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Abstract The transmission of energy between subsystems coupled in hybrid
system is very important for different applications. For first as an introduction, by
using the author’s previously published references and that of her students, a short
survey of an analytical study of the energy transfer between coupled subsystems
is presented as a basis of this chapter. An analytical study of the mechanical
energy transfer between two coupled subsystems, as well as, between two or
more coupled rotation motions is presented. For starting, an analytical analysis
of the mechanical energy transfer between a linear and a nonlinear oscillators of
a hybrid system (see Refs. by Hedrih (Stevanović) 2002 [10, 11, 15–18, 20, 24])
in the free, as well as forced, vibrations of a different types of interconnections
between subsystems is presented. Coupling element between subsystems of the
considered hybrid systems are standard light elements with elastic, viscoelastic,
hereditary, or creeping properties as well as dynamical constrain element realized by
rolling element with inertia properties. Using Krilov–Bogolyubov–Mitropolskiy’s
asymptotic method, both the solutions in the first approximation and the system of
nonlinear-coupled differential equations for the corresponding number of excited
amplitudes and phases of multifrequency free as well as forced regimes are
derived. By means of this asymptotic approximation of differential equations for
the amplitudes and phases for forced vibrations of the coupled oscillators, the
mutual influence of the nonlinear harmonics and energy transient were analyzed.
The Lyapunov exponents corresponding to the each of two eigen like nonlinear
modes are expressed by using energy of the corresponding eigen time components.
A generalization of an analytical analysis of the transfer energy between linear
and nonlinear oscillators for forced vibrations with different type constraints as a
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couple between two subsystems, each of them with one degree of freedom, is done.
A mathematical analogy between discrete and complex discrete-continual hybrid
systems is pointed out.

In the second part, an analytical analysis is extended to the transfer energy
between plates for free and forced transversal vibrations of a visco and nonlinear
elastically connected double plate system. The analysis showed that the visco- and
nonlinear elastic connection between plates caused the appearance of two-frequency
like regime of time function, which corresponds to one eigen amplitude function of
one mode, and also that time functions of different vibration modes are coupled, as
well as energy transfer between plates in one eigen mode appear.

Next, as an author’s new research result, an analytical study of the energy transfer
between two coupled-like string belts interconnected by light pure elastic layer in
the axially moving sandwich double belt system in the free vibrations is presented.

1 Introduction

1.1 Importance

The study of the transfer of energy between subsystems coupled into hybrid system
is very important for different kinds of applications.

For first as an introduction, by use author’s previously published references
as well as by her students, a short review of an analytical study of the energy
transfer between coupled subsystems is presented as a basis of this lecture. An
analytical study of the mechanical energy transfer between two coupled subsystems,
as well as between two or more coupled rotation motions, also, is presented. For
starting, an analytical analysis of the mechanical energy transfer between a linear
and a nonlinear oscillators of a hybrid system (see Refs. by Hedrih (Stevanović)
[10, 11, 15–18, 20, 24, 31, 34–38, 43]), in the free, as well as forced vibrations of
a different type of interconnections (see Ref. by Goroško and Hedrih (Stevanović)
[1–4]) between subsystems is presented. Coupling elements between subsystems of
the considered hybrid systems are standard light elements with elastic, viscoelastic,
hereditary, or creeping properties, as well as no light dynamical constraint element
realized by rolling element with inertia properties.

Using well known Krilov–Bogolyubov–Mitropolskiy’s asymptotic method,
[73–80] both, the solutions in the first approximation and the system of nonlinear
coupled differential equations for the corresponding number of excited amplitudes
and phases of multifrequency free as well as forced regimes are derived. By means
of this first asymptotic approximation of ordinary differential equations for the
amplitudes and phases for forced vibrations of the coupled oscillators in resonant
frequency intervals, the mutual influence of the nonlinear harmonics and energy
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transient were analyzed. The Lyapunov exponents corresponding to the each of two
eigen like nonlinear modes are expressed by using energy of the corresponding
eigen time components.

A generalization of an analytical analysis of the transfer energy between linear
and nonlinear oscillators for forced vibrations with different type constraints as a
couple between two subsystems, each of them with one degree of freedom is done.
A mathematical analogy between discrete and complex discrete-continual hybrid
systems (see Ref. by Hedrih (Stevanović) [42]) is pointed out. Mathematical analogy
and phenomenological mapping (see Refs. by Hedrih (Stevanović) [34,46]) between
different mechanical systems on the basic of the discretizations by subdynamics or
subcomponents of dynamics are used also for transfer energy analysis.

For second, the study of the transfer energy between subsystems containing
deformable body coupled in hybrid system is very important for different appli-
cations. An analytical analysis of the transfer energy between plates for free and
forced transversal vibrations of a viscoelastically connected double plate system is
pointed out. The analytical analysis showed that the viscoelastic connection between
plates caused the appearance of two-frequency-like regime of time functions, which
corresponds to one eigen amplitude function of one mode, and also that time
functions of different vibration modes, in linear system, are uncoupled, but energy
transfer between plates in one eigen mode appears. It was shown for each shape
of vibrations. Series of the two Lyapunov exponents corresponding to the one eigen
amplitude mode are expressed by using energy of the corresponding eigen amplitude
time component.

In the same second part, an analytical analysis is extended to the transfer energy
between plates for free and forced transversal vibrations of a visco- and nonlinear
elastically connected double plate system. The analysis showed that the visco-
and nonlinear elastic connection between plates caused the appearance of two-
frequency-like regime of time function, which corresponds to one eigen amplitude
function of one mode, and also that time functions of different vibration modes
are coupled, as well as energy transfer between plates in one eigen mode appears.
More than two resonant jumps in the amplitude-frequency as well as in phase-
frequency curves appeared and caused more than two resonant jumps of the energy
and corresponding influence between nonlinear modes, as nonlinear phenomena
interactions. Using the analytical asymptotic approximation of the amplitudes and
phases of multifrequency particular solutions of such a dynamics, it is possible to
analyze transfer energy between nonlinear modes in stationary and nonstationary
regimes passing through resonant frequency intervals.

Next, as an author’s new research result, an analytical study of the energy transfer
between two coupled-like string belts interconnected by light pure elastic layer in
the axially moving sandwich double belt system, in the free vibrations is presented.
On the basis of the obtained analytical expressions for the kinetic and potential
energy of the belts and potential energy of the light pure elastic distributed layer
numerous conclusions are derived. For the pure linear elastic double belt system
no transfer energy between different eigen modes of transversal vibrations of the
axially moving double belt system appears, but in each of the set of the infinite
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numbers eigen modes, there are transfer energy between belts. The corresponding
free transversal vibrations are like two frequency, when changes of the potential
energy of the booth belts are four frequency, and potential energy interaction is one
frequency in the each eigen mode. Changes of the kinetic energy of the both belts of
the sandwich double axially moving belt system are two frequency-like oscillatory
regimes with two time multiplicities of the eigen frequencies of the corresponding
eigen amplitude mode.

1.2 Literature Survey

1. The study of the transfer of energy between subsystems coupled in hybrid system
(see Refs. Heedrih (Stevanović) [7, 8, 19–23, 25–27, 32, 33, 40, 47, 48], Hedrih
(Stevanović) and Simonović [58, 60, 61] and Hedrih (Stevanović) and Hedrih A.
[51, 52]) is very important for different applications. Two papers by the author
(see Refs. Heedrih (Stevanović) [8, 25, 26] presents analytical analysis of the
transfer of energy between plates for free and forced transversal vibrations of
an elastically connected double-plate system. Energy analysis of vibro-impact
system dynamics with curvilinear trajectories and no ideal constraints was
done by Jović in 2009 and in 2011 in his two theses [115, 120], for Magistar
of science as well for doctors of sciences degrees. Potential energy and stress
state in material with crack was study by Jovanović and presented in his Doctor’s
Degree Thesis [109, 118] in 2009. Energy analysis of the nonlinear oscillatory
motions of elastic and deformable bodies was done by Hedrih (Stevanović) in
her doctor’s degree thesis [100,101] in 1975. The energy analysis of longitudinal
oscillations of rods with changeable cross-sections was original research results
in 1995 presented by Filipovski in his magistar of sciences degree thesis [11] (for
all see References from list in Appendix – References),

2. When, at an international conference ICNO in Kiev in 1969, my professor of
mechanics and mathematics, D. P. Rašković ([88,89]) (see Refs. Rašković (1965,
1985) presented me to academician Yuri Alekseevich Mitropolskiy (1917–2008)
(see Refs. Mitropolskiy ([73–80]) and when I started really to understand the
differences between linear and nonlinear phenomena in dynamics of mechanical
real systems, I knew I was on the right path of research which enchanted me ever
more by understanding new phenomena and their variety in nonlinear dynamics
of realistic engineering and other dynamical systems. (First, my knowledge about
properties of nonlinearity and the nonlinear function I obtained in gymnasium
from my excellent professor of mathematics Draginja Nikolić and during my
research Matura work on the subject of Nonlinear elementary functions and their
graphics as a final high-school examination.)

For beginning of this chapter, a review survey of original results of the author
and of researchers from Faculty of Mechanical Engineering University of Niš
(see References [97–122] from list in Appendix – References), inspired and/or
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obtained by the asymptotic method of Krilov–Bogolyubov–Mitropolyskiy, and as
a direct influence of professor Rašković scientific instruction and also by published
Mitropolskiy’s papers and monographs [73–80], as well as publications by Kiev
Mathematical institute scientists in area of nonlinear and stochastic dynamics. These
results have been obtained during realizations of the series of the research projects
supported by Ministry of Sciences of Serbia, Faculty of mechanical engineering
University of Niš and Mathematical Institute SANU Belgrade (see List of Projects
(period 1967–2011) in Appendix – References -List of Projects [123–134]). These
results have been published in scientific journals and were presented on the scientific
conferences and in the bachelor degree works (see Stevanović, (1967)), Magister of
sciences theses (see [99,102,104,106,110,111,113,114]), and doctoral dissertations
(see (Stevanović) [101,103,105,107,116–119,121,122]) supervised by Mitropolskiy
(in period from 1972 to 1975) or by Rašković (in period from 1964 to 1974),
and by Hedrih in period from 1976 to 2001 year as well. In area of stochastic
stability, a scientific support by series of consultation to researchers was given by
S.T. Ariaratnam (Canada) and A. Tylikowski (Polad) papers.

The original results contain asymptotic analysis of the nonlinear oscillatory
motions of elastic bodies: beams, plates, shells, and shafts (see References by
(Stevanović) [5, 6, 11–15, 24, 29–35, 38–40, 62–65, 93–95]). Also, late a series of
new research results are obtained by Janevski in 2003 and by Simonovic [53–61]
in 2008 an in 2011. The multifrequency oscillatory motion of elastic bodies
was studied. Corresponding systems of partial differential equations of system
dynamics, as well as system of first approximation of ordinary differential equations
for corresponding numbers of amplitudes and phases of multifrequency regimes of
elastic bodies nonlinear oscillations were composed. The characteristic properties
of nonlinear systems passing through coupled multifrequency resonant state and
mutual influences between excited modes were discovered.

In the same cited papers, amplitude-frequency and phase frequency curves for
stationary and nonstationary coupled multifrequency resonant kinetic states based
on the numerical experiment on the system of ordinary differential equations in
first approximation are presented. Resonant jumps are pointed out in the both
series of graphical presentation: amplitude-frequency and phase-frequency curves
for the case of the resonant interactions between modes in the same frequency
resonant intervals.

Using ideas of averaging and asymptotic methods Krilov–Bogoliyubov–
Mitropolyskiy in the Doctoral dissertation and in References (see Refs. Hedrih
(Stevanović) [5–50]), the author gives the first asymptotic approximations of the
solutions for one-, two-, three- and four-frequency vibrations of nonlinear elastic
beams, shaft, and thin elastic plates, as well as of the thin elastic shells with positive
constant Gauss’s curvatures and finite deformations, and system of the ordinary
differential equations in first asymptotic approximation for corresponding numbers
of amplitudes and phases for stationary and nonstationary vibration regimes.
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Some results of an investigation of multifrequency vibrations in single-frequency
regime in nonlinear systems with many degrees of freedom and with slow-changing
parameters are presented by Stevanović and Rašković article (1974). Application
of the Krilov–Bogolyubov–Mitropolskiy asymptotic method for study of elastic
bodies nonlinear oscillations and energetic analysis of the elastic bodies oscillatory
motions give new results in theses by Stevanović in 1975. One-frequency transversal
oscillations of thin rectangular plate with nonlinear constitutive material stress-
strain relations and nonlinear transversal vibrations of a plate with special analysis
of influence of weak nonlinear boundary conditions are contents of the articles by
Hedrih (1979, 1981).

First approximation of an asymptotic particular solution of the nonlinear equa-
tions of a thin elastic shell with positive Gauss’ curvature in two-frequency regime
is pointed out in the article by Hedrih (1983). Two-frequency oscillations of the
thin elastic shells with finite deformations and interactions between harmonics have
been studied by Hedrih and Mitić (1983), and multifrequency forced vibrations of
thin elastic shells with a positive Gauss’s curvature and finite displacements by
Hedrih (1984). Also, on the mutual influence between modes in nonlinear systems
with small parameter applied to the multifrequencies plate oscillations are studied
[54, 62, 63, 65].

Multifrequency-forced vibrations of thin elastic shells with a positive Gauss’
curvature and finite deformations and initial deformations influence of the shell
middle surface to the phase-frequency characteristics of the nonlinear stationary
forced shell’s vibrations and numerical analysis of the four-frequency vibrations of
thin elastic shells with Gauss’ positive curvature and finite deformations are content
of reference by Hedrih and Mitić (1985). Also, initial displacement deformation
influence of the thin elastic shell middle surface to the resonant jumps appearance
was investigated by same authors Hedrih and Mitić (1987). By means of the
graphical presentations from the cited References, analysis was made and some
conclusions about nonlinear phenomenon in multifrequency vibrations regimes
were pointed out. Some of these conclusions are quoted here: Nonlinearities are the
reason for the appearance of interaction between modes in multifrequency regimes;
in the coupled resonant state, one or several resonant jumps appear on the amplitude-
frequency and phase-frequency curves; these resonant jumps are from smaller to
greater amplitudes and vice versa.

