Preface

What is this Book About?

This book should be the first one you read to learn the SystemVerilog verification
language constructs. It describes how the language works and includes many exam-
ples on how to build a basic coverage-driven, constrained-random, layered test-
bench using Object-Oriented Programming (OOP). The book has many guidelines
on building testbenches, to help you understand how and why to use classes,
randomization, and functional coverage. Once you have learned the language, pick
up some of the methodology books listed in the References section for more infor-
mation on building a testbench.

Who Should Read this Book?

If you create testbenches, you need this book. If you have only written tests using
Verilog or VHDL and want to learn SystemVerilog, this book shows you how to
move up to the new language features. Vera and Specman users can learn how one
language can be used for both design and verification. You may have tried to read
the SystemVerilog Language Reference Manual but found it loaded with syntax
but no guidelines on which construct to choose.

Chris originally wrote this book because, like many of his customers, he spent
much of his career using procedural languages such as C and Verilog to write tests,
and had to relearn everything when OOP verification languages came along. He made
all the typical mistakes, and wrote this book so you won’t have to repeat them.

Before reading this book, you should be comfortable with Verilog-1995. You do
not need to know about Verilog-2001 or SystemVerilog design constructs, or
SystemVerilog Assertions in order to understand the concepts in this book.

vii

viii Preface
What is New in the Third Edition?

This new edition of SystemVerilog for Verification has many improvements over the
first two editions, written in 2006 and 2008, respectively.

e Our universities need to train future engineers in the art of verification. This
edition is suitable for the academic environment, with exercise questions at the
end of each chapter to test your understanding.

e Qualified instructors should visit http://extras.springer.com for additional mate-
rials such as slides, tests, homework problems, solutions, and a sample syllabus
suitable for a semester-long course.

e The 2009 version of the IEEE 1800 System Verilog Language Reference Manual
(LRM) has many changes, both large and small. This book tries to include the
latest relevant information.

e Accellera created UVM (Universal Verification Methodology) with ideas from
VMM (Verification Methodology Manual), OVM (Open Verification
Methodology), eRM (e Reuse Methodology), and other methodologies. Many of
the examples in this book are based on VMM because its explicit calling of phases
is easier to understand if you are new to verification. New examples are provided
that show UVM concepts such as the test registry and configuration database.

* When looking for a specific topic, engineers read books backwards, starting with
the index, so we boosted the number of entries.

e Lastly, a big thanks to all the readers who spotted mistakes in the previous
editions, from poor grammar to code that was obviously written on the morning
after an 18-hour flight from Asia to Boston, or, even worse, changing a diaper.
This edition has been checked and reviewed many times over, but once again,
all mistakes are ours.

Why was System Verilog Created?

In the late 1990s, the Verilog Hardware Description Language (HDL) became the
most widely used language for describing hardware for simulation and synthesis.
However, the first two versions standardized by the IEEE (1364-1995 and 1364-
2001) had only simple constructs for creating tests. As design sizes outgrew the
verification capabilities of the language, commercial Hardware Verification
Languages (HVLs) such as OpenVera and e were created. Companies that did not
want to pay for these tools instead spent hundreds of man-years creating their own
custom tools.

This productivity crisis, along with a similar one on the design side, led to the
creation of Accellera, a consortium of EDA companies and users who wanted to
create the next generation of Verilog. The donation of the OpenVera language
formed the basis for the HVL features of SystemVerilog. Accellera’s goal was met

http://extras.springer.com

Preface ix

in November 2005 with the adoption of the IEEE standard 1800-2005 for
SystemVerilog, IEEE (2005). In December 2009, the latest Verilog LRM, 1364-
2005, was merged with the aforementioned 2005 SystemVerilog standard to create
the IEEE standard 1800-2009 for SystemVerilog. Merging these two standards into
a single one means there is now one language, System Verilog, for both design and
verification.

Importance of a Unified Language

Verification is generally viewed as a fundamentally different activity from design.
This split has led to the development of narrowly focused languages for verification
and to the bifurcation of engineers into two largely independent disciplines. This
specialization has created substantial bottlenecks in terms of communication
between the two groups. System Verilog addresses this issue with its capabilities for
both camps. Neither team has to give up any capabilities it needs to be successful,
but the unification of both syntax and semantics of design and verification tools
improves communication. For example, while a design engineer may not be able to
write an object-oriented testbench environment, it is fairly straightforward to read
such a test and understand what is happening, enabling both the design and verifica-
tion engineers to work together to identify and fix problems. Likewise, a designer
understands the inner workings of his or her block, and is the best person to write
assertions about it, but a verification engineer may have a broader view needed to
create assertions between blocks.

Another advantage of including the design, testbench, and assertion constructs in
a single language is that the testbench has easy access to all parts of the environment
without requiring a specialized Application Programming Interface (API). The
value of an HVL is its ability to create high-level, flexible tests, not its loop con-
structs or declaration style. SystemVerilog is based on the Verilog, VHDL, and
C/C++ constructs that engineers have used for decades.

Importance of Methodology

There is a difference between learning the syntax of a language and learning how to
use a tool. This book focuses on techniques for verification using constrained-
random tests that use functional coverage to measure progress and direct the verifi-
cation. As the chapters unfold, language and methodology features are shown side
by side. For more on methodology, see Bergeron et al. (2006).

