
vii

         What is this Book About? 

 This book should be the fi rst one you read to learn the SystemVerilog verifi cation 
language constructs. It describes how the language works and includes many exam-
ples on how to build a basic coverage-driven, constrained-random, layered test-
bench using Object-Oriented Programming (OOP). The book has many guidelines 
on building testbenches, to help you understand how and why to use classes, 
randomization, and functional coverage. Once you have learned the language, pick 
up some of the methodology books listed in the References section for more infor-
mation on building a testbench.  

   Who Should Read this Book? 

 If you create testbenches, you need this book. If you have only written tests using 
Verilog or VHDL and want to learn SystemVerilog, this book shows you how to 
move up to the new language features. Vera and Specman users can learn how one 
language can be used for both design and verifi cation. You may have tried to read 
the SystemVerilog Language Reference Manual but found it loaded with syntax 
but no guidelines on which construct to choose. 

 Chris originally wrote this book because, like many of his customers, he spent 
much of his career using procedural languages such as C and Verilog to write tests, 
and had to relearn everything when OOP verifi cation languages came along. He made 
all the typical mistakes, and wrote this book so you won’t have to repeat them. 

 Before reading this book, you should be comfortable with Verilog-1995. You do 
not need to know about Verilog-2001 or SystemVerilog design constructs, or 
SystemVerilog Assertions in order to understand the concepts in this book.  

   Preface 



viii Preface

   What is New in the Third Edition? 

 This new edition of SystemVerilog for Verifi cation has many improvements over the 
fi rst two editions, written in 2006 and 2008, respectively.

   Our universities need to train future engineers in the art of verifi cation. This • 
edition is suitable for the academic environment, with exercise questions at the 
end of each chapter to test your understanding.  
  Qualifi ed instructors should visit   • http://extras.springer.com     for additional mate-
rials such as slides, tests, homework problems, solutions, and a sample syllabus 
suitable for a semester-long course.  
  The 2009 version of the IEEE 1800 SystemVerilog Language Reference Manual • 
(LRM) has many changes, both large and small. This book tries to include the 
latest relevant information.  
  Accellera created UVM (Universal Verifi cation Methodology) with ideas from • 
VMM (Verifi cation Methodology Manual), OVM (Open Verifi cation 
Methodology), eRM (e Reuse Methodology), and other methodologies. Many of 
the examples in this book are based on VMM because its explicit calling of phases 
is easier to understand if you are new to verifi cation. New examples are provided 
that show UVM concepts such as the test registry and confi guration database.  
  When looking for a specifi c topic, engineers read books backwards, starting with • 
the index, so we boosted the number of entries.  
  Lastly, a big thanks to all the readers who spotted mistakes in the previous • 
editions, from poor grammar to code that was obviously written on the morning 
after an 18-hour fl ight from Asia to Boston, or, even worse, changing a diaper. 
This edition has been checked and reviewed many times over, but once again, 
all mistakes are ours.     

   Why was SystemVerilog Created? 

 In the late 1990s, the Verilog Hardware Description Language (HDL) became the 
most widely used language for describing hardware for simulation and synthesis. 
However, the fi rst two versions standardized by the IEEE (1364-1995 and 1364-
2001) had only simple constructs for creating tests. As design sizes outgrew the 
verifi cation capabilities of the language, commercial Hardware Verifi cation 
Languages (HVLs) such as OpenVera and  e  were created. Companies that did not 
want to pay for these tools instead spent hundreds of man-years creating their own 
custom tools. 

 This productivity crisis, along with a similar one on the design side, led to the 
creation of Accellera, a consortium of EDA companies and users who wanted to 
create the next generation of Verilog. The donation of the OpenVera language 
formed the basis for the HVL features of SystemVerilog. Accellera’s goal was met 

http://extras.springer.com


ixPreface

in November 2005 with the adoption of the IEEE standard 1800-2005 for 
SystemVerilog, IEEE (2005). In December 2009, the latest Verilog LRM, 1364-
2005, was merged with the aforementioned 2005 SystemVerilog standard to create 
the IEEE standard 1800-2009 for SystemVerilog. Merging these two standards into 
a single one means there is now one language, SystemVerilog, for both design and 
verifi cation.  

   Importance of a Unifi ed Language 

 Verifi cation is generally viewed as a fundamentally different activity from design. 
This split has led to the development of narrowly focused languages for verifi cation 
and to the bifurcation of engineers into two largely independent disciplines. This 
specialization has created substantial bottlenecks in terms of communication 
between the two groups. SystemVerilog addresses this issue with its capabilities for 
both camps. Neither team has to give up any capabilities it needs to be successful, 
but the unifi cation of both syntax and semantics of design and verifi cation tools 
improves communication. For example, while a design engineer may not be able to 
write an object-oriented testbench environment, it is fairly straightforward to read 
such a test and understand what is happening, enabling both the design and verifi ca-
tion engineers to work together to identify and fi x problems. Likewise, a designer 
understands the inner workings of his or her block, and is the best person to write 
assertions about it, but a verifi cation engineer may have a broader view needed to 
create assertions between blocks. 

 Another advantage of including the design, testbench, and assertion constructs in 
a single language is that the testbench has easy access to all parts of the environment 
without requiring a specialized Application Programming Interface (API). The 
value of an HVL is its ability to create high-level, fl exible tests, not its loop con-
structs or declaration style. SystemVerilog is based on the Verilog, VHDL, and 
C/C++ constructs that engineers have used for decades.  

   Importance of Methodology 

 There is a difference between learning the syntax of a language and learning how to 
use a tool. This book focuses on techniques for verifi cation using constrained- 
random tests that use functional coverage to measure progress and direct the verifi -
cation. As the chapters unfold, language and methodology features are shown side 
by side. For more on methodology, see Bergeron et al. (2006). 

