Galectins as Pattern Recognition Receptors:
Structure, Function, and Evolution
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Abstract Galectins constitute an evolutionary conserved family of -galactoside-
binding proteins, ubiquitous in mammals and other vertebrate taxa, invertebrates,
and fungi. Since their discovery in the 1970s, their biological roles, initially under-
stood as limited to recognition of carbohydrate ligands in embryogenesis and devel-
opment, have expanded in recent years by the discovery of their immunoregulatory
activities. A gradual paradigm shift has taken place in the past few years through
the recognition that galectins also bind glycans on the surface of potentially patho-
genic microbes, and function as recognition and effector factors in innate immunity.
Further, an additional level of functional complexity has emerged with the most
recent findings that some parasites “subvert” the recognition roles of the vector/host
galectins for successful attachment or invasion.
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1 Introduction

Complex carbohydrate structures encode information that modulates interactions
between cells, or cells and the ECM, by specifically binding to carbohydrate-
binding proteins such as galectins, formerly known as S-type lectins [Gabius 1997,
and references therein]. Galectins constitute an evolutionary conserved family of
3-galactoside-binding proteins, ubiquitous in eukaryotic taxa, including the parazoa
(sponges) and both protostome and deuterostome lineages of metazoans, and fungi
(Cooper 2002; Vasta et al. 1999). Two properties are required in a protein for its
inclusion in the galectin family: (a) a characteristic affinity for 3-galactosides, and
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Fig. 1 Galectin types and structure of the galectin-1/LacNAc complex. a Galectins are clas-
sified in three types: “proto” (a), “chimera” (b), and “tandem-repeat” (c); b The structure of the
galectin-1/thiodigalactoside (TDG) complex reveals a dimer, which each globular subunit binding
a single oligosaccharide

(b) a conserved carbohydrate recognition domain (CRD) sequence motif. Based
on structural features, galectins have been classified in three types: “proto”, “chi-
mera”, and “tandem-repeat” (TR) (Fig. 1) (Hirabayashi and Kasai 1993). Proto-type
galectins (Fig. 1a(a); Fig. 1b) contain one CRD per subunit and are non-covalently
linked homodimers. The chimera galectins (Fig 1a(b)) have a C-terminal CRD and
an N-terminal domain rich in proline and glycine. In TR galectins (Fig. 1a(c)) two
CRDs are joined by a functional linker peptide. Recently, a novel TR-type galectin
with four CRDs has been described (Tasumi and Vasta 2007). The dimerization of
proto-type galectins is critical for their function in mediating cell—cell or cell-ECM
interactions (Gabius 1997), and similar interactions via the N-terminus domain
have been proposed for the chimera galectins (Colnot et al. 1997; Rabinovich et al.
2002). Proto- and TR-types comprise several distinct galectin subtypes. Galectin
subtypes have been numbered following the order of their discovery, and so far, 15
have been described in mammals. Galectins-1, -2, -5, -7, -10, -11, -13, -14, and -15
are proto-type. Galectin-3 is the only chimera-type. Galectins-4, -6, -8, -9, and -12
are TR-type. Lower vertebrates and invertebrates appear to have a smaller galec-
tin repertoire. Although galectins lack a typical secretion signal peptide, they are
present not only in the cytosol and the nucleus, but also in the extracellular space
(Cooper 2002) (Fig. 2). From the cytosol, galectins may be targeted for secretion
by non-classical mechanisms, possibly by direct translocation across the plasma
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membrane (Cho and Cummings 1995; Patterson et al. 1997; Sato and Hughes 1994;
Cleves et al. 1996).

2 Structure and Biochemical Properties of Galectins

The structure of galectin-1 (Liao et al. 1994; Bianchet et al. 2000) complexed with
a di-galactoside (Fig. 1b) shows a jellyroll topology typical of legume lectins. The
subunit of galectin is composed of an 11-strand antiparallel 3-sandwich and con-
tains one CRD. The 3-D structure of the galectin—ligand complex allowed us to
identify amino acids that participate in interactions with ligands, as well as the posi-
tion and orientation of the sugar hydroxyls that interact with the amino acids (Liao
et al. 1994; Bianchet et al. 2000).

