

Y C =
∣∣∣∣ T P

T P + F P
+ T N

T N + F N
− 1

∣∣∣∣ (2.6)

On the contrary, other authors quantify how well an algorithm matches the ground
truth by means of recall and precision measurements [15, 16]. Thus, recall (also
known as true positive rate (TPR) or sensitivity) [17] is computed as the ratio of the
number of foreground pixels correctly identified to the number of foreground pixels
in the ground truth; whereas precision or positive predictive value (PPV) is obtained
as the ratio of the number of foreground pixels properly identified to the number of
foreground pixels detected. That is:

Recall = T P R = � of foreground pixels correctly detected

total � of ground-truth foreground pixels
= T P

T P + F N
(2.7)

Precision = P PV = � of foreground pixels correctly detected

total � of foreground pixels detected
= T P

T P + F P
(2.8)

Other metrics which can be used are:

• False Positive Rate (FPR) which measures background pixels misclassified as
foreground such that:

F P R = F P

(F P + T N )
(2.9)

• False Negative Rate (FNR) that refers to foreground pixels erroneously tagged as
background. Similar to the previous measurement, it is defined as follows:

F N R = F N

(F N + T P)
(2.10)

• Specificity (SPC) or True Negative Rate (TNR) which expresses the ratio of detected
foreground pixels that are true positives. Thus, a specificity of 100 % means that
the segmentation process recognizes all actual negatives, that is, 100 % specificity
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means no positives are erroneously tagged. In a more formal way:

S PC = T N

(F P + T N )
= 1 − F P R (2.11)

• Negative Predictive Value (NPV) that quantifies the ratio of background pixels
correctly identified. Its value is obtained as:

N PV = T N

(T N + F N )
(2.12)

• False Discovery Rate (FDR) or False Alarm Rate (FAR) which measures the fore-
ground pixels misclassified as background:

F DR = F AR = F P

(F P + T P)
(2.13)

• Mathews Correlation Coefficient (MCC) that is used as a measurement of the
quality of binary classifications. That is, MCC is, in essence, a correlation coef-
ficient between the observed and the predicted binary classifications. Actually, it
takes into account true and false positives and is generally regarded as a balanced
measurement. Its value oscillates between −1 and 1 such that a coefficient of 1
represents a perfect prediction, 0 an average random prediction, and −1 an inverse
prediction. Mathematically, it is defined as follows:

MCC = (T P ∗ T N ) − (F P ∗ F N )√
(T P + F N ) ∗ (T P + F P) ∗ (F N + T P) ∗ (F N + T N )

(2.14)

Note that if any of the four sums in the denominator is zero, the denominator will
be arbitrarily set to 1; this results in a Mathews correlation coefficient of zero,
which can be shown to be the correct limiting value

• F1 score which is a measurement of a process’ accuracy. It considers both precision
and recall of the test to compute the score as follows:

F1 = 2 ∗ precision ∗ recall

precision + recall
(2.15)

The F1 score can be interpreted as a weighted average of the precision and recall,
where an F1 score reaches its best value at 1 and the worst score at 0
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Table 2.1 Parameter values used for evaluating the CoD performance over the three considered
image datasets

2.3.2 Experimental Results Over Image Datasets

In this section, three different image datasets are used to evaluate CoD’s performance.
For that, the set of parameters, listed in Table 2.1, has been the same over all of the
considered image sequences.

2.3.2.1 Wallflower Dataset

This dataset was created to evaluate background modeling algorithms from the
definition of ten canonical problems that an ideal background maintenance system
should overcome:

• Moved objects. When a background object is moved, it should not be considered
as foreground

• Time of day: The passage of time generates gradual illumination changes that alter
the background appearance

• Light switch. Sudden changes in illumination such as switching on/off lights or
opening/closing a window modify the background appearance

• Bootstrap. A frame without foreground objects is not available in some
environments

• Foreground Aperture. When the entire target does not appear as foreground because
it is homogeneously colored and the change in the interior pixels cannot be detected

• Waving trees. Some background elements can vacillate (e.g., swaying branches,
blinking of screens, etc) by requiring models which can represent those disjoint
sets of pixel values

• Camouflage. Foreground object’s pixel characteristics can be subsumed by the
modeled background

• Sleeping person. The distinction between a foreground object that becomes
motionless and a background object that moves and then becomes motionless

• Waking person. When an object initially in the background moves, both it and the
newly revealed parts of the background appear to change
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• Shadows. The foreground objects often cast shadows which appear different from
the modeled background.

However, only seven real video sequences, with a test image and its corresponding
ground truth, are included in this dataset by presenting typical critical situations. All
of the test sequences were taken with a 3-CCD camera recording to digital tape at
a size of 160 × 120 pixels, sampled at 4 Hz. Nevertheless, in this section, we have
only used those video sequences corresponding to the case under study, that is, those
with a static background. Therefore, the used video sequences are: Time-of-day,
Light-switch, Bootstrap, and Foreground-aperture.

