
25C. Spear and G. Tumbush, SystemVerilog for Verifi cation: A Guide to Learning
the Testbench Language Features, DOI 10.1007/978-1-4614-0715-7_2,
© Springer Science+Business Media, LLC 2012

 SystemVerilog offers many improved data structures compared with Verilog. Some
of these were created for designers but are also useful for testbenches. In this chapter
you will learn about the data structures most useful for verifi cation.

 System Verilog introduces new data types with the following benefi ts.
 Two-state: better performance, reduced memory usage •
 Queues, dynamic and associative arrays: reduced memory usage, built-in support •
for searching and sorting
 Classes and structures: support for abstract data structures •
 Unions and packed structures: allow multiple views of the same data •
 Strings: built-in string support •
 Enumerated types: code is easier to write and understand •

 2.1 Built-In Data Types

 Verilog-1995 has two basic data types: variables and nets, both which hold 4-state
values: 0, 1, Z, and X. RTL code uses variables to store combinational and sequen-
tial values. Variables can be unsigned single or multi-bit (reg [7:0] m), signed
32-bit variables (integer), unsigned 64-bit variables (time), and fl oating point
numbers (real). Variables can be grouped together into arrays that have a fi xed
size. A net is used to connect parts of a design such as gate primitives and module
instances. Nets come in many fl avors, but most designers use scalar and vector
wires to connect together the ports of design blocks. Lastly, all storage is static,
meaning that all variables are alive for the entire simulation and routines cannot use
a stack to hold arguments and local values. Verilog-2001 allows you to switch
between static and dynamic storage, such as stacks.

 SystemVerilog adds many new data types to help both hardware designers and
verifi cation engineers.

 Chapter 2
 Data Types

26 2 Data Types

 2.1.1 The Logic Type

 The one thing in Verilog that always leaves new users scratching their heads is the
difference between a reg and a wire . When driving a port, which should you use?
How about when you are connecting blocks? SystemVerilog improves the classic
 reg data type so that it can be driven by continuous assignments, gates, and mod-
ules, in addition to being a variable. It is given the synonym logic as some people
new to Verilog thought that reg declared a digital register, and not a signal. A logic
signal can be used anywhere a net is used, except that a logic variable cannot
be driven by multiple structural drivers, such as when you are modeling a bidirec-
tional bus. In this case, the variable needs to be a net type such as wire so that
SystemVerilog can resolve the multiple values to determine the fi nal value.

 Sample 2.1 shows the SystemVerilog logic type.

 Sample 2.1 Using the logic type

 You can use the logic type to fi nd netlist bugs as this type can
only have a single driver. Rather than trying to choose between
 reg and wire , declare all your signals as logic , and you’ll get a
compilation error if it has multiple drivers. Of course, any signal
that you do want to have multiple drivers, such as a bidirectional
bus, should be declared with a net type such as wire or tri .

 2.1.2 2-State Data Types

 SystemVerilog introduces several 2-state data types to improve simulator perfor-
mance and reduce memory usage, compared to variables declared as 4-state types.
The simplest type is the bit , which is always unsigned. There are four signed 2-state
types: byte, shortint, int , and longint . as shown in Sample 2.2 .

272.2 Fixed-Size Arrays

 Sample 2.2 Signed data types

 Sample 2.3 Checking for 4-state values

 You might be tempted to use types such as byte to replace more
verbose declarations such as logic [7:0] . Hardware design-
ers should be careful as these new types are signed variables, so
a byte variable can only count up to 127, not the 255 you may

expect. (It has the range −128 to +127.) You could use byte unsigned, but that is
more verbose than just bit [7:0] . Signed variables can also cause unexpected
results with randomization, as discussed in Chapter 6 .

 Be careful connecting 2-state variables to the design under test,
especially its outputs. If the hardware tries to drive an X or Z, these
values are converted to a 2-state value, and your testbench code
may never know. Don’t try to remember if they are converted to
0 or 1; instead, always check for propagation of unknown values.

Use the $isunknown() operator that returns 1 if any bit of the expression is X or Z,
as shown in Sample 2.3 .

 The format %0t and the argument $time print the current simulation time, for-
matted as specifi ed with the $timeformat() routine. Time values are explored in
more detail in Section 3.7.

 2.2 Fixed-Size Arrays

 SystemVerilog offers several fl avors of arrays beyond the single-dimension, fi xed-
size Verilog-1995 arrays. Additionally, many new features have been added to sup-
port these data types.

28 2 Data Types

 2.2.1 Declaring and Initializing Fixed-Size Arrays

 Verilog requires that the low and high array limits must be given in the declaration.
Since almost all arrays use a low index of 0, SystemVerilog lets you use the shortcut
of just giving the array size, which is similar to C’s style, as shown in Sample 2.4 .

 Sample 2.6 Declaring and using multi-dimensional arrays

 Sample 2.5 Calculating the address width for a memory

 Sample 2.4 Declaring fi xed-size arrays

 How can you compute the number of bits needed to address a given array size?
SystemVerilog has the $clog2() function that calculates the ceiling of log base 2,
as shown in Sample 2.5 .

 You can create multi-dimensional fi xed-size arrays by specifying the dimensions
after the variable name. Sample 2.6 creates several two-dimensional arrays of inte-
gers, 8 entries by 4, and sets the last entry to 1. Multi-dimensional arrays were
introduced in Verilog-2001, but the compact declaration style is new.

 If your code accidently tries to read from an out-of-bounds address, System-
Verilog will return the default value for the array element type. That just means
that an array of 4-state types, such as logic , will return X’s, whereas an array of
2-state types, such as int or bit , will return 0. This applies for all array types –
fi xed, dynamic, associative, or queue, and also if your address has an X or Z. An
undriven net is Z.

 Many SystemVerilog simulators store each element on a 32-bit word boundary.
So a byte, shortint , and int are all stored in a single word, whereas a longint
is stored in two words.

 An unpacked array, such as the one shown in Sample 2.7 , stores the values in the
lower portion of the word, whereas the upper bits are unused. The array of bytes,
 b_unpack , is stored in three words, as shown in Fig. 2.1 .

292.2 Fixed-Size Arrays

 Sample 2.7 Unpacked array declarations

b_unpack[1]
234567

Unused space
b_unpack[2]

b_unpack[0] 01
01234567
01234567

 Fig. 2.1 Unpacked array storage

 Packed arrays are explained in Section 2.2.6 .
 Simulators generally store 4-state types such as logic and integer in two or

more consecutive words, using twice the storage as 2-state variables.

 2.2.2 The Array Literal

 Sample 2.8 shows how to initialize an array using an array literal, which is an apos-
trophe followed by the values in curly braces. (This is not the accent grave used for
compiler directives and macros.) You can set some or all elements at once. You can
replicate values by putting a count before the curly braces.

 Sample 2.8 Initializing an array

 Notice that in Sample 2.8 , the declaration of the array ascend includes an initial
value. The 2009 LRM states that these variables must be declared either in a static
block, or have the static keyword. Since this book recommends always declaring
your test modules and programs as automatic , you need to add the static key-
word to a declaration plus initialization when it is inside an initial block.