Most galectins are non-glycosylated soluble proteins, although a few recently
discovered exceptions have transmembrane domains (Lipkowitz et al. 2004; Gorski
et al. 2002). The presence of a galectin fold in the protistan parasite Toxoplasma
gondii, and galectin-like proteins in the fungus Coprinopsis cinerea and in the
sponge Geodia cydoniumreveals the early emergence and structural conservation of
galectins in eukaryotic evolution (Saouros et al. 2005; Walser et al. 2005; Stalz et al.
2006). In contrast, galectin-like proteins such as the lens crystallin protein galectin-
related inter-fiber protein (GRIFIN) and the galectin-related protein (GRP) (pre-
viously HSPC159; hematopoietic stem cell precursor) lack carbohydrate-binding
activity, and are considered products of evolutionary co-option (Ogden et al. 1998;
Ahmed and Vasta 2008). The primary structures and gene organization of mam-
malian galectins are substantially conserved. Prior to or during early in chordate
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evolution, duplication of a mono-CRD galectin gene would have led to a bi-CRD
galectin gene, in which the N- and C-terminal CRDs subsequently diverged into
two different subtypes, defined by exon—intron structure (F4-CRD and F3-CRD).
All vertebrate single-CRD galectins belong to either the F3- (e.g., gal-1, -2, -3, -5)
or F4- (e.g., gal-7,-10, -13, -14) subtype, whereas TR galectins such as gal-4, -6, -8,
-9, and -12 contain both F4 and F3 subtypes (Houzelstein et al. 2004).

Galectins are B-galactoside-binding lectins, and their preferred ligands are N-
acetyllactosamine (LacNAc; Gal31,4GlcNAc) and related disaccharides, with dis-
sociation constants in the order of 10 M (Schwarz et al. 1998; Dam and Brewer
2008). Binding specificities of galectins for lactose (Lac), LacNAc, T-disaccharide
(GalB31,3GalNAc) and the human blood group A-tetrasaccharide, together with the
presence of amino acid residues that interact with the carbohydrate ligands, have
enabled classification of their CRDs into “conserved” or “variable” types (Ahmed
and Vasta 1994). The crystal structure of the galectin-1 (conserved type) complexed
with a di-galactoside determined at 1.9 A resolution (Fig. 1b) revealed the galectin
structural fold, and allowed the identification of the amino acids involved and the
hydroxyl groups of the ligands that participate in protein—carbohydrate interactions
(Liao et al. 1994; Bianchet et al. 2000; Lobsanov et al. 1993). The carbohydrate-
binding site is formed by three continuous concave strands (34-66) containing all
residues involved in direct interactions with LacNac. Additional interactions involv-
ing a water molecule that bridges the nitrogen of the NAc group with His2, Asp™,
and Arg”® explains the higher affinity of LacNAc over Lac. Unlike galectin-1, galec-
tin-3 has an extended carbohydrate-binding site formed by a cleft open at both ends,
in which the LacNAc is positioned in such a way that the reducing end of the LacNAc
(GIeNAc) is open to solvent, but the non-reducing moiety (Gal) is in close proxim-
ity to residues in the 33 strand (Seetharaman et al. 1998). The extended binding site
leads to increased affinity for glycans with multiple lactosamine units, and with their
substitution of the non-reducing terminal galactose moiety with ABH blood group
oligosaccharides [Fucal, 2; GalNAcal,3(Fucal,2); and Galal,3(Fucal,2)]. For
the nematode Caenorhabditis elegans 16-kDa galectin (variable type), the shorter
length of the loops connecting the three 34-36 strands determines its broader bind-
ing specificity for blood group precursor oligosaccharides. Therefore, although ga-
lectins are considered a conserved lectin family, most metazoans are endowed of a
complex galectin repertoire, with members exhibiting multiple isoforms and more
or less subtle variations in carbohydrate specificity, which together with a certain
degree of plasticity in sugar binding of each CRD, suggests a substantial diversity
in recognition properties (Sparrow et al. 1987; Sato and Hughes 1992; Ahmed et al.
2002; Shoji et al. 2003; Zhou and Cummings 1990; Fang et al. 1993).

