Chapter 2
Data Types

SystemVerilog offers many improved data structures compared with Verilog. Some
of these were created for designers but are also useful for testbenches. In this chapter
you will learn about the data structures most useful for verification.
System Verilog introduces new data types with the following benefits.
¢ Two-state: better performance, reduced memory usage
* Queues, dynamic and associative arrays: reduced memory usage, built-in support
for searching and sorting
* Classes and structures: support for abstract data structures
* Unions and packed structures: allow multiple views of the same data
* Strings: built-in string support
* Enumerated types: code is easier to write and understand

2.1 Built-In Data Types

Verilog-1995 has two basic data types: variables and nets, both which hold 4-state
values: 0, 1, Z, and X. RTL code uses variables to store combinational and sequen-
tial values. Variables can be unsigned single or multi-bit (reg [7:0] m), signed
32-bit variables (integer), unsigned 64-bit variables (time), and floating point
numbers (real). Variables can be grouped together into arrays that have a fixed
size. A net is used to connect parts of a design such as gate primitives and module
instances. Nets come in many flavors, but most designers use scalar and vector
wires to connect together the ports of design blocks. Lastly, all storage is static,
meaning that all variables are alive for the entire simulation and routines cannot use
a stack to hold arguments and local values. Verilog-2001 allows you to switch
between static and dynamic storage, such as stacks.

SystemVerilog adds many new data types to help both hardware designers and
verification engineers.

C. Spear and G. Tumbush, SystemVerilog for Verification: A Guide to Learning 25
the Testbench Language Features, DOI 10.1007/978-1-4614-0715-7_2,
© Springer Science+Business Media, LLC 2012

26 2 Data Types
2.1.1 The Logic Type

The one thing in Verilog that always leaves new users scratching their heads is the
difference between a reg and a wire. When driving a port, which should you use?
How about when you are connecting blocks? SystemVerilog improves the classic
reg data type so that it can be driven by continuous assignments, gates, and mod-
ules, in addition to being a variable. It is given the synonym logic as some people
new to Verilog thought that reqg declared a digital register, and not a signal. A logic
signal can be used anywhere a net is used, except that a 1ogic variable cannot
be driven by multiple structural drivers, such as when you are modeling a bidirec-
tional bus. In this case, the variable needs to be a net type such as wire so that
SystemVerilog can resolve the multiple values to determine the final value.
Sample 2.1 shows the SystemVerilog 1ogic type.

Sample 2.1 Using the logic type

module logic data type(input logic rst h);
parameter CYCLE = 20;
logic q, g 1, 4, clk, rst 1;
initial begin

clk = 0; // Procedural assignment
forever #(CYCLE/2) clk = ~clk;
end
assign rst 1 = ~rst h; // Continuous assignment
not nl(qg 1, q); // 9 1 is driven by gate

my dff dl(q, d, clk, rst 1); // q is driven by module

endmodule
| You can use the logic type to find netlist bugs as this type can
Y, only have a single driver. Rather than trying to choose between
~= reg and wire, declare all your signals as 1ogic, and you’ll get a

compilation error if it has multiple drivers. Of course, any signal
that you do want to have multiple drivers, such as a bidirectional
bus, should be declared with a net type such as wire or tri.

2.1.2 2-State Data Types

SystemVerilog introduces several 2-state data types to improve simulator perfor-
mance and reduce memory usage, compared to variables declared as 4-state types.
The simplest type is the bit, which is always unsigned. There are four signed 2-state
types: byte, shortint, int, and longint. as shown in Sample 2.2.

2.2 Fixed-Size Arrays 27

Sample 2.2 Signed data types

bit b; // 2-state, single-bit
bit [31:0] b32; // 2-state, 32-bit unsigned integer
int unsigned ui; // 2-state, 32-bit unsigned integer

int i; // 2-state, 32-bit signed integer

byte b8; // 2-state, 8-bit signed integer

shortint s; // 2-state, 16-bit signed integer

longint 1; // 2-state, 64-bit signed integer

integer i4; // 4-state, 32-bit signed integer

time t; // 4-state, 64-bit unsigned integer

real r; // 2-state, double precision floating point

You might be tempted to use types such as byte to replace more
verbose declarations such as logic [7:0]. Hardware design-
ers should be careful as these new types are signed variables, so
a byte variable can only count up to 127, not the 255 you may
expect. (It has the range —128 to +127.) You could use byte unsigned, but that is
more verbose than just bit [7:0]. Signed variables can also cause unexpected
results with randomization, as discussed in Chapter 6.

| Be careful connecting 2-state variables to the design under test,

Y > especially its outputs. If the hardware tries to drive an X or Z, these

—~y values are converted to a 2-state value, and your testbench code

may never know. Don’t try to remember if they are converted to

0 or 1; instead, always check for propagation of unknown values.

Use the $isunknown () operator that returns 1 if any bit of the expression is X or Z,
as shown in Sample 2.3.

Sample 2.3 Checking for 4-state values

if ($isunknown (iport) == 1)
$display ("@%0t: 4-state value detected on iport %b",
$time, iport);

The format %0t and the argument $time print the current simulation time, for-
matted as specified with the $timeformat () routine. Time values are explored in
more detail in Section 3.7.

2.2 Fixed-Size Arrays

SystemVerilog offers several flavors of arrays beyond the single-dimension, fixed-
size Verilog-1995 arrays. Additionally, many new features have been added to sup-
port these data types.

28 2 Data Types
2.2.1 Declaring and Initializing Fixed-Size Arrays

Verilog requires that the low and high array limits must be given in the declaration.
Since almost all arrays use a low index of 0, SystemVerilog lets you use the shortcut
of just giving the array size, which is similar to C’s style, as shown in Sample 2.4.

Sample 2.4 Declaring fixed-size arrays

int lo hi[0:15]; // 16 ints [0]..[15]
int c_style[16]; // 16 ints [0]..[15]

How can you compute the number of bits needed to address a given array size?
SystemVerilog has the $clog2 () function that calculates the ceiling of log base 2,
as shown in Sample 2.5.

Sample 2.5 Calculating the address width for a memory

parameter int MEM SIZE = 256;

parameter int ADDR WIDTH = $clog2 (MEM SIZE); // $clog2(256) = 8
bit [15:0] mem[MEM SIZE];

bit [ADDR WIDTH-1:0] addr; // [7:0]

You can create multi-dimensional fixed-size arrays by specifying the dimensions
after the variable name. Sample 2.6 creates several two-dimensional arrays of inte-
gers, 8 entries by 4, and sets the last entry to 1. Multi-dimensional arrays were
introduced in Verilog-2001, but the compact declaration style is new.

Sample 2.6 Declaring and using multi-dimensional arrays

int array2 [0:7]1[0:3]; // Verbose declaration
int array3 [8]I[4]; // Compact declaration
array2[7]1[3] = 1; // Set last array element

If your code accidently tries to read from an out-of-bounds address, System-
Verilog will return the default value for the array element type. That just means
that an array of 4-state types, such as logic, will return X’s, whereas an array of
2-state types, such as int or bit, will return 0. This applies for all array types —
fixed, dynamic, associative, or queue, and also if your address has an X or Z. An
undriven net is Z.

Many SystemVerilog simulators store each element on a 32-bit word boundary.
So abyte, shortint, and int are all stored in a single word, whereas a 1ongint
is stored in two words.

An unpacked array, such as the one shown in Sample 2.7, stores the values in the
lower portion of the word, whereas the upper bits are unused. The array of bytes,
b _unpack, is stored in three words, as shown in Fig. 2.1.