 A great new feature in the 2009 LRM is printing with the %p format specifi er.
This prints an assignment pattern that is equivalent to the data object’s value. You can
print any data type in SystemVerilog including arrays, structures, classes, and more.
Sample 2.9 shows how to print an array with the %p format specifi er.

30 2 Data Types

 2.2.3 Basic Array Operations — for and Foreach

 The most common way to manipulate an array is with a for or foreach loop. In
Sample 2.10 , the variable i is declared local to the for loop. The SystemVerilog
function $size returns the size of the array. In the foreach loop, you specify the
array name and an index in square brackets, and SystemVerilog automatically steps
through all the elements of the array. The index variable is automatically declared
for you and is local to the loop.

 Sample 2.10 Using arrays with for- and foreach loops

 Sample 2.11 Initialize and step through a multi-dimensional array

 Sample 2.9 Printing with %p print specifi er

 Note that in Sample 2.11 , the syntax of the foreach loop for multi-dimensional
arrays may not be what you expected. Instead of listing each subscript in separate
square brackets, [i][j] , they are combined with a comma: [i,j] .

 The output from Sample 2.11 is shown in Sample 2.12 .

312.2 Fixed-Size Arrays

 You can omit some dimensions in the foreach loop if you don’t need to step
through all of them. Sample 2.13 prints a two-dimensional array in a rectangle.
It steps through the fi rst dimension in the outer loop, and then through the second
dimension in the inner loop.

 Sample 2.12 Output from printing multi-dimensional array values

 Sample 2.13 Printing a multi-dimensional array

 Sample 2.13 produces the output shown in Sample 2.14 .

 Sample 2.14 Output from printing multi-dimensional array values

 Lastly, a foreach loop iterates using the ranges in the original declaration. The
array f[5] is equivalent to f[0:4] , and a foreach (f[i]) is equivalent to for
 (int i=0;i<=4; i++). With the array rev[6:2] , the statement foreach(rev[i]) is
equivalent to for(int i=6; i>=2; i--).

32 2 Data Types

 2.2.4 Basic Array Operations – Copy and Compare

 You can perform aggregate compare and copy of arrays without loops. (An aggregate
operation works on the entire array as opposed to working on just an individual
element.) Comparisons are limited to just equality and inequality. Sample 2.15 shows
several examples of compares. The ? : conditional operator is a mini if-else state-
ment. In Sample 2.15 , it is used to choose between two strings. The fi nal compare
uses an array slice, src[1:4] , which creates a temporary array with 4 elements.

 Sample 2.15 Array copy and compare operations

 A copy between fi xed arrays of different sizes causes a compile error. You can
not perform aggregate arithmetic such as addition or subtraction on arrays, for
example, a = b + c . Instead, use foreach loops. For logical operations such as xor ,
you have to either use a loop or use packed arrays as described in Section 2.2.6 .

 2.2.5 Bit and Array Subscripts, Together at Last

 A common annoyance in Verilog-1995 is that you cannot use array and bit sub-
scripts together. Verilog-2001 removes this restriction for fi xed-size arrays. Sample
 2.16 prints the fi rst array element (binary 101), its lowest bit (1), and the next two
higher bits (binary 10).

332.2 Fixed-Size Arrays

 Although this change is not new to SystemVerilog, many users may not
know about this useful improvement in Verilog-2001. FYI - a double comma in a
 $display statement inserts a space.

 2.2.6 Packed Arrays

 For some data types, you may want both to access the entire value and also to divide
it into smaller elements. For example, you may have a 32-bit register that sometimes
you want to treat as four 8-bit values and at other times as a single, unsigned value.
A SystemVerilog packed array is treated as both an array and a single value. It is
stored as a contiguous set of bits with no unused space, unlike an unpacked array.

 2.2.7 Packed Array Examples

 The packed bit and array dimensions are specifi ed as part of the type, before the
variable name. These dimensions must be specifi ed in the [msb:lsb] format, not
 [size] . Sample 2.17 shows the variable bytes , a packed array of four bytes that
are stored in a single 32-bit word as shown in Fig. 2.2 .

 Sample 2.16 Using word and bit subscripts together

 Sample 2.17 Packed array declaration and usage

bytes 01234567

bytes[3]

012345670123456701234567

bytes[3][7]

 Fig. 2.2 Packed array layout

34 2 Data Types

 You can mix packed and unpacked dimensions. You may want to make an array
that represents a memory that can be accessed as bits, bytes, or longwords. Sample
 2.18 shows barray , an unpacked array of fi ve packed elements, each four bytes
wide, which are stored in memory as shown in Fig. 2.3 .

 Sample 2.18 Declaration for a mixed packed/unpacked array

barray[0][3] barray[0][1][6]

barray[1] 01234567012345670123456701234567
barray[0] 01234567012345670123456701234567

barray[2] 01234567012345670123456701234567
barray[3] 01234567012345670123456701234567
barray[4] 01234567012345670123456701234567

 Fig. 2.3 Packed array bit layout

 With a single subscript, you get a word of data, barray[0] .With two subscripts,
you get a byte of data, barray[0][3] . With three subscripts, you can access a
single bit, barray[0][1][6] . Because one dimension is specifi ed after the name,
 barray[5] , that dimension is unpacked, so you must always give at least one
subscript.

 The last line of Sample 2.18 copies between two packed arrays. Since the under-
lying values are just bits, you can copy even if the arrays have different dimensions.

 2.2.8 Choosing Between Packed and Unpacked Arrays

 Which should you choose — a packed or an unpacked array? A packed array is
handy if you need to convert to and from scalars. For example, you might need to
reference a memory as a byte or as a word. The barray in Fig. 2.3 can handle this
requirement. Any array type can be packed, including dynamic arrays, queues and
associative arrays, which are explained in Sections 2.3 , 2.4 , and 2.5 .

 If you need to wait for a change in an array, you have to use a packed array.
Perhaps your testbench might need to wake up when a memory changes value, so
you want to use the @ operator. This is only legal with scalar values and packed
arrays. In Sample 2.18 you can block on the variables lw or barray[0] , but not the
entire array barray unless you expand it: @(barray[0] or barray[1] or
barray[2] or barray[3] or barray[4]) .

352.3 Dynamic Arrays

 2.3 Dynamic Arrays

 The basic Verilog array type shown so far is known as a fi xed-size array, as its size
is set at compile time. What if you do not know the size of the array until run time?
For example, you may want generate a random number of transactions at the start
of simulation. If you stored the transactions in a fi xed-size array, it would have to be
large enough to hold the maximum number of transactions, but would typically hold
far fewer, thus wasting memory. SystemVerilog provides a dynamic array that can
be allocated and resized during simulation so your simulation consumes a minimal
amount of memory.

 A dynamic array is declared with empty word subscripts [] . This means that you
do not specify the array size at compile time; instead, give it at run time. The array is
initially empty, so you must call the new[] constructor to allocate space, passing in
the number of entries in the square brackets. If you pass an array name to the new[]
constructor, the values are copied into the new elements, as shown in Sample 2.19 .