Thermodynamic approaches have been used not only to assess the galectins’ car-
bohydrate-binding properties, but also the oligomeric organization of the protein.
On microcalorimetric studies, the dissociation constants for the interactions of bo-
vine galectin-1 with the preferred ligands (Lac, N-acetyllactosamine, thiodigalac-
toside) were in the range of 107> M, with two binding sites per molecule (Schwarz
et al. 1998). Although galectin and legume lectins display a striking similarity in
their 3-D structures, the thermal stability of the galectin is different from that of
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concanavalin A (Con A). Like Con A, the bovine galectin exists as a tetramer at the
denaturation temperature, but, unlike Con A, it does not dissociate upon unfolding
(Schwarz et al. 1998).

3 Biological Roles of Galectins in Development
and Regulation of Immune Homeostasis

Galectins were initially thought to only bind endogenous (“self”) glycans and me-
diate developmental processes, including cell differentiation and tissue organiza-
tion, and more recently, regulation of immune homeostasis (Leffler et al. 2004,
Yang et al. 2008) (Fig. 3). In the past few years, however, it has become clear that
galectins also bind glycans on the surface of potentially pathogenic microbes and
parasitic worms, and mediate recognition and effector functions in innate immunity
(Sato and Nieminen 2004). Glycans that contain N-acetyllactosamine and poly-
lactosamine chains [(GalB1,4GIcNAc)n], such as laminin, fibronectin, lysosome-
associated membrane proteins, and mucins, are the preferred endogenous ligands
for mammalian, bird, and amphibian galectins (Sectharaman et al. 1998; Sparrow
et al. 1987; Sato and Hughes 1992; Ahmed et al. 2002; Shoji et al. 2003; Zhou and
Cummings 1990; Fang et al. 1993). The biological function of a particular galec-
tin, however, may vary from site to site, depending on the availability of suitable
ligands. The binding properties and biological functions of galectins in the oxida-
tive extracellular environment, however, may depend on their immediate binding to
ligand, which prevents the oxidation of free cysteine residues, as well as galectin

Formation of a galectin-

Cell adhesion glycoprotein lattice Signal transduction
Role(s) in Development Role(s) in Immunity
Embryo implantation Inflammation
Tissue organization T-cell apoptosis
Neuron projections Pre-B cell maturation

Fig. 3 Biological roles of galectins upon binding to the cell surface. Galectins can bind to
glycans on neighboring cells or to cells and the extracellular matrix, leading to cell adhesion, or
to the surface of a single cell resulting in the formation of lattices, and the activation of signaling
pathways
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Fig. 4 The role of hemocyte galectins on parasite host invasion. a: SEM of oyster hemocytes
in the process of engulfing Perkinsus marinus trophozoites (indicated by arrows) in vitro (Gauthier
and Vasta; 71). b: Cartoon of the hypothetical process that takes place in the gut and other epi-
thelial surfaces: The oyster galectin CvGal mediates recognition and phagocytosis of P. marinus
trophozoites by hemocytes; the trophozoites survive inside the oyster hemocytes, which migrate
from the gut via a trans-epithelia route and are transported to other tissues where the parasite pro-
liferates (Tasumi and Vasta 2007)

