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Abstract We show superstability of Mikusinski’s functional equation

flx+y) (f(x+y) = flx) = f(y) =0.
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2.1 Introduction

Certain geometrical considerations have led J. Mikusinski to the functional equation

Fa+((fx+y) = f(x) = f(y) =0, (2.1)

for the continuous real-valued function f of the real variable. Equation (2.1) is
usually written in the conditional form

fx+y)#0 = flx+y) = fx)+ f(y), (2.2)

which enables us to deal with it more generally — in structures endowed only with
one binary operation.
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The general sulution of Mikusinski’s equation (2.2) is described in [4]. Stability
of Mikusinski’s equation in both forms (2.1) and (2.2) is proved in [1].

We show that the method for proving superstability of conditional Cauchy
equations, proposed in [6] (see also [2, 3]), is applicable to Mikusinski’s equation.

2.2 Superstability

We use [l, Theorem 2] in order to prove superstability of Mikusinski’s
equation (2.1).

Theorem 2.1. Let (G,+) be an Abelian group and a function f : G — C satisfy

lfc+y)(f(x+y) = f(x) = f(¥)| < € forx,y€G, (2.3)

with some € > 0. Then f is additive, or bounded with | f(x)| < 2v/6¢ for x € G.

Proof. By [1, Theorem 2] there exists an additive function a : G — C with
| f(x) —a(x) |<2V6e forxeG. (2.4)

If f is bounded, then @ = 0 and | f(x) |< 2v/6€. Thus, let us consider f unbounded.
According to (2.4) a is nontrivial and there is a bounded function b such that
f = a+b. Taking into account this representation and (2.3) one can easily see that
the function

G5y — a(y)(b(x+y) — b(x) — b(»))

is bounded for an arbitrary x € G. This implies that

b(x) = lim (b(x+yn)—b(y)) forx € G,

n—y—+oeo

where (yn)nen is an arbitrary sequence in G with | a(y,) |— +e (such a sequence
exists since a is nontrivial). Now, using the same argumentation as in [3] one can
check that b is additive, and consequently has to be trivial, which yields f =a. O

Remark 2.1. 1t is to be noticed that Moszner [5] proposed another general method
for proving superstability of some functional equations which is also applicable to
Mikusinski’s equation.
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