2.2 Fixed-Size Arrays 29

Sample 2.7 Unpacked array declarations

bit [7:0] b_unpack[3]; // Unpacked

b_unpack[0]| | | |[7]6]5]4]3][2]1]0]
b_unpack (11 UNUSEd Space ILI[EENN)
b_unpack[2]| | | |[7]6]5]4]3][2]1]0]

Fig. 2.1 Unpacked array storage

Packed arrays are explained in Section 2.2.6.
Simulators generally store 4-state types such as logic and integer in two or
more consecutive words, using twice the storage as 2-state variables.

2.2.2 The Array Literal

Sample 2.8 shows how to initialize an array using an array literal, which is an apos-
trophe followed by the values in curly braces. (This is not the accent grave used for
compiler directives and macros.) You can set some or all elements at once. You can
replicate values by putting a count before the curly braces.

Sample 2.8 Initializing an array

initial begin
static int ascend([4] = '{0,1,2,3}; // Initialize 4 elements
int descend[5];

descend = '{4,3,2,1,0}; // Set 5 elements

descend[0:2] = '{7,6,5}; // Set just first 3 elements

ascend = '{4{8}}; // Four values of 8

ascend = '{default:42}; // All elements are set to 42
end

Notice that in Sample 2.8, the declaration of the array ascend includes an initial
value. The 2009 LRM states that these variables must be declared either in a static
block, or have the static keyword. Since this book recommends always declaring
your test modules and programs as automatic, you need to add the static key-
word to a declaration plus initialization when it is inside an initial block.

A great new feature in the 2009 LRM is printing with the $p format specifier.
This prints an assignment pattern that is equivalent to the data object’s value. You can
print any data type in SystemVerilog including arrays, structures, classes, and more.
Sample 2.9 shows how to print an array with the %p format specifier.

30 2 Data Types

Sample 2.9 Printing with %p print specifier

initial begin

ascend = '{0,1,2,3};

$display ("%p", ascend); // ‘{0, 1, 2, 3}

ascend = '{4{8}};

$display ("%p", ascend); // ‘{8, 8, 8, 8}
end

2.2.3 Basic Array Operations — for and Foreach

The most common way to manipulate an array is with a for or foreach loop. In
Sample 2.10, the variable i is declared local to the for loop. The SystemVerilog
function $size returns the size of the array. In the foreach loop, you specify the
array name and an index in square brackets, and SystemVerilog automatically steps
through all the elements of the array. The index variable is automatically declared
for you and is local to the loop.

Sample 2.10 Using arrays with for- and foreach loops

initial begin
bit [31:0] src[5], dstl[5];
for (int i=0; i<$size(src); i++)
src[i] = 1i; // Initialize src array
foreach (dst[j]l)
dst[j] = srclj] * 2; // Set dst array to 2 * src
end

Note that in Sample 2.11, the syntax of the foreach loop for multi-dimensional
arrays may not be what you expected. Instead of listing each subscript in separate
square brackets, [1] [j], they are combined with a comma: [1i,7].

Sample 2.11 Initialize and step through a multi-dimensional array

int md[21[3] = '{'{0,1,2}, '{3,4,5}};
initial begin
$display("Initial value:");
foreach (md[i,jl) // Yes, this is the right syntax
$display ("md [%0d] [%$0d] = %0d4", i, j, md[il [j]1):

$display ("New value:");
// Replicate last 3 values of 5
md = '{'{9, 8, 7}, '{3{5}}};
foreach (md[i,jl) // Yes, this is the right syntax
$display ("md[%0d] [%0d] = %0d", i, j, md[i] [j]1);
end

The output from Sample 2.11 is shown in Sample 2.12.

2.2 Fixed-Size Arrays 31

Sample 2.12 Output from printing multi-dimensional array values

Initial value:
md[0] [0] = O

md[0] [1] =
md[0] [2] =
md[1] [0] =
md[1] [1] =
md[1] [2] =
New value:
md[0] [0] =
md[0] [1] =
md[0] [2] =
md[1] [0] =
md[1] [1] =
md[1] [2] =

(6, I PV SR

Ul Ul U1 0V

You can omit some dimensions in the foreach loop if you don’t need to step
through all of them. Sample 2.13 prints a two-dimensional array in a rectangle.
It steps through the first dimension in the outer loop, and then through the second
dimension in the inner loop.

Sample 2.13 Printing a multi-dimensional array

initial begin
byte twoDI[4] [6];
foreach(twoD[i,3j])
twoD [1] [j] = i*10+3;

foreach (twoD[i]) begin // Step through first dim.
$write("%2d:", 1i);
foreach (twoD[,j]) // Step through second
$write ("%3d", twoDI[i] [j]);
$display;
end
end

Sample 2.13 produces the output shown in Sample 2.14.

Sample 2.14 Output from printing multi-dimensional array values

0 0 1 2 3 4 5
1: 10 11 12 13 14 15
2: 20 21 22 23 24 25
3: 30 31 32 33 34 35

Lastly, a foreach loop iterates using the ranges in the original declaration. The
array f£[5] is equivalent to £[0:41, and a foreach (£[1i]) is equivalent to for
(int i=0;i<=4; i++). With the array rev [6:2], the statement foreach (rev[i]) is
equivalent to for (int i=6; i>=2; i--).

32 2 Data Types
2.2.4 Basic Array Operations — Copy and Compare

You can perform aggregate compare and copy of arrays without loops. (An aggregate
operation works on the entire array as opposed to working on just an individual
element.) Comparisons are limited to just equality and inequality. Sample 2.15 shows
several examples of compares. The ? : conditional operator is a mini i f-else state-
ment. In Sample 2.15, it is used to choose between two strings. The final compare
uses an array slice, src[1:4], which creates a temporary array with 4 elements.

Sample 2.15 Array copy and compare operations
initial begin

bit [31:0] srcl5]
dst [5]

{0,1,2,3,4},
*{5,4,3,2,1};

// Aggregate compare the two arrays
if (src==dst)

$display("src == dst");
else

$display("src != dst");

// Aggregate copy all src values to dst
dst = src;

// Change just one element
src[0] = 5;

// Are all values equal (no!)
$display("src %s dst", (src == dst) ? "==" : "I=");

// Use array slice to compare elements 1-4 (they are equal)
$display("src[l:4] %s dst[l:4]",
(src[l:4] == dst[1l:4]) ? "==" : "i=");
end

A copy between fixed arrays of different sizes causes a compile error. You can
not perform aggregate arithmetic such as addition or subtraction on arrays, for
example, a =b + c. Instead, use foreach loops. For logical operations such as xor,
you have to either use a loop or use packed arrays as described in Section 2.2.6.

2.2.5 Bit and Array Subscripts, Together at Last

A common annoyance in Verilog-1995 is that you cannot use array and bit sub-
scripts together. Verilog-2001 removes this restriction for fixed-size arrays. Sample
2.16 prints the first array element (binary 101), its lowest bit (1), and the next two
higher bits (binary 10).

2.2 Fixed-Size Arrays 33

Sample 2.16 Using word and bit subscripts together

initial begin

bit [31:0] srcl[5] = '{5{5}};
$displayb(src[0],, // 'bl01 or 'd5
src[0] [0],, // 'bl
src[0] [2:1]); // 'blo
end

Although this change is not new to SystemVerilog, many users may not
know about this useful improvement in Verilog-2001. FYI - a double comma in a
$display statement inserts a space.

2.2.6 Packed Arrays

For some data types, you may want both to access the entire value and also to divide
it into smaller elements. For example, you may have a 32-bit register that sometimes
you want to treat as four 8-bit values and at other times as a single, unsigned value.
A SystemVerilog packed array is treated as both an array and a single value. It is
stored as a contiguous set of bits with no unused space, unlike an unpacked array.

2.2.7 Packed Array Examples

The packed bit and array dimensions are specified as part of the type, before the
variable name. These dimensions must be specified in the [msb:1sb] format, not
[size]. Sample 2.17 shows the variable bytes, a packed array of four bytes that
are stored in a single 32-bit word as shown in Fig. 2.2.