susceptibility to proteolysis (Liao et al. 1994; Lobsanov et al. 1993). The binding
of galectins to cell surface B-galactoside-containing glycolipids and glycoproteins
can lead to the formation of lattices that cluster these ligands into lipid raft micro-
domains required for optimal transmission of signals relevant to cell function (Rabi-
novich et al. 2007b; Brewer et al. 2002; Partridge et al. 2004) (Fig. 4). In solution
galectins can form multivalent species in a concentration-dependent equilibrium
(Morris et al. 2004). Proto-type galectins associate as non-covalently bound dimers
via a hydrophobic interphase, whereas galectin-3 associates via its N-terminal do-
main to form oligomers that in the presence of multivalent oligosaccharides in so-
lution or at the cell surface display binding cooperativity (Dam and Brewer 2008;
Brewer et al. 2002). The bivalent TR-type galectins can recognize different sac-
charide ligands with a single polypeptide, although they can also form higher order
aggregates that enhances their avidity. Galectin-mediated lipid raft assembly may
modulate turnover of endocytic receptors, signal transduction pathways leading to
T-cell activation and cytokine secretion, or apoptosis, B-cell maturation, activation
and tolerance, and neutrophil activation leading to phagocytosis, oxidative burst,
and protease and cytokine release. Thus, galectin-glycoprotein lattices at the cell
surface have been proposed to function as an “on-an-off switch” that regulates cell
proliferation, differentiation and survival, including immune cell responsiveness
and tolerance (Dam and Brewer 2008; Brewer et al. 2002).

Since their discovery, galectins have been proposed to participate in embryo-
genesis, development, and neoplasia. This has been based on their binding to “self”
carbohydrate moieties, such as polylactosamine-containing glycans, abundant at the
cell surface and the ECM (Fig 3). Chicken galectins have been proposed to par-
ticipate in myoblast fusion, whereas murine galectin-1 and galectin-3 would have
roles in notochord development, somitogenesis, and development of muscle tissue
and central nervous system (Cooper et al. 1991; Watt et al. 2004; Georgiadis et al.
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2007; Fowlis et al. 1995). Despite the increasing availability of genetically modi-
fied mice, however, strains carrying null mutations for some galectins have failed
to display overt developmental phenotypes (Colnot et al. 1998; Puche et al. 1996;
Colnot et al. 2001). Thus, other genetically tractable model organisms endowed
with a less diversified galectin repertoire such as Drosophila and zebrafish have
become attractive alternatives for these selected galectins, with promising results
(Pace et al. 2002; Ahmed et al. 2004).

In the past few years it has been shown that galectins participate in regulation
of both innate and adaptive immunity (Vasta 2009; Rabinovich et al. 2002; van Die
and Cummings 2010). The recently proposed roles of galectins in immune func-
tions have been further supported by their ability to directly recognize microbial
pathogens (Vasta 2009), a property well characterized for other lectin types, such
as C- and F-lectins, ficolins, and pentraxins. Although the roles of lectins in non-
self recognition are particularly critical in invertebrates, since these organisms lack
immunoglobulins and rely solely in innate immune mechanisms for recognition of
potential microbial pathogens (Vasta et al. 1999), susceptibility/resistance to several
infectious diseases in humans are determined by the presence of certain lectin al-
leles (Dias-Baruffi et al. 2010). Galectins from both invertebrates and vertebrates
recognize a variety of viral and bacterial pathogens and protozoan parasites (Re-
viewed in Vasta 2009).

