Chapter 2

The Simplest Schemes of Generalized Solution
of Linear Operator Equation

Let E, F be Banach spaces and . be a linear operator with an everywhere dense
domain D(.Z) C E, which acts from E into F. Let us consider an operator equation

Lu=f, ueD(Z),feF (2.1)
and an adjoint equation
Lo =1, © €D(L"),l € E", (2.2)

where E* and F* are conjugate Banach spaces to E and F, respectively, £ is an
adjoint operator to .Z. Suppose that the range R(.¥) C F of . is an everywhere
dense set in F and (2.1) is uniquely solvable over R(.%), i.e. the null space Ker(.Z)
of . consists only of the zero element 6 : Ker(.¥) = 0. Thus, .Z sets a one-to-one
mapping between D(.Z) and R(.Z). Note that the continuity of .# is not supposed.

The aim of this chapter is to give a “meaningful” definition of the solution of (2.1)

when f ¢ R(.Z).

2.1 Strong Generalized Solution

Let us introduce one more norm on the linear set D(.Z) in the space E. Since .Z :
E — F is a linear injective operator with a domain D(.¥’) C E, the function

D(ZL)su— || Lullr eR

has all properties of a norm on D(.¥). Hence, D(.%) with this norm turns into a
normed space, which may be incomplete. Let £ be a completion of this normed
space.

The fact that ||u||; = ||-Zu||F for all u € D(.Z) allows to extend .Z from D(.¥)
onto E. Indeed, if u is an arbitrary element from £, then the density of D(.¥) in
E implies that there is such a sequence u; € D(.Z) that u; — u in E as i — o,
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8 2 The Simplest Schemes ...

Since u; is a convergent sequence in £ and hence it is a Cauchy sequence in E, and
lui —ujl|z = ||-Lui — ZLuj||r then Lu; is a Cauchy sequence in F. However, F is
a complete normed space. Thus, there is such an element f in F that Zu; — f in
F as i — oo. Determine a value of the operator .Z on the element u in the following
way: Zu = f, where 2 : E — F is an extended operator defined on the entire
space E. Note that the value .Zu is defined correctly, i.e. the element f = Zu € F
does not depend on the selection of the sequence u;. Thus, the operator .2 : E — F,
D(%) = E is an extension of .Z on the whole space E.

Definition 2.1. A strong generalized solution of (2.1) is such an element u € E that
equality (2.1) holds for the extended operator .Z.

Remark 2.1. If E = F is a Hilbert space and Z is a symmetric operator then the
operator .7 is called a self-adjoint extension of operator by Friedrichs.

As mentioned before, the concept of a strong generalized solution i arises when
a right-hand side f of (2.1) does not belong to the range R(.%) of .£. In this case,
the ordinary (classical) solution does not exist. The word “strong” means that the
topology of the space E is normed.

Let us study some properties of .Z. It follows from the linearity of .# that the
operator . is linear also. Let us prove that . is an injective operator. Indeed,
if u € E is such an element that .Zu = 0, then selecting a sequence u; € D(.%)
converging to u in E as i — oo we have that Zu; — Zu=0in F as i — oo. The last
statement can be rewritten as ||-Zu;||r — 0 or ||u;||z — 0. Hence, ||u||z = 0. Thus,
the injectivity of the operator . is proven. In addition, the equality ||.ZLul|r = ||ul|z,
which holds for an arbitrary u € D(.#), clearly holds for all u € E (taking into
account the replacement of .# by .#). From ||.Zu||r = ||u||z, where u € E, it follows
that the operator . is continuous and coercive.

The properties of the operator .Z can be proven in another way. Indeed, the op-
erator . is a one-to-one map between D(Z) and R(.%). In addition, if (D(.Z) is a
normed space with the norm ||u|| z and R(.¥) is a normed space with the norm || f|| )
then the completion of D(.#) coincides with E and the completion R(.#’) coincides
with F (remember that R(.Z) is a dense subset of F). On the other hand, granting
the equality |-Zu||r = ||u||z, which holds for all u € D(.¥), we have that the oper-
ator .% is an isometry between the normed spaces D(.%) and R(.Z). Hence, their
completions are isometrical. This isometry defines the completion . of the opera-
tor .. Thus, the operator .Z sets an isometry between E and F. This implies the
above-mentioned properties of .. The foregoing implies the following theorem.

Theorem 2.1. For any f € F there exists a unique strong generalized solution
of (2.1) in the sense of Definition 2.1.