With the aim for evaluating the performance of our approach, it is qualitative and
quantitative compared with previous algorithms that have provided results over this
dataset. Those approaches can be briefly summarized as follows:

• Mixture of Gaussians [18]. A pixel-wise mixture of three Gaussians models the
background. Each Gaussian is weighted according to the frequency with which it
explains the observed background (±2σ ). The most heavily weighted Gaussians
that together explain over 50 % of past data are considered background

• Normalized Block Correlation [19]. Images are split into blocks. The pixels in
each block are represented as their respective medians over the training images.
Each block is represented as its median template and the standard deviation of the
block-wise normalized correlation from the median over the training images. For
each incoming block, normalized correlation values that deviate too much from
the expected deviations cause the block to be considered foreground

• Temporal Derivative [20]. In the training phase, for each pixel, the minimum
and maximum values are saved along with the maximum interframe change in
intensity. Any pixel that deviates from its minimum or maximum by more than the
maximum interframe change is considered foreground. They additionally enforced
a minimum interframe difference of 10 pixels after the regular training phase

• Bayesian Decision [21]. Pixel value probability densities, represented as
normalized histograms, are accumulated over time, and backgrounds are deter-
mined by a straightforward maximum a posteriori criterion

• Eigenbackground [22]. Images of motionless backgrounds are collected. Principle
Component Analysis (PCA) is used to determine means and variances over the
entire sequence (whole images as vectors). So, the incoming images are projected
onto the PCA subspace. The differences between the projection and the current
image greater than a threshold are considered foreground

• Wallflower [23]. Images are processed at three different spatial scales:

– pixel level, which makes the preliminary classification foreground-background
as well as the adaptation to changing backgrounds

– region level that refines the raw classification of the pixel level based on inter-
pixel relationships

– frame level, designed for dealing with the light switch problem

• Tracey LAB LP [24]. The background is represented by a set of codebook vectors
locally modeling the background intensities in the spatial-range domain. Thus,



2.3 Experimental Results 21

the image pixels not fitting that set are classified as foreground. In addition, as in
the Wallflower algorithm, a frame-level analysis is used to discriminate between
global light changes, noise, and objects of interest. Moreover, the foreground is
also represented by a set of codebook vectors in order to obtain a more accurate
foreground segmentation. Note that images are treated in the CIE Lab color space
and filtered with a 2 × 2 mean low-pass filter as preprocessing

• RGT [25]. Image processing is carried out at region level, where background is
modeled at different scales, from large to small rectangular regions, by using the
color histogram and a texture measurement. So, motion is detected by comparing
the corresponding rectangular regions from the coarsest scale to the finest one
such that the comparisons are done at a finer scale only if motion was detected
at a coarser scale. Furthermore, a Gaussian mixture background subtraction in
combination with Minimum Difference of Pair Assignments (MDPA) distance
[26] is used at the finest scale

• Joint Difference [4]. Motion is detected by means of an hybrid technique that
uses both frame-by-frame difference and background subtraction. This technique
integrates a selective updating method of the background model to tune background
adaptation. In addition to a pixel-by-pixel difference in the RGB color space, a
shadow filter in the HSV space is used to improve segmentation process.

A qualitative analysis highlights a good performance of the proposed approach
(Fig. 2.9). It is worth noting that both Time-of-day and Foreground-aperture results
present some false positives around the real foreground element due to the criteria
designed to detect stop-moving foreground elements. Nevertheless, targets are cor-
rectly detected in all images, even though in Bootstrapping video sequence, where
foreground elements appear from the first frame. This means that our approach suc-
cessfully deals with the two well-known difference drawbacks (i.e. ghosting and
foreground aperture).

From a quantitative point of view, two different statistical measurements have been
considered: TPR and FPR. As previously introduced, the TPR evaluates foreground
pixel classification. Thus, a high TPR means that the number of foreground pixels
correctly classified is much larger than the number of foreground pixels misclassified
as background. Nevertheless, it is also necessary to investigate the influence of the
real background pixels in the extracted foreground, since TPR is just about the actual
foreground pixels. For that, FPR is used to measure how many background pixels
are classified as background. Note that the best technique should have the highest
TPR value, but the lowest FPR value because a high FPR value means that most
parts of the image are detected as foreground by making the background subtraction
technique under study not appropriate to achieve our final goal.

Focusing on the results presented in Fig. 2.10, our approach has the best results
except for the Foreground-aperture video sequence. The reason is that it has been
influenced by the criteria established for detecting the situation when an object stops
moving, and they have produced some false positives in the previous location of the
target’s head. On the other hand, the FPR is low (less than 5%) what means most of
the image pixels are correctly classified (see Fig. 2.11). So, as the proposed approach
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Fig. 2.9 Tests of different background maintenance algorithms for four canonical background
problems contained in the Wallflower dataset [8] such that each column represents one consid-
ered image sequence. The top row shows the image in the sequence at which the processing was
stopped. The second row shows hand-segmented images of the foreground used as ground truth for
a quantitative comparison. The rest rows show the results of one algorithm

combines the highest TPR value and a low FPR value in most of the video sequences,
it can be concluded that our segmentation process outperforms previous algorithm
results.

