
Preface

“F-friends,” said Fyodor Simeonovich ...
“But this is the Ben B-Betzalel’s p-problem.

C-Cagliostro has proved that it does not have a s-solution indeed.”
“We do know that it does not have a solution,” said Junta...

“We wish to know how to solve it.”
“You are somehow arguing oddly, C-Christo. . .

H-how to s-search for a s-solution, when it does not exist?
It’s a nonsense.

“I am sorry, Fyodor, but it’s you who are arguing strangely.
The nonsense is to search for a solution when it exists anyway.

The question is how to deal with a problem that does not have a solution.
This is a profoundly principled question ...”

A. Strugatsky and B. Strugatsky, “Monday Begins on Saturday”

At the International Mathematical Congress in Paris (1900), D. Hilbert put forth
his famous 23 problems. In Hilbert’s opinion, these problems had to predefine the
mainstream of mathematics in the twentieth century. By now, most of Hilbert’s prob-
lems have been solved successfully. However, despite the fact that many mathe-
matical disciplines have arisen and new important problems were put forth in the
twentieth century, Hilbert’s problems remain fundamental [3].

Among Hilbert’s problems, the 20th problem – “the general problem of bound-
ary values” – takes its deserved place. This problem is formulated in the following
way: “has not every regular variation problem a solution, provided certain assump-
tions regarding the given boundary conditions are satisfied (say that the functions
concerned in these boundary conditions are continuous and have in sections one or
more derivatives) and provided also if need be that the notion of a solution shall be
suitably extended?” (see [25]).

The 20th problem is outstanding because D. Hilbert put it on extending the clas-
sical solution when there was neither the concept of completion of metric space nor
the concept of normed space that serves as a basis of such a notion as “general-
ized solution of operator equations”. The idea of the generalized solution is quite
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simple: consider an operator equation A(x) = y, where A is a continuous opera-
tor (linear or nonlinear) from metric or Banach space E into F . Operator equations
cover wide classes of differential equations (including boundary value problems),
integral equations, integro-differential equations and more. In many situations, the
operator equation A(x) = y does not have a classical solution, since the right-hand
side y does not belong to the range R(A)⊂ F of the operator A, but we can introduce
a weaker topology in E , so that the completion ˜E of E in this topology is a wider
space: E ⊂ ˜E and the operator A can be extended by continuity to ˜E , so that the
right-hand side y belongs to the range R(˜A) of the extended operator ˜A. Thus, the
operator equation ˜A(x) = y (x ∈ ˜E , y ∈ F , ˜A : ˜E → F) has a classical solution x̃ ∈ ˜E
called a generalized solution of the original equation A(x) = y. This is exactly such
an extension of the concept of solution about which D. Hilbert wrote.

The concept of generalized solution is closely related to the concept of a near-
solution xε of the operator equation A(x) = y; this is such an element in E that
A(xε) = yε differs less than ε from y: ρ(y,yε)< ε . In some cases, xε may be consid-
ered as an approximate solution of the equation A(x) = y. If we put ε = εn → 0 as
n→ ∞ and consider a sequence of the near-solutions xεn , then in ˜E (but not in E!)
the sequence xεn converges to a generalized solution x̃. In the case of linear operator
A, the computation of the near-solution is reduced to the problem of computation of
the approximate (or precise) solution of a system of linear algebraic equations. This
is why we give so much attention to these issues and propose various methods for
solving this problem.

Along with the investigation of generalized solutions, we study the so-called gen-
eralized extreme elements which are closely related to this concept. Let D be a re-
gion in a Banach or metric space E and a continuous functional f (x) is defined on D.
As a rule, the region D is non-compact in an infinite dimensional space, therefore
the extreme element x∗ from D, at which f (x) attains its minimum or maximum
value may not exist. Determination of a “generalized” extreme element resembles
the construction of generalized solution. We introduce a weaker topology TD on the
set D, such that the completion ˜D of D with respect to the topology TD is a compact
topological space, and the functional f may be extended on ˜D by continuity, such
that there is a classical extreme element x∗ in ˜D. This element is considered as a
generalized extreme element, since x∗ /∈ D. Note that the concept of a generalized
extreme element may be defined in other ways. These ways are considered in the
book as well.

