
Chapter 2
The Simplest Schemes of Generalized Solution
of Linear Operator Equation

Let E,F be Banach spaces and L be a linear operator with an everywhere dense
domain D(L )⊂ E , which acts from E into F . Let us consider an operator equation

L u = f , u ∈ D(L ), f ∈ F (2.1)

and an adjoint equation

L ∗ϕ = l, ϕ ∈ D(L ∗), l ∈ E∗, (2.2)

where E∗ and F∗ are conjugate Banach spaces to E and F , respectively, L ∗ is an
adjoint operator to L . Suppose that the range R(L ) ⊂ F of L is an everywhere
dense set in F and (2.1) is uniquely solvable over R(L ), i.e. the null space Ker(L )
of L consists only of the zero element θ : Ker(L ) = θ . Thus, L sets a one-to-one
mapping between D(L ) and R(L ). Note that the continuity of L is not supposed.

The aim of this chapter is to give a “meaningful” definition of the solution of (2.1)
when f /∈ R(L ).

2.1 Strong Generalized Solution

Let us introduce one more norm on the linear set D(L ) in the space E . Since L :
E → F is a linear injective operator with a domain D(L )⊂ E , the function

D(L ) � u → ‖L u‖F ∈ R

has all properties of a norm on D(L ). Hence, D(L ) with this norm turns into a
normed space, which may be incomplete. Let Ē be a completion of this normed
space.

The fact that ‖u‖Ē = ‖L u‖F for all u ∈ D(L ) allows to extend L from D(L )
onto Ē . Indeed, if u is an arbitrary element from Ē , then the density of D(L ) in
Ē implies that there is such a sequence ui ∈ D(L ) that ui → u in Ē as i → ∞.
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Since ui is a convergent sequence in Ē and hence it is a Cauchy sequence in Ē , and
‖ui − u j‖Ē = ‖L ui −L u j‖F then L ui is a Cauchy sequence in F . However, F is
a complete normed space. Thus, there is such an element f in F that L ui → f in
F as i → ∞. Determine a value of the operator L on the element u in the following
way: L̄ u = f , where L̄ : Ē → F is an extended operator defined on the entire
space Ē . Note that the value L̄ u is defined correctly, i.e. the element f = L̄ u ∈ F
does not depend on the selection of the sequence ui. Thus, the operator L̄ : Ē → F ,
D(L̄ ) = Ē is an extension of L on the whole space Ē .

Definition 2.1. A strong generalized solution of (2.1) is such an element u ∈ Ē that
equality (2.1) holds for the extended operator L̄ .

Remark 2.1. If E = F is a Hilbert space and L is a symmetric operator then the
operator L̄ is called a self-adjoint extension of operator by Friedrichs.

As mentioned before, the concept of a strong generalized solution ū arises when
a right-hand side f of (2.1) does not belong to the range R(L ) of L . In this case,
the ordinary (classical) solution does not exist. The word “strong” means that the
topology of the space Ē is normed.

Let us study some properties of L̄ . It follows from the linearity of L that the
operator L̄ is linear also. Let us prove that L̄ is an injective operator. Indeed,
if u ∈ Ē is such an element that L̄ u = 0, then selecting a sequence ui ∈ D(L )
converging to u in Ē as i → ∞ we have that L ui → L̄ u = 0 in F as i → ∞. The last
statement can be rewritten as ‖L ui‖F → 0 or ‖ui‖Ē → 0. Hence, ‖u‖Ē = 0. Thus,
the injectivity of the operator L̄ is proven. In addition, the equality ‖L u‖F = ‖u‖Ē ,
which holds for an arbitrary u ∈ D(L ), clearly holds for all u ∈ Ē (taking into
account the replacement of L by L̄ ). From ‖L̄ u‖F = ‖u‖Ē , where u∈ Ē , it follows
that the operator L̄ is continuous and coercive.