Sample 2.17 Packed array declaration and usage

bit [3:0] [7:0] bytes; // 4 bytes packed into 32-bits
bytes = 32'hCAFE_DADA;
$displayh (bytes,, // Show all 32-bits
bytes[3],, // Most significant byte "CA™"
bytes[31[7]1); // Most significant bit "1" of "CA"

bytes[3]

bytes [7]6]5]4a[3]2[1]o)[7]6]5]4]3]2]1]0][7]6]5]a]3]2]1]0][7]6]5]4]3]2]1]0]
-r'

bytes[3][7]

Fig. 2.2 Packed array layout

34 2 Data Types

You can mix packed and unpacked dimensions. You may want to make an array
that represents a memory that can be accessed as bits, bytes, or longwords. Sample
2.18 shows barray, an unpacked array of five packed elements, each four bytes
wide, which are stored in memory as shown in Fig. 2.3.

Sample 2.18 Declaration for a mixed packed/unpacked array

bit [3:0] [7:0] barray [5]; // 5 elements: packed 4-bytes
bit [31:0] 1w = 32'h0123 4567; // Word
bit [7:0] [3:0] nibbles; // Packed array of nibbles

barray[0] = 1lw;

barray[0] [3] = 8'h01l;

barray[0] [1]1[6] = 1'bl;

nibbles = barrayl[2]; // Copy packed values

barray[0] [3] barray[0][1][6]

barray[0] [7]6]5[4[3]2][1]o][7]6]5]4]3][2]1]0] 7|fl5 4]3]2]1]o][7]6]5]4]3]2]1]0
barray[1] [7]6]5]4]3]2]1]o][7]6]5]4]3][2]1]o][7]6]5]4]3]2]1]o][7]6]5]4]3]2]1]0]
barray[2] [7]6[s[4[3[2[1]o][7[6[5]4[3[2[1]o[|7]6[5]4[3[2[1]0]l7]6[5]4]3]2]1]0]
barray[3] [7]6[5[4]3]2][1]o][7]6]5]4]3]2][1]o][7]6]5]4[3][2]1]o][7]6]5]4]3]2]1]0]

barray[4] [7]6]s]4]3]2]1]o][7]6]5]4[3]2]1]o] [2]¢]s]4[5]2]1]o][7]6]5]4[3]2]1]o]

Fig. 2.3 Packed array bit layout

With a single subscript, you get a word of data, barray [0].With two subscripts,
you get a byte of data, barray[0] [3]. With three subscripts, you can access a
single bit, barray[0] [1] [6]. Because one dimension is specified after the name,
barray[5], that dimension is unpacked, so you must always give at least one
subscript.

The last line of Sample 2.18 copies between two packed arrays. Since the under-
lying values are just bits, you can copy even if the arrays have different dimensions.

2.2.8 Choosing Between Packed and Unpacked Arrays

Which should you choose — a packed or an unpacked array? A packed array is
handy if you need to convert to and from scalars. For example, you might need to
reference a memory as a byte or as a word. The barray in Fig. 2.3 can handle this
requirement. Any array type can be packed, including dynamic arrays, queues and
associative arrays, which are explained in Sections 2.3, 2.4, and 2.5.

If you need to wait for a change in an array, you have to use a packed array.
Perhaps your testbench might need to wake up when a memory changes value, so
you want to use the @ operator. This is only legal with scalar values and packed
arrays. In Sample 2.18 you can block on the variables 1w or barray[0], but not the
entire array barray unless you expand it: @ (barray[0] or barray[l] or
barray[2] or barray[3] or barray[4]).

2.3 Dynamic Arrays 35
2.3 Dynamic Arrays

The basic Verilog array type shown so far is known as a fixed-size array, as its size
is set at compile time. What if you do not know the size of the array until run time?
For example, you may want generate a random number of transactions at the start
of simulation. If you stored the transactions in a fixed-size array, it would have to be
large enough to hold the maximum number of transactions, but would typically hold
far fewer, thus wasting memory. SystemVerilog provides a dynamic array that can
be allocated and resized during simulation so your simulation consumes a minimal
amount of memory.

A dynamic array is declared with empty word subscripts []. This means that you
do not specify the array size at compile time; instead, give it at run time. The array is
initially empty, so you must call the new [] constructor to allocate space, passing in
the number of entries in the square brackets. If you pass an array name to the new []
constructor, the values are copied into the new elements, as shown in Sample 2.19.

Sample 2.19 Using dynamic arrays

int dynl[]l, d2[]; // Declare dynamic arrays

initial begin

dyn = newl[5]; // A: Allocate 5 elements
foreach (dynl[jl) dynl[jl = j; // B: Initialize the elements
d2 = dyn; // C: Copy a dynamic array
d2[0] = 5; // D: Modify the copy
$display(dyn[0],d2[0]); // E: See both values (0 & 5)
dyn = new[20] (dyn) ; // F: Allocate 20 ints & copy
dyn = new[100]; // G: Allocate 100 new ints

// 0ld values are lost
dyn.delete(); // H: Delete all elements

end

In Sample 2.19, Line A calls new[5] to allocate 5 array elements. The dynamic
array dyn now holds 5 int’s. Line B sets the value of each element of the array to
its index value. Line C allocates another array and copies the contents of dyn into
it. Lines D and E show that the arrays dyn and d2 are separate. Line F allocates 20
new elements, and copies the existing 5 elements of dyn to the beginning of the
array. Then the old 5-element dyn array is deallocated. The result is that dyn points
to a 20-element array. The last call to new [] allocates 100 elements, but the existing
values are not copied. The old 20-element array is deallocated. Finally, line H
deletes the dyn array.

The $size function returns the size of a fixed or dynamic array. Dynamic arrays
have several built-in routines, such as delete and size.

If you want to declare a constant array of values but do not want to bother counting
the number of elements, use a dynamic array with an array literal. In Sample 2.20
there are 9 mask elements of 8-bits each. You should let SystemVerilog count them,
rather than making a fixed-size array and accidently choosing the wrong array size.

36 2 Data Types

Sample 2.20 Using a dynamic array for an uncounted list

bit [7:0] mask[] = '{8'b0000_0000, 8'b0000_0001,
8'b0000_0011, 8'b0000_0111,
8'b0000_1111, 8'b0001_1111,
8'b0011 1111, 8'b0111 1111,
8'b1111 1111};

You can make assignments between fixed-size and dynamic arrays as long as
they have the same base type such as int. You can assign a dynamic array to a fixed
array as long as they have the same number of elements.

When you copy a fixed-size array to a dynamic array, SystemVerilog calls the
new [] constructor to allocate space, and then copies the values.

You can have multi-dimensional dynamic arrays, so long as you are careful when
constructing the sub-arrays. Remember, a multi-dimensional array in System Verilog
can be thought of as an array of other arrays. First you need to construct the left-
most dimension. Then construct the sub-arrays. In Sample 2.21, each sub-array has
a different size.

Sample 2.21 Multi-dimensional dynamic array

// A dynamic array of dynamic arrays
int d[]1I[1;

initial begin
// Construct the first or left-most dimension
d = newl[4];

// Construct the 2nd dimension, each array a different size
foreach(d[i])
d[i] = new[i+1];

// Initialize the elements. d[4][2] = 42;
foreach(d[i,jl)
dlil [J] = i*10 + jJ;
end

2.4 Queues

System Verilog introduces a new data type, the queue, which combines the best of a
linked list and array. Like a linked list, you can add or remove elements anywhere
in a queue, without the performance hit of a dynamic array that has to allocate a new

2.4 Queues 37

array and copy the entire contents. Like an array, you can directly access any ele-
ment with an index, without linked list’s overhead of stepping through the preced-
ing elements.