Moreover, a quantitative analysis in terms of recall and precision is presented
in Table 2.2. It can be observed that although another algorithm achieves a better
result for a measurement in any situation, it is at the cost of obtaining a bad result
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Fig. 2.10 True Positive Rate (TPR) of different background subtraction techniques for some video
sequences of the Wallflower dataset [8], by including an extra column, Total that represents the
result obtained for all the videos combined together. Note that, as TPR evaluates the foreground
pixel classification, a high TPR value means that the number of foreground pixels correctly classified
is much larger than the number of foreground pixels misclassified as background

for the other measurement. That is, there is no video sequence for which a previous
algorithm overcomes the performance of CoD in both recall and precision.

A deeper quantitative study reveals the good performance of the proposed
approach (see Table 2.3). So, first, TNR which expresses how many positive are
wrongly tagged is presented. A high value of this measurement means a more accu-
rate image segmentation since less background pixels were wrongly tagged as fore-
ground. As it can be seen, the obtained results are close to 100 %. Nevertheless, as
in the case of FPR, TNR cannot be the only criterion for the evaluation of a seg-
mentation technique. As a complementary measurement, NPV is used for evaluating
how many foreground pixels have been wrongly classified as background. Again,
a high value of this parameter refers to a more accurate performance. The results
are also near 100 %. Moreover, TNR measurement can be complemented with the
FDR measurement when we are more interested in evaluating the error rate with
respect to misclassified background pixels, that is, the percentage of the background
pixels erroneously tagged as foreground. From its definition, a good performance
will provide a low value for this parameter. As it can be checked in Table 2.3, FDR
is lower than 17 %, except for the Bootstrap sequence, which is slightly higher. The
reason lies on the continuous presence of foreground elements in some parts of the
image. This fact makes more difficult the segmentation problem.

On the other hand, the following measurements provide a global evaluation for
the algorithm’s performance. The first considered one is accuracy since it takes
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Fig. 2.11 False Positive Rate (FPR) of different background subtraction techniques for some video
sequences of the Wallflower dataset [8], by including an additional column, Total, which contains
the FPR for all the videos combined together. FPR is used to measuring how many background
pixels are classified as background. Therefore, the best segmentation technique will have the lowest
FPR value

into account pixels both correctly and wrongly classified. Mathematically speaking,
accuracy will be higher when lower classification errors are made. Thus, an accu-
racy of 100 % is desired. The obtained results are >90 % in all the considered image
sequences. Another way to assess the system’s performance is based on the MCC
value. Basically, it is a balance measurement that provides information about the
correlation between pixels correctly tagged and those wrongly classified. So, values
near 1, as the ones obtained for the proposed approach, result in an accurate seg-
mentation. Note that a lower value is again obtained for the Bootstrap sequence. The
reason is the continuous presence of foreground elements in some parts of the image.
Regarding F1 Score, it is a kind of average of precision and recall measurements.
The F1 Score reaches its best value at 1. Note that all the obtained results are close
to the unit. The JC evaluates the algorithm’s accuracy when foreground pixels are
considered. So, a low error rate will provide JC values around 1. In this case, the
Bootstrap and the Time-of-day sequences have obtained the lowest values. Finally,
the YC value expresses the relationship between foreground and background pixels
correctly tagged and its value oscillates between 1 and −1, by providing a better
performance when it is around 1. All values are positive and close to the unit. Again,
the Bootstrap sequence has obtained the worst result, although it is nearly 0.70.
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Table 2.2 Comparison of the experimental quantitative results, in terms of recall and precision,
obtained for different segmentation methods on some Wallflower benchmarks [8]

Algorithm Measurement Time of day Light switch Bootstrap Foreground aperture Total