Unique trigger of coupled singularities (see Refs. [28, 30, 50, 96]) with one
unstable homoclinic saddle type point, and with two singular stable center type
points appear in one frequency stationary-resonant kinetic state. It is visible on
the phase-frequency as well as on the amplitude-frequency graphs for stationary-
resonant state.

In the case of the multifrequency-coupled resonant state and in the appearance of
the more resonant-coupled modes in resonant range of corresponding frequencies,
unique trigger of coupled singularities and multiplied triggers of coupled singu-
larities (see Refs. by Hedrih, 2004, 2005) appear. Maximum number of triggers
of coupled singularities is adequate to number of coupled modes and resonant fre-
quencies of external excitations. Multiplied triggers contain multiple unstable saddle
homoclinic points in the mapped phase plane as the number of resonant frequencies
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of external excitations. For example, if a four-frequency-coupled resonant process in
u-v plane is in question, four homoclinic saddle-type points appear. The appearance
of these unstable homoclinic saddle points requires further study, since it induces
instability in a stationary nonlinear multifrequency kinetic process.

By use a double circular plate system, presented in the Refs. [53–61], the
multifrequency analysis of the nonlinear dynamics with different approaches and
by use different kinetic parameters of multifrequency regimes is pointed out. Series
of the amplitude-frequency and phase-frequency graphs as well as eigen-time
functions–frequency graphs are obtained for stationary resonant states and analyzed
according to present singularities and triggers of coupled singularities, as well as
resonant jumps.

An analogy between nonlinear phenomena in particular multifrequency
stationary-resonant regimes of multi-circular plate system nonlinear dynamics,
multibeam system nonlinear dynamics, and corresponding regimes in chain system
nonlinear dynamics is identified (see References by Hedrih (Stevanović) listed in
the reference list from period 1972–2010).

Using differential equations systems of the first approximation of multifrequency
regime of stationary and no stationary-resonant kinetic states, we analyzed the
energy of excited modes and transfer of energy from one to other modes. On the
basis of this analysis, the question of excitation of lower frequency modes by higher
frequency mode in the nonlinear multifrequency vibration regimes was opened.

3. In many engineering systems with nonlinearity, high-frequency excitations
are sources of the appearance of multifrequency-resonant regimes with high-
frequency modes as well as low-frequency modes. It is visible from many
experimental research results and also theoretical results (see Refs. [81–87]).

In the monographs written by Nayfeh [81–87], a coherent and unified treatment
of analytical, computational, and experimental methods and concepts of modal
nonlinear interactions is presented. This monograph is an obvious extension of
Nayfeh’s and Balachandran’s well-known monograph titled by Applied Nonlinear
Dynamics (1995). These methods are used to explore and unfold in a unified
manner the fascinating complexities in nonlinear dynamical systems. Through the
mechanisms discussed in this monograph, energy from high-frequency sources can
be transferred to the low-frequency modes of supporting structures and foundations,
and the result can be harmful large-amplitude oscillations that decrease their
fatigue lives.

The interaction between amplitudes and phases of the different modes in the
nonlinear systems with many degrees of the freedom as well as in the deformable
body infinite numbers frequency vibrations with free and forced regimes is observed
theoretically by averaging asymptotic methods Krilov–Bogoliyubov–Mitropolyskiy
(1955, 1964, 1968, 1976 and 2003). This knowledge has great practical importance.

Application of the Krilov–Bogolyubov–Mitropolskiy asymptotic method as well
as energy approach given in monographs by Mitopolskiy (see Refs. [73–80]) for
study of the elastic bodies nonlinear oscillations and energy analysis of the elastic
bodies oscillatory motions give new results listed in the previous part.
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In the conclusion of this part, we can summarize the following: Oscillatory
processes in dynamical systems depend on systems character; in such systems,
energy is also transformed from one form to another and has different flows inside
a dynamical system; transformation of kinetic energy into potential energy and vice
versa occurs in conservative systems, but when linear systems are in question, the
energy carried by a considered harmonic (mode) of adequate frequency remains
constant during a dynamical process, as does the total systems mechanical energy;
there is no mutual influence between harmonics, and the system may be presented
by partial oscillators, the number of which is equal to the number of oscillations
freedom degrees, or to the number of free vibrations own circular frequencies;
during that the total mechanical energy of a single partial oscillator remains constant
and the transformation of kinetic energy into potential occurs; in sash linear system,
transfer energy between modes does not occurs (see Reference by Rašković (1965)).

When nonlinear conservative systems are in question, such conclusion as for
linear systems would be incorrect. The theoretical and experimental studies reveal
that the interactions between widely separated nonlinear modes result in various
bifurcations, the coexistence of multiple attractors, and chaotic attractors. The
theoretical results show also that damping may be destabilizing. The different types
of nonlinear phenomena in single degree of freedom nonlinear system dynamics are
investigated between other researchers.

4. An experimental and theoretical study of the response of a flexible cantilever
beam to an external harmonic excitation near the beam’s third natural frequency
is presented and in addition. Malatkar and Nayfeh (2003) noted that the energy
transfer between the third and first modes is very much dependent upon
the closeness of the modulation (or Hopf bifurcation) frequency to the first-
mode natural frequency. In earlier studies by Nayfeh and coworkers [81–87],
the modulation frequency was close to the first-mode natural frequency, and
therefore large first-mode swaying was observed. Nayfeh developed a reduced-
order analytical model by discretizing the integral partial-differential equation of
motion.

Identifying, evaluating, and controlling dynamical integrity measures in nonlin-
ear mechanical oscillators are topics for researchers, presented in the Ref. [92].
Also some references by Hedrih [37] contain the energy transfer between coupled
oscillators and a conclusion that energy transfer can be a measure of the dynamical
integrity of hybrid systems as well as subsystems. Energy transfer in the complex
system is subject of research published papers [66] and also [8, 13, 25, 32, 58].

In the paper by Lenci, S. and Rega, G., (2005) dimension reduction of homoclinic
orbits of buckled beams via the nonlinear normal modes technique is presented. The
problem of detecting the homoclinic orbits of an initially straight buckled beam is
addressed. Two families of boundary conditions are identified and investigated in
detail. A hierarchy of reduced order, single degree of freedom, models is deter-
mined. In the series of the papers [70, 71], the problem of detecting the homoclinic
orbits applied to the different engineering system dynamics is investigated and
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obtained original research results. In the Refs. [68, 69], resonant nonlinear normal
modes in the cases of two-to-one, three-to-one, and one-to-one internal resonances
in undamped unforced one-dimensional systems with arbitrary linear, quadratic, and
cubic nonlinearities are investigated for a class of shallow symmetric structural
systems. Nonlinear orthogonality of the modes and activation of the associated
interactions are clearly dual problems.

5. In the Refs. [51, 52], the expressions for the kinetic and potential energy as well
as energy interaction between chains in the double DNA chain helix are obtained
and analyzed for a linearized model. Corresponding expressions of the kinetic
and potential energies of these uncoupled main chains are also defined for the
eigen main chains of the double DNA chain helix. By obtained expressions, we
concluded that there is no energy interaction between eigen main chains of the
double DNA chain helix system. Time expressions of the main coordinates of
the two eigen main chains are expressed by time, and eigen circular frequencies
are obtained. Also, generalized coordinates of the double DNA chain helix
are expressed by time correspond to the sets of the eigen circular frequencies.
These data contribute to better understanding of biomechanical events of DNA
transcription that occur parallel with biochemical processes. Considered as a
linear mechanical system, DNA molecule as a double chain helix has its eigen
circular frequencies and that is its characteristic. Mathematically, it is possible
to decouple it into two chains with their set with corresponding eigen circular
frequencies which are different. This may correspond to different chemical
structure (the order of base pairs) of the complementary chains of DNA. We
are free to propose that every specific set of base pair order has its eigen circular
frequencies and its corresponding oscillatory energy, and it changes when DNA
chains are coupled in the system of double chain helix. Oscillations of base pairs
and corresponding oscillatory energy for specific set of base pairs may contribute
to conformational chances of DNA double helix and its unzipping and folding.

1.3 Energy Exchange in Spring Pendulum System

For introducing to the problem of the energy transfer or transient in the hybrid
nonlinear systems, it is useful to take, for simple analysis, into consideration the
change energy between parts of the energy carrying on the generalized coordinates
φ and ρ in the very known system, known under name spring pendulum system,
with two degree of freedom. For the analysis of the energy in the spring pendulum,
we can write the kinetic and potential energies in the forms:

Ek =
1
2

m
[
ρ̇2 +(ρ + �)2 φ̇2

]
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and

Ep =
1
2

cρ2 +mg(ρ + �) (1− cosφ) (1)

where: m is mass of the pendulum, � length of pendulum string-neglected mass
spring in the static equilibrium state of the pendulum, and c spring axial rigidity
and φ and ρ are respectfully, angle and extension part of length of the string-spring
of the pendulum with comparison of the sprig length in static equilibrium state of
the pendulum, taken as the generalized coordinates of the system. For the linearized
case for kinetic energy, after neglecting small member – part of kinetic energy on
the generalized coordinate φ – we can taking into account the following expression:

∗ Expression Ek2 =
1
2 m(ρ + �)2φ̇2 changes into approximation

Ek2 ≈ 1
2

m
(
�φ̇

)2
. (2)

Only for small oscillations – perturbations from equilibrium position – it is possible
to use approximation of the expression for kinetic and potential energy in the form:

Ek ≈ 1
2

m
[
ρ̇2 +

(
�φ̇

)2
]

and Ep ≈ 1
2

cρ2 +
1
2

mg�φ2 (3)

For that linearized case, the generalized coordinates are normal coordinates of the
small oscillations of the spring pendulum around equilibrium position ρ = 0,φ = 0,
and coordinates are decoupled. In this linearized case of the spring pendulum model,
the energy carried on the these normal coordinates are uncoupled and transfer or
transient of the total energy don’t appeared between proper parts of the separate
normal coordinate and on the separate processes defined by normal coordinates are
conservative systems each with one degree of the freedom. In this case, in each of
the coordinate, there are conversion of the energies from kinetic to potential, but the
sum of the both of one normal coordinates is constant.

Ekρ ≈ 1
2

mρ̇2 and Epρ ≈ 1
2

cρ2 (4)

Ekφ ≈ 1
2

m
(
�φ̇

)2
and Epφ ≈ 1

2
mg�φ2 (5)

This is visible from system of the differential equations in the linearized form:

ρ̈ +ω2
2 ρ = 0 where ω2

2 =
c
m

φ̈ +ω2
1 φ = 0 where ω2

1 =
g
�
. (6)

but for the nonlinear case the interaction between coordinates is present and then
energy transient appears.

Ek =
1
2

m
[
ρ̇2 + �2φ̇2 +ρ2φ̇2 + 2ρ�φ̇2] and

Ep =
1
2

cρ2 +mg�(1− cosφ )+mgρ (1− cosφ ) (7)
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We can separate the following parts:

1. Kinetic and potential energies carrying on the coordinate ρ are:

Ekρ =
1
2

mρ̇2 and Epρ =
1
2

cρ2 +mgρ (8)

By analyzing these previous expressions, we can see that with these expressions
for decoupled oscillator with coordinate ρ , we have pure linear oscillator or
harmonic oscillator with coordinate ρ and frequency ω2

2 = c
m , and separated

process is isochronous.
2. Kinetic and potential energies carrying on the coordinate φ are

Ekφ =
1
2

m�2φ̇2 and Epφ = mg�(1− cosφ) (9)

By analyzing these previous expressions, we can see that with these expression
for decoupled oscillator with coordinate φ , we have pure nonlinear oscillator with
coordinate φ , and separated process is no isochronous. For a linearyzed case, this
oscillator has eigen frequency ω2

1 = g
� .

3. Then, formally, we can conclude that in the spring pendulum, we have coupled
two oscillators, one pure linear with one degree of freedom, and second
nonlinear, also with one degree of freedom. In the hybrid system, these oscillators
are coupled and mechanical energy of the coupling contain two parts: one kinetic
energy and second potential energy. Then, in the coupling, hybrid connections
with static and dynamic kinetic properties are introduced.

Kinetic and potential energies of the coordinate φ and ρ interaction in the
nonlinear hybrid model are:

Ek(φ ,ρ) =
1
2

m [ρ + 2�]ρφ̇2 and Ep(φ ,ρ) =−mgρ cosφ (10)

For a nonlinear case, ordinary differential equations are in the following form:

ρ̈ +ω2
2 ρ =−g(1− cosφ ) (11)

φ̈ +ω2
1 φ = ω2

1 (φ − sinφ )− 2
�2 ρ̇ φ̇ (ρ + �)− 1

�2 ρ (ρ + 2�) φ̈ (12)

or in nonlinear approximation forms for small oscillations around zero coordinates
ρ = 0,φ = 0 or around stable equilibrium position of the spring pendulum are

ρ̈ +ω2
2 ρ ≈−g

(
φ2

2
− φ4

24
+

φ6

6!
− φ8

8!
+ . . . ..

)
(13)

φ̈ +ω2
1 φ ≈−ω2

1

(
φ3

3
− φ5

5!
+

φ7

7!
− . . . .

)
− 2

�2 ρ̇φ̇ (ρ + �)− 1
�2 ρ (ρ + 2�) φ̈ (14)
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If we introduce phase coordinate, then we can write:

v = ρ̇

ν̇ =−ω2
2 ρ − g(1− cosφ )

u = φ̇

u̇ =−ω2
1 φ +ω2

1 (φ − sinφ )− 2
�2 ρ̇ φ̇ (ρ + �)− 1

�2 ρ (ρ + 2�) φ̈ (15)

or in the approximation

v = ρ̇

v̇ ≈−ω2
2 ρ − g

(
φ2

2
− φ4

24
+

φ6

6!
− φ8

8!
+ . . . ..

)

u = φ̇

u̇ ≈−ω2
1 φ −ω2

1

(
φ3

3
− φ5

5!
+

φ7

7!
− . . . .