A queue is declared with word subscripts containing a dollar sign: [$]. The ele-
ments of a queue are numbered from 0 to $. Sample 2.22 shows how you can add
and remove values from a queue using methods. Note that queue literals only have
curly braces, and are missing the initial apostrophe of array literals.

The SystemVerilog queue is similar to the Standard Template Library’s deque
data type. You create a queue by adding elements. SystemVerilog typically allocates
extra space so you can quickly insert additional elements. If you add enough ele-
ments that the queue runs out of that extra space, System Verilog automatically allo-
cates more. As a result, you can grow and shrink a queue without the performance
penalty of a dynamic array, and System Verilog keeps track of the free space for you.
Note that you never call the new [] constructor for a queue.

Sample 2.22 Queue methods

int §j = 1,
q2[$] = {3,4}, // Queue literals do not use '
qlsl = {0,2,3}; // {0,2,3}
initial begin
g.insert (1, j); // {0,1,2,3} Insert j before ele #1
g.delete(1); // {0,2,3} Delete element #1

// These operations are fast

g.push front(6); // {6,0,2,3} 1Insert at front
j = g.pop_back; // {6,0,2} j =3
g.push back(8); // {6,0,2,8} 1Insert at back
j = qg.pop_ front; // {0,2,8} j=6
foreach (qlil])
$display(qlil); // Print entire queue
g.delete(); /7 {} Delete queue
end

The LRM does not allow inserting a queue in another queue using the above
methods, though some simulators permit this.

You can use word subscripts and concatenation instead of methods. As a short-
cut, if you put a $ on the left side of a range, such as [$:2], the $ stands for the
minimum value, [0:2]. A $ on the right side, asin [1:$], stands for the maximum
value, [1:2], in first line of the initial block of Sample 2.23.

38 2 Data Types

Sample 2.23 Queue operations

int j = 1,

q2[$] = {3,4}, // Queue literals do not use '
qls$l = {0,2,5}; // {0,2,5}
initial begin // Result
q = {qlol, j, ql1l:$1}; // {0,1,2,5} Insert 1 before 2
q = {ql0:2]1, q2, ql3:%$1}; // {0,1,2,3,4,5} Insert queue in gq
q = {qlol, ql2:%81}; // {0,2,3,4,5} Delete elem. #1

// These operations are fast

q = {6, a}; // {6,0,2,3,4,5} Insert at front
j = ql$l; // 3 =5 pop_back

q = ql0:5-1]1; // {6,0,2,3,4} equivalent
q = {a, 8}; // {6,0,2,3,4,8} Insert at back
j = ql0l; // 3 =6 pop_front

q = qll:8]; // {0,2,3,4,8} equivalent
qa = {}; /7 {} Delete contents

end

The queue elements are stored in contiguous locations, so it is efficient to push
and pop elements from the front and back. This takes a fixed amount of time no
matter how large the queue. Adding and deleting elements in the middle of a queue
requires shifting the existing data to make room. The time to do this grows linearly
with the size of the queue.

You can copy the contents of a fixed or dynamic array into a queue.

2.5 Associative Arrays

Dynamic arrays are good if you want to occasionally create a big array, but what if
you want something really large? Perhaps you are modeling a processor that has a
multi-gigabyte address range. During a typical test, the processor may only touch a
few hundred or thousand memory locations containing executable code and data, so
allocating and initializing gigabytes of storage is wasteful.

System Verilog offers associative arrays that store entries in a sparse matrix. This
means that while you can address a very large address space, SystemVerilog only
allocates memory for an element when you write to it. In the following picture, the
associative array holds the values 0:3, 42, 1000, 4521, and 200,000. The memory
used to store these is far less than would be needed to store a fixed or dynamic array
with 200,000 entries, as shown in Figure 2.4.

2.5 Associative Arrays 39

« Il 1 B i

index 0.....3 42 1000 4521 200,000

Fig. 2.4 Associative array

An associative array can be stored by the simulator as a tree or hash table. This
additional overhead is acceptable when you need to store arrays with widely sepa-
rated index values, such as packets indexed with 32-bit addresses or 64-bit data
values. An associative array is declared with a data type in square brackets, such as
[int].or [Packet]. Sample 2.24 shows declaring, initializing, printing, and step-
ping through an associative array.

Sample 2.24 Declaring, initializing, and using associative arrays

byte assoc[bytel]l, idx = 1;
initial begin
// Initialize widely scattered values
do begin
assoc[idx] = idx;
idx = idx << 1;
end while (idx != 0);

// Step through all index values with foreach
foreach (assoc[i])
$display("assoc[%h] = %h", i, assoc[il]);

// Step through all index values with functions
if (assoc.first(idx)) // Get first index
do
$display("assoc([%$h] =%h", idx, assoc[idx]);
while (assoc.next(idx)); // Get next index

// Find and delete the first element

void! (assoc.first (idx));

void' (assoc.delete(idx));

$display ("The array now has %0d elements", assoc.num());
end

Sample 2.24 has the associative array, assoc, with very scattered elements: 1, 2,
4,8, 16, etc. A simple for loop cannot step through them; youneed touse a foreach
loop. If you want finer control, you can use the first and next functions in a
do..while loop. These functions modify the index argument, and return O or 1
depending on whether any elements are left in the array. You can find the number of
elements in an associative array with the num or size functions.

Associative arrays can also be addressed with a string index, similar to Perl’s
hash arrays. Sample 2.25 reads a file with strings and builds the associative array

40 2 Data Types

switch so you can quickly map from a string value to a number. Strings are
explained in more detail in Section 2.15.

If you try to read an element of an associative array that has not been written,
SystemVerilog returns the default value for the array base type, such as 0 for 2-state
types such as bit or int, or X for 4-state types such as 1ogic. The simulator may
also give a warning message. You can use the function exists () to check if an
element has been allocated, as shown in Sample 2.25.

Sample 2.25 Using an associative array with a string index

/* Input file contains:
42 min address
1492 max address

*/

int switchl[string], min address, max address, i, file;
initial begin
string s;
file = $fopen("switch.txt", "r");
while (! $feof(file)) begin
$fscanf (file, "%d %s", i, s);
switch[s] = i;
end
$fclose(file);

// Get the min address
// If string not found, use default value of 0 for int array
min address = switch["min address"];

// Get the max address.
// Use 1000 if max address does not exist
if (switch.exists("max address"))

max address = switch["max address"];
else

max_address = 1000;

// Print all switches
foreach (switchl[s])
$display("switch['%$s']=%0d", s, switchl[s]);
end

You can initialize an associative array with the array literal with index:element
pairs as shown in Sample 2.26. When you print the array with %p, the elements are
displayed in the same format.

2.6 Array Methods 41

Sample 2.26 Initializing and printing associative arrays

int power of 2[int] = '{0:1, 1:2, 2:4};
initial begin
for (int i=3; i<5; i++)
power of 2[i] = 1 << i;
$display("%p", power of 2); // '{0:1, 1:2, 2:4, 3:8, 4:16}
end

You can also declare an associative array with wildcard subscripts, as in wild[*].
However, this style is not recommended as you are allowing an index of almost any
data type. One of the many resulting problems is with foreach—loops: what type is
the variable j in foreach (wild[j]) 2 Integer, string, bit, or logic?

2.6 Array Methods

There are many array methods that you can use on any unpacked array types: fixed,
dynamic, queue, and associative. These routines can be as simple as giving the cur-
rent array size or as complex as sorting the elements. The parentheses are optional
if there are no arguments.

2.6.1 Array Reduction Methods

A basic array reduction method takes an array and reduces it to a single value, as
shown in Sample 2.27. You can calculate the sum, product, or perform a logical
operation on all the elements.

Sample 2.27 Array reduction operations

byte bl$] = {2, 3, 4, 5};

int w;

w = b.sum(); // 14 =2 + 3 + 4+ 5

w = b.product(); // 120 = 2 * 3 * 4 * 5

w = b.and(); // 0000 0000 = 2 & 3 & 4 & 5

Other array reduction methods are or, and xor.