Mixture of
Gaussians

recall 34.88 49.82 35.93 51.37 45.43

[18]
precision 96.43 10.27 82.89 82.96 27.94

Block corre-
lation

recall 33.46 72.86 9.81 76.66 55.11

[19]
precision 79.33 44.82 89.13 75.79 61.93

Temporal
derivative

recall 25.65 76.89 16.99 59.20 49.96

[20]
precision 20.26 17.44 13.21 93.20 17.39

Bayesian
decision

recall 34.24 26.86 26.74 50.00 36.84

[21]
precision 48.53 6.11 22.05 55.97 20.04

Eigenback
ground

recall 43.22 70.44 89.61 51.39 64.03

[22]
precision 97.66 86.36 29.95 82.78 53.68

Wallflower recall 37.92 51.29 30.77 93.63 61.64

[23]
precision 95.92 81.65 71.15 87.87 84.75

Tracey LAB
LP

recall 50.13 39.61 32.51 52.15 44.20

[24]
precision 93.49 38.91 91.18 88.03 69.05

RGT recall 29.09 51.19 57.76 50.18 47.06

[25]
Joint

difference
recall 44.90 85.68 60.34 51.20 61.13

[4]
precision 99.00 44.04 91.40 83.34 64.89

Combination
of

recall 80.62 95.11 71.69 90.56 86.19

differences precision 83.31 90.82 73.73 88.55 85.27

2.3.2.2 VSSN06 Dataset

This dataset was developed for an algorithm competition in Foreground/Background
Segmentation within the Forth ACM International Workshop on Video Surveillance
and Sensor Networks. Their motivation was based on the results reported in the
literature that did not provide a direct comparison among algorithms because each
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Table 2.3 Quantitative results obtained for the CoD approach over some video sequences of the
Wallflower dataset [8] such that the first three measurements (TNR, NPV, and FDR) provide a perfor-
mance evaluation related to misclassified/correctly classified pixels, while the rest of measurements
provide a global assessment of the algorithm performance

Time of day Light switch Bootstrap Foreground aperture Total

TNR 98.58 98.04 95.41 95.85 97.04
NPV 98.31 98.99 94.94 96.63 97.24
FDR 16.69 9.18 26.27 11.45 14.73
Accuracy 97.14 97.54 91.80 94.45 95.24
MCC 0.80 0.91 0.68 0.86 0.83
F1 Score 0.82 0.93 0.73 0.90 0.86
JC 0.69 0.87 0.57 0.81 0.75
YC 0.82 0.90 0.69 0.85 0.83

So, high values for TNR, NPV, accuracy, MCC, F1 score, JC, and YC, and low values of FDR result
in an accurate segmentation

researcher reports results using different assumptions, evaluation methods, and test
sequences.

Each of its 12 test videos consists of a video that illustrates a background with
dynamic elements sometimes, and one or more virtual foreground objects, taken from
[27, 28] together with a foreground mask video (ground-truth video), in most of the
video sequences, by specifying each pixel belonging to a foreground object. These
color videos evaluate algorithm’s performance in view of the different canonical
problems mentioned above. Particularly, the considered problems here are:

• oscillating background
• gradual illumination changes
• sudden changes in illumination
• bootstrapping
• shadows

Again, we have concentrated on those video sequences that evaluate algorithm’s
performance when background elements are motionless. Therefore, only four videos
are considered. So, in video sequence 1, an indoor scene without oscillating elements
is the background where a virtual girl is moving around. No ground truth information
has been provided for this video sequence. That is why only qualitative results are
presented. So, as it can be observed in Fig. 2.12, the target element was detected in
all frames, even when the target is partially visible (e.g. frame at time 143). How-
ever, some false positives appear around the foreground object. That is because the
similarity criterion is defined at pixel level and no extra information is used. There-
fore, a more accurate segmentation could be obtained if any cognitive knowledge is
integrated in the system.

In a similar way, the video sequence 2 represents an indoor scene where no oscil-
lating elements appear. In this case, the target elements are two boys who are dancing
along the whole scene. Again, the qualitative results, presented in Fig. 2.13, high-
light the proper identification of the background and foreground pixels. As in the
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Fig. 2.12 Qualitative results for the video sequence 1 of the VSSN06 dataset [9], where a virtual girl
is moving around an indoor scene without oscillating elements. So, the first row of each block shows
the original frame of the sequence, while the other rows depict the segmentation result obtained by
the CoD approach: a binary image representing the background/foreground classification carried
out, such that the background is represented by black color and the foreground pixels are coded in
white; and a color image, where the foreground elements appear as in the original frame, whereas
the background is coded in an artificial, homogeneous color

previous case, a few false alarms have been detected in the surrounding target borders.
Nevertheless, the quantitative results reflect the good performance of the algorithm
with high values for measurements corresponding to correctly tagged pixels, whereas
those related to misclassified pixels have low values (see Table 2.4).

With regard to the video sequence 5, as in video sequences 1 and 2, a static
indoor scene is used as background. The particularity of this sequence is the presence
of foreground elements from the first frame. In addition, two different kinds of
target elements are considered. On the one hand, a virtual human being who is
dancing around the scene. On the other hand, a cat which is walking around the
scene. Thus, this video sequence evaluates both the presence of foreground elements
during the whole experiment and the detection of target elements different from
human beings. As depicted in Fig. 2.14, both elements of interest were successfully
identified. It is worth noting that the presence of a foreground element in the reference
frame has been properly detected when it started to move by solving the ghosting
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Table 2.4 Quantitative results obtained for the CoD approach over some video sequences of the
VSSN06 dataset [9] such that the first seven measurements provide a performance evaluation related
to misclassified/correctly classified pixels, while the rest of measurements provide a global assess-
ment

Recall Precision TPR FPR TNR NPV FDR Accuracy MCC F1 Score JC YC

Video 2 80.07 86.25 80.07 0.39 99.61 99.43 13.75 99.09 0.82 0.82 0.70 0.86
Video 5 79.22 73.90 73.90 2.86 97.14 98.73 25.02 96.18 0.73 0.73 0.60 0.70
Video 6 71.71 87.81 71.17 0.81 99.19 97.92 10.85 97.29 0.77 0.76 0.65 0.83

So, high values for recall, precision, TPR, TNR, NPV, accuracy, MCC, F1 score, JC and YC, and
low values of FPR and FDR, result in an accurate segmentation

problem. Nevertheless, the no detection of the foreground element in the early frames
has influenced the quantitative results, summarized in Table 2.4. So, although the
relationship between the measurements to show a good performance is kept, the
values are a little bit lower, or higher in the case of the pixel misclassification, than
it could be expected.