)
− 2

�2 ρ̇φ̇ (ρ + �)− 1
�2 ρ (ρ + 2�) u̇ (16)

From system equations (11)–(12), as well from their approximations (13)–(14), we
can see that their right-hand parts are nonlinear and are functions of generalized
coordinates, as well as of the generalized coordinates first and second derivatives.
Also we can see that generalized coordinates φ and ρ around their zero values,
when ρ = 0,φ = 0 at the stable equilibrium position of the spring pendulum,
and that also they are main coordinates of the linearized model. It is of reason
that the asymptotic averaged method is applicable for obtaining first asymptotic
approximation of the particular solutions, and it is possible to use for energy analysis
of the transfer energy between energies carried by generalized coordinates φ and ρ
in this nonlinear system with two degree of freedom, but formally, we can take into
account that we have two oscillators, one nonlinear and one linear each with one
degree of freedom as two subsystems coupled in the hybrid system with two degree
of freedom, by hybrid connection realized by statically and dynamical connections.
This interconnection have two parts of energy interaction between subsystems
expressed by kinetic and potential energies in the forms expressed by (10).

Taking into consideration some conclusion from considered system of the spring
pendulum, we can conclude also that it is important to consider more simple case of
the coupling between linear and nonlinear systems with one degree of freedom with
different types of the coupling realized by simple static or dynamic elements, for to
investigate hybrid phenomena in the coupled subsystems.
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2 Energy Analysis and Free Vibration Nonlinear System

When nonlinear conservative systems are in question, such conclusion as for linear
systems that no interaction between submotion components would be incorrect.
The theoretical and experimental studies reveal that the interactions between widely
separated modes result in various bifurcations, the coexistence of multiple attractors,
and chaotic attractors.

Kinetic energy and potential energy in first asymptotic approximation for nonlin-
ear conservative system nonlinear modes using normal coordinates of unperturbed
corresponding linear system are (see Ref. [20]):

Ek=
s=n

∑
s=1

Eks=
s=n

∑
s=1

(
ξ̇ 2

s

)
+g

(
ξ1,ξ2, . . . ,ξs,ξr, ..,ξn−1,ξn, ξ̇1, ξ̇2, . . . , ξ̇s, ξ̇r, .., ξ̇n−1, ξ̇n

)

Ep =
s=n

∑
s=1

(
ω2

s ξ 2
s

)
+ f (ξ1,ξ2, . . . ,ξs,ξr, ..,ξn−1,ξn) (17)

where
ξs = as cos(θs +ψs) s = 1,2, . . . ..n (18)

are first asymptotic approximations of normal coordinates, and as are amplitudes,
and θs + ψs are phases as the functions of time and which are calculate from
differential equations first approximations (see Ref. [78]).

2.1 Nonlinear Oscillator

Kinetic and potential energies and Rayleigh dissipative function of nonlinear
oscillator with one degree of freedom and generalized coordinate x1 are:

Ek(1) =
1
2

m1ẋ2
1,

Ep(1) =
1
2

c1x2
1 ±

1
4

c̃1x4
1

Φ(1) =
1
2

b1ẋ2
1 (19)

where m1 is masses, c1 is the spring rigidity coefficient of the linear elasticity low,
and c̃1 the spring rigidity coefficient of the nonlinear elasticity low, upper sign (+)
for hard and lower sign (−) for soft nonlinearity, b1 coefficient of the system linear
dumping force. For this nonlinear oscillator, it is right, d

dt

(
Ek(1) +Ep(1)

)
=−2Φ(1),

and for the case of the free vibrations.
For this case, differential equation is in the following form:

ẍ1 + 2δ1ẋ2 +ω2
1 x1 =∓ω̃2

N1x3
1 (20)
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upper sign (−) for hard and lower sign(+) for soft nonlinearity.
where

ω2
1 =

c1

m1
, 2δ1 =

b1

m1
, ω̃2

N1 =
c̃1

m1
. (21)

and characteristic equation of the basic liner equation, correspond to previous (20),

have the following characteristic numbers: λ1,2 = −δ1 ∓ i
√

ω2
1 − δ 2

1 = −δ1 ∓ ip1

for the small damping coefficient δ1 < ω1, and solution for free vibrations is in the
form: x1(t) = R01e−δ1t cos(p1t +α01). To obtain approximation by using averaged
method, we propose solution in the following form:

x1 (t) = R1 (t) e−δ1t cosΦ1 (t) (22)

where R1(t) and Φ1(t) are unknown functions. Also, we can write: Φ1(t)= p1t+φ1.
After averaging with respect to the full phase Φ1(t), we obtain the following system
of the averaged first-order differential equations:

Ṙ1 (t) = 0

φ̇1 (t) = ± 3
8p1

ω̃2
N1R2

1 (t)e−2δ1t (23)

upper sign (+) for hard and lower sign (−) for soft nonlinearity.
After integration, we obtain for amplitude and phase the following first
approximation:

R1 (t) = R01 = const

φ1 (t) =∓ 3
16δ1p1

ω̃2
N1R2

01e−2δ1t +α01, for δ �= 0 (24)

upper sign (+) for hard and lower sign (−) for soft nonlinearity, and for full phase
Φ1(t):

Φ1 (t) = p1t ∓ 3
16δ1 p1

ω̃2
N1R2

01e−2δ1t +α01, for δ �= 0 (25)

(−) for strong and (+) for soft nonlinearity, and solution in the first averaged
approximation form is:

x1 (t) = R01e−δ1t cosΦ1 (t)

x1 (t) = R01e−δ1t cos

(
p1t ∓ 3

16δ1 p1
ω̃2

N1R2
01e−2δ1t +α01

)
, for δ �= 0

(26)

upper sign (−) for hard and lower sign (+) for soft nonlinearity, we can see that
amplitude of the solution in the first averaged approximation form is in the form
R01e−δ1t and that phase Φ1(t) is also function of the time, and also frequency
p̃1(t) = p1 ∓ 3

8p1
ω̃2

N1R2
01e−2δ1t , for δ1 �= 0, upper sign (−) for hard and lower

sign (+) for soft nonlinearity., is changeable with time in the first asymptotic
approximation obtained by averaged method.

By using previous obtained first asymptotic averaged approximation of the
solution, we obtain Lyapunov exponent in the form:
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λ1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
1

ω2
1

ẋ2
1 (t)

]
=−δ1 < 0 (27)

or in the form

λ̃1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
ω2

N1

ω2
1

x4
1 (t)+

1

ω2
1

ẋ2
1 (t)

]

λ̃1 = lim
t→∞

1
2t

ln

[
Esist

2m1ω2
1

]
=−δ1 < 0 (28)

In our research, we can investigate system with small nonlinearity and small
vibrations around periodic vibrations.

2.2 Linear Oscillator

Kinetic and potential energies and Rayleigh dissipative function (see Ref. by Hedrih
(Stevanović) (2002) [31]) of linear oscillator with one degree of freedom and
generalized coordinate x2 are:

Ek(2) =
1
2

m2ẋ2
2, Ep(2) =

1
2

c2x2
2 andΦ(2) =

1
2

b2ẋ2
2 (29)

where m2 is mass, c2 is the spring rigidity coefficient of the linear elasticity low, b2

coefficient of the system linear dumping force.
For this system, it is possible to show that: d

dt

(
Ek(2) +Ep(2)

)
= −2Φ(2). For this

case, the differential equation is in the following form: ẍ2+2δ2ẋ2+ω2
2 x2 = 0, where

ω2
2 = c2

m2
, 2δ2 =

b2
m2

, and with characteristic numbers: λ1,2 =−δ2 ∓ i
√

ω2
2 − δ 2

2 for

the small damping coefficient δ2 < ω2. Solution for free vibrations is:

x2 (t) = R0e−δ2t cos(p2t +α2) . (30)

2.3 Hybrid Systems with Staitc Constraints

Kinetic and potential energies and Rayleigh dissipative function (see Ref. by Hedrih
(Stevanović) (2002) [31]) of the hybrid system, containing two subsystems – one
linear oscillator and one nonlinear oscillator, with two degree of freedom expressed
by generalized coordinates x1 and x2 (see Fig. 1a∗) are:

Ek =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 (31)

Ep =
1
2

c1x2
1 ±

1
4

c̃1x4
1 +

1
2

c(x1 − x2)
2 +

1
2

c2x2
2 (32)
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Fig. 1 Two hybrid systems containing coupled subsystems by (a∗) static constraint, coupled by
linear spring with rigidity c and (b∗) dynamical constraint, coupled by rolling element of the mass
m – dynamic coupling: one nonlinear (left) and second linear (right)

Φ =
1
2

b1ẋ2
1 +

1
2

b2ẋ2
2 (33)

where m1 and m2 are masses, c1, c, and c2 are the spring rigidity coefficients of
the linear elasticity law, and c̃1 the spring rigidity coefficient of the spring nonlinear
elasticity law, where in (32) upper sign (+) for hard and lower sign (−) for soft
nonlinearity. b1 and b2 coefficient of the system linear dumping forces. For this
system, it is possible to show that: d

dt (Ek +Ep) =−2Φ.
Energy interaction in this hybrid system, containing two coupled subsystems by

statical constraint is potential energy of the spring for coupling nonlinear and linear
subsystem and is expressed in the form:

Ep(1,2) =
1
2

c(x2 − x1)
2 (34)

Coupled system of differential equations of the hybrid system containing two
subsystems, one nonlinear and one linear, are in the forms:

ẍ1 + 2δ1ẋ2 +
(
ω2

1 + a2
1

)
x1 − a2

1x2 =∓ω̃2
N1x3

1

ẍ2 + 2δ2ẋ2 +
(
ω2

2 + a2
2

)
x2 − a2

2x1 = 0 (35)

where are: upper sign (−) for hard and lower sign (+) for soft nonlinearity; and. . .

ω2
i =

ci

mi
, 2δi =

bi

mi
, a2

i =
c

mi
, ω̃2

N1 =
c̃1

m1
, i = 1,2. (36)

Taking into account that consideration of the homogeneous system does not
lose generality of the phenomena, next our considerations are applied to this
homogeneous hybrid system.

For the basic linear equations of the coupled system of the differential equations
of the hybrid system containing two subsystems, one linearized and one linear, are
in the form:

ẍ1 + 2δ1ẋ1 +
(
ω2

1 + a2
1

)
x1 − a2

1x2 = 0

ẍ2 + 2δ2ẋ2 +
(
ω2

2 + a2
2

)
x2 − a2

2x1 = 0 (37)
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and for case that linearized and linear systems are equal (ω2
1 = ω2

2 and δ1 = δ2 and
a2

1 = a2
2, we can define characteristic equation with roots – characteristic numbers:

λ1,2 =−δ ∓ ip1 and λ3,4 =−δ1∓ ip̃1 for the small damping coefficient δ1 <ω1,
it is possible to write:

λ1,2 =−δ1∓ i
√

ω2
1 − δ 2

1 =−δ1∓ ip̃1 λ3,4 =−δ1∓ i
√

ω2
1 + 2a2

1− δ 2
1 =−δ1∓ ip̃1

where:

p1 =
√

ω2
1 − δ 2

1 for the small damping coefficient δ1 < ω1.

p̃2 = p̃1 =
√

ω2
1 + 2a2

1− δ 2
1 for the small damping coefficient δ1 < ω1.

Corresponding solution of the linear-coupled subsystem into system, we can
write in the following two-frequency form:

x1 (t) = e−δ t [R01 cos(p1t +α01)+R02 cos(p̃2t +α02)]

x2 (t) = e−δ t [R01 cos(p1t +α01)−R02 cos(p̃2t +α02)] (38)

where amplitudes R0i and phases α0i are constants depending of initial conditions.
By using averaged method, the first approximation of the solution of the hybrid

system, containing coupled nonlinear and linear system, we propose in the forms:

x1 (t) = e−δ t [R1 (t) cosΦ1 (t)+R21 (t) cosΦ2 (t)]

x2 (t) = e−δ t [R1 (t) cosΦ1 (t)−R21 (t) cosΦ2 (t)] (39)

where amplitudes Ri(t) and phases Φi(t), i = 1,2 are unknown functions. Also, we
can write: Φi(t) = pit +φi. Then after application averaging method and averaging
obtained ordinary differential equations with respect to the full phase Φi(t), we
obtain the following system of the first asymptotic approximation of the system
differential equations for amplitudes Ri(t) and phases Φi(t):

Ṙ1 (t) = 0

φ̇1 (t) =± 3
16p1

ω̃2
N1

[
R2

1 (t)+ 2R2
2 (t)

]
e−2δ1t

Ṙ2 (t) = 0

φ̇2 (t) =± 3
16 p̃2

ω̃2
N1

[
R2

2 (t)+ 2R2
1 (t)

]
e−2δ1t (40)

where upper sign (+) for hard and lower sign (−) for soft nonlinearity.
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After integration of the previous system of ordinary differential equations (40) in
first asymptotic approximation in the case that damping is different them zero,
δ1 �= 0 we obtain the following expressions for two amplitudes Ri(t) and two
corresponding phases Φi(t), in first asymptotic approximation:

R1 (t) = R01 = const

φ1 (t) =∓ 3
32δ p1

ω̃2
N1

[
R2

01 + 2R2
02

]
e−2δ1t +α01, for δ1 �= 0

R2 (t) = R02 = const

φ1 (t) =∓ 3
32δ p̃2

ω̃2
N1

[
2R2

01 +R2
02

]
e−2δ1t +α02, for δ1 �= 0 (41)

where upper sign (−) for hard and lower sign (+) for soft nonlinearity. The first
asymptotic approximation of the solutions in two frequency regime in averaged form
of the hybrid system dynamics is in the following form are:

x1 (t) = e−δ tR01 cos

(
p1t ∓ 3

32δ p1
ω̃2

N1

[
R2

01 + 2R2
02

]
e−2δ t +α01

)
+

+e−δ tR02 cos

(
p̃2t ∓ 3

32δ p̃2
ω̃2

N1

[
2R2

01 +R2
02

]
e−2δ t +α02

)

for δ1 �= 0

x2 (t) = e−δ tR01 cos

(
p1t ∓ 3

32δ p1
ω̃2

N1

[
R2

01 + 2R2
02

]
e−2δ t +α01

)
−

−e−δ tR02 cos

(
p̃2t ∓ 3

32δ p̃2
ω̃2

N1

[
2R2

01 +R2
02

]
e−2δ t +α02

)

for δ1 �= 0 (42)

where upper sign (−) for hard and lower sign (+) for soft nonlinearity. We can see
that amplitudes of the solution in the first approximation are in the form R0ie−δ t and
that phases are also functions of the time, and also frequencies

p1 (t)=p1 ∓ 3
16 p̃1

ω̃2
N1

[
R2

01+2R2
02

]
e−2δ t and p̃2 (t)= p̃2 ∓ 3

16 p̃2
ω̃2

N1

[
2R2

01+R2
02

]
e−2δ t

(43)

where upper sign (−) for hard and lower sign (+) for soft nonlinearity. Are change-
able with time in the first approximation obtained by asymptotic averaged method.