The properties of the operator L̄ can be proven in another way. Indeed, the op-
erator L is a one-to-one map between D(L ) and R(L ). In addition, if (D(L ) is a
normed space with the norm ‖u‖Ē and R(L ) is a normed space with the norm ‖ f‖F )
then the completion of D(L ) coincides with Ē and the completion R(L ) coincides
with F (remember that R(L ) is a dense subset of F). On the other hand, granting
the equality ‖L u‖F = ‖u‖Ē , which holds for all u ∈ D(L ), we have that the oper-
ator L is an isometry between the normed spaces D(L ) and R(L ). Hence, their
completions are isometrical. This isometry defines the completion L̄ of the opera-
tor L . Thus, the operator L̄ sets an isometry between Ē and F . This implies the
above-mentioned properties of L̄ . The foregoing implies the following theorem.

Theorem 2.1. For any f ∈ F there exists a unique strong generalized solution
of (2.1) in the sense of Definition 2.1.

If f ∈ R(L ), then a strong generalized solution ū turns into a classic solution. It
is also clear that the classic solution is strong, and it is classic if ū ∈ D(L ).

Let us clarify the relations between the spaces E and Ē. Since D(L ) is a dense
linear subset of E (of course, in the sense of the norm of the space E), then the
set E may be obtained by completing D(L ) with respect to the norm ‖u‖E . Thus,
the spaces E and Ē may be considered as completions of the same linear set D(L )
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with respect to the two different norms: ‖u‖E and ‖u‖Ē . Unfortunately, in general
case, elements of the spaces E and Ē are incomparable. It is explained by the fact
that, on one hand, the operator L : E → F can be unbounded and, from the other
hand, it can be non-coercive, even though it is a linear injective operator. This means
that in general case the norms ‖u‖E and ‖L u‖F = ‖u‖Ē can induce incomparable
topologies on D(L ).

When L : E → F is a linear continuous operator the case is more simple. Then
the topology induced on D(L ) by the norm ‖u‖Ē is weaker than the topology of
the space E .1

Consider another possibility. Let an operator L : E → F be coercive, i.e. there
exists such a constant c > 0 that

‖u‖E ≤ c‖L u‖F = c‖u‖Ē (2.3)

for all u ∈ D(L ). In this case, the norms ‖u‖E and ‖L u‖F = ‖u‖Ē are comparable
over D(L ) (the topology of the space Ē is stronger than the topology of the space
E on D(L )) and there is a relation between elements of E and Ē .

Theorem 2.2. Let L be a closable coercive operator. Then there exists a dense
continuous embedding Ē ⊂ E.

Proof. Since the spaces Ē and E are the completions of the linear set D(L ) with
respect to two norms and (2.3) holds, then in order to prove the theorem, it is enough
to check the condition:

(π) if ui ∈ D(L ) and ui → u in Ē , ui → 0 in E , then u = 0.

However, this condition can be rewritten in the following way:

(π) if ui ∈ D(L ) and L ui → f in F , ui → 0 in E , then f = 0.

The last condition is clear, since the operator L is closable. 	

Thus, we ascertained that Ē ⊂ E , i.e. an arbitrary strong generalized solution

of (2.1) is an element of the space E .

2.2 Strong Near-Solution

Suppose that the right-hand side of (2.1), i.e. the element f , does not belong to the
range R(L ) of an operator L . Since R(L ) is everywhere dense in F and (2.1)

1 Note that studying of a closable operator L : E → F can be reduced (at least theoretically) to
studying of a linear continuous operator L1 defined on the same set D(L ), but with respect to
another norm. Indeed, introducing in D(L ) a graph norm

‖u‖Γ = ‖u‖E +‖L u‖F ,

with respect to which the linear set D(L ) is Banach, we have that the operator L1 : D(L )→ F is
linear and continuous (L1u = L u, u ∈ D(L ) = D(L1)).
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is uniquely solvable, then there exists a sequence fn ∈ R(L ) such that fn → f as
n → ∞, and a sequence un = L −1( fn) convergent to some element ū ∈ Ē in Ē .