By an operator equation we will always mean an equation where some known
operator L from E into F acts on an unknown element u (a vector, sequence or
function), where F may differ from E . The spaces E and F may be finite or infinite
dimensional spaces, normed spaces (in particular, Banach), metric spaces, topolog-
ical vector spaces, topological or differentiable manifold, and so on. In a general
way, an operator equation has the following form

L u = f ,
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where u is an unknown element in E , f is the known element in F , and L is the
known operator which acts from E into F . The most important problems related to
operator equations are the existence and uniqueness of a solution. The uniqueness
of a solution is ensured by the condition of invertibility of the operator L , that may
be satisfied by the corresponding factorization of the space E (at least theoretically).
It is clear that a solution of the equation L u = f exists iff the right-hand side f
belong in the range R(L ) of the operator L . Thus, if f ∈ R(L ) then the issue
of the existence of a solution of the equation L u = f has, in principle, a positive
answer. However, in many cases the right-hand side f does not belong to the set
R(L ), so this equation does not have a solution in a classical sense. Nevertheless,
from the practical point of view such equations may have “intuitive solutions”, that
must be defined correctly. The problem of construction of a generalized solution of
the operator equation is closely related with the problem of introducing the “natural”
notion of a generalized solution of the equation L u = f for all f ∈ F ; in particular,
when f ∈ F \R(L ), and with the investigation of the properties of such generalized
solutions. The point is that the description of a function set of R(L ) is extremely
difficult. Therefore it is impossible to establish the criteria for the solvability of the
equation L u = f . We could say that it is possible to formulate the criterion of the
solvability of the equation L u = f only in exceptional cases. For example, even
in the simplest case of the investigation of the classical solvability of an ordinary
differential equation u′(t) = f (t) when 1 > t > 0 and u(0) = 0, it is necessary to test
the convergence of an integral (possibly improper integral)

∫ 1

0
f (t)dt.

However, as is well known, there are no general effective criteria for testing the
convergence of improper integrals.

Consider one of the approaches to the formalization of such solutions. Suppose
that in any ε-neighborhood f (in topological space F – in any neighborhood f ) there
exists such an element fε , that L uε = fε for some uε ∈ E . Then for small ε > 0
one could think that fε ≈ f , since the distance ρ( fε , f ) < ε , therefore the element
uε can be accepted as a “generalized” solution of the operator equation L u = f
(if topological space F is non-metrizable, then these reasonings must be slightly
modified, but this is not a principal issue).

Consider the issue of the existence of classical and generalized solutions on con-
crete examples. Suppose that we want to obtain the best unbiased linear estima-
tion x∗ of an unknown mathematical expectation of a continuous random process
x(t) (t ∈ [0,T ]) with a constant mathematical expectation and a correlation function
K(t,s). If we look for this estimation in the form

x∗ =
∫ T

0
x(t)u(t)dt,
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then the problem is reduced to looking for the solution u(t) of the integral equation

∫ T

0
K(t,s)u(t)dt = 1 (P.1)

in the function class L2(0,T ). In general case, the matter concerns the equation

∫

D
K(t,s)u(t)dt = f (s), t ∈ D̄. (P.2)

However, solutions of such equations have the square integrability property very
seldom (see example [23]). For example, it is shown in [36] that (P.1) never has a
classical solution if a correlation function K(τ) of the stationary random process x(t)
has a spectral density. Nevertheless, it has the generalized solution. In some cases,
the fact that the integral equation (P.1) does not have a solution in the class of square-
integrable functions can be proved directly. For example, if a correlation function
has the form K(t,s) = e−β |t−s|, which corresponds to a stationary Markov process
when all probability distributions are normal, then it is impossible to construct a
function u(t) that sets the best unbiased estimation x∗ of an unknown mathematical
expectation. To prove this statement let us consider the integral equation

∫ T

0
e−β |t−s| dF(t) =

2
2+β T

.

It is easy to examine that this equation is satisfied by the following function of
bounded variation

F(t) =
Θ(t)+Θ(t−T )+β t

2+β T
,

where
∫ T

0 dF(t) = 1 and Θ(t) is the Heaviside function:

Θ(t) =

{

0, if t < 0
1, if t ≥ 0.