By using previous first asymptotic approximation of the solution in the two
frequency regime, we can obtain Lyapunov exponents in the forms:

λ1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
1

ω2
1

ẋ2
1 (t)

]
=−δ < 0

λ2 = lim
t→∞

1
2t

ln

[
x2

2 (t)+
1

ω2
2

ẋ2
2 (t)

]
=−δ < 0 (44)
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Also, taking into account that system is nonlinear, we can obtain Lyapunov
exponents in the following forms:

λ̃1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
ω̃2

N1

ω2
1

x4
1 (t)+

1

ω2
1

ẋ2
1 (t)

]

λ̃1 = lim
t→∞

1
2t

ln

[
Esubsist(1)

2m1ω2
1

]
=−δ < 0 (45)

For the nonhomogeneous case, we can define characteristic equation, with four
roots: λ1,2 = −δ̂1 ∓ ip̂1 and λ3,4 = −δ̂2 ∓ ip̂2, and solution of the linear-coupled
system, we can write in the following form:

x1 (t) = K(1)
21 e−δ̂1 tR01 cos(p̂1t +α01)+K(2)

21 e−δ̂2 tR02 cos(p̂2t +α02)

x2 (t) = K(1)
22 e−δ̂1 tR01 cos(p̂1t +α01)+K(2)

22 e−δ̂2 tR02 cos(p̂2t +α02) (46)

where K(s)
2i are cofactors of the system, and amplitudes and phases, R0i and α0i,

are constants.
By using asymptotic averaged method, a first asymptotic approximation of the

solution of the hybrid system, containing coupled nonlinear and linear system as
subsystems, we propose solutions in the following forms:

x1 (t) = K(1)
21 e−δ̂1 tR1 (t)cosΦ1 (t)+K(2)

21 e−δ̂2 tR02 cosΦ2 (t)

x2 (t) = K(1)
22 e−δ̂1 tR01 cosΦ1 (t)+K(2)

22 e−δ̂2 tR02 cosΦ2 (t) (47)

where Ri(t) and Φi(t) are unknown functions. Also we can write: Φi(t) = p̂it +φi.
And all next is similar as in previous considered part.

2.4 Hybrid Systems with Dynamic Constraints

In Fig. 1b∗, we can see a hybrid system containing two subsystems, one linear and
one nonlinear coupled by dynamical constraint. Dynamical constraint consists of
the one disk with mass m and mass inertia axial moment JC with possibility of
rolling between two masses m1 and m2 of the subsystems. In our research, we can
investigate small nonlinearity in the subsystem, and also in the hybrid system and
also small nonlinear vibrations around periodic regimes.

Kinetic energy of the coupling nonlinear and linear subsystems is in the
following form:

Ek(1,2) =
1
2

(
â11ẋ2

1 + â22ẋ2
2 + 2ẋ1ẋ2â12

)
(48)
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Fig. 2 Uncoupled subsystems: one nonlinear (a∗) and second linear (b∗)

where

â11 =
m
4
+

JC

4R2 , â22 =
m
4
+

JC

4R2 , â12 =
m
4
− JC

4R2 . (49)

Then we have a hybrid system with coupled dynamic, but also linear, constraint
between two subsystems as a resultant dynamic of two subsystem dynamics in
mutual interactions.

Kinetic and potential energies and Rayleigh energy dissipation function of the
hybrid system, containing two subsystems – one linear oscillator and one nonlinear
oscillator, with two degree of freedom expressed by generalized coordinates x1 and
x2 (see Fig. 2a∗) are:

Ek =
1
2

m1ẋ2
1 +

1
2

m2ẋ2
2 +

1
2

[
m

(
ẋ1 + ẋ2

2

)2

+ JC

(
ẋ2 − ẋ1

2R

)2
]

(50)

Ep =
1
2

c1x2
1 ±

1
4

c̃1x4
1 +

1
2

c2x2
2

Φ =
1
2

b1ẋ2
1 +

1
2

b2ẋ2
2 (51)

where upper sign (+) for hard and lower sign (−) for soft nonlinearity. Also, where
m1 and m2 are masses, c1, c, and c2 are the spring rigidity coefficients of the linear
elasticity low, and c̃1 the spring rigidity coefficient of the nonlinear elasticity low, b1

and b2 coefficient of the system linear dumping forces. For this system, it is possible
to show that is: d

dt (Ek +Ep) =−2Φ.
Energy interaction in this system is by kinetic energy of the rolling element for

coupling nonlinear and linear subsystem and is expressed in the form:

Ek =
1
2

(
ã11ẋ2

1 + ã22ẋ2
2 + 2ã12ẋ1ẋ2

)
(52)

where

ã11 = m1 +
m
4
+

JC

4R2 = a11 + â11, ã22 = m2 +
m
4
+

JC

4R2 = a22 + â22,

ã12 =
m
4
− JC

4R2 = â12 (53)
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Coefficient ã12 = m
4 − JC

4R2 is coefficient of the subsystems coupling, and the
constraint is dynamical. Then, this coefficient is coefficient of inertia. When this
coefficient is equal to zero, then the system coordinate x1 and x2 are decoupled and
there are not energy of the coupling, but there are energy of the influence of the
dynamic constraint by additional members.

Kinetic energy of the first subsystem as a one part of the hybrid system is: Ek =
1
2 ã11ẋ2

1. Kinetic energy of the second subsystem as a one part of the hybrid system
is: Ek =

1
2 ã22ẋ2

2. Kinetic energy of the coupling of the subsystems as a two parts of
the hybrid system is: Ek = ã12ẋ1ẋ2.

Additional part of the kinetic energy of the first subsystem – reduction of the
dynamic constraint to the first subsystem Ek(1)d = 1

2 â11ẋ2
1.

Additional part of the kinetic energy of the second subsystem – reduction of the
dynamic constraint to the second subsystem Ek(2)d = 1

2 â22ẋ2
2. When the coefficient

of subsystems coupling equals zero, ã12 =
[

m
4 − JC

4R2

]
= 0, then subsystems do not

have kinetic energy interaction, but have additional part of kinetic energy of the
first subsystem – reduction of the dynamic constraint to the first subsystem and
additional part of the kinetic energy of the second subsystem – reduction of the
dynamic constraint to the second subsystem.

System of differential equations is based on the kinetic and potential energy and
Rayleigh energy dissipation function and is obtained in the following form:

ẍ1 +κ1ẍ2 + ω̃2
1 x1 + 2δ̃1ẋ1 =∓ ˜̃ω2

N1x3
1

ẍ2 +κ2ẍ1 + ω̃2
2 x2 + 2δ̃2ẋ2 = 0 (54)

where upper sign (−) for hard and lower sign (+) for soft nonlinearity and following
notations: κ1 =

ã12
ã11

,κ2 =
ã12
ã22

, ω̃2
1 = c1

ã11
, ω̃2

2 = c1
ã22

, ˜̃ω2
N1 =

c̃1
ã11

= ω̃2
N1

m1
ã11

,2δ̃i =
bi
ãii
, i=

1,2 are introduced.
For the basic linear equations of the linear dynamically coupled system of

the differential equations of the hybrid system containing two subsystems, one
linearized and one linear are in the form

ẍ1 +κ1ẍ2 + ω̃2
1 x1 + 2δ̃1ẋ1 = 0

ẍ2 +κ2ẍ1 + ω̃2
2 x2 + 2δ̃2ẋ2 = 0 (55)

We can compose corresponding characteristic equation with four roots: λ1,2 =

−δ̂1∓ ip̂1 and λ3,4 =−δ̂2∓ ip̂2. It is not difficult to obtain eigen amplitude numbers
and solutions of the basic linear-coupled system, we can write in the following form:

x1 (t) = K(1)
21 e−δ̂1 tR01 cos(p̂1t +α01)+K(2)

21 e−δ̂2 tR02 cos(p̂2t +α02)

x2 (t) = K(1)
22 e−δ̂1 tR01 cos(p̂1t +α01)+K(2)

22 e−δ̂2 tR02 cos(p̂2t +α02) (56)

where K(s)
2i are cofactors of the system, and amplitudes R0i and phases α0i, are

constants, depending of initial conditions.
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By using asymptotic averaged method, a first asymptotic approximation of the
solution of the hybrid system dynamics, containing dynamical coupled nonlinear
and linear system, we propose solutions in the following forms:

x1 (t) = K(1)
21 e−δ̂1 tR1 (t)cosΦ1 (t)+K(2)

21 e−δ̂2 tR2 (t)cosΦ2 (t)

x2 (t) = K(1)
22 e−δ̂1 tR1 (t)cosΦ1 (t)+K(2)

22 e−δ̂2 tR2 (t)cosΦ2 (t) (57)

where amplitudes Rs(t) and phases Φs(t) are unknown functions. Also, we can
write: Φi(t) = p̂it +φi. After applying asymptotic averaging with respect to the full
phases Φs(t), we obtain the system of the first asymptotic averaged approximation
of the differential equations for amplitudes Ri(t) and phases Φi(t). After integrating
the system of averaged differential equations, we obtain first approximation of the
amplitudes Ri(t) and phases Φi(t) of the solution in the following form:

R1 (t) = R01 = const

φ1 (t) = ∓ 3

16p1

[
K(1)

21 K(2)
22 −K(1)

22 K(2)
21

] ω̃2
N1

×
{

e−2δ̂1 t

2δ̂1

(
K(1)

21

)3
[R01]

2 +
e−2δ̂2 t

δ̂2
K(1)

21

[
K(2)

21

]2
[R02]

2

}
+α01

for δ1 �= 0

R2 (t) = R02 = const

φ2 (t) = − 3

16 p̂2

[
K(2)

21 K(1)
22 −K(2)

22 K(1)
21

] ω̃2
N1

×
{

e−2δ̂1 t

δ̂1

(
K(1)

21

)3
[R01]

2 +
e−2δ̂2 t

2δ̂2
K(1)

21

[
K(2)

21

]2
[R02]

2

}
+α02

for δ1 �= 0 (58)

where upper sign (−) for hard and lower sign (+) for soft nonlinearity. Solution
in the first averaged asymptotic approximation is not difficult to compose by use
expression (57) and (58).

By using previous first asymptotic approximation of the solution in the two
frequency regime, we can obtain Lyapunov exponents in the forms:

λ1 = lim
t→∞

1
2t ln

[
x2

1 (t)+
1

ω̃2
1

ẋ2
1 (t)

]
=−δ̂1 < 0

λ2 = lim
t→∞

1
2t ln

[
x2

2 (t)+
1

ω̃2
2

ẋ2
2 (t)

]
=−δ̂2 < 0 (59)
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Also, taking into account that system is nonlinear, we can introduce first Lyapunov
exponent in the forms:

λ̃1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
ω̃2

N1

ω̃2
1

x4
1 (t)+

1

ω̃2
1

ẋ2
1 (t)

]

λ̃1 = lim
t→∞

1
2t

ln

[
Esubsist(1)

2m1ω̃2
1

]
=−δ̂1 < 0 (60)

3 Energy Analysis of Forced Nonlinear Systems

3.1 A Spring Pendulum

For introducing to the problem of the energy transfer or transient in the hybrid
nonlinear system forced dynamics, it is useful to take, for simple analysis, into
consideration the change energy between parts of the energy carrying on the
generalized coordinates φ and ρ in the spring pendulum system with two degree
of freedom excited by external excitations. For the analysis of the energy in the
spring pendulum in the forced regime excited by external one frequency excitation –
generalized forces Mφ (t) = M0 cos(Ωφ t +ϑφ ) and Fρ(t) = F0 cos(Ωρ t +ϑρ) – we
can write the kinetic and potential energies in the forms (1). By taking into account
all comments and asymptotic approximation as in the introductory part of this paper,
as well as corresponding expressions (2)–(5), system of the differential equations of
the linearized system is in the following form:

ρ̈ +ω2
2 ρ = h0ρ cos

(
Ωρ t +ϑρ

)
(61)

where

ω2
2 =

c
m
, h0ρ =

F0

m

φ̈ +ω2
1 φ = h0φ cos

(
Ωφ t +ϑφ

)
(62)

where ω2
1 = g

� , h0φ = M0
m�2 .

Solutions of the linearized equations (61) an (62) are:

ρ (t) = R2 cos(ω2t +α02)+
h0ρ

ω2
2 −Ω2

ρ
cos

(
Ωρ t +ϑρ

)
(63)

φ (t) = R1 cos(ω1t +α01)+
h0φ

ω2
1 −Ω2

φ
cos

(
Ωφ t +ϑφ

)
(64)

For that linearized case, both chosen coordinates are main coordinates of the
linearized model, and from solutions (63)–(64), we can see that free and also, forced
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vibrations are uncoupled, and not interaction between free, and also forced modes
of the vibrations. Then, we have two uncoupled oscillators with different eigen
circular frequencies ω2

1 = g
� and ω2

2 = c
m and different forced external excitation

frequencies Ωφ and Ωρ and with possibilities of appearance two main uncoupled
resonant regimes, when Ω2

φ ,resonant = ω2
1 = g

� and Ω2
ρ ,resonant = ω2

2 = c
m .

