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Abstract We show superstability of Mikusiński’s functional equation

f (x+ y) ( f (x+ y)− f (x)− f (y)) = 0.
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2.1 Introduction

Certain geometrical considerations have led J. Mikusiński to the functional equation

f (x+ y)(( f (x+ y)− f (x)− f (y)) = 0, (2.1)

for the continuous real-valued function f of the real variable. Equation (2.1) is
usually written in the conditional form

f (x+ y) �= 0 =⇒ f (x+ y) = f (x)+ f (y), (2.2)

which enables us to deal with it more generally – in structures endowed only with
one binary operation.

B. Batko (�)
Department of Mathematics, WSB – NLU, Zielona 27, 33-300 Nowy Sa̧cz, Poland

Department of Mathematics, Pedagogical University, Podchora̧żych 2, 30-084 Kraków, Poland
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The general sulution of Mikusiński’s equation (2.2) is described in [4]. Stability
of Mikusiński’s equation in both forms (2.1) and (2.2) is proved in [1].

We show that the method for proving superstability of conditional Cauchy
equations, proposed in [6] (see also [2, 3]), is applicable to Mikusiński’s equation.

2.2 Superstability

We use [1, Theorem 2] in order to prove superstability of Mikusiński’s
equation (2.1).

Theorem 2.1. Let (G,+) be an Abelian group and a function f : G → C satisfy

| f (x+ y)( f (x+ y)− f (x)− f (y))| ≤ ε for x,y ∈ G, (2.3)

with some ε ≥ 0. Then f is additive, or bounded with | f (x)| ≤ 2
√

6ε for x ∈ G.

Proof. By [1, Theorem 2] there exists an additive function a : G → C with

| f (x)− a(x) |≤ 2
√

6ε for x ∈ G. (2.4)

If f is bounded, then a = 0 and | f (x) |≤ 2
√

6ε . Thus, let us consider f unbounded.
According to (2.4) a is nontrivial and there is a bounded function b such that
f = a+ b. Taking into account this representation and (2.3) one can easily see that
the function

G 	 y 
−→ a(y)(b(x+ y)− b(x)− b(y))

is bounded for an arbitrary x ∈ G. This implies that

b(x) = lim
n→+∞

(b(x+ yn)− b(yn)) for x ∈ G,

where (yn)n∈N is an arbitrary sequence in G with | a(yn) |→ +∞ (such a sequence
exists since a is nontrivial). Now, using the same argumentation as in [3] one can
check that b is additive, and consequently has to be trivial, which yields f = a. ��
Remark 2.1. It is to be noticed that Moszner [5] proposed another general method
for proving superstability of some functional equations which is also applicable to
Mikusiński’s equation.
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