Hence, the expression

x∗ =
x(0)+ x(T )+β

∫ T
0 x(t)dt

2+β T

defines an unbiased estimation x∗ having the least variance in the class of unbiased
linear estimations (actually, this estimation is also the best in a much more wider
estimation class [23]). Since the estimation x∗ is unique and the formula for x∗ con-
tains Dirac delta-functions δ (t) and δ (t − T ), that do not belong to L2(0,T ), it is
impossible to construct the function u(t) from L2(0,T ), that defines the estimation
x∗ and is a solution of (P.1). Therefore, (P.1) does not have the classical solution
in L2(0,T ). The issues related with the problem described above are listed in [96]:
“The problems are: in which functional spaces should one look for the solution?
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Is the solution unique? Is the solution of the equation also is the solution of the
estimation problem? Does the solution depend continuously on the initial data, for
example, on f and K? How can the solution be found analytically and numerically?
What are the properties of the solutions? For example, what is the order of singu-
larity? How can the properties of the integral operator be described, for example, in
L2(D)?”

Another possible example that requires the introduction of a generalized solution
is the problem of optimal control of a system with a generalized external impact

L u = f (h), (P.3)

J(h) = Φ(u(h),h)→min
h
, h ∈U, (P.4)

where h is a control from an admissible set U , L : E → F is some operator, J is a
performance functional. To express this problem correctly it is necessary to ensure
the solvability of (P.3) for all h ∈ U , i.e., it is necessary to ensure the inclusion
f (U)⊂ R(L ). However, generally it is very difficult to describe the range of f and
L ; therefore, it is very hard to check the condition f (U)⊂ R(L ). Moreover, often
such an inclusion does not occur at all (in spite of the fact that a physical interpre-
tation of the equation is natural and reasonable from the practical point of view).
Thus, we must develop a theory of generalized solvability of (P.3) for an arbitrary
right-hand side f from the set f (U), or (much better) for all f ∈ F . In a general
sense, (P.3) has a solution u(h) for an arbitrary control h ∈ U . It is clear, that we
must know peculiarities of these generalized solutions to prove some meaningful
statements about the problem of the minimization of (P.4).

Now, problems of complex system control with singular impacts have a funda-
mental importance. For example, simulation of devices with laser and pulse impacts,
correction of space vehicles movement, modelling of water transport in porous me-
dia with point sources and sinks are closely related with the equations with a singular
right-hand side. The singularity of a control impact means that a control map f takes
on a value in a space of generalized function. Traditionally, the natural range of the
operator L does not contain generalized functions. So, lumped singularity in space
and time bring us outside of the classical problem definitions. So, we face with the
need to develop a theory of generalized solvability of (P.3).

The problem of construction of generalized solutions becomes the most im-
portant in the case of linear operator L (e.g., differential or integral) which acts
between linear topological spaces E,F , in particular, between Banach or Hilbert
spaces. Note that the “naturalness” of generalized solution means the conservation
of the main properties of operator L (linearity, continuity, injectivity and so on)
under extension on the class of generalized solutions. Thus, the offered problem
fundamentally differs from various definitions of approximate solutions, pseudo-
solutions, quasi-solution, and so on. [47, 107, 112].

The problems of construction of generalized solutions of equations with linear
differential and integral operators are quite typical. They have been investigated
successfully for a long time. For example, this problem for the classical operator
of differentiation d

dt : C1([0,1])→ L2(0,1) may be solved by introducing of the
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Sobolev generalized derivative and corresponding Sobolev spaces. In this sense,
the theory of generalized functions may be considered as the first step in solving the
posed problem.