Again, the problem of lacking a frame free of foreground elements is considered in
the video sequence 6. The background scene is similar to the one in video sequences
1, 2 and 5, an indoor scene with constant illumination conditions where one or more
foreground elements are moving around. In particular, a virtual boy is in the scene
in the first captured frame, moves around, leaves, and re-enters the scene, while a
little girl enters and leaves the scene during the whole experiment. Both qualitative
and quantitative results are presented (see Fig. 2.15 and Table 2.4). Analyzing the
qualitative results, the foreground element is not detected in the early frames, since it
is not moving and it is initially classified as background. Then, it starts moving and
the proposed approach has detected this situation by properly updating its reference
frame. That is why there is no ghost presence in the frame at time 21. Later, the girl
enters the scene and both targets are detected without any problem, even when they
partially appear, as in frame at time 367 or at time 380. From a quantitative point of
view, bootstrapping event has had less influence on the results than on the previous
video sequence by showing a better performance, i.e., a lower error rate.

2.3.2.3 Audiovisual People Dataset

This dataset, courtesy of EPSRC funded MOTINAS project (EP/D033772/1), for
uni-modal and multi-modal (audio and visual) people detection tracking, consists of
three video sequences recorded in different scenarios with a video camera and two
microphones, although, in our case, only the image sequences have been used.

The 8-bit color AVI sequences were recorded by using a KOBI KF-31CD ana-
log CCD surveillance camera in the Department of Electronic Engineering—Queen
Mary University of London. Two of the image sequences were recorded in rooms
with reverberations, whereas the third one was recorded in a room with reduced
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Fig. 2.13 Qualitative results for the video sequence 2 of the VSSN06 dataset [9], where two virtual
boys are dancing along an indoor scene where no oscillating elements appear. So, the first row
shows the original frame of the sequence, the second row depicts the ground truth frame and, the
last two rows illustrate the segmentation result obtained by the CoD approach: a binary image
representing the background/foreground classification carried out, such that the background is
represented by black color and the foreground pixels are coded in white; and a color image, where
the foreground elements appear as in the original frame, whereas the background is coded in an
artificial, homogeneous color

reverberations, although all of them were captured at a frame rate of 25 Hz with a
360 × 288 resolution.

Unlike the previous study cases, no quantitative results are presented since no
ground truth is provided for this dataset. However, it is used because it considers
some issues that are missed in the previous datasets such as occlusions, the change
in targets’ speed, and/or in the camera pose with respect to the scene.
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Fig. 2.14 Qualitative results for the video sequence 5 of the VSSN06 dataset [9], where the lack of
frames without foreground elements is analyzed. So, the first row shows the original frame of the
sequence, the second row depicts the ground truth frame and, the last two rows illustrate the segmen-
tation result obtained by the CoD approach: a binary image representing the background/foreground
classification carried out, such that the background is represented by black color and the foreground
pixels are coded in white; and a color image, where the foreground elements appear as in the original
frame, whereas the background is coded in an artificial, homogeneous color
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Fig. 2.15 Qualitative results for the video sequence 6 of the VSSN06 dataset [9] such that the
problem of the absence of a frame free of foreground elements is studied. So, the first row shows the
original frame of the sequence, the second row depicts the ground-truth frame and, the last two rows
illustrate the segmentation result obtained by the CoD approach: a binary image representing the
background/foreground classification carried out, such that the background is represented by black
color and the foreground pixels are coded in white; and a color image, where the foreground elements
appear as in the original frame, whereas the background is coded in an artificial, homogeneous color
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At first instance, a classroom where a person is moving around is observed.
Again, the problem of the foreground element presence in the initial frames and its
corresponding presence in the reference frame for the background(-frame) subtrac-
tion is considered. Moreover, in this video sequence, the occlusion problem is also
taken into account. So, the target of the sequence, a guy, appears on the left of the
image in the initial frames and, while he is moving toward the right side, is occluded.
Then, he reappears in the scene and walks around it by approaching and going away
until he again disappears of the image as a consequence of a new occlusion. Finally,
he re-enters the scene and moves around it. Figure 2.16 shows some frame samples
of the obtained result. It is worth noting that the person of interest was successfully
detected in all the frames although he was occluded and his distance with respect to
the camera was considerable and variable.