Galectins are ubiquitously expressed and distributed in mammalian tissues, in-
cluding most cells of the innate (dendritic cells, macrophages, mast cells, natural
killer cells, gamma/delta T cells, and B-1 cells) and adaptive (activated B and T
cells) immune system, and as in other cell types (Stowell et al. 2008; Rabinovich
et al. 2007a). Since the early 1990s a growing body of experimental (in vivo and in
vitro) evidence has accumulated to support the roles of galectins expressed by these
cells and neighboring stromal cells in the development and regulation of innate
and adaptive immunity homeostasis as well as responses to infectious and allergic
challenge, and cancer. Galectins released by stromal cells in central compartments
contribute to the differentiation of immune cell precursors. Immune challenge and
several pathological conditions, may lead to further activation and differentiation
of immune cells, and modulate the expression and release of galectins to the ex-
tracellular space where they may have autocrine or paracrine effects on immune
regulation. Galectins released by immune cells can oligomerize and form lattices
at the cell surface leading to activation of transmembrane signaling pathways that
modulate immune cell functions, including for example, cell adhesion and migra-
tion, T-cell apoptosis, and the Th1/Th2 cytokine balance (Rabinovich et al. 2002,
2007a, 2007b). Further, galectins released into the extracellular environment under
abnormal situations may constitute “danger signals”, or by exerting their activi-
ties on other cells, such as mast cells, induce degranulation and release of factors
(e.g., histamine) that represent the “danger signals” leading to activation of immune
mechanisms in the absence of antigenic challenge (Sato and Nieminen 2004).

Galectins have diverse effects on cells involved in innate immune responses,
including macrophages and dendritic cells, neutrophils, eosinophils, and mast cells.
Galectin-1 participates in acute and allergic inflammation and displays anti-inflam-
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matory activities by blocking or attenuating signaling events that lead to leukocyte
infiltration, migration, and recruitment (Stowell et al. 2008). It also displays various
other effects on innate immunity, including cell surface exposure of phosphatidyl-
serine in activated neutrophils, a process that leads to neutrophil removal by phago-
cytic cells without causing apoptosis, and activation/deactivation of macrophages
on a concentration-dependent manner. In contrast to the anti-inflammatory effects
of galectin-1, galectin-3 shows pro-inflammatory activity. Galectin-3 is normally
expressed in various epithelia and inflammatory cells, such as activated macro-
phages, dendritic cells, and Kupffer cells, and is upregulated during inflammation,
cell proliferation, and cell differentiation. Galectin-3 also exhibits anti-apoptotic
activity for macrophages and enhances their interactions with basal lamina glycans,
such as laminin and fibronectin. Taken together, these observations strongly sug-
gest that galectin-3 enhances macrophage survival, and positively modulates their
recruitment and anti-microbial activity. Galectin-9 is a selective chemoattractant for
eosinophils, highly expressed in various tissues of the immune system, such as bone
marrow, spleen, thymus, and lymph nodes. Gal-9 released from activated T cells
induces chemotaxis, activation, oxidative activity, and degranulation of eosinophils,
and monocyte-derived DC maturation (Stowell et al. 2007; Zuiiga et al. 2001; Liu
and Hsu 2007; Hirashima et al. 2004).

Concerning adaptive immune responses, galectins have been proposed as regu-
lators of immune cell homeostasis (Rabinovich et al. 2002). Interactions between
stromal cells from the bone marrow and thymic compartments and lymphocyte pre-
cursors are critical to their development, selection, and further progression to the
periphery. In this regard, interactions mediated by galectins can modulate B-cell
maturation and differentiation both at the central and peripheral immune compart-
ments (Rossi et al. 2006) Similarly, from their early developmental stages in the
thymic compartment to the removal of the mature activated T cells in the periphery,
the regulation of T-cell survival is critical to a controlled immune response. Galec-
tin-1 can regulate T-cell proliferation and apoptosis through binding and clustering
of lactosamine-rich cell surface glycoconjugates into segregated membrane micro-
domains (Rabinovich et al. 2007b). Galectin-1 may have pro- or anti-apoptotic ef-
fects on T cells depending on the developmental stage and activation status of the
cell, and the microenvironment in which the exposure takes place. The effects of
galectin-3 in T-cell survival, however, are dependent on whether protein is produced
endogenously (anti-apoptotic) or by exogenous exposure (pro-apoptotic) (Liu and
Hsu 2007). Galectins also exert regulatory functions in T-cell homeostasis, and sig-
naling cascades triggered by their binding and lattice formation at the T-cell surface
has implications in a variety of downstream events that modulate their differen-
tiation, functional activation, and production of pro- and anti-inflammatory cyto-
kines. The effects of galectins on T-cell cytokine synthesis and secretion ultimately
determines the Th1/Th2 polarization of the immune response. By reducing IFN-y
and IL-2 and enhancing IL-5, IL-10, and TGF-3 production, galectin-1 skews the
balance from a Thl- toward a Th2- polarized response, whereas by reducing IL-5
levels, galectin-3 has the opposite effect (Yang et al. 2008). Finally, given the regu-
latory roles of galectins on cells that mediate both innate and adaptive immune re-
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sponses, their effects can be beneficial or detrimental to pathological conditions that
have a basis on exacerbated or depressed immune function, such as inflammatory,
allergic and autoimmune disorders, and cancer (Yang et al. 2008).