 Sample 2.19 Using dynamic arrays

 In Sample 2.19 , Line A calls new[5] to allocate 5 array elements. The dynamic
array dyn now holds 5 int’s . Line B sets the value of each element of the array to
its index value. Line C allocates another array and copies the contents of dyn into
it. Lines D and E show that the arrays dyn and d2 are separate. Line F allocates 20
new elements, and copies the existing 5 elements of dyn to the beginning of the
array. Then the old 5-element dyn array is deallocated. The result is that dyn points
to a 20-element array. The last call to new[] allocates 100 elements, but the existing
values are not copied. The old 20-element array is deallocated. Finally, line H
deletes the dyn array.

 The $size function returns the size of a fi xed or dynamic array. Dynamic arrays
have several built-in routines, such as delete and size .

 If you want to declare a constant array of values but do not want to bother counting
the number of elements, use a dynamic array with an array literal. In Sample 2.20
there are 9 mask elements of 8-bits each. You should let SystemVerilog count them,
rather than making a fi xed-size array and accidently choosing the wrong array size.

36 2 Data Types

 You can make assignments between fi xed-size and dynamic arrays as long as
they have the same base type such as int . You can assign a dynamic array to a fi xed
array as long as they have the same number of elements.

 When you copy a fi xed-size array to a dynamic array, SystemVerilog calls the
 new[] constructor to allocate space, and then copies the values.

 You can have multi-dimensional dynamic arrays, so long as you are careful when
constructing the sub-arrays. Remember, a multi-dimensional array in SystemVerilog
can be thought of as an array of other arrays. First you need to construct the left-
most dimension. Then construct the sub-arrays. In Sample 2.21 , each sub-array has
a different size.

 Sample 2.20 Using a dynamic array for an uncounted list

 Sample 2.21 Multi-dimensional dynamic array

 2.4 Queues

 SystemVerilog introduces a new data type, the queue, which combines the best of a
linked list and array. Like a linked list, you can add or remove elements anywhere
in a queue, without the performance hit of a dynamic array that has to allocate a new

372.4 Queues

array and copy the entire contents. Like an array, you can directly access any ele-
ment with an index, without linked list’s overhead of stepping through the preced-
ing elements.

 A queue is declared with word subscripts containing a dollar sign: [$] . The ele-
ments of a queue are numbered from 0 to $. Sample 2.22 shows how you can add
and remove values from a queue using methods. Note that queue literals only have
curly braces, and are missing the initial apostrophe of array literals.

 The SystemVerilog queue is similar to the Standard Template Library’s deque
data type. You create a queue by adding elements. SystemVerilog typically allocates
extra space so you can quickly insert additional elements. If you add enough ele-
ments that the queue runs out of that extra space, SystemVerilog automatically allo-
cates more. As a result, you can grow and shrink a queue without the performance
penalty of a dynamic array, and SystemVerilog keeps track of the free space for you.
Note that you never call the new[] constructor for a queue.

 Sample 2.22 Queue methods

 The LRM does not allow inserting a queue in another queue using the above
methods, though some simulators permit this.

 You can use word subscripts and concatenation instead of methods. As a short-
cut, if you put a $ on the left side of a range, such as [$:2] , the $ stands for the
minimum value, [0:2] . A $ on the right side, as in [1:$] , stands for the maximum
value, [1:2] , in fi rst line of the initial block of Sample 2.23 .

38 2 Data Types

 The queue elements are stored in contiguous locations, so it is effi cient to push
and pop elements from the front and back. This takes a fi xed amount of time no
matter how large the queue. Adding and deleting elements in the middle of a queue
requires shifting the existing data to make room. The time to do this grows linearly
with the size of the queue.

 You can copy the contents of a fi xed or dynamic array into a queue.

 2.5 Associative Arrays

 Dynamic arrays are good if you want to occasionally create a big array, but what if
you want something really large? Perhaps you are modeling a processor that has a
multi-gigabyte address range. During a typical test, the processor may only touch a
few hundred or thousand memory locations containing executable code and data, so
allocating and initializing gigabytes of storage is wasteful.

 SystemVerilog offers associative arrays that store entries in a sparse matrix. This
means that while you can address a very large address space, SystemVerilog only
allocates memory for an element when you write to it. In the following picture, the
associative array holds the values 0:3, 42, 1000, 4521, and 200,000. The memory
used to store these is far less than would be needed to store a fi xed or dynamic array
with 200,000 entries, as shown in Figure 2.4 .

 Sample 2.23 Queue operations

392.5 Associative Arrays

 An associative array can be stored by the simulator as a tree or hash table. This
additional overhead is acceptable when you need to store arrays with widely sepa-
rated index values, such as packets indexed with 32-bit addresses or 64-bit data
values. An associative array is declared with a data type in square brackets, such as
 [int]. or [Packet]. Sample 2.24 shows declaring, initializing, printing, and step-
ping through an associative array.

 Sample 2.24 Declaring, initializing, and using associative arrays

data

0…..3 42 1000 4521 200,000index

 Fig. 2.4 Associative array

 Sample 2.24 has the associative array, assoc, with very scattered elements: 1, 2,
4, 8, 16, etc. A simple for loop cannot step through them; you need to use a foreach
loop. If you want fi ner control, you can use the fi rst and next functions in a
 do…while loop. These functions modify the index argument, and return 0 or 1
depending on whether any elements are left in the array. You can fi nd the number of
elements in an associative array with the num or size functions.

 Associative arrays can also be addressed with a string index, similar to Perl’s
hash arrays. Sample 2.25 reads a fi le with strings and builds the associative array

40 2 Data Types

 switch so you can quickly map from a string value to a number. Strings are
explained in more detail in Section 2.15 .

 If you try to read an element of an associative array that has not been written,
SystemVerilog returns the default value for the array base type, such as 0 for 2-state
types such as bit or int , or X for 4-state types such as logic . The simulator may
also give a warning message. You can use the function exists() to check if an
element has been allocated, as shown in Sample 2.25 .

 Sample 2.25 Using an associative array with a string index

 You can initialize an associative array with the array literal with index:element
pairs as shown in Sample 2.26 . When you print the array with %p , the elements are
displayed in the same format.

412.6 Array Methods

 You can also declare an associative array with wildcard subscripts, as in wild[*].
However, this style is not recommended as you are allowing an index of almost any
data type. One of the many resulting problems is with foreach –loops: what type is
the variable j in foreach(wild[j])? Integer, string, bit, or logic?

 2.6 Array Methods

 There are many array methods that you can use on any unpacked array types: fi xed,
dynamic, queue, and associative. These routines can be as simple as giving the cur-
rent array size or as complex as sorting the elements. The parentheses are optional
if there are no arguments.

 2.6.1 Array Reduction Methods

 A basic array reduction method takes an array and reduces it to a single value, as
shown in Sample 2.27 . You can calculate the sum, product, or perform a logical
operation on all the elements.

 Sample 2.26 Initializing and printing associative arrays

 Sample 2.27 Array reduction operations

 Other array reduction methods are or , and xor .
 SystemVerilog does not have a method specifi cally for choosing a random ele-

ment from an array, so use the index $urandom_range(array.size()−1) for
queues and dynamic arrays, and $urandom_range($size(array)−1) for fi xed
arrays, queues, dynamic and associative arrays. See Section 6.10 for more informa-
tion on $urandom_range .