In a similar way, the second considered video sequence observes a computer room
where two people are constantly entering and leaving it. Nevertheless, in this case,
the initial frames are free of foreground pixels which means that the reference frame
for the background(-frame) subtraction, initially set to the first captured frame, is
an exact model of scene background. So, the interest in this video sequence lies
on the number of targets, i.e., two individuals, and the fact that they are crossing
and overlapping several times during the whole experiment. In the resulting frames,
depicted in Fig. 2.17, different situations are analyzed: (1) the absence of foreground
elements; (2) the partial presence and subsequent appearance of one of the interest
people; (3) the presence of one or both of them, even when they cross (e.g. frame
at time 810); and, (4) the scene without any foreground element. Again, from a
qualitative point of view, the proposed approach presents a good performance.

The last video sequence was recorded in a room with reduced reverberations.
Basically, there are two people who continuously enter and leave the scene such
that they change their speed and trajectories all the time. As it can be observed in
Fig. 2.18, the individuals are properly detected in all frames. Note the presence of
shadows in some of the resulting images, since no processing to erase them has been
applied at this point.

2.3.3 Experimental Results Over Our Own Dataset

In this section, we present some results obtained from different experiments carried
out in our laboratory. Mainly, they consist of locating an imaging device at different
places of our laboratory room. Although the lab contains some dynamic factors (e.g.,
blinking of computer screens), they have been avoided for this section. Furthermore,
as previously pointed out, two different kinds of imaging devices have been used.
So, results for both perspective and fisheye devices are presented.
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Fig. 2.16 Qualitative results over Room 105 image sequence of Audiovisual People dataset [10]
where a person is moving around a classroom. So, the first row of each block shows the original
frame of the sequence, whereas the last two rows illustrate the segmentation result obtained by
the CoD approach: a binary image representing the background/foreground classification carried
out, such that the background is represented by black color and the foreground pixels are coded in
white; and a color image, where the foreground elements appear as in the original frame, whereas
the background is coded in an artificial, homogeneous color
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Fig. 2.17 Qualitative results over Room 160 video sequence of Audiovisual People dataset [10]
where two people are moving around a computer room. So, the first row of each group shows the
original frame of the sequence, whereas the last two rows illustrate the segmentation result obtained
by the CoD approach: a binary image representing the background/foreground classification carried
out, such that the background is represented by black color and the foreground pixels are coded in
white; and a color image, where the foreground elements appear as in the original frame, whereas
the background is coded in an artificial, homogeneous color

2.3.3.1 Perspective Image Experiments

First, a perspective imaging device has been used. In particular, a STH-DCSG Stereo
head by using one of its two C-mount lenses was employed [29]. Basically, it is
a synchronized digital stereo head camera with two global shutter CMOS imagers,
offering VGA resolutions at 30 fps. Nevertheless, different features have been tested.
So, on the one hand, images were acquired in monochrome mode with a 320 × 240
resolution and, on the other hand, 640×480, 24-bit RGB color images are considered.

In both experiments, the goal is to properly detect the presence of a person in the
scene, continuously entering and leaving the observed space. However, experimental
conditions have been changed. In the first experiment, illumination changes do not
occur. An individual enters and moves around the scene by approaching and moving
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Fig. 2.18 Qualitative results over Chamber video sequence of Audiovisual People dataset [10]
where two people are continuously entering and leaving a room with reduced reverberations. So,
the first row of each group shows the original frame of the sequence, whereas the last two rows
illustrate the segmentation result obtained by the CoD approach: a binary image representing the
background/foreground classification carried out, such that the background is represented by black
color and the foreground pixels are coded in white; and a color image, where the foreground elements
appear as in the original frame, whereas the background is coded in an artificial, homogeneous color

away the camera until a distance of 9 m. Furthermore, occlusions and stop motions
have been also analyzed with this image sequence. A good performance is obtained
in all those situations as depicted in Fig. 2.19.

Regarding the second experiment, the camera was located at a different place in
our laboratory room. Again, a person is continuously entering, moving around, and
leaving the scene. However, in this case, global illumination changes take place. So,
initially, the visual system is observing a very bright scene. As shown in the first
row of Fig. 2.20, the target individual is successfully detected at several positions, in
spite of some internal pixels are misclassified as background. The main reason lies
on the similarity between the pixel intensities since CoD algorithm works at pixel
level. Then, a global illumination change takes place by slightly darkening the scene.
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Fig. 2.19 Qualitative results over color perspective images such that a person is continuously
entering and leaving our laboratory room. So, the first row shows the original frame of the sequence,
whereas the last two rows illustrate the segmentation result obtained by the CoD approach: a binary
image representing the background/foreground classification carried out, such that background is
represented by black color and foreground pixels are coded in white; and a color image, where the
foreground elements appear as in the original frame, whereas background is coded in an artificial,
homogeneous color