4 Galectins as Pattern Recognition Receptors

Recently, galectins have been discovered to bind glycans on the surface of viruses,
bacteria, protista, and fungi (reviewed in Vasta 2009). Thus, the potential role of
galectins as pattern recognition receptors (PRRs) has become an area of increased
attention. Furthermore, the considerable diversity of the galectin repertoire in each
organism and the substantial or subtle variations in the specificity of each galec-
tin towards the target glycans, which are determined by oligosaccharide repeats,
branchings or substitutions, suggest that there is extensive diversity and plasticity
in the capacity of galectins for non-self recognition. The presence of canonical and
extended CRDs, and the carbohydrate-independent binding properties of the N-
terminus region of galectin-3, further suggests that galectins have a substantially
diversified recognition capacity. Moreover, because galectins from all three types
(proto, chimera, or TR) can form oligomers, their multivalent binding properties,
including increased avidity, clearly enable galectins to participate effectively both
in direct recognition of pathogens and parasites, and downstream processes that
lead to modulation of innate and adaptive immune responses. Whether galectin-
mediated recognition is an effective defence mechanism with a clear benefit for
the host is not entirely clear, except for a few examples. It is noteworthy that a
particular glycan on the surface of a microorganism or parasite can be recognized
by multiple galectins, and that the outcome of the interaction differs considerably
depending on the galectin type involved and the concentration of the galectin in a
particular cell surface or extracellular microenvironment. This, in turn, determines
the level of oligomerization and cooperative binding to ligand, and the potentially
antagonistic or synergistic activation of pathogen signaling pathways (e.g., modula-
tion of immune activation, or cytokine production and secretion) (Rabinovich et al.
2007b).

5 Some Microbial Pathogens and Parasites Subvert
the Role of Galectins as PRRs

In some cases, the microbe’s recognition by the vector or host galectins promote
its adhesion, host cell entry, or infection persistence, in addition to modulating the
host’s immune responses. Thus, these pathogens and parasites would “subvert” the
roles of host or vector galectins as PRRs, to attach to or gain entry into their cells.
This is clearly illustrated by the participation of galectin interactions in the infection
mechanisms of HIV. In contrast to the inhibitory role of galectin-1 in paramixovi-
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rus-mediated cell fusion, galectin-1, which is abundant in organs that represent ma-
jor reservoirs for HIV-1, such as the thymus and lymph nodes, promotes infection
by HIV-1 by facilitating viral attachment to CD4 receptor, and increasing infection
efficiency (Ouellet et al. 2005; Mercier et al. 2008). Recent studies showed that ga-
lectin-1 enhances HIV adsorption kinetics on monocyte-derived host macrophages,
which facilitates HIV-1 infectivity by shortening the time required to establish an
infection. Further, galectin-1 would also function as a soluble scavenger receptor
and enhance the uptake of the virus by macrophages, which together with evidence
that galectin-1 is present in the ejaculate and the heads and tails of late spermatids,
led to extend the proposal that galectin-1 may also facilitate sexual transmission of
HIV-1 (Mercier et al. 2008). This would take place through enhancement of viral
adsorption kinetics on the target cells’ surface by the galectin-1 released by sheared
fibroblasts and epithelial cells following sex-related micro-abrasions. Gal-3 has no
effect on HIV-1 adsorption, entry, or infection, although its expression is upregu-
lated by the HIV Tat protein in several human cell lines, and in cells infected with
other retroviruses, suggesting that it may participate in regulation of antiviral im-
munity (Fogel et al. 1999; Schroder et al. 1995; Hsu et al. 1996). This underscores
the relevance of the subtle differences in galectin specificity and affinity that may
determine very different recognition and effector outcomes. It is noteworthy that
HIV also uses recognition by DC-SIGN, a C-type lectin, to enter dendritic cells,
thereby underscoring the multiple adaptations of the viral glycome for host infec-
tion (Ouellet et al. 2005; Mercier et al. 2008).