Definition 2.2. A sequence of elements un ∈ D(L ) is called a strong near-solution
of the operator equation (2.1), if fn = L un → f as n → ∞ in the metric of the
space F . An element ū ∈ Ē is called the strong limit element of the near-solution.

The concept of a “near-solution” is justified by the following arguments. In many
important practical cases, it is impossible or almost impossible to determine the
right-hand side f of (2.1) absolutely exactly; therefore, we have to consider its
ε-approximation, i.e. and element f ∈ R(L ) such that ρ( f , fε ) = || f − fε || < ε .
In this case, there exists an element uε = L −1( fε ) from the domain of the operator
L , which can be considered as “ε - approximation” of the solution of (2.1), i.e. the
right-hand (2.1) is closely approximated by its image L uε = fε . If the elements
uε “become stabilize” as ε → 0, i.e. if they converge in some topology (in Ē) to
the fixed element ū /∈ D(L ), then it is naturally to consider the element uε as an
“ε -solution” or “near-solution”. Note that in many cases the “accuracy” of a solu-
tion uε is defined by the closeness of its image L uε = fε to the element f , i.e. by a
norm of the space Ē .

The definitions of a strong generalized solution and a near-solution of (2.1) imply
that these concepts are equivalent, i.e. an element u ∈ Ē is a strong generalized
solution of the operator equation (2.1) iff it is a strong limit element of a near-
solution.

2.3 Weak Generalized Solution

Let us consider a definition of a generalized solution of an operator equation in a
linear topological space with a topology which is not necessarily induced by a norm.

As before, suppose that L : E → F is a linear injective operator, which acts
between Banach spaces E,F with everywhere dense domain and range in E and F ,
respectively. In addition, suppose that D(L ∗) is a total subset of F∗ in a duality
(F,F∗), and R(L ∗) is a total subset of E∗ in a duality (E,E∗). Note that the totality
property of R(L ∗) may be replaced by one of the following conditions:

(a)The space E is reflexive (if the space F is reflexive also, then the set D(L ∗) is
strongly dense in F∗).

(b)The operator L is continuous, i.e. D(L ) = E;

In condition (a), the totality of R(L ∗) follows from [40], and in case (b) it
follows from the formulae

R(L ∗)◦ ∩D(L ) = Ker(L ), (2.4)

where R(L ∗)◦ ⊂ E is a polar of the set R(L ∗) ⊂ E∗ in a duality (E,E∗). Let us
prove (2.4) for an arbitrary linear operator. Since R(L ∗) is a linear set, then

R(L ∗)◦ ∩D(L ) = {u ∈ E : u ∈ D(L ), l(u) = 0,∀l ∈ R(L ∗)}
= {u ∈ E : u ∈ D(L ), ϕ(L u) = 0,∀ϕ ∈ D(L ∗)}
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Since D(L ∗) is a total linear subspace, then

R(L ∗)◦ ∩D(L ) = {u ∈ E : u ∈ D(L ), L u = 0}= Ker(L ).

Therefore, formulae (2.4) is proved. From (2.4) it is follows that

(R(L ∗)◦ ∩D(L ))◦ = (Ker(L ))◦.

If L is a continuous injective operator, then D(L ) = E , Ker(L ) =∅. Therefore,

(R(L ∗))◦◦ = (Ker(L ))◦ = E∗.

So, a bipolar of the set R(L ∗), i.e. a weak closure R(L ∗) coincides with E∗; hence,
R(L ∗) is total in E∗.

Finally, we see that the set of functionals R(L ∗)⊂ E∗ is a total linear manyfold
with respect to the duality (E∗,E); the linear subspaces F and D(L ∗) are in duality
also.

Denote by ˜E a completion of a space E with respect to a topology σ(E,R(L ∗)).
Since the sets E and R(L ∗) are in duality, then the space ˜E is a Hausdorff locally
convex topological vector space. Each of the functionals l ∈ E∗ which has the form
l = L ∗ϕ , where ϕ ∈ D(L ∗), allows a unique extension by continuity on the whole
space ˜E, which we will denote as ˜l. A conjugate space to ˜E is a space consisting of
various functionals ˜l, where l = L ∗ϕ , ϕ ∈ D(L ∗).