At this point, the approach’s performance is more accurate by providing less false
negatives. Finally, another global illumination change makes the scene very dark.
Although the illumination is poor, the proposed approach is capable of detecting the
individual. Note that the darker the scene is, the higher the shadow presence is. That
is, because the intensity of the shadow pixels is more affected by this phenomenon,
their value is different enough from the background pixel brightness to be wrongly
labeled as foreground. Moreover, a background element (a chair) is moved. Note that
it is not correctly detected both in the new position and the old one. The reason is
that when it is moved, it is identified that it is a background element that has started
to move. So, the left hole is properly covered with the new background. Then, when
it is located at the new position, it is adequately identified as a background element,
as it can be observed.
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Fig. 2.20 Qualitative results over gray-scale perspective images such that a person is continuously
entering and leaving our laboratory room. So, the first row shows the original frame of the sequence,
whereas the last two rows illustrate the segmentation result obtained by the CoD approach: a binary
image representing the background/foreground classification carried out, such that the background
is represented by black color and the foreground pixels are coded in white; and a color image, where
the foreground elements appear as in the original frame, whereas the background is coded in an
artificial, homogeneous color

2.3.3.2 Fisheye Image Experiments

In this section, the CoD’s performance is assessed over fisheye images. For that,
a DR2-COL-CSBOX camera with a Fujinon YV2.2 × 1.4A-2 1/3” 1.4–3.1mm CS-
Mount lens was used [30, 31]. At this instance, the fisheye camera was located at the
center of another laboratory room, pointing upwards, by monitoring the presence of
an individual around the visual system. Some examples of the algorithm’s perfor-
mance over this image sequence are depicted in Fig. 2.21, while the set of parameters
used is summarized in Table 2.5.

As it can be observed, the performance results are even better than those over
perspective images, in spite of the lightning source blink, which is properly corrected
by avoiding false positives due to it. Also note that, unlike the perspective images,
the proximity to the camera affects in large extent to the pixel intensity values. A
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Fig. 2.21 Qualitative results for fisheye images for a video sequence where a person is continuously
entering and leaving our laboratory room. So, the first row shows the original frame of the sequence,
whereas the last two rows illustrate the segmentation result obtained by the CoD approach: a binary
image representing the background/foreground classification carried out, such that the background
is represented by black color and the foreground pixels are coded in white; and a color image, where
the foreground elements appear as in the original frame, whereas the background is coded in an
artificial, homogeneous color
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Table 2.5 Parameter values used for fisheye images when the CoD is performed
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Fig. 2.22 Execution time analysis of the CoD approach based on the image size and the background
frame update on an Intel(R) Core(TM) Duo CPU P8700 at 2.53 GHz

sample of this can be observed in frame at time 101 or at time 181. Nevertheless, this
temporary change is rightly not considered as a global illumination change. That is
why classification in consecutive frames was again successful.

To conclude this section, an execution time analysis is carried out. For that, two
different parameters are considered: the image size and the process to update the
reference frame for the background(-frame) subtraction. The CoD C++ implemen-
tation was run on an Intel(R) Core(TM) Duo CPU P8700 at 2.53 GHz by obtaining
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the execution time depicted in Fig. 2.22. As it can be observed, the execution time
is slightly higher when the updating operation is used. However, it is worth noting
that it was considered the worst case in which the updating operation was required.
In addition, real-time performance is obtained for a 320 × 240 image resolution.

2.4 Conclusions

In this chapter we have studied the basic case of motion detection, that is, motion
detection in scenes with background motionless, aiming at analyzing and solving
different issues referred to the use of different imaging sensors, the adaptation to
different environments, different motion speed, the shape changes of the targets, or
some uncontrolled dynamic factors such as, for instance, gradual/sudden illumination
changes. As a solution, a CoD techniques has been proposed. Mainly, it combines a
frame-by-frame difference together with a background(-frame) subtraction with the
purpose of overcoming the two well-known difference drawbacks (i.e., ghosting and
foreground aperture). Moreover, on the way to autonomous, robust visual systems,
it has also been necessary to study the automatic threshold estimation. For that,
a dynamic thresholding method based on resolution distribution in an image has
been presented. This technique automatically divides the captured images and sets
the proper thresholding parameters for two different kinds of cameras: perspective
and fisheye. So, problems such as non-uniform-distributed resolution, inadequate
illumination gradient in the scene, unsuitable contrast, or the overlapping of the
background and the target gray-level distributions, are overcome.

In addition, some experiments over public image datasets and our own image
datasets were carried out. Both quantitative and qualitative results have been pro-
vided in order to assess the CoD’s performance under different conditions. As the
experimental results have highlighted, the proposed approach is able to deal with dif-
ferent imaging devices, variable target’s speeds or types of interest elements such as
people or animals. Furthermore, a comparative analysis with some well-known tech-
niques (those that have provided results on these image datasets) has demonstrated
that our approach outperforms them.