Leishmania species, which spend part of their life cycle in phlebotomine sand-
flies that constitute vectors for transmission to the vertebrate hosts, are also illustra-
tive examples. Upon the sandfly feeding on blood from an infected host, the ingest-
ed amastigotes mature into promastigotes, which attach to the insect midgut epi-
thelium to prevent their excretion along with the digested bloodmeal, and undergo
numerous divisions before differentiating into free-swimming infective metacyclics
(Kamhawi 2006). Although the involvement of the parasite LPG in this interaction
had been suspected from prior studies, the specific Phlebotomus papatasi sandfly
midgut receptor for the procyclic L. major LPG was identified as a 35.4-kDa TR
galectin (PpGalec) only expressed by epithelial midgut cells, and upregulated in
the blood-feeding females (Kamhawi et al. 2004). Because the binding specificity
of PpGalec is restricted to Leishmania promastigotes bearing poly-Gal(31-3) side
chains on their LPG, it was proposed that it is the carbohydrate moiety responsible
for specific binding of L. major to P. papatasi midgut linings. The assembly of poly-
galactose epitopes is downregulated during L. major metacyclogenesis, and thus,
unable to bind to rPpGalec the free-swimming infective metacyclic promastigotes
are released from the midgut for transmission from the sandfly to the mammalian
host (Kamhawi et al. 2004).

The protozoan parasite Perkinsus marinus is a facultative intracellular parasite
that causes “Dermo” disease in the eastern oyster Crassostrea virginica, and is re-
sponsible for catastrophic damage to shellfisheries and the estuarine environment in
North America (Harvell et al. 1999). The infection mechanism remains unclear, but
it is likely that while filter feeding, the healthy oysters ingest P. marinus trophozoites
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released to the water column by the infected neighboring individuals. Inside oyster
phagocytic cells (hemocytes), trophozoites resist oxidative killing, proliferate, and
spread throughout the host. It was recently discovered that oyster hemocytes recog-
nize P. marinus via a novel galectin (CvGal) that displays four canonical galectin
CRDs, a domain organization unlike any of the known galectin types (Tasumi and
Vasta 2007). Two amino acid residues (His>* and Asp™) that interact with the NAc
group via a water molecule are missing in all four CvGal CRDs resulting in broader
carbohydrate specificity. CvGal is present in the cytoplasm of circulating granulo-
cytes, and upon their attachment and spreading it is translocated to the periphery,
secreted, and binds to the cell surface. The remaining galectin is released to the
extracellular environment, where it may bind to all other circulating (non-activated)
granulocytes and hyalinocytes. The most surprising observation, however, was that
the soluble CvGal also binds in a carbohydrate-specific manner to a wide variety of
microorganisms, phytoplankton components, and preferentially, to Perkinsus spp
trophozoites, suggesting a direct role in recognition and opsonization of potential
microbial pathogens, as well as algal food. The partial inhibition of phagocytosis
of P. marinus trophozoites by pre-treatment of hemocytes with anti-CvGal revealed
that the hemocyte surface-associated CvGal is a phagocytosis receptor for P. ma-
rinus. Thus, P. marinus may have evolved to adapt the trophozoite’s glycocalyx to
be selectively recognized by the oyster hemocyte CvGal, thereby subverting the
oyster’s innate immune/feeding recognition mechanism to gain entry into the host
cells (Tasumi and Vasta 2007) (Fig. 4).