In this case, for linearized models and in the resonant cases, expressions for
solutions are in the following forms:

ρ (t)|Ωρ,resonant
= ω2 = ρ0 cosω2t +

ρ̇0

ω2
sinω2t +

+
h0ρ

2ω2

[
ω2t sin

(
ω2t +ϑρ

)− sinω2t sinϑρ
]

(65)

φ (t)|Ωφ ,resonant
= ω1 = φ0 cosω1t +

φ̇0

ω1
sinω1t +

+
h0φ

2ω1

[
ω1t sin

(
ω1t +ϑφ

)− sinω1t sinϑφ
]

(66)

But, for the nonlinear case the interaction between coordinates is present and then
energy transient appears.

Expressions for kinetic and potential energies are in the same forms as presented
and analyzed in first part for free vibrations and named by (6)–(10). Then, the
expressions for coordinates are different and must be taken in the forms (65)–(66).

By analyzing corresponding expressions, we can see that with these expressions
for decoupled oscillator with coordinate ρ , we have pure linear oscillator or
harmonic oscillator with coordinate ρ and frequency ω2

2 = c
m , and separated process

is isochronous. By analyzing these corresponding expressions, we can see that
with these expressions for decoupled oscillators with coordinate φ , we have pure
nonlinear oscillator with coordinate φ , and separated process is no isochronous. For
a linearyzed case, this oscillator has eigen frequency ω2

1 = g
� .

For forced nonlinear case, differential equations of the system nonlinear oscilla-
tions are in the following form:

ρ̈ +ω2
2 ρ =−g(1− cosφ)+ h0ρ cos

(
Ωρ t +ϑρ

)
(67)

φ̈ +ω2
1 φ = ω2

1 (φ − sinφ)− 2
�2 ρ̇ φ̇ (ρ + �)−

− 1
�2 ρ (ρ + 2�) φ̈ + h0φ cos

(
Ωφ t +ϑφ

)
(68)

or in nonlinear approximation forms for small oscillations around zero coordinates
ρ = 0,φ = 0 or of the around stable equilibrium position of the spring pendulum
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ρ̈ +ω2
2 ρ ≈ −g

(
φ2

2
− φ4

24
+

φ6

6!
− φ8

8!
+ . . . ..

)
+

+h0ρ cos
(
Ωρt +ϑρ

)
(69)

φ̈ +ω2
1 φ ≈ −ω2

1

(
φ3

3
− φ5

5!
+

φ7

7!
− . . . .

)
−

− 2
�2 ρ̇ φ̇ (ρ + �)− 1

�2 ρ (ρ + 2�) φ̈ + h0φ cos
(
Ωφ t +ϑφ

)
(70)

If we introduce phase coordinate, then we can write:

v = ρ̇

v̇ = −ω2
2 ρ − g(1− cosφ )+ h0ρ cos

(
Ωρ t +ϑρ

)

u = φ̇

u̇ = −ω2
1 φ +ω2

1 (φ − sinφ)− 2
�2 ρ̇ φ̇ (ρ + �)−

− 1
�2 ρ (ρ + 2�) u̇+ h0φ cos

(
Ωφ t +ϑφ

)
(71)

or in the approximation

v = ρ̇

v̇ ≈ −ω2
2 ρ − g

(
φ2

2
− φ4

24
+

φ6

6!
− φ8

8!
+ . . . ..

)
+ h0ρ cos

(
Ωρ t +ϑρ

)

u = φ̇

u̇ ≈ −ω2
1 φ −ω2

1

(
φ3

3
− φ5

5!
+

φ7

7!
− . . . .

)
−

− 2
�2 ρ̇ φ̇ (ρ + �)− 1

�2 ρ (ρ + 2�) u̇+ h0φ cos
(
Ωφ t +ϑφ

)
(72)

From system of the differential equations (67)–(68), as well as from their approx-
imations (68)–(70), we can see that their right-hand parts are nonlinear and are
functions of generalized coordinates, as well as of the generalized coordinates first
and second derivatives with respect to time and function of time. Also, we can see
that generalized coordinates φ and ρ around their zero values, when ρ = 0, φ = 0 at
the stable equilibrium position of the spring pendulum are also main coordinates of
the linearized model. It is reason that the asymptotic averaged method is applicable
for obtaining first asymptotic approximation of the solutions.
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Then it is possible that first asymptotic approximations of the solutions of
the system of nonlinear differential equations (67)–(68) take into account in
the following asymptotic approximations for the small spring pendulum forced
elongations in the form:

ρ = aρ (t)cos
(
ω1t +ϕρ (t)

)

φ = aφ (t)cos
(
ω2t +ϕφ (t)

)
(73)

where amplitudes aρ(t) and aϕ(t) and phases ϕρ(t) and ϕϕ(t) are defined by system
of first order nonlinear differential equations in first asymptotic approximation in the
following form:

ȧρ (t) =
h0ρ(

ω2 +Ωρ
) sin

(
ϕρ (t)−ϑρ

)

ϕ̇ρ (t) = ω2 −Ωρ − h0ρ

aρ (t)
(
ω2 +Ωρ

) cos
(
ϕρ (t)−ϑρ

)

ȧφ (t) ≈ − h0φ

2
(
ω1 +Ωφ

) sin
(
ϕφ (t)−ϑφ

)
+

h0φ

3
(
ω1 +Ωφ

) a2
ρ (t)

�2 sin
(
ϕφ (t)−ϑφ

)

ϕ̇φ (t) ≈ ω1 −Ωφ +
ω1

12

[
1− a2

ρ (t)

2�2

]
− h0φ

2aφ (t)
(
ω1 +Ωφ

) cos
(
ϕφ (t)−ϑφ

)
+

+
h0φ

3aφ (t)
(
ω1 +Ωφ

) a2
ρ (t)

�2 cos
(
ϕφ (t)−ϑφ

)
(74)

where Ωφ ≈ ω1 and Ωρ ≈ ω2 are external excitation frequencies in the reso-
nant rages corresponding eigen frequencies of corresponding linearized system.
Previous system of four nonlinear and first-order differential equation in the
first asymptotic approximation are obtained by asymptotic Krilov–Bogoliyubov–
Mitropolyskiy method and for small amplitudes of external excitations and in the
resonant rages of the both frequencies.

Taking into consideration some conclusion from considered system of the spring
pendulum, we can conclude, also, that it is important to consider more simple case
of the coupling between linear and nonlinear systems with one degree of freedom
with different types of the coupling realized by simple static or dynamic elements,
for to investigate hybrid phenomena in the nonlinear system forced dynamics.

Also, it is possible to use for energy analysis of the transfer energy between
energies carried by generalized coordinates φ and ρ in this nonlinear system forced
dynamics with two degree of freedom, but formally, we can take into account
that, we have two oscillators, one nonlinear and one linear each with one degree
of freedom as two subsystems coupled in the hybrid system with two degree of
freedom, by hybrid connection realized by statical and dynamical connections. This
interconnection have two parts of energy interaction between subsystems expressed
by kinetic and potential energy in the form (10).
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Taking into consideration some conclusion for considered system of the spring
pendulum forced oscillations, we can conclude also that it is important to consider
more simple case of the coupling between linear and nonlinear systems with
one degree of freedom with different types of the coupling realized by simple
static or dynamic elements, for to investigate hybrid phenomena in the system
forced dynamics.

3.2 A Nonlinear Oscillator

For to obtain asymptotic approximation of the nonlinear differential equation (73)
by using asymptotic methods Krilov–Bogoliyubov–Mitropolyskiy, we propose
solution in the first approximation in the following form:

x1 (t) = R1 (t) e−δ1t cosΦ1 (t) (75)

where amplitude R1(t) and phase Φ1(t) are unknown functions and defined by
system of the first-order differential equations in the following form:

Ṙ1(t) =− h01eδ1t

p1 +Ω1 (τ)
sinφ1(t) (76)

φ̇1(t) = p1 −Ω1 ± 3ω̃2
N1

8p1
R2

1(t)e
−2δ1t +

h01eδ1t

R1(t) [p1 +Ω1 (τ)]
sinφ1(t) (77)

where upper sign (+) for hard and lower sign (−) for soft nonlinearity. Also, where:
Φ1(t) = p1t + φ1, and for the case that frequency of external excitation is in the
frequency interval of resonant range of the eigen frequency of the corresponding
linearyzed system, Ω1 ≈ p1.

By using previous first asymptotic approximation of the solution (74)-(76)-(77)
in the single frequency regime, we can obtain Lyapunov exponent in the form:

λ1 = lim
t→∞

1
2t

ln

[
x2

1(t)+
1

ω2
1

ẋ2
1(t)

]
=−δ1 < 0 (78)

In our research, we can investigate small nonlinearity and small vibrations around
periodic vibrations in regimes of stationary resonant ranges, and far of resonant
frequency range.

For forced vibrations and for work of the external excitation force and damping
force, we can write that:

AFw
TP(1)

=

TP∫

0

FW (1)
(
ẋp(1)

)
dxp(1)(t) =−

TP∫

0

b1 (ẋP1)
2 dt (79)

AF(t)
TP(1)

=

TP∫

0

F(1)(t)dxp(t) =−
TP∫

0

F(1)(t)ẋP1dt (80)
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In linear systems AFw
TP(1)

and AF(t)
TP(1)

, these works for one period of the external
excitation are equal, and in result of the appearance of the pure periodic forced
vibrations with frequency of the external one frequency excitation. But in the
nonlinear system when external excitation frequency is outside of the resonant
frequency range intervals, and in the system appear pure periodic forced vibrations
with external excitation frequency, then we can conclude that these works are
equal. But, in nonlinear systems, it is evident that under the influence of the pure
one-frequency external excitation, it is a possible appearance of different forced
vibration regimes, as double periodic as well as chaotic like and stochastic like
regimes, and this need to find relations between these works, of the external
excitations and damping force. Also, it needs to investigate energy used to chaotic
like and stochastic like forced regime appearance.

3.3 A Linear Oscillator

Expressions of kinetic and potential energies, and Raleigh energy dissipation func-
tion of linear oscillator, see Fig. 2b∗, with one degree of freedom and generalized
coordinate x2 are same as expression (29). For this case, ordinary differential
equation is in the following form: ẍ2 + 2δ2ẋ2 +ω2

2 x2 = h02 cos(Ω2t +ϑ02), where
ω2

2 = c2
m2
, 2δ2 = b2

m2
, h02 = F2

m2
and with characteristic eigen numbers: λ1,2 =

−δ2 ∓ i
√

ω2
2 − δ 2

2 for the small damping coefficient δ2 < ω2.

In linear systems AFw
TP(1)

and AF(t)
TP(1)

, these work for one period of the one period of
the external excitation are equal, and in result of the appearance of the pure periodic
forced vibrations with frequency of the external one frequency vibrations:

AFw
TP(2)

=

TP∫

0

FW (2)
(
ẋp(2)

)
dxp(2)(t) =−

TP∫

0

b2 (ẋP2)
2 dt (81)

AF(t)
TP(2)

=

TP∫

0

F(2)(t)dxp(2)(t) =−
TP∫

0

F2(t)ẋP2dt (82)

3.4 Hybrid System with Static Constraints

Expressions for kinetic and potential energies, and Rayleigh function of energy
dissipation of the hybrid system (see Fig. 3), containing two subsystems – one linear
oscillator and one nonlinear oscillator, in results, with two degree of freedom are
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Fig. 3 Hybrid system containing coupled subsystems by (a∗) static constraint, coupled by linear
spring rigidity c and (b∗) dynamical constraint, coupled by rolling element of the mass m –
dynamic coupling: one nonlinear (left) and second linear (right) excited by external excitations

expressed by generalized coordinates x1 and x2 and in the forms (31), (32) and (33).
For this system, it is possible to show that: d

dt (Ek +Ep) =−2Φ is for free vibrations

and d
dt (Ek(1) +Ep(1)) =−2Φ(1) + (

−→
F 1,

−→v 1)+ (
−→
F 2,

−→v 2) is for forced vibrations.
Energy interaction in this hybrid system, containing two coupled subsystems by

statically coupling (spring) element, is potential energy of the spring for coupling
nonlinear and linear subsystems, and is expressed in the form (34).

System of the coupled ordinary differential equations of the hybrid system
dynamics, containing two subsystems, one nonlinear and one linear are in the forms:

ẍ1 + 2δ1ẋ2 +
(
ω2

1 + a2
1

)
x1 − a2

1x2 =∓ω̃2
N1x3

1 + h01 cos(Ω1t +ϑ01) (83)

ẍ2 + 2δ2ẋ2 +
(
ω2

2 + a2
2

)
x2 − a2

2x1 = h02 cos(Ω2t +ϑ02) (84)

where upper sign (−) for hard and lower sign (+) for soft nonlinearity, and are:

ω2
i =

ci

mi
, 2δi =

bi

mi
, a2

i =
c

mi
, ω̃2

N1 =
c̃1

m1
, h0i =

F0i

mi
i = 1,2. (85)

Taking into account that consideration of the homogeneous system does not loose
generality of the phenomena, our next consideration is to use this homogeneous
hybrid system as a basic system to the nonhomogeneous with small nonlinear-
ity members.

By use the corresponding basic linear differential equations of the coupled
system of the differential equations of the hybrid system containing two subsys-
tems, one linearized and one linear, we can obtain a characteristic equation with
four characteristic numbers, same as in part 2.3. By using asymptotic method
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Krilov–Bogoliyubov–Mitropolyskiy, we propose solution in the first approximation
in the following form:

x1(t) = e−δ t [R1(t) cosΦ1(t)+R2(t) cosΦ2(t)]

x2(t) = e−δ t [R1(t) cosΦ1(t)−R2(t) cosΦ2(t)] (86)

where amplitudes and phases, Ri(t) and Φi(t), i = 1,2 are unknown time functions
and defined by system of the first order differential equations in the following form:

Ṙ1(t) = − h01

(p1 +Ω1 (τ))
eδ1t sinφ1(t)

φ̇1 = p1 −Ω1 ± 1
16p1

ω̃2
N1eδ1t

[
(R1(t))

2 e−3δ1t + 3(R2(t))
2 e−(2δ2+δ2)t

]
−

− h01

(p1 +Ω1 (τ))1 R1(t)
eδ1t cosφ1(t)

Ṙ2(t) = − h02

(p2 +Ω2 (τ))
eδ2t sinφ2(t)

φ̇2 = p2 −Ω2 ± ω̃2
N1

16p2
eδ2t

[
3(R1(t))

2 e−(2δ1+δ2)t +(R2(t))
2 e−3δ2t

]
+

+
h02

(p2 +Ω2 (τ))R2(t)
eδ2t cosφ2(t) (87)

where: upper sign (+) for hard and lower sign (−) for soft nonlinearity, and Φi(t) =
pit +ϑ0i +φi, Ωi ≈ p̂i, i = 1,2.