 If you need to choose a random element from an associative array, you need to step
through the elements one by one as there is no one-line way to access the N th element.
Sample 2.28 shows how to choose a random element from an associative array

42 2 Data Types

indexed by integers by fi rst picking a random number, then stepping through the array.
If the array was indexed by a string, just change the type of idx to string .

 Sample 2.29 Array locator methods: min, max, unique

 Sample 2.28 Picking a random element from an associative array

 2.6.2 Array Locator Methods

 What is the largest value in an array? Does an array contain a certain value? The
array locator methods fi nd data in an unpacked array. At fi rst you may wonder why
these return a queue of values. After all, there is only one maximum value in an
array. However, SystemVerilog needs a queue for the case when you ask for a value
from an empty queue or dynamic array.

 Sample 2.29 shows the array locator methods: min and max functions fi nd the
smallest and largest elements in an array. These methods also work for associative
arrays. The unique method returns a queue of the unique values from the array —
duplicate values are not included.

 You could search through an array using a foreach loop, but SystemVerilog can
do this in one operation with a locator method. The with expression tells
SystemVerilog how to perform the search, as shown in Sample 2.30 . These methods
return an empty queue if the value you are searching for does not exist in the array.

432.6 Array Methods

 In a with clause, the name item is called the iterator argument and represents a
single element of the array. You can specify your own name by putting it in the argu-
ment list of the array method as shown in Sample 2.31 .

 Sample 2.30 Array locator methods: fi nd

 Sample 2.31 Declaring the iterator argument

 Sample 2.32 Array locator methods

 Sample 2.32 shows various ways to total up a subset of the values in the array.
The fi rst line compares the item with 7. This relational returns a 1 (true) or 0 (false)
so the calculation is a sum of the array {1,0,1,0,0,0}. The second multiplies the bool-
ean result with the array element being tested. So the total is the sum of {9,0,8,0,0,0},
which is 17. The third calculates the total of elements less than 8. The fourth total is
computed using the ? : conditional operator. The last counts the number of 4’s.

 When you combine an array reduction such as sum using the with clause, the
results may surprise you. In Sample 2.32 , the sum operator totals the number of

44 2 Data Types

times that the expression is true. For the fi rst statement in Sample 2.32 , there are two
array elements that are greater than 7 (9 and 8) so count is set to 2.

 The array locator methods that return an index, such as fi nd_
index , return a queue of type int , not integer . Your code
may not compile if you use the wrong queue type with these
statements.

 Be careful of SystemVerilog’s rules for the width of operations.
Normally, if you were to add a set of single bit values, SystemVer-
ilog would make the calculations with enough precision not to
lose any bits. But the sum method uses the width of the array. So,

if you add the values of a single-bit array, the result is a single bit, which is probably
not what you expected. The solution is to use a with expression as shown in
Sample 2.33 .

 Sample 2.34 Sorting an array

 Sample 2.33 Creating the sum of an array of single bits

 2.6.3 Array Sorting and Ordering

 SystemVerilog has several methods for changing the order of elements in an array.
You can sort the elements, reverse their order, or shuffl e the order as shown in
Sample 2.34 . Notice that these change the original array, unlike the array locator
methods in Section 2.6.2 , which create a queue to hold the results.

452.6 Array Methods

 The reverse and shuffl e methods have no with -clause, so they work on the
entire array. Sample 2.35 shows how to sort a structure by sub-fi elds. Structures and
packed structures are explained in Section 2.9 .

 Sample 2.35 Sorting an array of structures

 Sample 2.36 A scoreboard with array methods

 Only fi xed and dynamic arrays, plus queues can be sorted, reversed, or shuffl ed.
Associative arrays can not be reordered.

 2.6.4 Building a Scoreboard with Array Locator Methods

 The array locator methods can be used to build a scoreboard. Sample 2.36 defi nes
the Packet structure, then creates a scoreboard made from a queue of these struc-
tures. Section 2.8 describes how to create structures with typedef .

46 2 Data Types

 The check_addr() function in Sample 2.36 looks up an address in the score-
board. The fi nd_index() method returns an int queue. If the queue is empty
(size==0), no match was found. If the queue has one member (size==1), a single
match was found, which the check_addr() function deletes. If the queue has mul-
tiple members (size > 1), there are multiple packets in the scoreboard whose address
matching the requested one.

 A better choice for storing packet information is a class, which is described in
 Chapter 5 . You can read more about structures in Section 2.9 .

 2.7 Choosing a Storage Type

 Here are some guidelines for choosing the right storage type based on fl exibility,
memory usage, speed, and sorting. These are just rules of thumb, and results may
vary between simulators.

 2.7.1 Flexibility

 Use a fi xed-size or dynamic array if it is accessed with consecutive positive integer
indices: 0, 1, 2, 3… Choose a fi xed-size array if the array size is known at compile
time, or choose a dynamic array if the size is not known until run time. For example,
variable-size packets can easily be stored in a dynamic array. If you are writing
routines to manipulate arrays, consider using just dynamic arrays, as one routine
can work with any size dynamic array as long as the element types match: int,
string , etc. Likewise, you can pass a queue of any size into a routine as long as the
element type matches the queue argument. Associative arrays can also be passed
regardless of size. However, a routine with a fi xed-size array argument only accepts
arrays of the specifi ed length.

 Choose associative arrays for nonstandard indices such as widely separated val-
ues because of random values or addresses. Associative arrays can also be used to
model content-addressable memories.

 Queues are a good way to store values when the number of elements grows and
shrinks a lot during simulation, such as a scoreboard that holds expected values.

 2.7.2 Memory Usage

 If you want to reduce the simulation memory usage, use 2-state elements. You
should choose data sizes that are multiples of 32 bits to avoid wasted space.
Simulators usually store anything smaller in a 32-bit word. For example, an array of
1024 bytes wastes ¾ of the memory if the simulator puts each element in a 32-bit
word. Packed arrays can also help conserve memory.

472.7 Choosing a Storage Type

 For arrays that hold up to a thousand elements, the type of array that you choose
does not make a big difference in memory usage (unless there are many instances of
these arrays). For arrays with a thousand to a million active elements, fi xed-size and
dynamic arrays are the most memory effi cient. You may want to reconsider your
algorithms if you need arrays with more than a million active elements.

 Queues are slightly less effi cient to access than fi xed-size or dynamic arrays
because of additional pointers. However, if your data set grows and shrinks often,
and you store it in a dynamic memory, you will have to manually call new[] to
allocate memory and copy. This is an expensive operation and would wipe out any
gains from using a dynamic memory.

 Modeling memories larger than a few megabytes should be done with an associa-
tive array. Note that each element in an associative array can take several times more
memory than a fi xed-size or dynamic memory because of pointer overhead.

 2.7.3 Speed

 Choose your array type based on how many times it is accessed per clock cycle. For
only a few reads and writes, you could use any type, as the overhead is minor com-
pared with the DUT. As you use an array more often, its size and type matters.

 Fixed-size and dynamic arrays are stored in contiguous memory, so any element
can be found in the same amount of time, regardless of array size.