 The most valuable benefi t of SystemVerilog is that it allows the user to construct 
reliable, repeatable verifi cation environments, in a consistent syntax, that can be 
used across multiple projects.  



x Preface

   Overview of the Book 

 The SystemVerilog language includes features for design, verifi cation, assertions, 
and more. This book focuses on the constructs used to verify a design. There are 
many ways to solve a problem using SystemVerilog. This book explains the trade-
offs between alternative solutions. 

 Chapter 1,  Verifi cation Guidelines , presents verifi cation techniques to serve as 
a foundation for learning and using the SystemVerilog language. These guidelines 
emphasize coverage-driven random testing in a layered testbench environment. 

 Chapter 2,  Data Types , covers the new SystemVerilog data types such as arrays, 
structures, enumerated types, and packed arrays and structures. 

 Chapter 3,  Procedural Statements and Routines , shows the new procedural 
statements and improvements for tasks and functions. 

 Chapter 4,  Connecting the Testbench and Design , shows the new SystemVerilog 
verifi cation constructs, such as program blocks, interfaces, and clocking blocks, and 
how they are used to build your testbench and connect it to the design under test. 

 Chapter 5,  Basic OOP , is an introduction to Object-Oriented Programming, 
explaining how to build classes, construct objects, and use handles. 

 Chapter 6,  Randomization , shows you how to use SystemVerilog’s constrained-
random stimulus generation, including many techniques and examples. 

 Chapter 7,  Threads and Interprocess Communication , shows how to create 
multiple threads in your testbench, use interprocess communication to exchange 
data between these threads and synchronize them. 

 Chapter 8,  Advanced OOP and Testbench Guidelines , shows how to build a 
layered testbench with OOP so that the components can be shared by all tests. 

 Chapter 9,  Functional Coverage , explains the different types of coverage and 
how you can use functional coverage to measure your progress as you follow a 
verifi cation plan. 

 Chapter 10,  Advanced Interfaces , shows how to use virtual interfaces to sim-
plify your testbench code, connect to multiple design confi gurations, and create 
interfaces with procedural code so your testbench and design can work at a higher 
level of abstraction. 

 Chapter 11,  A Complete SystemVerilog Testbench , shows a constrained ran-
dom testbench using the guidelines shown in Chapter 8. Several tests are shown to 
demonstrate how you can easily extend the behavior of a testbench without editing 
the original code, which always carries risk of introducing new bugs. 

 Chapter 12,  Interfacing with C / C++ , describes how to connect your C or 
C++ Code to SystemVerilog using the Direct Programming Interface.  



xiPreface

   Icons used in this book     

   Table i.1    Book icons   

       The compass shows verifi cation methodology to guide 
your usage of SystemVerilog testbench features. 

       The bug shows common coding mistakes such as 
syntax errors, logic problems, or threading issues. 

   About the Authors 

 Chris Spear has been working in the ASIC design and verifi cation fi eld for 30 
years. He started his career with Digital Equipment Corporation (DEC) as a CAD 
Engineer on DECsim, connecting the fi rst Zycad box ever sold, and then a hard-
ware Verifi cation engineer for the VAX 8600, and a hardware behavioral simula-
tion accelerator. He then moved on to Cadence where he was an Application 
Engineer for Verilog-XL, followed a a stint at Viewlogic. Chris is currently 
employed at Synopsys Inc. as a Verifi cation Consultant, a title he created a dozen 
years ago. He has authored the fi rst and second editions of SystemVerilog for 
Verifi cation. Chris earned a BSEE from Cornell University in 1981. In his spare 
time, Chris enjoys road biking in the mountains and traveling with his wife. 

 Greg Tumbush has been designing and verifying ASICs and FPGAs for 13 
years. After working as a researcher in the Air Force Research Labs (AFRL) he 
moved to beautiful Colorado to work with Astek Corp as a Lead ASIC Design 
Engineer. He then began a 6 year career with Starkey Labs, AMI Semiconductor, 
and ON Semiconductor where he was an early adopter of SystemC and 
SystemVerilog. In 2008, Greg left ON Semiconductor to form Tumbush 
Enterprises, where he has been consulting clients in the areas of design, verifi ca-
tion, and backend to ensure fi rst pass success. He is also a 1/2 time Instructor at 
the University of Colorado, Colorado Springs where he teaches senior and gradu-
ate level digital design and verifi cation courses. He has numerous publications 
which can be viewed at    www.tumbush.com     . Greg earned a PhD from the 
University of Cincinnati in 1998.  

http://www.tumbush.com


xii Preface

   Final comments 

 If you would like more information on SystemVerilog and Verifi cation, you can fi nd 
many resources at:   http://chris.spear.net/systemverilog    . This site 
has the source code for many of the examples in this book. Academics who want to 
use this book in their classes can access slides, tests, homework problems, solutions, 
and a sample syllabus at   http://extras.springer.com     .

 Most of the code samples in the book were verifi ed with Synopsys’ Chronologic 
VCS, Mentor’s QuestaSim, and Cadence Incisive. Any errors were caused by Chris’ 
evil twin, Skippy. If you think you have found a mistake in this book, please check 
his web site for the Errata page. If you are the fi rst to fi nd a technical mistake in a 
chapter, we will send you a free, autographed book. Please include “SystemVerilog” 
in the subject line of your email.

Chris Spear 
Greg Tumbush

http://chris.spear.net/systemverilog
http://extras.springer.com


http://www.springer.com/978-1-4614-0714-0