By using previous first asymptotic approximation of the two amplitudes and
two phases of first asymptotic approximation of solution, we can obtain Lyapunov
exponents in the forms:

λ1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
1

ω2
1

ẋ2
1 (t)

]
=−δ1 < 0

λ2 = lim
t→∞

1
2t

ln

[
x2

2 (t)+
1

ω2
2

ẋ2
2 (t)

]
=−δ2 < 0 (88)

Also, taking into account that system is nonlinear:

λ̃1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
ω̃2

N1

ω2
1

x4
1 (t)+

1

ω2
1

ẋ2
1 (t)

]
=−δ1 < 0

λ̃1 = lim
t→∞

1
2t

ln

[
Esubsist(1)

2m1ω2
1

]
=−δ1 < 0 (89)
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3.5 Hybrid System with Dynamical Coupling
(Rolling) Element

In Fig. 3b∗, a hybrid system excited by two frequency external excitation, and
containing two coupled oscillators, one linear and one nonlinear coupled by
dynamically coupling in the form of rolling element is shown.

Expressions for kinetic and potential energies, and Rayleigh function of energy
dissipation of the hybrid system (see Fig. 3b∗), containing two subsystems – one
linear oscillator and one nonlinear oscillator, in results, with two degree of freedom
are expressed by generalized coordinates x1 and x2 and with dynamic coupling by
rolling element, are same as expressions (48) (49), (51), (51), (52), and (53). This
system is excited by external two frequency excitation Fi(t) = F0i cos(Ωit +ϑi), i =
1,2 applied to the subsystems into hybrid system.

For this system, it is possible to show that is: d
dt (Ek +Ep) = −2Φ for free

vibrations, and for forced vibrations that is:

d
dt

(
Ek(1) +Ep(1)

)
=−2Φ(1) +

(−→
F 1,

−→v 1

)
+
(−→

F 2,
−→v 2

)
. (90)

The kinetic energy of the dynamical, coupling, by rolling element is expressed by
(48)–(49). Coefficient ã12 = m

4 − JC
4R2 is coefficient of the subsystems dynamical

coupling, and this coefficient is coefficient of mass inertia with source in coupling
rolling element. When this coefficient is equal to zero, then the system coordinate
x1 and x2 are decoupled and there are not energy of the coupling, but there are
energy of the influence of the dynamic coupling by mass of the additional member
in the system. Then subsystems haven’t kinetic energy interaction, but hybrid system
have additional part of the kinetic energy of the first subsystem – reduction of the
dynamic coupling element to the first subsystem and additional part of the kinetic
energy of the first subsystem – reduction of the dynamic coupling element to the
second subsystem.

Kinetic energy of the first subsystem as a one part of the hybrid system is: Ek =
1
2 ã11ẋ2

1, kinetic energy of the second subsystem as a one part of the hybrid system
kinetic energy is: Ek =

1
2 ã22ẋ2

2. Kinetic energy of the coupling of the subsystems
as a two parts of the hybrid system is: Ek = ã12ẋ1ẋ2. Additional part of the kinetic
energy of the first subsystem – reduction of the dynamic coupling element to the first
subsystem is Ek(1)d =

1
2 â11ẋ2

1 and additional part of the kinetic energy of the second
subsystem – reduction of the dynamic coupling element to the second subsystem is
Ek(2)d = 1

2 â22ẋ2
2.

After introducing the following notations:

κ1 =
ã12

ã11
, κ2 =

ã12

ã22
, ω̃2

1 =
c1

ã11
, ω̃2

2 =
c1

ã22
,

˜̃ω2
N1 =

c̃1

ã11
= ω̃2

N1
m1

ã11
, 2δ̃i =

bi

ãii
, h0i =

F0i

ãii
i = 1,2 (91)
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the system of ordinary differential equations of the forced dynamics of the hybrid
system obtain the following form:

ẍ1 +κ1ẍ2 + ω̃2
1 x1 + 2δ̃1ẋ1 =∓ ˜̃ω2

N1x3
1 + h01 cos(Ω1t +ϑ01)

ẍ2 +κ2ẍ1 + ω̃2
2 x2 + 2δ̃2ẋ2 = h02 cos(Ω2t +ϑ02) (92)

where upper sign (−) for hard and lower sign (+) for soft nonlinearity. For the basic
linear equations of the dynamically coupled system of the differential equations (92)
of the hybrid system containing two subsystems, one linear and one linearized,
have characteristic equation with four roots: λ1,2 =−δ̂1 ∓ ip̂1 and λ3,4 =−δ̂2 ∓ ip̂2

with discussion of their values. By using asymptotic method Krilov–Bogoliyubov–
Mitropolyskiy, we propose solution in the first approximation in the form (52),
where amplitudes Ri(t) and phase Φi(t), i = 1,2 are unknown functions and
determined by system of the first-order differential equations in the following first
asymptotic approximation form:

Ṙ1 (t) = e−δ1t
h01

(
K(2)

21 +κ2K(2)
22

)

Δ̃12 [p̂1 +Ω1 (τ)]
sinφ1 (t)

φ̇1 (t) = p̂1 −Ω1 (τ)+

∓
3 ˜̃ω2

N1

(
K(2)

21 +κ2K(2)
22

)

16Δ̃12 p̂1

{
e−2δ̂1 t

(
K(1)

21

)3
[R1 (t)]

2

+2e−2δ̂2 tK(1)
21

[
K(2)

21

]2
[R2 (t)]

2
}
−

−e−δ1t
h01

(
K(2)

21 +κ2K(2)
22

)

Δ̃12 [p̂1 +Ω1 (τ)]R1 (t)
sinφ1 (t)

Ṙ2 (t) = −eδ2t
h02

(
K(1)

22 +κ1K(1)
21

)

Δ̃21 [p̂2 +Ω2 (τ)]
sin φ2 (t)

φ̇2 (t) = p̂2 −Ω2 (τ)+

∓
3 ˜̃ω2

N1

(
K(1)

22 +κ2K(1)
21

)

16Δ̃21 p̂2

{
2e−2δ̂1 t

(
K(1)

21

)2
K(2)

21 [R1 (t)]
2

+e−2δ̂2 t
[
K(2)

21

]3
[R2 (t)]

2
}
+

+eδ2t
h02

(
K(1)

22 +κ1K(1)
21

)

Δ̃21 [p̂2 +Ω2 (τ)]R2 (t)
cosφ2 (t) (93)
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where: upper sign (+) for hard and lower sign (−) for soft nonlinearity, and also,
Φi(t) = p̂it +φi, Ωi ≈ p̂i, i = 1,2, τ = εt slow-changing time and determinants:

Δ̃12 =
[(

K(1)
21 +κ1K(1)

22

)(
K(2)

21 +κ2K(2)
22

)
−
(

K(1)
22 +κ2K(1)

21

)(
K(2)

21 +κ1K(2)
22

)]

Δ̃12 = �= 0

Δ̃21 =
[(

K(2)
21 +κ1K(2)

22

)(
K(1)

21 +κ2K(1)
22

)
−
(

K(2)
22 +κ2K(2)

21

)(
K(1)

22 +κ1K(1)
21

)]

Δ̃21 �= 0
(94)

By using previous system of first asymptotic approximation of amplitudes and
phases of solution first asymptotic approximation, we can obtain Lyapunov expo-
nents in the forms:

λ1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
1

ω̃2
1

ẋ2
1 (t)

]
=−δ̂1 < 0

λ2 = lim
t→∞

1
2t

ln

[
x2

2 (t)+
1

ω̃2
2

ẋ2
2 (t)

]
=−δ̂2 < 0 (95)

Also, taking into account that system is nonlinear, we can introduce first Lyapunov
exponents in the forms:

λ̃1 = lim
t→∞

1
2t

ln

[
x2

1 (t)+
ω̃2

N1

ω̃2
1

x4
1 (t)+

1

ω̃2
1

ẋ2
1 (t)

]
=−δ̂1 < 0

λ̃1 = lim
t→∞

1
2t

ln

[
Esubsist(1)

2m1ω̃2
1

]
=−δ̂1 < 0 (96)

4 Concluding Remarks on Energy Analysis

4.1 Energy Analysis of Nonlinear System

Numerical analysis of the series of the amplitude-frequency [a2(t) = e−δ̂2 tR2(t),

Ω1(τ) = ν1(τ)] and [a2(t) = e−δ̂2 tR2(t), Ω2(τ) = ν2(τ)] and phase-frequency
curves [ϕ1(t) = φ1(t), Ω1(τ) = ν1(τ)] and [ϕ2(t) = φ2(t),Ω2(τ) = ν2(τ)] for
stationary and nonstationary resonant regimes: (a∗) amplitude-frequency curves
for linear one-frequency stationary and nonstationary regime process for different
velocities of forced excitation frequency change passing through the resonant
range; (b∗) amplitude-frequency curves for nonlinear-like one-frequency stationary
and nonstationary regime process – oscillatory process for different velocities of
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forced excitation frequency change passing through the resonant range in both
directions – increasing and decreasing frequency; (c∗) amplitude-frequency and
(d∗) phase-frequency curves of a stationary resonant state of like two-frequency
nonlinear oscillations of a nonlinear system with two degree of freedom obtained
by integration of the system differential equations for the amplitudes and phases in
the first asymptotic approximation show that interactions between modes appears.
Numerical analysis illustrates the characteristic phenomena of a like two-frequency
regime of coupled resonant states under stationary conditions for the system with
small nonlinearity. We can notice the appearance of the singularity trigger with
stable knots and homoclinic unstable saddle-type points along amplitude-frequency
and phase-frequency characteristics for the resonant frequency interval of the
resonant frequency interactions. The appearance of multiple resonant jumps, typical
for multifrequency-coupled resonant states, is also noticeable. The appearance of
homoclinic points of unstable saddle type points to the appearance of stochastic-
like and chaotic-like processes in subsystems of hybrid system have source in
coupled resonant states multifrequency oscillation regimes. This requires further
study separate for each particular case.

Under the conditions of nonlinear system multifrequency forced oscillations,
and by using the asymptotic method of Krilov–Bogolyubov–Mitropolyskiy, the
appearance of “own circular frequencies stroll” may be noticed. Resonant frequency
ranges dependent on the character of nonlinearity, and on the initial conditions and
momentary adequate nonlinear harmonics and amplitudes and phases are formed in
that way. That is the reason why, besides the notion “resonant state”, we introduce
notions “passage through the coupled resonant states” and “coupled resonant
states”. With the appearance of the own circular frequency stroll, a mutual influence
shown either in adequate harmonics amplitudes, frequencies, and phases increase or
decrease appears.

As the energy (kinetic, potential, and the energy of dissipation caused by dissi-
pative forces, as well as the energy of forced multifrequency forces work) “carried”
by a nonlinear harmonics of a corresponding oscillations “stroll” frequency depends
both on the amplitudes square and on the square of its time derivatives, or frequency,
the harmonic amplitudes, phases, or frequencies change during the oscillatory
process and regime itself as well as the interaction between them causes the energy
change. The appearance of energy transfer from one harmonic onto other or others
of higher or lower frequencies can also be noticed here.

On amplitude-frequency and phase-frequency multifrequency forced oscillations
diagrams, we can notice the appearance of one or more resonant jumps which
point to the appearance of a resonant energy jumps, both kinetic and potential,
carried by a nonlinear harmonic. We can see that while one harmonic jumps to
higher amplitudes, the other one to lower ones. The energy jumps indicated on
energy-frequency graph of one nonlinear mode is similar as corresponding jumps
in amplitude frequency graphs as well as in phase-frequency graphs.

On certain harmonics frequencies, a resonant jump of energy carried by the
observed nonlinear harmonics, onto a lower or a higher value, happens. At the same
time, similar resonant jumps of energy in the opposite or the same direction happen
on other harmonics.
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If the stationary multifrequency forced oscillations amplitudes and phases, an
appearance of amplitude trigger and of coupled amplitudes triggers of coupled
stationary singularities in an amplitudes combination stable–unstable–stable. That
way, we have a trigger and/or a coupled triggers of harmonic-energies in a
corresponding set of fixed frequencies from the harmonics’ coupled resonant
frequencies range.

The analysis of total mechanical energy of a nonlinear system is also significant,
as well as the analysis of the kinetic and potential energy of each nonlinear har-
monics, in the singular and bifurcation states, and especially of those corresponding
two unstable and hyperbolically, as well as homoclinical orbits. The question about
the analysis of energy and its transfer between harmonics under conditions under
which chaotic-like and stochastic-like vibrations appear in deterministic nonlinear
dynamical system remains open.

In nonlinear systems, we can observe the idea of equivalent systems exchange by
the use of elementary linear simple oscillators which would be uncoupled and would
make an equivalent replacement for a linearized system. And after that, we may,
using the asymptotic methods of nonlinear mechanics, for instance, the method of
Krilov–Bogolyubov–Mitropolyski, compose a system of necessary approximation
of the first-order ordinary differential equations for nonlinear oscillations harmonics
amplitudes and phases that are close to an unperturbed oscillations. From such a
system of adequate approximation differential equations for amplitudes and phases
that are mutually coupled by non-linear members, we may, using either quantitative
or qualitative analysis, derive certain conclusions about the flows and the transfer of
energy by following the phase and harmonics trajectories through the phase space
of dynamical systems state.