Let us consider an arbitrary continuous linear functional ϕ ∈ D(L ∗). Then (2.1)
implies that

ϕ(L u) = ϕ( f ), l(u) = (L ∗ϕ)(u) = ϕ( f ). (2.5)

Definition 2.3. A weak generalized solution of the operator equation (2.1) is an
element u ∈ ˜E , which satisfies the relation

˜l(u) = ϕ( f ) for all ϕ ∈ D(L ∗), (2.6)

where l = L ∗ϕ .

A weak generalized solution u ∈ ˜E , as a strong generalized solution of (2.1) also
arises when the right-hand side of (2.1), i.e. the element f , does not belong to the
range R(L ) of the operator L and a classic solution does not exist.

Relations (2.5) imply that any classic solution is a weak solution also. On the
other hand, if f ∈ R(L ), then a weak generalized solution u turns into a classic one.
Indeed, let f ∈ R(L ) and u ∈ ˜E be a weak generalized solution. Therefore, for all
ϕ ∈ D(L ∗) we have

˜l(u) = ϕ( f ), l = L ∗ϕ .

Moreover, there exists such an element u1 ∈ D(L ) that L u1 = f . This element u1

is a weak generalized solution, i.e.

˜l(u1) = ϕ( f ), l = L ∗ϕ
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for all ϕ ∈ D(L ∗). Thus, for all ϕ ∈ D(L ∗) the equality ˜l(u1) = ˜l(u) holds, where
l = L ∗ϕ . Since the set of all functionals ˜l, where l = L ∗ϕ , ϕ ∈ D(L ∗), coincides
with the space ˜E∗, then u = u1 in ˜E , and therefore in E .

Analogously, if a weak generalized solution ũ belongs to D(L ), then it is a clas-
sic solution.

2.4 Weak Near-Solution

Analogous to a strong near-solution let us introduce a weak near-solution.

Definition 2.4. A sequence un ⊂ D(L ) is called a weak near-solution of the op-
erator equation (2.1) if fn = L un → f as n → ∞ with respect to the metric of the
space F and un = L −1( fn) → ũ ∈ ˜E as n → ∞ with respect to the weak topology
σ(˜E,R(L ∗)); an element ũ ∈ ˜E is called a Limit element!weak.

As it will be proved below, the effect of stabilizing of a sequence of elements un

in the space ˜E is a corollary of the convergence of fn to f ; so, there exists an analogy
between string and weak near-solutions.

Consider the relation between a weak generalized solution and a weak near-
solution. Let us prove that u is a weak generalized solution of the operator equa-
tion (2.1) iff it is a weak limit element of a near solution. Indeed, let u be a limit
element of a near-solution, then u ∈ ˜E and there exists a sequence { fn} ⊂ R(L )
such that fn tends to f as n → ∞ with respect to the metric of F , and un =
L −1( fn) ∈ D(L ) tends to u as n → ∞ in the topology σ(˜E,R(L ∗)). Therefore,
for all ϕ ∈ D(L ∗)⊂ F∗ we have that ϕ(L un) = ϕ( fn), hence

l(un) = (L ∗ϕ)(un) = ϕ( fn)→ ϕ( f )

as n → ∞, where l = L ∗ϕ ∈ R(L ∗).
In addition, since l ∈ R(L ∗), then l(un) = ˜l(un) → ˜l(u) as n → ∞. Thus, we

have that
˜l(u) = ϕ( f )

for all ϕ ∈ D(L ∗) such that l = L ∗ϕ , i.e. u is a weak generalized solution of (2.1).
Conversely, let us suppose that u is a weak solution of (2.1), i.e.