The most valuable benefit of SystemVerilog is that it allows the user to construct
reliable, repeatable verification environments, in a consistent syntax, that can be
used across multiple projects.

X Preface
Overview of the Book

The SystemVerilog language includes features for design, verification, assertions,
and more. This book focuses on the constructs used to verify a design. There are
many ways to solve a problem using SystemVerilog. This book explains the trade-
offs between alternative solutions.

Chapter 1, Verification Guidelines, presents verification techniques to serve as
a foundation for learning and using the SystemVerilog language. These guidelines
emphasize coverage-driven random testing in a layered testbench environment.

Chapter 2, Data Types, covers the new System Verilog data types such as arrays,
structures, enumerated types, and packed arrays and structures.

Chapter 3, Procedural Statements and Routines, shows the new procedural
statements and improvements for tasks and functions.

Chapter 4, Connecting the Testbench and Design, shows the new System Verilog
verification constructs, such as program blocks, interfaces, and clocking blocks, and
how they are used to build your testbench and connect it to the design under test.

Chapter 5, Basic OOP, is an introduction to Object-Oriented Programming,
explaining how to build classes, construct objects, and use handles.

Chapter 6, Randomization, shows you how to use SystemVerilog’s constrained-
random stimulus generation, including many techniques and examples.

Chapter 7, Threads and Interprocess Communication, shows how to create
multiple threads in your testbench, use interprocess communication to exchange
data between these threads and synchronize them.

Chapter 8, Advanced OOP and Testbench Guidelines, shows how to build a
layered testbench with OOP so that the components can be shared by all tests.

Chapter 9, Functional Coverage, explains the different types of coverage and
how you can use functional coverage to measure your progress as you follow a
verification plan.

Chapter 10, Advanced Interfaces, shows how to use virtual interfaces to sim-
plify your testbench code, connect to multiple design configurations, and create
interfaces with procedural code so your testbench and design can work at a higher
level of abstraction.

Chapter 11, A Complete SystemVerilog Testbench, shows a constrained ran-
dom testbench using the guidelines shown in Chapter 8. Several tests are shown to
demonstrate how you can easily extend the behavior of a testbench without editing
the original code, which always carries risk of introducing new bugs.

Chapter 12, Interfacing with C / C++, describes how to connect your C or
C++ Code to SystemVerilog using the Direct Programming Interface.

Preface xi

Icons used in this book

Table i.1 Book icons

‘ The compass shows verification methodology to guide
N, your usage of SystemVerilog testbench features.

—

The bug shows common coding mistakes such as
syntax errors, logic problems, or threading issues.

About the Authors

Chris Spear has been working in the ASIC design and verification field for 30
years. He started his career with Digital Equipment Corporation (DEC) as a CAD
Engineer on DECsim, connecting the first Zycad box ever sold, and then a hard-
ware Verification engineer for the VAX 8600, and a hardware behavioral simula-
tion accelerator. He then moved on to Cadence where he was an Application
Engineer for Verilog-XL, followed a a stint at Viewlogic. Chris is currently
employed at Synopsys Inc. as a Verification Consultant, a title he created a dozen
years ago. He has authored the first and second editions of SystemVerilog for
Verification. Chris earned a BSEE from Cornell University in 1981. In his spare
time, Chris enjoys road biking in the mountains and traveling with his wife.

Greg Tumbush has been designing and verifying ASICs and FPGAs for 13
years. After working as a researcher in the Air Force Research Labs (AFRL) he
moved to beautiful Colorado to work with Astek Corp as a Lead ASIC Design
Engineer. He then began a 6 year career with Starkey Labs, AMI Semiconductor,
and ON Semiconductor where he was an early adopter of SystemC and
SystemVerilog. In 2008, Greg left ON Semiconductor to form Tumbush
Enterprises, where he has been consulting clients in the areas of design, verifica-
tion, and backend to ensure first pass success. He is also a 1/2 time Instructor at
the University of Colorado, Colorado Springs where he teaches senior and gradu-
ate level digital design and verification courses. He has numerous publications
which can be viewed at www. tumbush.com. Greg earned a PhD from the
University of Cincinnati in 1998.

http://www.tumbush.com

Xii Preface

Final comments

If you would like more information on System Verilog and Verification, you can find
many resources at: http://chris. spear.net/systemverilog. This site
has the source code for many of the examples in this book. Academics who want to
use this book in their classes can access slides, tests, homework problems, solutions,
and a sample syllabus at http: //extras.springer.com.

Most of the code samples in the book were verified with Synopsys’ Chronologic
VCS, Mentor’s QuestaSim, and Cadence Incisive. Any errors were caused by Chris’
evil twin, Skippy. If you think you have found a mistake in this book, please check
his web site for the Errata page. If you are the first to find a technical mistake in a
chapter, we will send you a free, autographed book. Please include “System Verilog”
in the subject line of your email.

Chris Spear
Greg Tumbush

http://chris.spear.net/systemverilog
http://extras.springer.com

2 Springer
http://www.springer.com/978-1-4614-0714-0

Systemerilog for Verification

A Guide to Learning the Testbench Language Features
Spear, C.; Tumbush, G.

2012, XLV, 464 p., Hardcover

ISBEMN: 278-1-4614-0714-0