Finally, a time-execution analysis has been presented. In that study, two different
parameters were considered: the image size and the process to update the reference
frame for the background(-frame) subtraction. It highlights that the execution time
depends on the image size, although a real-time performance is obtained for a 320 ×
240 image resolution. So, the proposed approach can be used for real-time robotic
tasks.
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7. Mičušík, B.: Two view geometry of omnidirectional cameras. Ph.D. thesis, Center for Machine
Perception, Czech Technical University in Prague (2004)

8. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: http://research.microsoft.com/en-us/um/
people/jckrumm/WallFlower/TestImages.htm (1999)

9. Hörster, E., Lienhart, R.: http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC/ (2006)
10. Taj, M.: Surveillance performance evaluation initiative (spevi)—audiovisual people dataset.

http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007_d.html (2007)
11. Ferryman, J.: http://www.cvg.rdg.ac.uk/PETS2006/data.html (2006)
12. Berger, J., Patel, T., Shin, D., Piltz, J., Stone, R.: Computerized stereochronoscopy and alteration

flicker to detect optic nerve head contour change. Ophtalmology 107(7) (2000)
13. Hu, J., Kahsi, R., Lopresti, D., Nagy, G., Wilfong, G.: Why table ground-truthing is hard. In:

Sixth International Conference on Document Analysis and Recognition, pp. 129–133. Seattle,
WA, USA (2001)

14. Rosin, P., Ioannidis, E.: Evaluation of global image thresholding for change detection. Pattern
Recognition Letters 24(14), 2345–2356 (2003)

15. Cheung, S., Kamath, C.: Robust techniques for background subtraction in urban traffic video.
Electronic Imaging: Video Communications and Image Processing 5308(1), 881–892 (2004)

16. Benezeth, Y., Jodoin, P., Emile, B., Laurent, H., Rosenberger, C.: Review and evaluation of
commonly-implemented background subtraction algorithms. In: 19th International Conference
on Pattern Recognition (ICPR), pp. 1–4. Tampa, Florida (2008)

17. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: 23rd
International Conference on Machine Learning, pp. 233–240. Pittsburg, Pennsylvania (2006)

18. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 246–252 (1999)

19. Matsuyama, T., Ohya, T., Habe, H.: Background subtraction for non-stationary scenes. In:
Fourth Asian Conference on Computer Vision, pp. 662–667. Singapore (2000)

20. Haritaoglu, I., Harwood, D., Davis, L.: W4: Real-time surveillance of people and their activi-
ties. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22(8), 809–830
(2000)

21. Nakai, H.: Non-parameterized bayes decision method for moving object detection. In: Asian
Conference on Computer Vision. Singapore (1995)

22. Oliver, N., Rosario, B., Pentland, A.: A bayesian computer vision system for modeling human
interactions. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 22(8),
831–843 (2000)

23. Toyama, K., Krum, J., Brumitt, B., Meyers, B.: Wallflower: Principles and practice of back-
ground maintenance. In: Seventh IEEE International Conference on Computer Vision (ICCV),
vol. 1, pp. 255–261. Kerkyra, Greece (1999)

24. Kottow, D., Koppen, M., del Solar, J.R.: A background maintenance model in the spatial-range
domain. In: 2nd ECCV Workshop on Statistical Methods in Video Processing, pp. 141–152.
Prague, Czech Republic (2004)

http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm
http://research.microsoft.com/en-us/um/people/jckrumm/WallFlower/TestImages.htm
http://mmc36.informatik.uni-augsburg.de/VSSN06_OSAC/
http://www.elec.qmul.ac.uk/staffinfo/andrea/avss2007_d.html
http://www.cvg.rdg.ac.uk/PETS2006/data.html


42 2 Motion Detection in Static Backgrounds

25. Varcheie, P., Sills-Lavoie, M., Bilodeau, G.A.: An efficient region-based background subtrac-
tion technique. In: Canadian Conference on Computer and Robot Vision, pp. 71–78 (2008)

26. Cha, S., Srihari, S.: On measuring the distance between histograms. Pattern Recognition 35(6),
1355–1370 (2002)

27. Max-Planck-Institut-Informatik: http://www.mpi-inf.mpg.de/departments/irg3/software.html
(2005)

28. http://www.gifart.de/ (2002)
29. VidereDesign: http://198.144.193.48/index.php?id=31
30. PointGrey: http://www.ptgrey.com/products/dragonfly2/index.asp (2009)
31. Fujinon: http://www.fujinon.com/Security/Product.aspx?cat=1019\&id=74 (2009)

http://www.mpi-inf.mpg.de/departments/irg3/software.html
http://www.gifart.de/
http://198.144.193.48/index.php?id=31
http://www.ptgrey.com/products/dragonfly2/index.asp
http://www.fujinon.com/Security/Product.aspx?cat=1019&id=74


http://www.springer.com/978-1-4471-4215-7


	2 Motion Detection in Static Backgrounds
	2.1 State of the Art 
	2.2 Combination of Difference Approach 
	2.3 Experimental Results 
	2.3.1 Principles for Performance Evaluation and Comparison 
	2.3.2 Experimental Results Over Image Datasets 
	2.3.3 Experimental Results Over Our Own Dataset 

	2.4 Conclusions 
	References