˜l(u) = ϕ( f ) for all ϕ ∈ D(L ∗),

where l = L ∗ϕ .
Let { fn} be an arbitrary sequence from R(L ) convergent to f as n → ∞ with

respect to the norm of F . Denote L −1( fn) as un. Then for an arbitrary functional
ϕ ∈ D(L ∗) such that l = L ∗ϕ we have

l(un) = (L ∗ϕ)(un) = ϕ(L xn) = ϕ( fn)→ ϕ( f )

as n → ∞.
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Thus, for any functional ∈ R(L ∗) we have that l(un) → ϕ( f ) = ˜l(u) as
n → ∞. Therefore, the sequence un converges to u with respect to the topology
σ(E,R(L ∗)), hence u is a limit element of a near-solution {un}.

2.5 Existence and Uniqueness of a Weak Generalized Solution
of a Linear Operator Equation

In this section, we prove the theorem on existence and uniqueness of a weak gener-
alized solution of the operator equation (2.1) on the assumptions stated above, i.e.
if L is a linear operator with dense domain D(L ) and dense range R(L ), (2.1) is
uniquely solvable, and the sets D(L ∗) and R(L ∗) are total in the spaces F∗ and E∗
with respect to the corresponding weak topologies.

Let us start with the relatively simple problem of uniqueness. Suppose that the
operator equation (2.1) in addition to a weak generalized solution u ∈ ˜E has another
weak generalized solution ũ ∈ ˜E (u �= ũ), then

˜l(u) = ϕ( f ) = ˜l(ũ)

for all ϕ ∈ D(L ∗), l = L ∗ϕ .
Since the set of the functionals ˜l coincides with the conjugate space ˜E∗, then

u = ũ, and we have a contradiction. Thus, the operator equation (2.1) may not have
more than one weak generalized solution.

Now, let us consider the problem of existence of a weak generalized solution.
Suppose that the right-hand side of the operator equation (2.1), i.e. the element
f does not belong to the range R(L ) of the operator L . Since (2.1) is densely
solvable, then there exists such a sequence of elements fn from R(L ) that fn → f
as n → ∞ with respect to the norm F . Let us prove that the sequence un = L −1( fn)
is a weak near-solution, and its limit element u belongs to ˜E. For this purpose let
us consider the inverse operator u = L −1( f ), which acts from the vector space
R(L ) into E . Denote by T the topology induced in R(L ) ⊂ F by the norm of
the Banach space F , and denote by (R(L ),T ), (E,σ(E,R(L ∗))) the vector spaces
R(L ) and E endowed with the topologies T and σ(E,R(L ∗)), respectively. Let
us prove that the inverse operator B = L −1 is a continuous linear operator, which
acts from the normed space (R(L ),T ) into the Hausdorff topological vector space
(E,σ(E,R(L ∗))). Since the set

W (l1, . . . , ln;ε) = {u : u ∈ E, l1(u)< ε, . . . , ln(u)< ε},

where ε ∈ R, li ∈ R(L ∗), i ∈ {1,2, . . . ,n}, form a fundamental system of neigh-
borhoods of zero in (E,σ(E,R(L ∗))), it is enough to prove that the following
preimages B−1[W (l1, . . . , ln;ε)] = L [W (l1, . . . , ln;ε)] are neighborhoods of zero in
(R(L ),T ).
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Indeed,

L [W (l1, . . . , ln;ε)] = {L u : l1(u)< ε, . . . , ln(u)< ε}
= {L u : ϕ1

(

L u
)

< ε, . . . ,ϕn
(

L u
)

< ε},

where li(u) = (L ∗ϕi)(u) = ϕi(L u), ϕi ∈ D(L ∗), i ∈ {1,2 . . . ,n}. Therefore,

L [W (l1, . . . , ln;ε)] = { f ∈ R(L ) : ϕ1( f )< ε, . . . ,ϕn( f )< ε}
= WR(L )(ϕ1, . . . ,ϕn;ε),

where WR(L )(ϕ1, . . . ,ϕn;ε) is a neighborhood that belongs to a fundamental sys-
tem of neighborhoods of zero in the vector space R(L ) endowed with the topol-
ogy σ(R(L ),D(L ∗)). Since the normed topology T is stronger than the weak
topology σ(R(L ),D(L ∗)), then the set WR(L )(ϕ1, . . . ,ϕn;ε) is a neighborhood of
zero with respect to the topology T . Thus, the operator B = L −1 : (R(L ),T ) →
(E,σ(E,R(L ∗))) is continuous.