The method of a priori inequations (e.g. [5, 39, 54]) is a very effective tool for
the investigation of existence and uniqueness of solutions of various classical lin-
ear problems with generalized impacts. It was often used in the context of rigged
Hilbert spaces. In [5], the theory of generalized solvability for equations with el-
liptic differential operators acting in the Sobolev discrete scale of Hilbert spaces
was constructed. This theory is based on the concept of weak solutions (in the con-
text of the theory of generalized functions). Berezanskii proved the theorems of a
unique generalized solvability of elliptic operator equations for major problems of
mathematical physics and investigated the smoothness of the generalized solutions.
The theorems proved are the criteria of solvability (i.e., an operator determines a
topological isomorphism). For example, the theorems of a unique solvability (in L2

and other spaces) of the equations of mathematical physics of various types were
proved in [44, 45]. Some criteria of solvability of parabolic equations are described
in [2]. The issues of generalized solvability for pseudo-parabolic equations of or-
der more than two were investigated in [58, 100], for pseudo-hyperbolic equations
– in [73, 79, 85, 100], for Sobolev type system – in [59, 76, 100], for wave systems
of fifth order – [60, 61, 64, 80, 82], and in many other papers (see also [62, 63]).
Note that in these papers were used a priori inequalities in negative norms when a
generalized solution belongs to Sobolev type spaces.

The generalized solvability of linear integral equations is closely related with
Fredholm and Volterra; integral equations of the first kind [23] and [68, 87, 88, 92].
It must be stressed that in many above-mentioned papers the proofs of existence
and uniqueness of a generalized solution are based on the classical idea of relations
between direct and “adjoint” equations and the coercive inequality. Therefore, these
theorems can be considered as the developing of classical results of S.G. Krein (e.g.,
see [39]).

There is one more important aspect of the theory of generalized solutions. It is
related to the problem of optimal control (P.3), (P.4), rather than with only (P.3).
As it is well known, there are problems of calculus of variations and optimal con-
trol which have no solutions in “traditional” sets of curves (in spaces of smooth
functions). This problem was solved in classical papers on optimal control theory
in the generalized statement. For example, the general plan of looking for gener-
alized extreme curves is described in [116]. The plan involves the following ac-
tivities: to densely embed the control space (and therefore an admissible set of
controls) in a new topological space such that a functional in question is still se-
quentially continuous and an admissible set is sequentially compact. This idea nat-
urally connects the optimal control problems with the Schwarz distributions spaces.
We have to mention L. Young [118] among the authors who began to apply the
ideas of the theory of generalized functions to the calculus of variations problems
and the optimal control problems. From the Young’s point of view, the spaces of
curves with “traditional” topologies are poorly adaptable for the calculus of vari-
ations. More convenient are the topologies which induce so-called “generalized
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curves” (by Young) that are equivalent to the concepts of weak controls and gliding
regimes. In the optimal control theory for ordinary and partial differential equations,
Filippov and Gamkrelidze considered the weak solutions and analogous construc-
tions [17, 22] (“gliding regimes”), Warga studied the “generalized curves” [115],
McShane investigated the “generalized controls” [70, 71], Chouila-Houri consid-
ered “boundary controls” [10], and this list might be continued (see, e.g. books of
A. Chikrii [9], M. Zgurovsky, V. Mel’nik [120], V. Kuntsevich [42], J.-L. Lions
[51, 52], and B. Mordukhovich [72]).

These results naturally pose the general problem of looking for generalized ex-
treme elements in various classes of functionals. These problems are interesting
even in the simplest case when we look for an extremum of a continuous functional
defined on a bounded set in a Banach space.

Thus, there are many papers, where existence and uniqueness of generalized so-
lution of an operator equation or extremal problem solutions were investigated. Mul-
tiplicity and similarity of these papers suggest that there is a general approach to the
construction of the concept of generalized solvability. The major elements of this
approach are described in our book.

The book consists of the preface, eight chapters, divided into sections, and a
bibliography. The numbering of definitions, lemmas, theorems, and so on, is con-
tinuous. Chapter 1 contains major definitions, concepts, and auxiliary facts used in
the book. Chapter 2 is an introduction to the theory of generalized solutions of op-
erator equations. It describes the simple schemes of generalized solutions for linear
operator equations. In Chap. 3, we investigate the method of a priori estimates for
generalized solutions. Chapter 4 describes some applications of the theory of gen-
eralized solvability of linear equations. Chapter 5 is devoted to numerical aspects
of the theory. Chapter 6 describes the general topological method of construction of
generalized solutions of linear operator equations. In Chap. 7, the issues of general-
ized solvability of nonlinear operator equations are considered. Chapter 8 is devoted
to the generalized solvability of extreme problems.
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