SystemVerilog does not have a method specifically for choosing a random ele-
ment from an array, so use the index $urandom range (array.size()-1) for
queues and dynamic arrays, and Surandom_range ($size (array)-1) for fixed
arrays, queues, dynamic and associative arrays. See Section 6.10 for more informa-
tion on $urandom range.

If you need to choose a random element from an associative array, you need to step
through the elements one by one as there is no one-line way to access the Nth element.
Sample 2.28 shows how to choose a random element from an associative array

42 2 Data Types

indexed by integers by first picking a random number, then stepping through the array.
If the array was indexed by a string, just change the type of idx to string.

Sample 2.28 Picking a random element from an associative array

// Declare and initialize associative array with 7 elements
int aalint] = *{0:1, 5:2, 10:4, 15:8, 20:16, 25:32, 30:64};
int idx, element, count;

element = $urandom range(aa.size()-1);
foreach(aalil)
if (count++ == element) begin
idx = i; // Save the associative array index
break; // and quit
end

$display("element#%0d aa[%0d4] = %04",
element, idx, aalidx]):;

2.6.2 Array Locator Methods

What is the largest value in an array? Does an array contain a certain value? The
array locator methods find data in an unpacked array. At first you may wonder why
these return a queue of values. After all, there is only one maximum value in an
array. However, System Verilog needs a queue for the case when you ask for a value
from an empty queue or dynamic array.

Sample 2.29 shows the array locator methods: min and max functions find the
smallest and largest elements in an array. These methods also work for associative
arrays. The unique method returns a queue of the unique values from the array —
duplicate values are not included.

Sample 2.29 Array locator methods: min, max, unique

int £[6] = '{1,6,2,6,8,6}; // Fixed-size array
int d[1 = '{2,4,6,8,10}; // Dynamic array
int ql$] = {1,3,5,7}, // Queue
tals]; // Temporary queue for result
tq = q.min(); // {1}
tg = d.max(); // {10}
tqg = f.unique(); // {1,6,2,8}

You could search through an array using a foreach loop, but SystemVerilog can
do this in one operation with a locator method. The with expression tells
System Verilog how to perform the search, as shown in Sample 2.30. These methods
return an empty queue if the value you are searching for does not exist in the array.

2.6 Array Methods 43

Sample 2.30 Array locator methods: find

int 4[] = '{9,1,8,3,4,4}, tql$l;

// Find all elements greater than 3
tg = d.find with (item > 3); // {9.8,4,4}
// Equivalent code
tg.delete() ;
foreach (dI[il)
if (d[i]l > 3)
tg.push back(d[il);

tg = d.find index with (item > 3); // {0,2,4,5}

tq = d.find first with (item > 99); // {} - none found
tqg = d.find first index with (item==8); // {2} d[2]1=8

tqg = d.find last with (item==4); // {4}

tg = d.find last index with (item==4); // {5} dI[51=4

In a with clause, the name item is called the iterator argument and represents a
single element of the array. You can specify your own name by putting it in the argu-
ment list of the array method as shown in Sample 2.31.

Sample 2.31 Declaring the iterator argument

tqg = d.find first with (item==4); // These

tg = d.find first() with (item==4); // are

tqg = d.find first(item) with (item==4); // all

tq = d.find first(x) with (x==4); // equivalent

Sample 2.32 shows various ways to total up a subset of the values in the array.
The first line compares the item with 7. This relational returns a 1 (true) or O (false)
so the calculation is a sum of the array {1,0,1,0,0,0}. The second multiplies the bool-
ean result with the array element being tested. So the total is the sum of {9,0,8,0,0,0},
which is 17. The third calculates the total of elements less than 8. The fourth total is
computed using the ? : conditional operator. The last counts the number of 4’s.

Sample 2.32 Array locator methods

int count, total, dIll = '{9,1,8,3,4,4};

count = d.sum(x) with (x > 7); // 2=sum{1,0,1,0,0,0}
total = d.sum(x) with ((x > 7) * x); // 17=sum{9,0,8,0,0,0}
count = d.sum(x) with (x < 8); // 4=sum{0,1,0,1,1,1}
total = d.sum(x) with (x < 8 ? x : 0); // 12=sum{0,1,0,3,4,4}
count = d.sum(x) with (x == 4); // 2=sum{0,0,0,0,1,1}

When you combine an array reduction such as sum using the with clause, the
results may surprise you. In Sample 2.32, the sum operator totals the number of

44 2 Data Types

times that the expression is true. For the first statement in Sample 2.32, there are two
array elements that are greater than 7 (9 and 8) so count is set to 2.

The array locator methods that return an index, such as find_
index, return a queue of type int, not integer. Your code
may not compile if you use the wrong queue type with these
statements.

Be careful of SystemVerilog’s rules for the width of operations.

Normally, if you were to add a set of single bit values, System Ver-

ilog would make the calculations with enough precision not to

lose any bits. But the sum method uses the width of the array. So,
if you add the values of a single-bit array, the result is a single bit, which is probably
not what you expected. The solution is to use a with expression as shown in
Sample 2.33.

Sample 2.33 Creating the sum of an array of single bits

bit onel6]; // Array of single bits
int total;

initial begin
foreach (onel[il)
onel[i] = i; // onel[i] gets 0 or 1

// Compute the single-bit sum
total = one.sum(); // total = 1 = (0+1+0+1+0+1) & 1

// Compute with 32-bit signed arithimetic
total = one.sum() with (int' (item)); // total = 3
end

2.6.3 Array Sorting and Ordering

SystemVerilog has several methods for changing the order of elements in an array.
You can sort the elements, reverse their order, or shuffle the order as shown in
Sample 2.34. Notice that these change the original array, unlike the array locator
methods in Section 2.6.2, which create a queue to hold the results.

Sample 2.34 Sorting an array

int 4[] = {9,1,8,3,4
d.reverse(); // '{4,4,3,8,1
d.sort(); // *{1,3,4,4,8,
d.rsort(); // '{9,8,4,4,3
d.shuffle(); // '{9,4,3,8,1

2.6 Array Methods 45

The reverse and shuffle methods have no with-clause, so they work on the
entire array. Sample 2.35 shows how to sort a structure by sub-fields. Structures and
packed structures are explained in Section 2.9.

Sample 2.35 Sorting an array of structures

struct packed { bit [7:0] r, g, b; } cll;
c = '{'{r:7, g:4, b:9}, '{r:3, g:2, b:9}, '{r:5, g:2, b:l}};

c.sort with (item.r); // sort using r only
// "{*{r:3, g:2, b:9}, *{r:5, g:2, b:1}, "{r:7, g:4, b:9}}

c.sort(x) with ({x.g, x.b}); // Sort g first, then b
// "{"{r:5, g:2, b:1}, *{r:3, g:2, b:9}, '{r:7, g:4, b:9}}

Only fixed and dynamic arrays, plus queues can be sorted, reversed, or shuffled.
Associative arrays can not be reordered.

2.6.4 Building a Scoreboard with Array Locator Methods

The array locator methods can be used to build a scoreboard. Sample 2.36 defines
the Packet structure, then creates a scoreboard made from a queue of these struc-
tures. Section 2.8 describes how to create structures with typedef.

Sample 2.36 A scoreboard with array methods

typedef struct packed
{bit [7:0] addr;
bit [7:0] pr;
bit [15:0] data; } Packet;

Packet scb[$];

function void check addr(bit [7:0] addr);
int intql$];

intqg = scb.find index() with (item.addr == addr);
case (intqg.size())
0: $display("Addr %h not found in scoreboard", addr);
1l: scb.delete(intg[0]);
default:
$display ("ERROR: Multiple hits for addr %$h", addr);

endcase

endfunction : check addr

46 2 Data Types

The check addr () function in Sample 2.36 looks up an address in the score-
board. The find index () method returns an int queue. If the queue is empty
(size==0), no match was found. If the queue has one member (size==1), a single
match was found, which the check addr () function deletes. If the queue has mul-
tiple members (size > 1), there are multiple packets in the scoreboard whose address
matching the requested one.