If f € R(.Z), then a strong generalized solution i turns into a classic solution. It
is also clear that the classic solution is strong, and it is classic if & € D(.Z).

Let us clarify the relations between the spaces E and E. Since D(.¥) is a dense
linear subset of E (of course, in the sense of the norm of the space E), then the
set E may be obtained by completing D(-%) with respect to the norm ||u||g. Thus,
the spaces E and E may be considered as completions of the same linear set D(.%)
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with respect to the two different norms: ||u||g and ||u||z. Unfortunately, in general
case, elements of the spaces E and E are incomparable. It is explained by the fact
that, on one hand, the operator .£ : E — F can be unbounded and, from the other
hand, it can be non-coercive, even though it is a linear injective operator. This means
that in general case the norms ||u||g and ||.Zu||r = ||u||z can induce incomparable
topologies on D(.%).

When .2 : E — F is a linear continuous operator the case is more simple. Then
the topology induced on D(.%) by the norm ||u||; is weaker than the topology of
the space E.!

Consider another possibility. Let an operator .Z : E — F be coercive, i.e. there
exists such a constant ¢ > 0 that

lulle < el ZLullr = cllullg (2.3)

forall u € D(.Z). In this case, the norms ||u||g and ||-Zu||r = ||u|| are comparable
over D(.Z) (the topology of the space E is stronger than the topology of the space
E on D(.%)) and there is a relation between elements of E and E.

Theorem 2.2. Let £ be a closable coercive operator. Then there exists a dense
continuous embedding E C E.

Proof. Since the spaces E and E are the completions of the linear set D(.#) with
respect to two norms and (2.3) holds, then in order to prove the theorem, it is enough
to check the condition:

(m)if u; € D(Z) and u; — uin E, u; — 0 in E, then u = 0.

However, this condition can be rewritten in the following way:

(m)if u; € D(Z) and Zu; — fin F, u; — 0 in E, then f = 0.

The last condition is clear, since the operator .Z is closable. a

Thus, we ascertained that £ C E, i.e. an arbitrary strong generalized solution
of (2.1) is an element of the space E.

2.2 Strong Near-Solution

Suppose that the right-hand side of (2.1), i.e. the element f, does not belong to the
range R(.Z) of an operator .Z. Since R(.Z) is everywhere dense in F and (2.1)

! Note that studying of a closable operator .% : E — F can be reduced (at least theoretically) to
studying of a linear continuous operator ¢} defined on the same set D(.%), but with respect to
another norm. Indeed, introducing in D(.Z’) a graph norm

llullr = llulle + |2l

with respect to which the linear set D(.Z’) is Banach, we have that the operator %} : D(£) — F is
linear and continuous (Lu = Lu, u € D(L) = D(‘A)).
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is uniquely solvable, then there exists a sequence f, € R(.¥) such that f,, — f as
n — oo, and a sequence u, = £~ !(f,) convergent to some element ii € E in E.

Definition 2.2. A sequence of elements u, € D(.Z) is called a strong near-solution
of the operator equation (2.1), if f, = Zu, — f as n — oo in the metric of the
space F. An element i € E is called the strong limit element of the near-solution.

The concept of a “near-solution” is justified by the following arguments. In many
important practical cases, it is impossible or almost impossible to determine the
right-hand side f of (2.1) absolutely exactly; therefore, we have to consider its
g-approximation, i.e. and element f € R(.Z) such that p(f,fe) = ||f — fel| < €.
In this case, there exists an element ue = .2~ !(f¢) from the domain of the operator
%, which can be considered as “€ - approximation” of the solution of (2.1), i.e. the
right-hand (2.1) is closely approximated by its image .Zus = fe. If the elements
ue “become stabilize” as € — 0, i.e. if they converge in some topology (in E) to
the fixed element i ¢ D(.Z), then it is naturally to consider the element u, as an
“e -solution” or “near-solution”. Note that in many cases the “accuracy” of a solu-
tion u, is defined by the closeness of its image .Zu, = f¢ to the element f, i.e. by a
norm of the space E.

The definitions of a strong generalized solution and a near-solution of (2.1) imply
that these concepts are equivalent, i.e. an element u € E is a strong generalized
solution of the operator equation (2.1) iff it is a strong limit element of a near-
solution.

2.3 Weak Generalized Solution

Let us consider a definition of a generalized solution of an operator equation in a
linear topological space with a topology which is not necessarily induced by a norm.