Since the space ˜E is complete, F,E are the Hausdorff topological vector spaces,
and every continuous linear map B of the space (R(L ),T ) into E is uniquely
extendable to a continuous linear map ˜B from F into ˜E [7], then the sequence
{un = L −1( fn) = ˜B( fn)} converges to some element ũ ∈ ˜E , which is a limit el-
ement of the near-solution {un = L −1( fn)}. As it was shown above, in this case ũ
is a weak generalized solution of (2.1). Thus, the existence of a weak generalized
solution of (2.1) is proved.

2.6 Relation Between Weak and Strong Solutions of a Linear
Operator Equation

Let us establish the relation between the solvability in sense of Definitions 2.1
and 2.3.

Theorem 2.3. The space Ē is densely embedded into the space ˜E.

Proof. Let some network {uα}α∈A ,uα ∈E converges to 0 with respect to the topol-
ogy of the space Ē . Then L uα → 0 in F , hence ϕ (L uα) → 0 for any ϕ ∈ F∗.
Thus, l(uα ) → 0 for all l ∈ R(L ∗). Therefore, the topology ˜E is weaker than the
topology Ē . It remained only to prove that if uα → u with respect to the topology of
the space Ē and uα → 0 with respect to the topology ˜E , then u = 0 (condition π)).
Taking into account the fact that uα → u is a convergent sequence, we have that

l(uα) = L ∗ϕ(uα) = ϕ(L uα)→ ϕ(L̄ u)

for all l ∈ R(L ∗). In addition, the fact that uα → 0 implies that l(uα) → 0 for all
l ∈ R(L ∗) also. Thus, we have that ϕ(L̄ u) = 0 for any ϕ ∈ D(L ∗). Since the set
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D(L ∗) is total and the operator L̄ is injective, then u = 0. Thus, the embedding
Ē ⊂ ˜E is proved.

The fact that the embedding is dense follows from the fact that the spaces Ē ⊂ ˜E
are obtained as a result of completing of the set D(L ), i.e. D(L ) is a dense set both
in Ē and ˜E . 	

Theorem 2.4. Definitions 2.1 and 2.3 are equivalent.

Proof. Let u ∈ Ē be a strong generalized solution of the equation L u = f . Taking
into account the fact that the set R(L ) is dense in F , we have that there exists such
a sequence fn ∈ R(L ) that converges to f , or, in other words, there exists such an
element un ∈ D(L ), that un → u in Ē . By virtue of Theorem 2.3 the elements u ∈ Ē
belongs to the space ˜E , and in addition un → u in ˜E. Now, it is easy to see that, from
one hand, for all l = L ∗ϕ ∈ R(L )

l(un) = L ∗ϕ(un) = ϕ(L un)→ ϕ( f ),

and, from the other hand, – l(un)→ l(u) as n → ∞. Thus, u – is a weak generalized
solution.

Let us prove that the solution u ∈ ˜E in the sense of Definition 2.3 is a solution in
the sense of Definition 2.1 (and vice versa). Indeed, there exists a solution u∗ ∈ Ē
of the equation L u = f . It is clear that L ∗ϕ(u) = ϕ( f ) = ϕ(L̄ u∗) for all ϕ ∈
D(L ∗). Hence u = Ou∗, where O is an operator of embedding of the space Ē into
the space ˜E . 	


Finally, let us point out that the concept of a generalized solution of the operator
equation L u = y is very different from various concepts u∗ of such equations (for
example, from the concept of a quasi-solution introduce by V. K. Ivanov), which are
described in [47] and [112], as far as L̄ ū = y for the generalized solution ū always,
where L̄ is a natural extension of the operator L , whereas the equality L̄ u∗ = y
for the generalized solutions u∗ holds not always.
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