 Queues have almost the same access time as a fi xed-size or dynamic array for
reads and writes. The fi rst and last elements can be pushed and popped with almost
no overhead. Inserting or removing elements in the middle requires many elements
to be shifted up or down to make room. If you need to insert new elements into a
large queue, your testbench may slow down, so consider changing how you store
new elements.

 When reading and writing associative arrays, the simulator must search for the
element in memory. The LRM does not specify how this is done, but popular ways
are hash tables and trees. These require more computation than other arrays, and
therefore associative arrays are the slowest.

 2.7.4 Data Access

 Since SystemVerilog can sort any single-dimension array (fi xed-size, dynamic, and
associative arrays plus queues), you should pick the array type based on how often
the values are added to it. If the values are received all at once, choose a fi xed-size
or dynamic array so that you only have to allocate the array once. If the data slowly
dribbles in, choose a queue, as adding new elements to the head or tail is very
effi cient.

 If you have unique and noncontiguous values, such as ¢ {1, 10, 11, 50} , you
can store them in an associative array by using them as an index. Using the routines

48 2 Data Types

 fi rst, next , and prev , you can search an associative array for a value and fi nd
successive values. Lists are doubly linked, so you can fi nd values both larger and
smaller than the current value. Both of these support removing a value. However,
the associative array is much faster in accessing any given element given an index.

 For example, you can use an associative array of bits to hold expected 32-bit
values. When the value is created, write to that location. When you need to see if a
given value has been written, use the exists function. When done with an element,
use delete to remove it from the associative array.

 2.7.5 Choosing the Best Data Structure

 Here are some suggestions on choosing a data structure.
 • Network packets . Properties: fi xed size, accessed sequentially. Use a fi xed-size or
dynamic array for fi xed- or variable-size packets.
 • Scoreboard of expected values . Properties: array size not known until run time,
accessed by value, and a constantly changing size. In general, use a queue, as you
are continually adding and deleting elements during simulation. If you can give
every transaction a fi xed ID, such as 1, 2, 3, …, you could use this as an index
into the queue. If your transaction is fi lled with random values, you can just push
them into a queue and search for unique values. If the scoreboard may have hun-
dreds of elements and you are often inserting and deleting them from the middle,
an associative array may be faster. If you model your transactions as objects, the
scoreboard can be a queue of handles. See Chapter 5 for more information of
classes.
 • Sorted structures . Use a queue if the data comes out in a predictable order or an
associative array if the order is unspecifi ed. If the scoreboard never needs to be
searched, just store the expected values in a mailbox as shown in Section 7.6.
 • Modeling very large memories, greater than a million entries . If you do not need
every location, use an associative array as a sparse memory. If you do plan on
accessing every location, try a different approach where you do not need so much
live data. Be sure to use 2-state values packed into 32-bits to conserve simulation
memory.
 • Command names or opcodes from a fi le . Property: translate a string to a fi xed
value. Read string from a fi le, and then look up the commands or opcodes in an
associative array using the command as a string index.

 2.8 Creating New Types with typedef

 You can create new types using the typedef statement. For example, you may have
an ALU that can be confi gured at compile time to use 8, 16, 24, or 32-bit operands.
In Verilog you would defi ne a macro for the operand width and another for the type
as shown in Sample 2.37 .

492.8 Creating New Types with typedef

 You are not really creating a new type; you are just performing text substitution.
In SystemVerilog you create a new type as shown in Sample 2.38 . This book uses
the convention that user-defi ned types use the suffi x “ _t ” except for the basic uint .

 Sample 2.37 User-defi ned type-macro in Verilog

 Sample 2.39 Defi nition of uint

 Sample 2.38 User-defi ned type in SystemVerilog

 In general, SystemVerilog lets you copy between these basic types with no warning,
either extending or truncating values if there is a width mismatch.

 Note that parameter and typedef statements can be put in a package so they
can be shared across the design and testbench, as shown in Section 2.10 .

 One of the most useful types you can create is an unsigned, 2-state,
32-bit integer as shown in Sample 2.39 . Most values in a testbench are
positive integers such as fi eld length or number of transactions
received, and so having a signed integer can cause problems. Put the
defi nition of uint in a package of common defi nitions so it can be
used anywhere.

 The syntax for defi ning a new array type is not obvious. You need to put the array
subscripts on the new name. Sample 2.40 creates a new type, fi xed_array5_t ,
a fi xed array with 5 elements. It then declares an array of this type and initializes it.

50 2 Data Types

 A good use for a user defi ned type is an associative array, which must be declared
with an index that is a simple type. You could change Sample 2.24 to use 64 bit
values by changing the fi rst line as shown in Sample 2.41 .

 Sample 2.40 User-defi ned array type

 Sample 2.42 Creating a single pixel type

 Sample 2.41 User-defi ned associative array index

 2.9 Creating User-Defi ned Structures

 One of the biggest limitations of Verilog is the lack of data structures. In SystemVer-
ilog you can create a structure using the struct statement, similar to what is avail-
able in C. However, a struct has just a subset of the functionality of a class, so use
a class instead for your testbenches, as shown in Chapter 5 . Just as a Verilog module
combines both data (signals) and code (always/initial blocks plus routines), a class
combines data and routines to make an entity that can be easily debugged and
reused. A struct just groups data fi elds together. Without the code that manipu-
lates the data, you are only creating half of the solution.

 Since a struct is just a collection of data, it can be synthesized. If you want to
model a complex data type, such as a pixel, in your design code, put it in a struct .
This can also be passed through module ports. Eventually, when you want to gener-
ate constrained random data, look to classes.

 2.9.1 Creating a Struct and a New Type

 You can combine several variables into a structure. Sample 2.42 creates a structure
called pixel that has three unsigned bytes for red, green, and blue.

512.9 Creating User-Defi ned Structures

 The problem with the preceding declaration is that it creates a single pixel of this
type. To be able to share pixels using ports and routines, you should create a new
type instead, as shown in Sample 2.43 .

 Sample 2.43 The pixel struct

 Sample 2.44 Initializing a struct

 Use the suffi x “ _s ” when declaring a struct . This makes it easier to spot user-
defi ned types, simplifying the process of sharing and reusing code.

 2.9.2 Initializing a Structure

 You can assign multiple values to a struct just like an array, either in the declaration
or in a procedural assignment. Just surround the values with an apostrophe and
braces, as shown in Sample 2.44 .

 2.9.3 Making a Union of Several Types

 In hardware, the interpretation of a set of bits in a register may depend on the value
of other bits. For example, a processor instruction may have many layouts based on
the opcode. Immediate-mode operands might store a literal value in the operand
fi eld. This value may be decoded differently for integer instructions than for fl oating
point instructions. Sample 2.45 stores both the unsigned bit vector b and the integer i
in the same location.

52 2 Data Types

 Use the suffi x “ _u ” when declaring a union.

 Unions are useful when you frequently need to read and write a
register in several different formats. However, don’t go overboard,
especially just to save memory. Unions may help squeeze a few
bytes out of a structure, but at the expense of having to create and
maintain a more complicated data structure. Instead, make a class
with a discriminant variable, as shown in Section 8.4.4. This “kind”

variable indicates which type of transaction you have, and thus which fi elds to read,
write, and randomize. If you just need an array of values, plus all the bits, use a
packed array as described Section in 2.2.6

 2.9.4 Packed Structures

 SystemVerilog allows you more control in how bits are laid out in memory by using
packed structures. A packed structure is stored as a contiguous set of bits with no
unused space. The struct for a pixel in Sample 2.43 has three values, so it is stored
in three longwords, even though it only needs three bytes. You can specify that it
should be packed into the smallest possible space with the packed keyword, as
shown in Sample 2.46 .