A better choice for storing packet information is a class, which is described in
Chapter 5. You can read more about structures in Section 2.9.

2.7 Choosing a Storage Type

Here are some guidelines for choosing the right storage type based on flexibility,
memory usage, speed, and sorting. These are just rules of thumb, and results may
vary between simulators.

2.7.1 Flexibility

Use a fixed-size or dynamic array if it is accessed with consecutive positive integer
indices: 0, 1, 2, 3... Choose a fixed-size array if the array size is known at compile
time, or choose a dynamic array if the size is not known until run time. For example,
variable-size packets can easily be stored in a dynamic array. If you are writing
routines to manipulate arrays, consider using just dynamic arrays, as one routine
can work with any size dynamic array as long as the element types match: int,
string, etc. Likewise, you can pass a queue of any size into a routine as long as the
element type matches the queue argument. Associative arrays can also be passed
regardless of size. However, a routine with a fixed-size array argument only accepts
arrays of the specified length.

Choose associative arrays for nonstandard indices such as widely separated val-
ues because of random values or addresses. Associative arrays can also be used to
model content-addressable memories.

Queues are a good way to store values when the number of elements grows and
shrinks a lot during simulation, such as a scoreboard that holds expected values.

2.7.2 Memory Usage

If you want to reduce the simulation memory usage, use 2-state elements. You
should choose data sizes that are multiples of 32 bits to avoid wasted space.
Simulators usually store anything smaller in a 32-bit word. For example, an array of
1024 bytes wastes 3% of the memory if the simulator puts each element in a 32-bit
word. Packed arrays can also help conserve memory.

2.7 Choosing a Storage Type 47

For arrays that hold up to a thousand elements, the type of array that you choose
does not make a big difference in memory usage (unless there are many instances of
these arrays). For arrays with a thousand to a million active elements, fixed-size and
dynamic arrays are the most memory efficient. You may want to reconsider your
algorithms if you need arrays with more than a million active elements.

Queues are slightly less efficient to access than fixed-size or dynamic arrays
because of additional pointers. However, if your data set grows and shrinks often,
and you store it in a dynamic memory, you will have to manually call new[] to
allocate memory and copy. This is an expensive operation and would wipe out any
gains from using a dynamic memory.

Modeling memories larger than a few megabytes should be done with an associa-
tive array. Note that each element in an associative array can take several times more
memory than a fixed-size or dynamic memory because of pointer overhead.

2.7.3 Speed

Choose your array type based on how many times it is accessed per clock cycle. For
only a few reads and writes, you could use any type, as the overhead is minor com-
pared with the DUT. As you use an array more often, its size and type matters.

Fixed-size and dynamic arrays are stored in contiguous memory, so any element
can be found in the same amount of time, regardless of array size.

Queues have almost the same access time as a fixed-size or dynamic array for
reads and writes. The first and last elements can be pushed and popped with almost
no overhead. Inserting or removing elements in the middle requires many elements
to be shifted up or down to make room. If you need to insert new elements into a
large queue, your testbench may slow down, so consider changing how you store
new elements.

When reading and writing associative arrays, the simulator must search for the
element in memory. The LRM does not specify how this is done, but popular ways
are hash tables and trees. These require more computation than other arrays, and
therefore associative arrays are the slowest.

2.7.4 Data Access

Since SystemVerilog can sort any single-dimension array (fixed-size, dynamic, and
associative arrays plus queues), you should pick the array type based on how often
the values are added to it. If the values are received all at once, choose a fixed-size
or dynamic array so that you only have to allocate the array once. If the data slowly
dribbles in, choose a queue, as adding new elements to the head or tail is very
efficient.

If you have unique and noncontiguous values, such as "{1, 10, 11, 50}, you
can store them in an associative array by using them as an index. Using the routines

48 2 Data Types

first, next, and prev, you can search an associative array for a value and find
successive values. Lists are doubly linked, so you can find values both larger and
smaller than the current value. Both of these support removing a value. However,
the associative array is much faster in accessing any given element given an index.

For example, you can use an associative array of bits to hold expected 32-bit
values. When the value is created, write to that location. When you need to see if a
given value has been written, use the exists function. When done with an element,
use delete to remove it from the associative array.

2.7.5 Choosing the Best Data Structure

Here are some suggestions on choosing a data structure.

» Network packets. Properties: fixed size, accessed sequentially. Use a fixed-size or
dynamic array for fixed- or variable-size packets.

* Scoreboard of expected values. Properties: array size not known until run time,
accessed by value, and a constantly changing size. In general, use a queue, as you
are continually adding and deleting elements during simulation. If you can give
every transaction a fixed ID, such as 1, 2, 3, ..., you could use this as an index
into the queue. If your transaction is filled with random values, you can just push
them into a queue and search for unique values. If the scoreboard may have hun-
dreds of elements and you are often inserting and deleting them from the middle,
an associative array may be faster. If you model your transactions as objects, the
scoreboard can be a queue of handles. See Chapter 5 for more information of
classes.

» Sorted structures. Use a queue if the data comes out in a predictable order or an
associative array if the order is unspecified. If the scoreboard never needs to be
searched, just store the expected values in a mailbox as shown in Section 7.6.

* Modeling very large memories, greater than a million entries. If you do not need
every location, use an associative array as a sparse memory. If you do plan on
accessing every location, try a different approach where you do not need so much
live data. Be sure to use 2-state values packed into 32-bits to conserve simulation
memory.

* Command names or opcodes from a file. Property: translate a string to a fixed
value. Read string from a file, and then look up the commands or opcodes in an
associative array using the command as a string index.

2.8 Creating New Types with typedef

You can create new types using the typedef statement. For example, you may have
an ALU that can be configured at compile time to use 8, 16, 24, or 32-bit operands.
In Verilog you would define a macro for the operand width and another for the type
as shown in Sample 2.37.

2.8 Creating New Types with typedef 49

Sample 2.37 User-defined type-macro in Verilog

// 0l1ld Verilog style
“define OPSIZE 8
“define OPREG reg [OPSIZE-1:0]

“OPREG op a, op b;

You are not really creating a new type; you are just performing text substitution.
In SystemVerilog you create a new type as shown in Sample 2.38. This book uses
the convention that user-defined types use the suffix “_t” except for the basic uint.

Sample 2.38 User-defined type in SystemVerilog

// New SystemVerilog style
parameter OPSIZE = 8;
typedef logic [OPSIZE-1:0] opreg t;

opreg t op a, op b;

In general, System Verilog lets you copy between these basic types with no warning,
either extending or truncating values if there is a width mismatch.

Note that parameter and typedef statements can be put in a package so they
can be shared across the design and testbench, as shown in Section 2.10.

One of the most useful types you can create is an unsigned, 2-state,
32-bit integer as shown in Sample 2.39. Most values in a testbench are
positive integers such as field length or number of transactions
received, and so having a signed integer can cause problems. Put the
definition of uint in a package of common definitions so it can be
used anywhere.

Sample 2.39 Definition of uint

typedef bit [31:0] uint; // 32-bit unsigned 2-state
typedef int unsigned uint; // Equivalent definition

The syntax for defining a new array type is not obvious. You need to put the array
subscripts on the new name. Sample 2.40 creates a new type, fixed array5 t,
a fixed array with 5 elements. It then declares an array of this type and initializes it.