A generalization of an analytical analysis of the transfer energy between linear
and nonlinear oscillators for free vibrations with different type of coupling as a
couple between two subsystems each of them with one degree of freedom is also
important, but it is new task.

5 Energy Analysis of Hybrid Complex Structures

5.1 A Double Plate System

5.1.1 Partial Differential Equations

By using the model of double plate system with viscoelastic layer (similar as in
Refs. Hedrih (2005, 2006)), we can consider the energy transfer between plates.
For that reason, we use corresponding derived partial differential equations and
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Fig. 4 Double plate system with viscoelastic layer: structure and noted corresponding kinetic
parameters and coordinate systems

corresponding analytical results and expressions for solutions of the transversal
displacements of the both plates vibrations. This double plate system is presented
in Fig. 4.

The governing system of the coupled partial nonlinear differential equations for
free double plates oscillations is in the following form (see Ref. [12]):

∂ 2w1 (x,y, t)
∂ t2 + c4

(1)ΔΔw1 (x,y, t)− 2δ(1)
[

∂w2 (x,y, t)
∂ t

− ∂w1 (x,y, t)
∂ t

]
−

−a2
(1) [w2 (x,y, t)−w1 (x,y, t)] =

=±εβ(1) [w2 (x,y, t)−w1 (x,y, t)]
3 + q̃(1) (x,y, t)

∂ 2w2 (x,y, t)
∂ t2 + c4

(2)ΔΔw2 (x,y, t)+ 2δ(2)
[

∂w2 (x,y, t)
∂ t

− ∂w1 (x,y, t)
∂ t

]
+

+a2
(2) [w2 (x,y, t)−w1 (x,y, t)] =

=±εβ(2 [w2 (x,y, t)−w1 (x,y, t)]
3 + q̃(2) (x,y, t) (97)

where in first partial differential equation in the system (1) upper sign (+) for
hard and lower sign (−) for soft nonlinearity, and in the second partial differential
equation in the system (1) upper sign (−) for hard and lower sign (+) for soft non-
linearity. Also in the previous system of partial differential equations: wi(x,y, t), i =
1,2 are plate small transverse deflections (with means, as has been discussed in
books [88] and small compared to the plates thickness, hi, i = 1,2,) and that plates
vibrations occur only in the orthogonal direction with respect to the parallel middle
surfaces of the plates passing through their parallel contours with same boundary
plates conditions; a2

(i) =
c

ρihi
, 2δ(i) = b

ρihi
i = 1,2 and c4

(i) =
Di

ρihi
, i = 1,2 with

Di =
Eih3

12(1−μ2)
, i = 1,2 corresponding bending cylindrical rigidities of the plates,
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and ΔΔ = ∂ 4

∂x4 + 2 ∂ 4

∂x2∂y2 +
∂ 4

∂y4 is differential operator; Ei modulus of elasticity, μi

Poisson’s ratio and Gi shear modulus, ρi plate mass distribution. The plates are
interconnected by a viscoelastic layer with constant surface stiffness c and with
constant surface damping force coefficient b distributed along all plates’ surfaces.

For the solutions of the governing system of the corresponding coupled partial
differential equations (97) for forced double plate system oscillations, we take into
account the eigen amplitude functions W(i)nm(x,y), i = 1,2, n,m = 1,2,3,4, . . . .∞
and the time expansion with the coefficients in the form of the unknown time
functions T (t), i = 1,2, n,m = 1,2,3,4, . . . .∞ describing their time evolution:

wi (x,y, t) =
∞

∑
n=1

∞

∑
m=1

W(i)nm (x,y)T(i)nm (t), i = 1,2 (98)

where the eigen amplitude functions W(i)nm(x,y), i = 1,2, n,m= 1,2,3,4, . . . .∞ are
the same, for both plates in the system, as in the case with decoupled plates problem
(see Ref. [12]). Then after introducing expression (98) into governing system of
the coupled partial differential equations for forced double plates oscillations in the
form (97): and after multiplying first and second equation with W(i)sr(x,y)dxdy and
after integrating along the middle plate surface and taking into account orthogonality
conditions and corresponding equal boundary conditions of the plates, we obtain the
mn-family of the systems containing coupled two ordinary differential equations
for determination series of the unknown time functions T(i)nm(t), i = 1,2, n,m =
1,2,3,4, . . . .∞.

We take into consideration, the case, when external distributed two-frequencies
force is applied and distributed along upper surfaces of upper plate with both
frequencies near eigen circular frequencies of coupled plate system presented by
linearized model, Ωinm ≈ p̂inm, i = 1,2. In this case, the lower plate is free of load.
We can conclude that external excitation frequencies are in the resonant frequency
interval close to the resonant frequency of corresponding linear double plate system.
We suppose that the functions of external excitation at nm-mode of oscillations are
the two-frequency process in the form:

q̃(i)nm(t) = h01nm cos[Ω1nmt +φ1nm]+ h02nm cos[Ω2nmt +φ2nm] (99)

For this case of the external two-frequency excitation time functions T(i)nm(t),
describing their time evolution of the transversal displacements of the plate middle
surface points are in the following forms (see Refs. by and [12, 54, 57, 58]):

T(i)nm (t) = K(1)
inme−δ̂1nmtR1nm (t)cosΦ1nm (t)+K(2)

inme−δ̂2nmtR2nm (t)cosΦ2nm (t)
(100)

where Ks
ijnm cofactors of determinant corresponding to basic linear homegenous

coupled system, δ̂inm real parts of the corresponding pair of the roots of the
characteristic equation and amplitudes Rinm(t) and full phases Φinm(t) = Ωinmt +
φinm(t) unknown time functions which, we are going to obtain using the Krilov–
Bogolyubov–Mitropolyskiy asymptotic method (see Refs. [73–80]). It is taken into
account that defined task satisfy all necessary conditions for applying asymptotic
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method Krilov–Bogolyubov–Mitropolskiy concerning small parameter and that
external excitation frequencies Ω1nm ≈ p̂1nm and Ω2nm ≈ p̂2nm are in the resonant
frequency intervals of the corresponding eigen frequencies of unperturbed linear
system solution.

By applying the asymptotic method Krilov–Bogolyubov–Mitropolskiy (1965),
we obtain the system of the first-order four ordinary differential equations according

unknown amplitudes Rinm(t) = eδ̂inmtainm(t) and full phases Φinm(t) = Ωinmt +
φinm(t) in the first asymptotic approximation in the following forms (see Refs.
[6, 53, 67, 95]):

ȧ1nm (t) =−
(

δ(1)K
(2)
22nm + δ(2)K

(2)
21nm

)[
K(1)

22nm −K(1)
21nm

]
(

K(2)
22nmK(1)

21nm −K(2)
21nmK(1)

22nm

) a1nm (t)+

+
K(2)

22nmh01nm

(Ω1nm + p̂1nm)
(

K(2)
22nmK(1)

21nm −K(2)
21nmK(1)

22nm

) cosφ1nm

φ̇1nm (t) =
(

p̂−nm1Ω1nm
)−

±
εΨ(Wnm)

(
β(1)K

(2)
22 +β(2)K

(2)
21

)
(

K(2)
22 K(1)

21 −K(2)
21 K(1)

22

)(
Ω+

1nm p̂nm1
)

[(
K(1)

22nm−K(1)
21nm

)3 3
8

a2
1nm (t) +

1
2

(
K(1)

22nm−K(1)
21nm

)(
K(2)

22nm−K(2)
21nm

)2
a2

2nm (t)

]
−

− K(2)
22 h01nm

(Ω1nm + p̂nm1)
(

K(2)
22nmK(1)

21nm −K(2)
21nmK(1)

22nm

)
a1nm (t)

sin φ1nm

ȧ2nm (t) =−
(

δ(1)K
(1)
22nm + δ(2)K

(1)
21nm

)[
K(2)

22nm −K(2)
21nm

]
(

K(1)
22nmK(2)

21nm −K(2)
22nmK(1)

21nm

) a2nm (t)+

+
K(1)

22nmh02nm

(Ω2nm + p̂2nm)
(

K(1)
22nmK(2)

21nm −K(2)
22nmK(1)

21nm

) cosφ2nm (101)

φ̇2nm (t) = (p̂2nm −Ω2nm)−

±
εΨ(Wnm)

(
β(1)K

(1)
22nm +β(2)K

(1)
21nm

)

(Ω2nm + p̂2nm)
(

K(1)
22nmK(2)

21nm −K(2)
22nmK(1)

21nm

) ·
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[
1
2

(
K(1)

22nm−K(1)
21nm

)2(
K(2)

22nm−K(2)
21nm

)
a2

1nm (t)+
(

K(2)
22nm−K(2)

21nm

)3 3
8

a2
2nm (t)

]
−

− K(1)
22nmh02nm

(Ω2nm + p̂2nm)
(

K(1)
22nmK(2)

21nm −K(2)
22nmK(1)

21nm

)
a2nm (t)

sin φ2nm

where upper sign (+) for hard and lower sign (−) for soft nonlinearity, and also,

Ψ(Wnm) =

a∫
0

b∫
0

W 4
(1)nm(x,y)dxdy

a∫
0

b∫
0

W 2
(1)nm(x,y)dxdy

is coefficient of influence of ideal elastic layer non-

linearity.

5.1.2 Kinetic Energy of Plates

The expressions of kinetic energies of the plates are in the following forms:

E(i)
k =

1
2

∫ ∫ ∫

V

ρi

(
∂wi (x,y, t)

∂ t

)2

dzdA

E(i)
k =

1
2

ρi hi

∫ ∫

A

[
∞

∑
n=1

∞

∑
m=1

W(i)nm (x,y) Ṫ(i)nm (t)

]2

dA, i = 1,2 (102a)

or in the form:

E(i)
k =

1
2

ρi hi

∞

∑
n=1

∞

∑
m=1

M(1)nm (x,y)
[
Ṫ(i)nm (t)

]2
, i = 1,2 (102b)

where

M(i)nmsr =

∫ ∫

A

W(i)nm (x,y)W(i)sr (x,y)dA =

{
0 sr �= nm

M(1)nm sr = nm
(103)

The kinetic energy of the one plate we can express in the form of the sum by

components E(i)
k,nm belong to corresponding mn-family mode n,m = 1,2,3,4, . . . .∞

in the following form:

E(i)
k =

∞

∑
n=1

∞

∑
m=1

E(i)
k,nm, i = 1,2 (104)

where the kinetic energy components E(i)
k,nm, i = 1,2 belong to corresponding

mn-family mode n,m = 1,2,3,4, . . . .∞ was expressed by derivatives of the eigen
component time functions belong to same corresponding mn-family mode

E(i)
k,nm =

1
2

ρi hiM(1)nm (x,y)
[
Ṫ(i)nm (t)

]2
= M(i)nmsrẼ

(i)
k,nm, i = 1,2 (105)
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Also, we can introduce reduced component of the kinetic energy Ẽ(i)
k,nm.i = 1,2 be-

long to corresponding mn-family mode n,m = 1,2,3,4, . . . .∞ in the following form:

Ẽ(i)
k,nm =

E(i)
k,nm

M(1)nm (x,y)i
=

ρi hi

2

[
Ṫ(i)nm (t)

]2
, i = 1,2 (106)

5.1.3 Potential Energy of Plates

The potential energy of the plate is equal to energy of the deformation of elastic
plate in the vibration state and expression, we can write in the following form:

Ep = Ad =
1
2

∫ ∫ ∫

V

[εxσx + εyσy + εzσz + γxyτxy + γxzτxz|γyzτyz]dV (107)

where εx,εy,εz,γxy,γxz,γyz are tensor strain components, σx,σy,σz,τxy,τxz,τyz are
tensor stress components of the plate strain and stress vibration state. Tensor stress
components τzx and τzy are small, as tensor strain components γzx and γzy are also
small and can be neglected in the comparison with other members in expression
for work of elastic deformation of the thin plate. Then, we can express the work
of elastic plate deformation on the simpler form. Also, we take into account that
plates are thin and that stress state is planar and that we can calculate with middle
plate surface, and make averaging with respect to the middle plate surface (see Ref.
[88]) and for the work of elastic plate deformation, we can write the following
approximate expression:

Ep ≈ D
2

∫ ∫

A

{[
∂ 2w(x,y, t)

∂x2

]2

+

[
∂ 2w(x,y, t)

∂y2

]2

+2μ
[

∂ 2w(x,y, t)
∂x2

][
∂ 2w(x,y, t)

∂y2

]
+ 2(1− μ)

[
∂ 2w(x,y, t)

∂x∂y

]2
}

dA (108)

After introducing solutions (98) in previous expression (108) for expression of the
potential energy of the plates, we obtain the following:

E(i)
p ≈ Di

2

∞

∑
n=1

∞

∑
m=1

∞

∑
s=1

∞

∑
r=1

Cnm,sr(i)T(i)nm (t)T(i)sr (t), i = 1,2 (109)

where,

Cnm,sr(i) = k4
nm

⎧
⎪⎨
⎪⎩

0 sr �= nm

M(i)nm =

∫ ∫

A

[
W(i)sr (x,y)

]2
dA sr = nm (110)
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The potential energies of the separate plates are in the following forms:

E(i)
p ≈ Di

2

∞

∑
n=1

∞

∑
m=1

k4
nmM(i)mm

[
T(i)nm (t)

]2
(111)

or in the forms:

E(i)
p ≈ ρihi

2

∞

∑
n=1

∞

∑
m=1

ω2
(i)nmM(i)nm

[
T(i)nm (t)

]2
(112)

where ω2
(i)nm = Di

ρihi
k4

nm. The potential energy of the one plate, we can express in

the form of the sum by components E(i)
p,nm belong to corresponding mn-family mode

n,m = 1,2,3,4, . . . .∞ in the following form:

E(i)
p =

∞

∑
n=1

∞

∑
m=1

E(i)
p,nm, i = 1,2 (113)

where the energy components E(i)
k,nm, i = 1,2 belong to corresponding mn-family

mode n,m = 1,2,3,4, . . . .∞ was expressed by derivatives of the component time
functions belong to same corresponding mn-family mode