A recent study identified galectin-1 as the receptor for the protozoan parasite
T vaginalis (Okumura et al. 2008) the causative agent of the most prevalent non-
viral sexually transmitted human infection in both women and men. As an obligate
extracellular parasite, establishment and persistence of 7. vaginalis infection re-
quires adherence to the host epithelial cell surface. Like Leishmania spp, T. vagi-
nalis displays a surface LPG rich in galactose and N-acetyl glucosamine, which
is recognized in a carbohydrate-dependent manner by galectin-1 expressed by the
epithelial cells in the cervical linings, as well as placenta, prostate, endometrial, and
decidual tissue, also colonized by the parasite (Okumura et al. 2008).

6 Conclusions

Recent studies clearly indicate that galectins can function as PRRs that target lac-
tosamine-containing oligosaccharides on the surface of virus, bacteria, protista, and
helminth pathogens and parasites. A perplexing paradox arises, however, by the fact
that galectins also recognize lactosamine-containing glycans on the cell surface of
the host for development and regulation of immune homeostasis. According to the
Medzhitov and Janeway model (2002) for non-self recognition, PRRs recognize
pathogens via highly conserved microbial surface molecules of wide distribution
such as lipopolysaccharide or peptidoglycan (pathogen-associated molecular pat-
terns [PAMPs]), which are absent in the host. Hence, this would not rigorously apply
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to galectins, which apparently bind the same self/non-self molecular pattern. This
paradox underscores first, an oversimplification in the use of the PRR/PAMP termi-
nology, which although it has been useful and is currently widespread, it should be
use with great caution.Second, and most importantly, it reveals the significant gaps
in our knowledge about the actual diversity in recognition of the host galectin rep-
ertoire, and the dynamic and mechanistic aspects of the subcellular compartamen-
talization and secretion of its components, as well as the detailed structural and bio-
physical aspects of their interactions with the microbial carbohydrate moieties. The
microbial and host glycomes and their receptors continuously evolve to escape mu-
tual recognition, a process known as the “Red Queen effect” (Varki 2006), by which
the microbe avoids recognition by the host innate immune receptors (PRRs) and, the
host by the microbial colonization factors (agglutinins, adhesins, and lectins). Given
the key roles played by galectins in host development and immunoregulation by
the recognition of “self” lactosamine moieties, strong functional constraints would
prevent galectins from dramatic evolutionary changes in carbohydrate specificity,
which is to some extent supported by the apparent structural conservation within this
lectin family. Further, with the current evidence about how pathogens and parasites,
which display a remarkable evolutionary plasticity, efficiently subvert the roles of
galectins to attach or gain entrance into the host cells, it seems more plausible that
instead of avoiding recognition by the host, they would have evolved their glyco-
comes to mimic their hosts’ in a “Trojan horse” model (Tasumi and Vasta 2007),
and rely on the host’s self-recognition molecules such as galectins for attachment to
the vector or host invasion. It is noteworthy that most of (if not all) these pathogens
and parasites are endowed with diverse and powerful mechanisms to evade intra-
cellular killing by the host, and/or down-regulate downstream immune responses.
The complex strategies developed by microbial pathogens to successfully colonize,
enter, proliferate, and disseminate within and among their vectors or hosts, are the
products of strong selective pressures that have led to adaptations that ensure their
survival in the most hostile environment of all, and thus represent a significant chal-
lenge for the development of novel strategies for intervention in human disease.
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