50 2 Data Types

Sample 2.40 User-defined array type

typedef int fixed array5 tI[5];
fixed array5 t £5; // Equivalent to "int £5[5]1"

initial begin
foreach (£5[i])
£5[i] = i;
end

A good use for a user defined type is an associative array, which must be declared
with an index that is a simple type. You could change Sample 2.24 to use 64 bit
values by changing the first line as shown in Sample 2.41.

Sample 2.41 User-defined associative array index

typedef bit[63:0] bit64 t;
bit64 t assoc[bit64 t], idx = 1;

2.9 Creating User-Defined Structures

One of the biggest limitations of Verilog is the lack of data structures. In System Ver-
ilog you can create a structure using the struct statement, similar to what is avail-
able in C. However, a struct has just a subset of the functionality of a class, so use
a class instead for your testbenches, as shown in Chapter 5. Just as a Verilog module
combines both data (signals) and code (always/initial blocks plus routines), a class
combines data and routines to make an entity that can be easily debugged and
reused. A struct just groups data fields together. Without the code that manipu-
lates the data, you are only creating half of the solution.

Since a struct is just a collection of data, it can be synthesized. If you want to
model a complex data type, such as a pixel, in your design code, putitina struct.
This can also be passed through module ports. Eventually, when you want to gener-
ate constrained random data, look to classes.

2.9.1 Creating a Structand a New Type

You can combine several variables into a structure. Sample 2.42 creates a structure
called pixel that has three unsigned bytes for red, green, and blue.

Sample 2.42 Creating a single pixel type

struct {bit [7:0] r, g, b;} pixel;

2.9 Creating User-Defined Structures 51

The problem with the preceding declaration is that it creates a single pixel of this
type. To be able to share pixels using ports and routines, you should create a new
type instead, as shown in Sample 2.43.

Sample 2.43 The pixel struct

typedef struct {bit [7:0] r, g, b;} pixel s;
pixel s my pixel;

Use the suffix “ s” when declaring a struct. This makes it easier to spot user-
defined types, simplifying the process of sharing and reusing code.

2.9.2 Initializing a Structure

You can assign multiple values to a struct just like an array, either in the declaration
or in a procedural assignment. Just surround the values with an apostrophe and
braces, as shown in Sample 2.44.

Sample 2.44 Initializing a struct
initial begin
typedef struct {int a;
byte b;
shortint c;
int d;} my struct s;
my struct s st = '{32'haaaa_aaaa,
8'hbb,
16 'hccec,
32'hdddd_dddd};

$display("str = %$x %x %x %x ", st.a, st.b, st.c, st.d);
end

2.9.3 Making a Union of Several Types

In hardware, the interpretation of a set of bits in a register may depend on the value
of other bits. For example, a processor instruction may have many layouts based on
the opcode. Immediate-mode operands might store a literal value in the operand
field. This value may be decoded differently for integer instructions than for floating
point instructions. Sample 2.45 stores both the unsigned bit vector b and the integer i
in the same location.

52 2 Data Types

Sample 2.45 Using typedef to create a union

typedef union { bit [31:0] b; int i; } num u;
num u un;
un.i = -1; // set value using signed integer

Use the suffix “ u” when declaring a union.

| Unions are useful when you frequently need to read and write a

N, . register in several different formats. However, don’t go overboard,

=l especially just to save memory. Unions may help squeeze a few

bytes out of a structure, but at the expense of having to create and

maintain a more complicated data structure. Instead, make a class

with a discriminant variable, as shown in Section 8.4.4. This “kind”

variable indicates which type of transaction you have, and thus which fields to read,

write, and randomize. If you just need an array of values, plus all the bits, use a
packed array as described Section in 2.2.6

2.9.4 Packed Structures

SystemVerilog allows you more control in how bits are laid out in memory by using
packed structures. A packed structure is stored as a contiguous set of bits with no
unused space. The st ruct for a pixel in Sample 2.43 has three values, so it is stored
in three longwords, even though it only needs three bytes. You can specify that it
should be packed into the smallest possible space with the packed keyword, as
shown in Sample 2.46.

Sample 2.46 Packed structure

typedef struct packed {bit [7:0] r, g, b;} pixel p s;
pixel p s my pixel;

Packed structures are used when the underlying bits represent a numerical value or
when you are trying to reduce memory usage. For example, you could pack together
several bit-fields to make a single register. Or you might pack together the opcode and
operand fields to make a value that contains an entire processor instruction.

2.9.5 Choosing Between Packed and Unpacked Structures

When you are trying to choose between packed and unpacked structures, consider
how the structure is most commonly used and the alignment of the elements. If you
plan on making aggregate operations on the structure, such as copying the entire
structure, a packed structure is more efficient. However, if your code accesses
the individual members more than the entire structure, use an unpacked structure.
The difference in performance is greater if the elements are not aligned on byte

2.10 Packages 53

boundaries, have sizes that don’t match the typical byte, or have word instructions
used by processors. Reading and writing elements with odd sizes in a packed struc-
ture requires expensive shift and mask operations.

2.10 Packages

At the start of a project, you need to create new types and parameters. For example,
if your processor communicates with your company’s ABC bus, your testbench
needs to define ABC data types, and parameters to specify the bus width and timing.
Another project may want to use these types, plus those for the XYZ bus.

You could create separate files for each bus and use the ' include statement to
bring in the files during compilation. But then every name associated with each bus
must be unique, even those that are internal variables, never intended to be visible.
How can you organize these types to avoid name conflicts?

The SystemVerilog package allows you to share declarations among modules,
packages, plus programs and interface, which are described in Chapter 4. Sample
2.47 shows the package for the ABC bus.

Sample 2.47 Package for ABC bus

package ABC;
parameter int abc_data width = 32;
typedef logic [abc _data width-1:0] abc data t;
parameter time timeout = 100ns;
string message = "ABC done";
endpackage // ABC

You import symbols from a package with the import statement. The compiler only
looks in imported packages when a symbol is not defined in the usual search path. In
Sample 2.48, the first import statement makes the symbols abc data width,
abc data t, and timeout visible if there is no local variable with the same name.
The variable message in ABC is hidden by the one in the module.

Sample 2.48 Importing packages

module test;

import ABC::*; // Search ABC for symbols
abc_data_t data; // From package ABC
string message = "Test timed out"; // Hides message in ABC

initial begin

(timeout) ; // From package ABC
$display("Timeout - %s", message);
$finish;

end

endmodule

54 2 Data Types

If you really want to see the message variable in ABC, use ABC: :message.

You can import specific symbols from a package with the scope operator, : :.
Sample 2.49 imports all the symbols from ABC, plus just the timeout variable
from XYZ.

Sample 2.49 Importing selected symbols from a package

module test;

import ABC::*; // Search ABC for symbols
import XYZ::timeout; // Just import timeout
string message = "Test timed out"; // Hides message in ABC

initial begin

(timeout) ; // From package XYZ
$display ("Timeout - %s"“, message);
$finish;
end
endmodule

Packages can only see symbols defined inside themselves, or packages that they
import. You can not have hierarchical references to symbols such as signals, rou-
tines, or modules from outside the package. Think of a package as being completely
standalone, able to plug in where needed, with no outside dependencies.

A package can contain routines, plus classes, as shown in Section 5.4.

2.11 Type Conversion

SystemVerilog has several rules to ensure that expressions are evaluated with little
or no loss of accuracy. For example, if you add two 8-bit values, the addition is done
with 9-bit precision to avoid overflow. Multiply two 8-bit values, and System Verilog
calculates a 16-bit result.

The proliferation of data types in SystemVerilog means that you may need to
convert between them. If the layout of the bits between the source and destination
variables are the same, such as an integer and enumerated type, cast between the
two values. If the bit layouts differ, such as an array of bytes and words, use the
streaming operators to rearrange the bits as described in Section 2.12.