 Sample 2.45 Using typedef to create a union

 Sample 2.46 Packed structure

 Packed structures are used when the underlying bits represent a numerical value or
when you are trying to reduce memory usage. For example, you could pack together
several bit-fi elds to make a single register. Or you might pack together the opcode and
operand fi elds to make a value that contains an entire processor instruction.

 2.9.5 Choosing Between Packed and Unpacked Structures

 When you are trying to choose between packed and unpacked structures, consider
how the structure is most commonly used and the alignment of the elements. If you
plan on making aggregate operations on the structure, such as copying the entire
structure, a packed structure is more effi cient. However, if your code accesses
the individual members more than the entire structure, use an unpacked structure.
The difference in performance is greater if the elements are not aligned on byte

532.10 Packages

boundaries, have sizes that don’t match the typical byte, or have word instructions
used by processors. Reading and writing elements with odd sizes in a packed struc-
ture requires expensive shift and mask operations.

 2.10 Packages

 At the start of a project, you need to create new types and parameters. For example,
if your processor communicates with your company’s ABC bus, your testbench
needs to defi ne ABC data types, and parameters to specify the bus width and timing.
Another project may want to use these types, plus those for the XYZ bus.

 You could create separate fi les for each bus and use the 'include statement to
bring in the fi les during compilation. But then every name associated with each bus
must be unique, even those that are internal variables, never intended to be visible.
How can you organize these types to avoid name confl icts?

 The SystemVerilog package allows you to share declarations among modules,
packages, plus programs and interface, which are described in Chapter 4 . Sample
 2.47 shows the package for the ABC bus.

 Sample 2.48 Importing packages

 Sample 2.47 Package for ABC bus

 You import symbols from a package with the import statement. The compiler only
looks in imported packages when a symbol is not defi ned in the usual search path. In
Sample 2.48 , the fi rst import statement makes the symbols abc_data_width,
abc_data_t , and timeout visible if there is no local variable with the same name.
The variable message in ABC is hidden by the one in the module.

54 2 Data Types

 If you really want to see the message variable in ABC, use ABC:: message .
 You can import specifi c symbols from a package with the scope operator, ::.

Sample 2.49 imports all the symbols from ABC, plus just the timeout variable
from XYZ.

 Sample 2.49 Importing selected symbols from a package

 Packages can only see symbols defi ned inside themselves, or packages that they
import. You can not have hierarchical references to symbols such as signals, rou-
tines, or modules from outside the package. Think of a package as being completely
standalone, able to plug in where needed, with no outside dependencies.

 A package can contain routines, plus classes, as shown in Section 5.4.

 2.11 Type Conversion

 SystemVerilog has several rules to ensure that expressions are evaluated with little
or no loss of accuracy. For example, if you add two 8-bit values, the addition is done
with 9-bit precision to avoid overfl ow. Multiply two 8-bit values, and SystemVerilog
calculates a 16-bit result.

 The proliferation of data types in SystemVerilog means that you may need to
convert between them. If the layout of the bits between the source and destination
variables are the same, such as an integer and enumerated type, cast between the
two values. If the bit layouts differ, such as an array of bytes and words, use the
streaming operators to rearrange the bits as described in Section 2.12 .

 2.11.1 The Static Cast

 The static cast operation converts between two types with no checking of values.
You specify the destination type, an apostrophe, and the expression to be converted
as shown in Sample 2.50 . Note that Verilog has always implicitly converted between
types such as integer and real, and also between different width vectors.

552.12 Streaming Operators

 2.11.2 The Dynamic Cast

 The dynamic cast, $cast , allows you to check for out-of-bounds values. See Section
 2.13.3 for an explanation and example with enumerated types.

 Use a static cast when you want SystemVerilog to use a type with
more precision, like when using the sum method for a single bit
array. Use the dynamic cast when converting from a type with a
larger number of values than the destination, such as int to an enu-
merated variable.

 2.12 Streaming Operators

 When used on the right side of an assignment, the streaming operators << and >>
take an expression, structure, or array, and packs it into a stream of bits. The >>
operator streams data from left to right while << streams from right to left, as shown
in Sample 2.51 . You can also give a slice size, used to break up the source before
being streamed. You can not assign the bit stream result directly to an unpacked
array. Instead, use the streaming operators on the left side of an assignment to
unpack the bit stream into an unpacked array.

 Sample 2.51 Basic streaming operator

 Sample 2.50 Converting between int and real with static cast

56 2 Data Types

 You could do the same operations with many concatenation operators, {}, but
the streaming operators are more compact and easier to read.

 If you need to pack or unpack arrays, use the streaming operator to convert
between arrays of different element sizes. For instance, you can convert an array of
bytes to an array of words. You can use fi xed size arrays, dynamic arrays, and
queues. Sample 2.52 converts between queues, but would also work with dynamic
arrays. Array elements are automatically allocated as needed.

 Sample 2.52 Converting between queues with streaming operator

 A common mistake when streaming between arrays is mis-
matched array subscripts. The word subscript [256] in an array
declaration is equivalent to [0:255], not [255:0]. Since many
arrays are declared with the word subscripts [high:low],

streaming them to an array with the subscript [size] would result in the elements
ending up in reverse order. Likewise, streaming an unpacked array declared as bit
 [7:0] src[255:0] to the packed array declared as bit [7:0] [255:0] dst will
scramble the order of values. The correct declaration for a packed array of bytes is
 bit [255:0] [7:0] dst .

 You can also use the streaming operator to pack and unpack structures, such as
an ATM cell, into an array of bytes. In Sample 2.53 a structure is streamed into a
dynamic array of bytes, then the byte array is streamed back into the structure.

572.13 Enumerated Types

 2.13 Enumerated Types

 An enumerated type allows you to create a set of related but unique constants such
as states in a state machine or opcodes. In classic Verilog, you had to use text mac-
ros. Their global scope is too broad, and their value might not be visible in the
debugger. An enumeration creates a strongly typed variable that is limited to a set of
specifi ed names. For example, the names ADD, MOVE, or ROTW make your code
easier to write and maintain than if you had used literals such as 8 ' h01 or macros.
A weaker alternative for defi ning constants is a parameter. These are fi ne for indi-
vidual values, but an enumerated type automatically gives a unique value to every
name in the list.

 The simplest enumerated type declaration contains a list of constant names and
one or more variables as shown in Sample 2.54 . This creates an anonymous enumer-
ated type, but it cannot be used for any other variables than the ones in this
declaration.

 Sample 2.53 Converting between a structure and an array with streaming operators

 Sample 2.54 A simple enumerated type, not recommended

58 2 Data Types

 Use the suffi x “ _e ” when declaring an enumerated type name.