As before, suppose that .Z : E — F is a linear injective operator, which acts
between Banach spaces E, F with everywhere dense domain and range in E and F,
respectively. In addition, suppose that D(.£*) is a total subset of F* in a duality
(F,F*), and R(.Z*) is a total subset of E* in a duality (E,E™*). Note that the totality
property of R(.Z*) may be replaced by one of the following conditions:

(a)The space E is reflexive (if the space F is reflexive also, then the set D(.£*) is
strongly dense in F*).
(b)The operator . is continuous, i.e. D(.Z) = E;

In condition (a), the totality of R(.Z*) follows from [40], and in case (b) it
follows from the formulae

R(Z")°ND(Z) =Ker(Z), 2.4)
where R(.£*)° C E is a polar of the set R(.Z*) C E* in a duality (E,E*). Let us
prove (2.4) for an arbitrary linear operator. Since R(.%Z*) is a linear set, then

R(L)°ND(YL)={ucE :ueD(ZL),1(u)=0,VlcR(ZL")}
={u€eE :ueD(¥), o(Lu)=0,Yo € D(L")}
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Since D(.£*) is a total linear subspace, then
R(ZL)°ND(ZL)={ucE :uecD(¥), Lu=0}=Ker(¥).
Therefore, formulae (2.4) is proved. From (2.4) it is follows that
(R(Z") (D(L))° = (Ker(:2))°.
If . is a continuous injective operator, then D(.¥) = E, Ker(.¢) = @. Therefore,
(R(£7)™ = (Ker(£))” =E".

So, a bipolar of the set R(.£*), i.e. a weak closure R(.Z*) coincides with E*; hence,
R(Z*) is total in E*.

Finally, we see that the set of functionals R(.Z*) C E* is a total linear manyfold
with respect to the duality (E*, E); the linear subspaces F and D(.Z*) are in duality
also.

Denote by E a completion of a space E with respect to a topology 6 (E,R(Z™)).
Since the sets E and R(.Z*) are in duality, then the space E is a Hausdorff locally
convex topological vector space. Each of the functionals / € E* which has the form
1= L*@, where ¢ € D(.£*), allows a unique extension by continuity on the whole
space E, which we will denote as I A conjugate space to Eisa space consisting of
various functionals /, where | = Z* @, ¢ € D(.L™).

Let us consider an arbitrary continuous linear functional ¢ € D(.£*). Then (2.1)
implies that

o(Lu)=o(f), u)=(L"¢)u)=o(f). (2.5)

Definition 2.3. A weak generalized solution of the operator equation (2.1) is an
element u € E, which satisfies the relation

L(u)=o(f) forall € D(.L™), (2.6)

where [ = Z* .

A weak generalized solution u € E,asa strong generalized solution of (2.1) also
arises when the right-hand side of (2.1), i.e. the element f, does not belong to the
range R(.Z) of the operator .Z and a classic solution does not exist.

Relations (2.5) imply that any classic solution is a weak solution also. On the
other hand, if f € R(.%), then a weak generalized solution u turns into a classic one.
Indeed, let f € R(Z) and u € E be a weak generalized solution. Therefore, for all
¢ € D(.Z*) we have

(w)y=9(f), 1=2L"¢.

Moreover, there exists such an element u; € D(.¥) that Zu; = f. This element i
is a weak generalized solution, i.e.

L) =0(f), 1=L"¢
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forall ¢ € D(.Z™). Thus, for all ¢ € D(.¥*) the equality /(u;) = [(u«) holds, where
[ = 2" ¢. Since the set of all functionals [, where [ = L@, ¢ € D(L*), coincides
with the space E*, then u = u; in E, and therefore in E.

Analogously, if a weak generalized solution i belongs to D(.%), then it is a clas-
sic solution.

2.4 Weak Near-Solution

Analogous to a strong near-solution let us introduce a weak near-solution.

Definition 2.4. A sequence u, C D(.Z) is called a weak near-solution of the op-
erator equation (2.1) if f, = Zu, — f as n — o with respect to the metric of the
space F and u, = 7\ (f,) »u € E as n — oo with respect to the weak topology
o(E,R(Z*)); an element & € E is called a Limit element/weak.

As it will be proved below, the effect of stabilizing of a sequence of elements u,,
in the space Eisa corollary of the convergence of f;, to f; so, there exists an analogy
between string and weak near-solutions.