E(i)
p,nm ≈ ρihi

2
ω2
(i)nmMnm

[
T(i)nm (t)

]2
= M(i)nmsrẼ(i)

p,nm (114)

Also, we can introduce reduced component potential energy Ẽ(i)
p,nm.i = 1,2 belong

to corresponding mn-family mode n,m = 1,2,3,4, . . . .∞

Ẽ(i)
p,nm =

1
2

ρihiω2
(i)nmM(1)nm

[
T(i)nm (t)

]2
=

E(i)
p,nm

M(i)nmsr
. (115)

5.1.4 Potential Energy of Visco-Nonlinear Elastic Layer

For analysis of the double plate system with visco-nonlinear elastic layer, we can
write expression for the potential energy of the constraints between coupled plates
in the form of the energy of deformation of the distributed elastic layer neglected
mass and properties of inertia and neglected kinetic energy. Then expression for the
potential energy of the coupling of the plates is in the form:

Ep(a,b)�eyer =
∫ ∫

A

[
c
2
(w2 −w1)

2 ± c̃
4
(w2 −w1)

4
]

dA (116)



70 K.R. (Stevanović) Hedrih

After introducing solutions (98) in previous expression (116), and taking into
account ortogonality conditions, for expression of the potential energy of the plate
coupling, we obtain the following two next parts of expression for two pointed parts
of the potential energy of the nonlinear coupling of the plates in the forms:

Ep(1,2)�ayer,linear =
1
2

c
∞

∑
n=1

∞

∑
m=1

M(1)nm

[
T(2)nm (t)−T(1)nm (t)

]2
(117)

Ep,nm(1,2)�ayer,non−linear =±1
4

c̃
∞

∑
n=1

∞

∑
m=1

M̃(i)nmnm

[
T(2)nm (t)−T(1)nm (t)

]4
(118)

where upper sign (+) for hard and lower sign (−) for soft nonlinearity of the
coupling layer. The potential energy of the nonlinear elastic properties of the
layer between plates, we can express in the form of the sum by components
Ep,nm(1,2)layer,linear and Ep,nm(1,2)layer,non−linear belong to corresponding mn-family
mode n,m = 1,2,3,4, . . . .∞ in the form:

Ep(1,2)�ayer =
∞

∑
n=1

∞

∑
m=1

Ep,nm(1,2)�ayer,linear +
∞

∑
n=1

∞

∑
m=1

Ep,nm(1,2)�ayer,non−linear (119)

where the energy components Ep,nm(1,2)�ayer,linear and Ep,nm(1,2)�ayer,non−linear belong
to corresponding mn-family mode was expressed by the eigen component time
functions belong to same corresponding mn-family mode. Also, we can introduce
reduced components of the potential energy of the light distributed elastic layer
Ẽp,nm(1,2)�ayer,linear and Ẽp,nm(1,2)�ayer,non−linear, belong to corresponding mn-family
mode like as:

Ẽp,nm(1,2)�ayer,linear =
1
2

c
[
T(2)nm (t)−T(1)nm (t)

]2
=

Ep,nm(1,2)�ayer,linear

M(i)nm,nm
(120)

Ẽp,nm(1,2)�ayer,non−linear =±1
4

c̃
[
T(2)nm (t)−T(1)nm (t)

]4
=

Ep,nm(1,2)�ayer,non−linear

M̃(i)nmnm

(121)

where upper sign (+ ) for hard and lower sign (-) for soft nonlinearity of the coupling
layer.

5.1.5 Rayleigh Energy Dissipation

For analysis of the double plate system with visco-nonlinear elastic layer, we can
write expression for the Rayleigh function of the energy dissipation of the constraint
between coupled plates in the form of the power of the damping force depending of
velocity of the deformation of the distributed visco-nonlinear elastic layer neglected
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mass and properties of inertia and neglected kinetic energy. Then expression for
the Rayleigh function of the energy dissipation in the viscoelastic layer of the plate
system is in the form:

Φ(1,2)�eyer =

∫ ∫

A

1
2

b(ẇ2 − ẇ1)
2 dA (122)

Φ(1,2)�eyer =
1
2

b
∫ ∫

A

(
∂w2 (x,y, t)

∂ t
− ∂w2 (x,y, t)

∂ t

)2

dA, i = 1,2

Φ(1,2)�eyer =
1
2

b
∫ ∫

A

[
∞

∑
n=1

∞

∑
m=1

W(i)nm (x,y)
(
Ṫ(1)nm (t)− Ṫ(2)nm (t)

)]2

dA

or in the form:

Φ(1,2)�eyer =
1
2

b
∞

∑
n=1

∞

∑
m=1

M(1)nm (x,y)
[
Ṫ(2)nm (t)− Ṫ(1)nm (t)

]2
,

i = 1,2 (123)

Φ(1,2)�ayer =
1
2

∞

∑
n=1

∞

∑
m=1

M(1)nmΦ̃nm(1,2)�ayer

where

b(i)nmsr = b
∫ ∫

A

W(i)nm (x,y)W(i)sr (x,y)dA =

{
0 sr �= nm

bM(1)nm sr = nm

Φ̃nm(1,2)�ayer =
1
2

b
[
Ṫ(2)nm (t)− Ṫ(1)nm (t)

]2
=

Φnm(1,2)�ayer

M(1)nm
(124)

5.1.6 Lyapunov Exponents and Concluding Remarks

For each of the eigen plate time functions T(1)nm(t) and T(2)nm(t) and time processes
in nm-mode, we can define Lyapunov exponents in the form:

λnm(i) = lim
t→∞

1
2t

ln

{
[
T(i)nm (t)

]2
+

1

ω̃2
(i)nm

[
Ṫ(i)nm (t)

]2

}

λnm(i) = lim
t→∞

1
2t

ln
2 ˜̃Enm(i)

ω̃2
(i)nm

=−
(

δ̃nm(1) + δ̃nm(2)

)
, (125)

i = 1,2,n,m = 1,2,3,4, . . . .∞
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Also, by using analogy, we can define Lyapunov exponents of the plate energy
interaction in the following form:

λnm(1,2) = lim
t→∞

1
2t

ln
2 ˜̃Enm(1,2)

ω(1)nmω(2)nm
=−

(
δ̃nm(1) + δ̃nm(2)

)
< 0, (126)

n,m = 1,2,3,4, . . . .∞

5.1.7 Concluding Remarks

For the case of the free vibrations of conservative system, these Lyapunov exponents
are equal to zero. But by using this energy approach, we can introduce Lyapunov
exponents of this type and way for coupled hybrid systems with different type
of the material properties, as it is visco-nonlinear elastic or creep, and to use for
investigation of the stability process, or deformable forms of the deformable body
motion in the hybrid systems. Then, we can see that these Lyapunov exponents are
measures of the processes integrity or system motion integrity.

For the second case of a model of the double plate system with discontinuity
in elastic layer considered as a model of the interface crack between two plates
connected by thin elastic layer of the Winkler type and by using obtained results
presented in Ref. by Hedrih (2006b), it is easy to conduct energy analysis of
the transfer energy also using consideration from this paper and corresponding
solutions from cited paper. For that case, it is necessary to take into account that all
nm-families of the modes are in mutual interaction, because discontinuity in the
elastic layer is special type of the strong nonlinearity. In that case, defined Lyapunov
exponents obtain important role in analysis of the transfer energy between plates,
including interaction between different nonlinear modes.

5.2 Energy Exchange in an Axially Moving Double-Belt System

In this part, as an author’s new research result, an analytical study of the energy
transfer between two coupled like-string belts interconnected by light pure elastic
layer in the axially moving sandwich double belt system, in the free vibrations is
presented (see Fig. 5, and Refs. [9, 40]).

On the basis of the obtained analytical expressions for the kinetic and potential
energy of the belts and potential energy of the light pure elastic distributed layer,
numerous conclusions are derived. For the pure linear elastic double belt system,
no transfer energy between different eigen modes of transversal vibrations of the
axially moving double belt system, but in each from the set of the infinite numbers
eigen modes, there are transfer energy between belts, and free transversal vibrations
are like two-frequency, when change of the potential energy of the booth belts
are four frequency, and potential energy interaction is one frequency in the each
eigen mode. Changes of the kinetic energy of the both belts of the sandwich double
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Fig. 5 Transversal vibrations of the axially moving sandwich belt system. (a∗) Kinetic parameters
of the transversal vibrations of the axially moving sandwich belt system. (b∗) Elementary segment
of the axially moving sandwich belt system with length dx and notations of the kinetics parameters

axially moving belt system is two frequency like oscillatory regimes with two-time
multiplicities of the eigen frequencies of the corresponding eigen amplitude mode.

For concluding remarks, we can summarize research results obtained by energy
analysis of the axially moving double belt system directing attentions of the reader
to the author References (for detail see Refs. [9, 40]). Analogy values of the kinetic
energy Ẽk(i)(η) and potential energy Ẽp(i)(η) as well as Raleigh function Φ̃(i)(η)
of the energy dissipation of the one belt of the considered axially moving sandwich
double belt system are four frequency function with respect to η - coordinate in
each of s-eigen modes of the double belt system transversal vibrations with infinite
number of possible modes. These frequencies are double values of the both eigen
frequencies of the corresponding s-mode 2 p̃s and 2 ˜̃ps, s = 1,2,3,4, . . . . . .., and
values of the sum and of the difference of the two corresponding eigen s-mode of the
double belt system transversal vibrations p̃s + ˜̃ps and ˜̃ps − p̃s, s = 1,2,3,4, . . . . . ...

Analogy values of the system total kinetic energy Ẽk(η) and system total
potential energy Ẽp(η) as well as Raleigh function Φ̃(η) of the energy dissipation
of the considered axially moving sandwich double belt system are two frequency
functions with respect to η-coordinate in each s -eigen mode of the double belt
system transversal vibrations infinite number of possible modes. These frequencies
are double values of the both eigen frequencies of the corresponding s-mode 2 p̃s

and 2 ˜̃ps, s = 1,2,3,4, . . . . . ...of the basic belts dynamics.
Analogy value of the potential energy Ẽp(1,2)(η) of the elastic layer between belts

of the axially moving double belt system – reduced analogue value of the potential
energy of the interaction between belts (two subsystems coupled by elastic layer) in
the hybrid system is one frequency function of η - coordinate in each eigen s -mode
of the axially moving double belt system. These frequencies are double values of
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the higher of two s-eigen frequencies of the corresponding s-mode and expressed
by 2 ˜̃ps, s = 1,2,3,4, . . . . . ...

Research results presented in this paper are advances to the previous published
results in the author-cited papers containing analytical and numerical research
results concerning free and forced transversal vibrations of the axially moving
sandwich double belt system. To the present question concerning the main aim
of this research and about the usefulness of the obtained results can be answered
that the primary and main aim of this research is in theoretical and methodological
usefulness for university teaching process in the subject of Elastodynamics, as
analytical results for introducing students with mechanisms of the transfer energy
in the hybrid systems between subsystems, as well as about energy transformation
inside of the sets of eigen modes.

Considered axially moving, sandwich double belt system is a hybrid simple pure
elastic and pure rheolinear systems with elegant possibilities to make an analysis of
the analogy in the plane ξ = x,η = v0

c2
0−v2

0
x+ t.
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P. Rašković (1910–1985, Serbia) and Academician Yuriy Alekseevich Mitropolskiy (1917–2008,
Ukraine). Parts of this research were supported by the Ministry of Sciences of Republic Serbia
through the Mathematical Institute SANU Belgrade Grants ON144002 “Theoretical and Applied
Mechanics of Rigid and Solid Body. Mechanics of Materials” and OI 174001” Dynamics of hybrid
systems with complex structures. Mechanics of materials”, and Faculty of Mechanical Engineering
University of Niš.
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17. Hedrih (Stevanović) K (2003) Frequency equations of small oscillations mixed systems
of the coupled discrete and continuous subsystems, Mehanika tverdogo tela (Rigid Body
Mechanics), Donetsk, UDC 531.1:534.012:534.013, ISSN 0321-1975, vip. 33, pp. 174–189.
Ukraine
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29. Hedrih (Stevanović) K (2004) Contribution to the coupled rotor nonlinear dynamics, advances
in nonlinear sciences, Monograph, Belgrade, Academy of Nonlinear Sciences, pp 229–259.
(engleski). ISBN 86-905633-0-X UDC 530-18299(082) 51–73:53(082) UKUP
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Lisbon, Portugal, September 7–11, 2009, ESMC 2009 Book of Abstracts ‘Mini’Szmposia,
iydanje Instituto Superior Tecnico, Lisbon, APMTAC, pp. 591’592.ISBN 9789899 626423
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56. Hedrih (Stevanović) K, Simonović J (2007) Dynamical absorption and resonances in the
sandwich double plate system vibration with elastic layer. Sci Tech Rev LVII(2):1–10
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58. Hedrih (Stevanović) K, Simonović J (2009) Energy transfer through double curcular plate
nonconservative system dynamics. In: Ambrósio J, et al (eds), 7th EUROMECH solid
mechanics conference. Lisbon, Portugal, 7–11 September 2009, ESMC 2009 Book of Ab-
stracts ‘Mini’Szmposia, iydanje Instituto Superior Tecnico, Lisbon, APMTAC, pp 589–590,
ISBN 9789899 626423
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88. Rašković D (1965) Teorija oscilacija, (theory of oscillations). In: Nauna knjiga (ed) p. 503 (in

Serbian)
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99. Hedrih (Stevanović) K (1972) Teorija nelinearnih oscilacija i primene na nelinearne sisteme
automatskog upravljanja (Theory of non-linear oscillations and applications to nonlinear
system automatic control), [in Serbian], Faculty of Technical Sciences in Niš,Supervisor
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pod dejstvu slučajnih pobuda (Dynamic stability of continuous systems made from composite
materials subjected to random excitation), [in Serbian], Doctor’s Degree Thesis, Faculty of
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106. Mitić Sl (1985) Višefrekventna analiza oscilovanja tankih elastišnih ljuski sa konstantim
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(Stevanović)
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(Stevanović)
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