 2.13.1 Defi ning Enumerated Values

 The actual values default to int starting at 0 and then increase. You can choose your
own enumerated values. The code in Sample 2.56 uses the default value of 0 for
 INIT , then 2 for DECODE , and 3 for IDLE .

 Sample 2.55 Enumerated types, recommended style

 Sample 2.56 Specifying enumerated values

 Enumerated constants, such as INIT in Sample 2.56 , follow the same scoping
rules as variables. Consequently, if you use the same name in several enumerated
types (such as INIT in different state machines), they have to be declared in differ-
ent scopes such as modules, program blocks, packages, routines, or classes.

 It is recommended to create a named enumerated type so you can declare
multiple variables of the same type, especially if these are used as routine argu-
ments or module ports. You fi rst create the enumerated type, and then the vari-
ables of this type, as shown in Sample 2.55 . You can get the string representation
of an enumerated variable with the built-in function name() .

592.13 Enumerated Types

 An enumerated type is stored as int unless you specify other-
wise. Be careful when assigning values to enumerated constants,
as the default value of an int is 0. In Sample 2.57 , position is
initialized to 0, which is not a legal ordinal_e variable. This

behavior is not a tool bug – it is how the language is specifi ed. So always specify an
enumerated constant with the value of 0, as shown in Sample 2.58 , just to catch the
testbench error.

 Sample 2.57 Incorrectly specifying enumerated values

 Sample 2.58 Correctly specifying enumerated values

 2.13.2 Routines for Enumerated Types

 SystemVerilog provides several functions for stepping through enumerated types.

 • fi rst () returns the fi rst member of the enumeration.
 • last() returns the last member of the enumeration.
 • next() returns the next element of the enumeration.
 • next (N) returns the N th next element.
 • prev () returns the previous element of the enumeration.
 • prev(N) returns the N th previous element.

 The functions next and prev wrap around when they reach the beginning or end
of the enumeration.

 Note that there is no clean way to write a for loop that steps through all members
of an enumerated type if you use an enumerated loop variable. You get the starting
member with fi rst function and the next member with next. A for loop ends when
the loop variable is outside the defi ned bounds, but the next function always returns
a value inside the enumeration. If you use the test current!= current.last() ,
the loop ends before using the last value. If you use current<=current. last () , you
get an infi nite loop, as next never gives you a value that is greater than the fi nal
value. This is similar to trying to make a for loop that steps through the values 0..3
with an index declared as bit [1:0] . The loop never exits! You can get around this
limitation by either using an integer variable in the loop, or incrementing the
 enumerated variable, but both of these solutions can give illegal values if your
 enumerated values are not contigious, such as 1, 2, 3, 5, 8.

 You can use a do…while loop to step through all the values, checking when the
value wraps around, as shown in Sample 2.59 .

60 2 Data Types

 2.13.3 Converting to and from Enumerated Types

 The default type for an enumerated type is int (2-state). You can take the value of an
enumerated variable and assign it to a non-enumerated variable such as an int with
a simple assignment. SystemVerilog does not, however, let you store an integer value
in an enum without explicitly changing the type. Instead, it requires you to explicitly
cast the value to make you realize that you could be writing an out-of-bounds value.

 Sample 2.59 Stepping through all enumerated members

 Sample 2.60 Assignments between integers and enumerated types

 When called as a function as shown in Sample 2.60 , $cast() tried to assign
the right value to the left variable. If the assignment succeeds, $cast() returns 1.
If the assignment fails because of an out-of-bounds value, no assignment is made
and the function returns 0. If you use $cast() as a task and the operation fails,
SystemVerilog prints an error.

 You can also cast the value using the type ' (val) as shown in the example, but
this does not do any type checking, so the result may be out-of-bounds. For example,

612.15 Strings

after the static cast in Sample 2.60 , c2 has an out-of-bounds value. You should avoid
this style of casting with enumerated types.

 2.14 Constants

 There are several types of constants in SystemVerilog. The classic Verilog way to
create a constant is with a text macro. On the plus side, macros have global scope
and can be used for bit fi eld defi nitions and type defi nitions. On the negative side,
macros are global, so that they can cause confl icts if you just need a local constant.
Lastly, a macro requires the ` character so that it is recognized and expanded by the
compiler.

 A Verilog parameter was loosely typed and was limited in scope to a single
module. Verilog-2001 added typed parameters, but their limited scope kept param-
eters from being widely used. In SystemVerilog, parameters can be declared in a
package so they can be used across multiple modules. This approach can replace
most Verilog macros that were just being used as constants.

 SystemVerilog also supports the const modifi er that allows you to make a vari-
able that can be initialized in the declaration but not written by procedural code.

 Sample 2.61 Declaring a const variable

 In Sample 2.61 , the value of colon is initialized at run time, when the initial
block is entered. In the next chapter, Sample 3.11 shows a const routine argument.

 2.15 Strings

 If you have ever tried to use a Verilog reg variable to hold a string of characters,
your suffering is over. The SystemVerilog string type holds variable-length
strings. An individual character is of type byte . The elements of a string of length
 N are numbered 0 to N -1. Note that, unlike C, there is no null character at the end of
a string, and any attempt to use the character “\0” is ignored. Memory for strings is
dynamically allocated, so you do not have to worry about running out of space to
store the string.

 Sample 2.62 shows various string operations. The function getc (N) returns the
byte at location N , while toupper returns an upper-case copy of the string and
 tolower returns a lowercase copy. The curly braces {} are used for concatenation.
The task putc (M , C) writes a byte C into a string at location M , that must be between 0

62 2 Data Types

and the length as given by len . The substr(start,end) function extracts
 characters from location start to end .

 Sample 2.62 String methods

 Note how useful dynamic strings can be. In other languages such as C, you have
to keep making temporary strings to hold the result from a function. In Sample 2.62 ,
the $sformatf function is used instead of $sformat , from Verilog-2001. This new
function returns a formatted temporary string that, as shown above, can be passed
directly to another routine. This saves you from having to declare a temporary string
and passing it between the formatting statement and the routine call. The undocu-
mented function $psprintf has the same functionality as $sformatf , but is not in
the LRM, even though most vendors support this non-standard system function.

 There are two ways to compare strings, but they behave differ-
ently. The equality operator, s1==s2 , returns 1 if the strings are
identical, and 0 if they are not. The string comparison function,
 s1.compare(s2) , returns 1 if s1 is greater than s2, 0 if they are

equal, and −1 if s1 is less than s2. While this matches the ANSI C strcmp() behav-
ior, it may not be what you expect.

 2.16 Expression Width

 A prime source for unexpected behavior in Verilog has been the width of expres-
sions. Sample 2.63 adds 1+1 using four different styles. Addition A uses two 1-bit
variables, so with this precision 1+1=0. Addition B uses 8-bit precision because

632.17 Conclusion

there is an 8-bit variable on the left side of the assignment. In this case, 1+1=2.
Addition C uses a dummy constant to force SystemVerilog to use 2-bit precision.
Lastly, in addition D, the fi rst value is cast to be a 2-bit value with the cast operator,
so 1+1=2.

 Sample 2.63 Expression width depends on context

 There are several tricks you can use to avoid this problem. First, avoid situations
where the overfl ow is lost, as in addition A. Use a temporary, such as b8 , with the
desired width. Or, you can add another value to force the minimum precision, such
as 2 ' b0 . Lastly, in SystemVerilog, you can cast one of the variables to the desired
precision.