Consider the relation between a weak generalized solution and a weak near-
solution. Let us prove that u is a weak generalized solution of the operator equa-
tion (2.1) iff it is a weak limit element of a near solution. Indeed, let u# be a limit
element of a near-solution, then u € E and there exists a sequence {f,} C R(Z)
such that f, tends to f as n — e with respect to the metric of F, and u, =
L7 Y(f,) € D(Z) tends to u as n — o in the topology o (E,R(.£*)). Therefore,
forall ¢ € D(.£*) C F* we have that ¢(Zu,) = ¢(f,), hence

Hun) = (L7 ¢)(un) = (fu) = @(f)

as n — oo, where [ = .Z*¢p € R(.L¥).
In addition, since [ € R(.Z™*), then I(u,) = I(u,) — [(u) as n — oo. Thus, we
have that

1(u) = o(f)

for all ¢ € D(.Z*) such that [ = .£*@, i.e. u is a weak generalized solution of (2.1).
Conversely, let us suppose that « is a weak solution of (2.1), i.e.

L(u)=o@(f) for all p € D(.Z"),

where [ = Z* .

Let {f,} be an arbitrary sequence from R(.¥) convergent to f as n — e with
respect to the norm of F. Denote .%~'(f,) as u,. Then for an arbitrary functional
¢ € D(.Z*) such that [ = £ ¢ we have

l(un) = (L7 0)(un) = @(Lxn) = 0(fn) = @(f)

as n — oo,
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Thus, for any functional € R(.Z*) we have that I(u,) — @(f) = I(u) as
n — oo, Therefore, the sequence u, converges to u with respect to the topology
o (E,R(Z£*)), hence u is a limit element of a near-solution {uy,}.

2.5 Existence and Uniqueness of a Weak Generalized Solution
of a Linear Operator Equation

In this section, we prove the theorem on existence and uniqueness of a weak gener-
alized solution of the operator equation (2.1) on the assumptions stated above, i.e.
if .Z is a linear operator with dense domain D(.%) and dense range R(.Z), (2.1) is
uniquely solvable, and the sets D(.£*) and R(.Z*) are total in the spaces F* and E*
with respect to the corresponding weak topologies.

Let us start with the relatively simple problem of uniqueness. Suppose that the
operator equation (2.1) in addition to a weak generalized solution u € E has another
weak generalized solution & € E (u # i), then

forall ¢ € D(L*), 1= ZL*¢.

Since the set of the functionals / coincides with the conjugate space E*, then
u = u, and we have a contradiction. Thus, the operator equation (2.1) may not have
more than one weak generalized solution.

Now, let us consider the problem of existence of a weak generalized solution.
Suppose that the right-hand side of the operator equation (2.1), i.e. the element
f does not belong to the range R(Z) of the operator .£. Since (2.1) is densely
solvable, then there exists such a sequence of elements f, from R(.Z) that f,, — f
as n — oo with respect to the norm F. Let us prove that the sequence u, = £~ (f;,)
is a weak near-solution, and its limit element u belongs to E. For this purpose let
us consider the inverse operator u = .2~ !(f), which acts from the vector space
R(%) into E. Denote by T the topology induced in R(.Z) C F by the norm of
the Banach space F, and denote by (R(Z),T), (E,c(E,R(Z*))) the vector spaces
R(.%) and E endowed with the topologies T and o (E,R(.Z™)), respectively. Let
us prove that the inverse operator B = .#~! is a continuous linear operator, which
acts from the normed space (R(.Z),T) into the Hausdorff topological vector space
(E,0(E,R(Z"))). Since the set

W(l,....,ln;e) ={u:uckE, li(u) <e,...,.L,(u) < e},

where € € R, [; € R(L*), i € {1,2,...,n}, form a fundamental system of neigh-
borhoods of zero in (E,c(E,R(.Z*))), it is enough to prove that the following
preimages B~ W (ly,...,1;;€)] = L[W(ly,...,l,;€)] are neighborhoods of zero in
(R(Z),T).
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Indeed,

LW, e)] ={Lu:l1(u) <e,...,l,(u) < €}
={Lu: ¢ (ZLu) <£,...,(p,,(.$u) <e},

where [;(u) = (L @) (u) = @i(Lu), ¢ € D(L*),i € {1,2...,n}. Therefore,

LW, he)l ={f €R(Z) - i (f) <&,...,0u(f) <€}
:WR(X)((plv"'v(p";g)v

where Wr( ) (@1, ..., 0u;€) is a neighborhood that belongs to a fundamental sys-
tem of neighborhoods of zero in the vector space R(-Z) endowed with the topol-
ogy o(R(Z),D(.Z*)). Since the normed topology T is stronger than the weak
topology 6 (R(-Z),D(£™)), then the set Wg( &) (@1, - ., ¢n;€) is a neighborhood of
zero with respect to the topology T'. Thus, the operator B = ! : (R(Z),T) —
(E,0(E,R(.Z™))) is continuous.

Since the space Eis complete, F, E are the Hausdorff topological vector spaces,
and every continuous linear map B of the space (R(.Z),T) into E is uniquely
extendable to a continuous linear map B from F into E [7], then the sequence
{un = Z7'(f,) = B(f,)} converges to some element i € E, which is a limit el-
ement of the near-solution {u, = Y(f,)}. As it was shown above, in this case i
is a weak generalized solution of (2.1). Thus, the existence of a weak generalized
solution of (2.1) is proved.

2.6 Relation Between Weak and Strong Solutions of a Linear
Operator Equation

Let us establish the relation between the solvability in sense of Definitions 2.1
and 2.3.

Theorem 2.3. The space E is densely embedded into the space E.

Proof. Let some network {u¢ } ¢/, o € E converges to 0 with respect to the topol-
ogy of the space E. Then Zuy — 0 in F, hence ¢ (Luy) — 0 for any ¢ € F*.
Thus, [(ug) — 0 for all [ € R(Z*). Therefore, the topology E is weaker than the
topology E. It remained only to prove that if uy — u with respect to the topology of
the space E and uy — 0 with respect to the topology E, then u = 0 (condition 7)).
Taking into account the fact that u, — u is a convergent sequence, we have that

lug) =L 0(ue) = ¢(Lue) = ¢(Lu)

for all / € R(Z™). In addition, the fact that ug — O implies that /(uq) — O for all
1 € R(Z*) also. Thus, we have that ¢(Zu) = 0 for any ¢ € D(.Z*). Since the set
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D(.Z*) is total and the operator .2 is injective, then u = 0. Thus, the embedding
E C E is proved.

The fact that the embedding is dense follows from the fact that the spaces £ C E
are obtained as a result of completing of the set D(.Z), i.e. D(.¥) is a dense set both
inE and E. |

Theorem 2.4. Definitions 2.1 and 2.3 are equivalent.

Proof. Let u € E be a strong generalized solution of the equation .-Zu = f. Taking
into account the fact that the set R(.%) is dense in F, we have that there exists such
a sequence f, € R(.Z) that converges to f, or, in other words, there exists such an
element u, € D(.¥), that u, — u in E. By virtue of Theorem 2.3 the elements u € E
belongs to the space E , and in addition u, — u in E. Now, it is easy to see that, from
one hand, for all = "¢ € R(.Z)

lun) = L Q(un) = 9(Lun) — o(f),

and, from the other hand, — /(u,) — [(u) as n — co. Thus, u — is a weak generalized
solution.

Let us prove that the solution u € E in the sense of Definition 2.3 is a solution in
the sense of Definition 2.1 (and vice versa). Indeed, there exists a solution u* € E
of the equation Zu = f. It is clear that Z*@(u) = @(f) = @(Lu*) for all ¢ €
D(.£*). Hence u = Ou*, where O is an operator of embedding of the space E into
the space E. a

Finally, let us point out that the concept of a generalized solution of the operator
equation .Zu =y is very different from various concepts u* of such equations (for
example, from the concept of a quasi-solution introduce by V. K. Ivanov), which are
described in [47] and [112], as far as .Zi = y for the generalized solution i always,
where .Z is a natural extension of the operator ., whereas the equality Zu* =y
for the generalized solutions u* holds not always.



2 Springer
http://www.springer.com/978-1-4614-0618-1

Generalized Solutions of Operator Equations and
Extreme Elements

Klyushin, D.A.; Lyashko, S.1.; Nomirovskii, DA Petunin,
Y.l Semenow, V.

2012, XXll, 202 p., Hardcowver

ISEN: 978-1-4614-0618-1



	Chapter 2 The Simplest Schemes of Generalized Solutionof Linear Operator Equation

	2.1 Strong Generalized Solution
	2.2 Strong Near-Solution
	2.3 Weak Generalized Solution
	2.4 Weak Near-Solution
	2.5 Existence and Uniqueness of a Weak Generalized Solution of a Linear Operator Equation
	2.6 Relation Between Weak and Strong Solutions of a Linear Operator Equation