 2.17 Conclusion

 SystemVerilog provides many new data types and structures so that you can create
high-level testbenches without having to worry about the bit-level representation.
Queues work well for creating scoreboards for which you constantly need to add
and remove data. Dynamic arrays allow you to choose the array size at run time for
maximum testbench fl exibility. Associative arrays are used for sparse memories and
some scoreboards with a single index. Enumerated types make your code easier to
read and write by creating groups of named constants.

 Don’t go off and create a procedural testbench with just these constructs. Explore
the OOP capabilities of SystemVerilog in Chapter 5 to learn how to design code at
an even higher level of abstraction, thus creating robust and reusable code.

64 2 Data Types

 2.18 Exercises

 1. Given the following code sample:

 a. What is the range of values my_byte can take?
 b. What is the value of my_int in hex?
 c. What is the value of my_bit in decimal?
 d. What is the value of my_short_int1 in decimal?
 e. What is the value of my_short_int2 in decimal?

 2. Given the following code sample:

 Evaluate the following statements in the given order and give the result for
each assignment

 a. my_mem[2] = my_logicmem[4] ;
 b. my_logic = my_logicmem[4] ;
 c. my_logicmem[3] = my_mem[3] ;
 d. my_mem[3] = my_logic ;
 e. my_logic = my_logicmem[1] ;
 f. my_logic = my_mem[1] ;
 g. my_logic = my_logicmem[my_logicmem[41] ;

652.18 Exercises

 3. Write the SystemVerilog code to:

 a. Declare a 2-state array, my_array , that holds four 12-bit values
 b. Initialize my_array so that:

 * my_array[0] = 12 ' h012
 * my_array[1] = 12 ' h345
 * my_array[2] = 12 ' h678
 * my_array[3] = 12 ' h9AB

 c. Traverse my_array and print out bits [5:4] of each 12-bit element

 * With a for loop
 * With a foreach loop

 4. Declare a 5 by 31 multi-dimensional unpacked array, my_array1 . Each element
of the unpacked array holds a 4-state value.

 a. Which of the following assignment statements are legal and not out of bounds?

 * my_array1[4][30] = 1 ' b1 ;
 * my_array1[29][4] = 1 ' b1 ;
 * my_array1[4] = 32 ' b1 ;

 b. Draw my_array1 after the legal assignments complete.

 5. Declare a 5 by 31 multi-dimensional packed array, my_array2 . Each element of
the packed array holds a 2-state value.

 a. Which of the following assignment statements are legal and not out of bounds?

 * my_array2[4][30] = 1 ' b1 ;
 * my_array2[29][4] = 1 ' b1 ;
 * my_array2[3] = 32 ' b1 ;

 b. Draw my_array2 after the assignment statements complete.

 6. Given the following code, determine what will be displayed.

66 2 Data Types

 7. Write code for the following problems.

 a. Create memory using an associative array for a processor with a word width of
24 bits and an address space of 2 20 words. Assume the PC starts at address 0 at
reset. Program space starts at 0´400. The ISR is at the maximum address.

 b. Fill the memory with the following instructions:

 * 24 ' hA50400; // Jump to location 0´400 for the main code
 * 24 ' h123456; // Instruction 1 located at location 0´400
 * 24 ' h789ABC; // Instruction 2 located at location 0´401
 * 24 ' h0F1E2D; // ISR = Return from interrupt

 c. Print out the elements and the number of elements in the array.

 8. Create the SystemVerilog code for the following requirements

 a. Create a 3-byte queue and initialize it with 2, −1, and 127
 b. Print out the sum of the queue in the decimal radix
 c. Print out the min and max values in the queue
 d. Sort all values in the queue and print out the resulting queue
 e. Print out the index of any negative values in the queue
 f. Print out the positive values in the queue
 g. Reverse sort all values in the queue and print out the resulting queue

 9. Defi ne a user defi ned 7-bit type and encapsulate the fi elds of the following
packet in a structure using your new type. Lastly, assign the header to 7 ' h5A.

header datacmd crc

07 61314202127

 10. Create the SystemVerilog code for the following requirements

 a. Create a user-defi ned type, nibble, of 4 bits
 b. Create a real variable, r, and initialize it to 4.33
 c. Create a short int variable, i_pack
 d. Create an unpacked array, k, containing 4 elements of your user defi ned type

nibble and initialize it to 4 ' h0, 4 ' hF, 4 ' hE, and 4 ' hD
 e. Print out k
 f. Stream k into i_pack right to left on a bit basis and print it out
 g. Stream k into i_pack right to left on a nibble basis and print it out
 h. Type convert real r into a nibble, assign it to k[0], and print out k

672.18 Exercises

 11. An ALU has the opcodes shown in Table 2.1 .

 Write a testbench that performs the following tasks.

 a. Create an enumerated type of the opcodes: opcode_e
 b. Create a variable, opcode , of type opcode_e
 c. Loop through all the values of variable opcode every 10ns
 d. Instantiate an ALU with one 2-bit input opcode

 Table 2.1 ALU Opcodes

 Opcode Encoding

 Add: A + B 2 ' b00
 Sub: A − B 2 ' b01
 Bit-wise invert: A 2 ' b10
 Reduction Or: B 2 ' b11

http://www.springer.com/978-1-4614-0714-0

	Chapter 2: Data Types
	2.1 Built-In Data Types
	2.1.1 The Logic Type
	2.1.2 2-state Data Types

	2.2 Fixed-Size Arrays
	2.2.1 Declaring and initializing fixed-size arrays
	2.2.2 The Array Literal
	2.2.3 Basic array operations — for and foreach
	2.2.4 Basic array operations – copy and compare
	2.2.5 Bit and Array Subscripts, Together at last
	2.2.6 Packed arrays
	2.2.7 Packed Array Examples
	2.2.8 Choosing between packed and unpacked arrays

	2.3 Dynamic Arrays
	2.4 Queues
	2.5 Associative Arrays
	2.6 Array Methods
	2.6.1 Array reduction methods
	2.6.2 Array Locator Methods
	2.6.3 Array sorting and ordering
	2.6.4 Building a scoreboard with array locator methods

	2.7 Choosing a Storage Type
	2.7.1 Flexibility
	2.7.2 Memory usage
	2.7.3 Speed
	2.7.4 Data access
	2.7.5 Choosing the best data structure

	2.8 Creating New Types with typedef
	2.9 Creating User-Defined Structures
	2.9.1 Creating a struct and a new type
	2.9.2 Initializing a structure
	2.9.3 Making a union of several types
	2.9.4 Packed structures
	2.9.5 Choosing between packed and unpacked structures

	2.10 Packages
	2.11 Type Conversion
	2.11.1 The static cast
	2.11.2 The dynamic cast

	2.12 Streaming operators
	2.13 Enumerated Types
	2.13.1 Defining enumerated values
	2.13.2 Routines for enumerated types
	2.13.3 Converting to and from enumerated types

	2.14 Constants
	2.15 Strings
	2.16 Expression Width
	2.17 Conclusion
	2.18 Exercises