2.11.1 The Static Cast

The static cast operation converts between two types with no checking of values.
You specify the destination type, an apostrophe, and the expression to be converted
as shown in Sample 2.50. Note that Verilog has always implicitly converted between
types such as integer and real, and also between different width vectors.

2.12 Streaming Operators 55

Sample 2.50 Converting between int and real with static cast

int 1i;

real r;

i = int '(10.0 - 0.1); // cast is optional
r = real' (42); // cast is optional

2.11.2 The Dynamic Cast

The dynamic cast, scast, allows you to check for out-of-bounds values. See Section
2.13.3 for an explanation and example with enumerated types.

Use a static cast when you want SystemVerilog to use a type with
more precision, like when using the sum method for a single bit
array. Use the dynamic cast when converting from a type with a
larger number of values than the destination, such as int to an enu-
merated variable.

2.12 Streaming Operators

When used on the right side of an assignment, the streaming operators << and >>
take an expression, structure, or array, and packs it into a stream of bits. The >>
operator streams data from left to right while << streams from right to left, as shown
in Sample 2.51. You can also give a slice size, used to break up the source before
being streamed. You can not assign the bit stream result directly to an unpacked
array. Instead, use the streaming operators on the left side of an assignment to
unpack the bit stream into an unpacked array.

Sample 2.51 Basic streaming operator

initial begin
int h;
bit [7:0] b, gl4], j[4] = '{8'ha, 8'hb, 8'hc, 8'hd};
bit [7:0] q, r, s, t;

h = { >> {j7}}; // 0a0b0c0d pack array into int
h = { << {3}}; // b0304050 reverse bits

h = { << byte {j}}; // 0d0cO0bla reverse bytes
{>>{g}} = { << byte {j}}: // 04,0c,0b,0a unpack into array
b = { << {8'b0011 0101}}; // 1010 1100 reverse bits

b = { << 4 {8'b0011 0101}}; // 0101 0011l reverse nibble

{>> {a, r, s, t}} = 3; // Scatter j into bytes

h = {>>{t, s, r, q}}; // Gather bytes into h

end

56 2 Data Types

You could do the same operations with many concatenation operators, { }, but
the streaming operators are more compact and easier to read.

If you need to pack or unpack arrays, use the streaming operator to convert
between arrays of different element sizes. For instance, you can convert an array of
bytes to an array of words. You can use fixed size arrays, dynamic arrays, and
queues. Sample 2.52 converts between queues, but would also work with dynamic
arrays. Array elements are automatically allocated as needed.

Sample 2.52 Converting between queues with streaming operator
initial begin
bit [15:0] wqgl$] = {16'h1234, 16'h5678};
bit [7:0] bql$l;

// Convert word array to byte
bag = { >> {wa}}; // 12 34 56 78

// Convert byte array to words

bg = {8'h98, 8'h76, 8'h54, 8'h32};

wqg = { >> {bqg}}; // 9876 5432
end

A common mistake when streaming between arrays is mis-
matched array subscripts. The word subscript [256] in an array
declaration is equivalent to [0:255], not [255:0]. Since many
arrays are declared with the word subscripts [high:low],

streaming them to an array with the subscript [size] would result in the elements
ending up in reverse order. Likewise, streaming an unpacked array declared as bit
[7:0] src[255:0] to the packed array declared as bit [7:0] [255:0] dst will
scramble the order of values. The correct declaration for a packed array of bytes is
bit [255:0] [7:0] dst.

You can also use the streaming operator to pack and unpack structures, such as
an ATM cell, into an array of bytes. In Sample 2.53 a structure is streamed into a
dynamic array of bytes, then the byte array is streamed back into the structure.

2.13 Enumerated Types 57

Sample 2.53 Converting between a structure and an array with streaming operators
initial begin
typedef struct {int a;
byte b;
shortint c;
int d4;} my struct s;
my struct s st = '{32'haaaa aaaa,
8'hbb,
1l6'hcccc,
32'hdddd_dddd};
byte bll;

// Covert from struct to byte array
b = { >> {st}}; // {aa aa aa aa bb cc cc dd dd dd dd}

// Convert from byte array to a struct
b = '{8'h11, 8'h22, 8'h33, 8'h44, 8'h55, 8'h66, 8'h77,
8'h88, 8'h99, 8'haa, 8'hbb};
st = { >> {b}}; // st = 11223344, 55, 6677, 8899aabb
end

2.13 Enumerated Types

An enumerated type allows you to create a set of related but unique constants such
as states in a state machine or opcodes. In classic Verilog, you had to use text mac-
ros. Their global scope is too broad, and their value might not be visible in the
debugger. An enumeration creates a strongly typed variable that is limited to a set of
specified names. For example, the names ADD, MOVE, or ROTW make your code
easier to write and maintain than if you had used literals such as 8 'h01 or macros.
A weaker alternative for defining constants is a parameter. These are fine for indi-
vidual values, but an enumerated type automatically gives a unique value to every
name in the list.

The simplest enumerated type declaration contains a list of constant names and
one or more variables as shown in Sample 2.54. This creates an anonymous enumer-
ated type, but it cannot be used for any other variables than the ones in this
declaration.

Sample 2.54 A simple enumerated type, not recommended

enum {RED, BLUE, GREEN} color;

58 2 Data Types

It is recommended to create a named enumerated type so you can declare
multiple variables of the same type, especially if these are used as routine argu-
ments or module ports. You first create the enumerated type, and then the vari-
ables of this type, as shown in Sample 2.55. You can get the string representation
of an enumerated variable with the built-in function name ().

Sample 2.55 Enumerated types, recommended style

// Create data type for values 0, 1, 2
typedef enum {INIT, DECODE, IDLE} fsmstate e;
fsmstate e pstate, nstate; // declare typed variables

initial begin
case (pstate)

IDLE: nstate = INIT; // data assignment
INIT: nstate = DECODE;
default: nstate = IDLE;
endcase
$display ("Next state is %s",
nstate.name()) ; // Display symbolic state name

end

Use the suffix “ e” when declaring an enumerated type name.

2.13.1 Defining Enumerated Values

The actual values default to int starting at 0 and then increase. You can choose your
own enumerated values. The code in Sample 2.56 uses the default value of O for
INIT, then 2 for DECODE, and 3 for IDLE.

Sample 2.56 Specifying enumerated values

typedef enum {INIT, DECODE=2, IDLE} fsmtype e;

Enumerated constants, such as INIT in Sample 2.56, follow the same scoping
rules as variables. Consequently, if you use the same name in several enumerated
types (such as INIT in different state machines), they have to be declared in differ-
ent scopes such as modules, program blocks, packages, routines, or classes.

2.13 Enumerated Types 59

An enumerated type is stored as int unless you specify other-
wise. Be careful when assigning values to enumerated constants,
as the default value of an int is 0. In Sample 2.57, positionis
initialized to O, which is not a legal ordinal e variable. This
behavior is not a tool bug — it is how the language is specified. So always specify an
enumerated constant with the value of 0, as shown in Sample 2.58, just to catch the
testbench error.

Sample 2.57 Incorrectly specifying enumerated values

typedef enum {FIRST=1, SECOND, THIRD} ordinal e;
ordinal e position;

Sample 2.58 Correctly specifying enumerated values

typedef enum {BAD 0=0, FIRST=1, SECOND, THIRD} ordinal e;
ordinal e position;

2.13.2 Routines for Enumerated Types

SystemVerilog provides several functions for stepping through enumerated types.

e first () returns the first member of the enumeration.

e last () returns the last member of the enumeration.

e next () returns the next element of the enumeration.

* next (N) returns the N next element.

* prev () returns the previous element of the enumeration.
e prev (N) returns the N previous element.

The functions next and prev wrap around when they reach the beginning or end
of the enumeration.

Note that there is no clean way to write a for loop that steps through all members
of an enumerated type if you use an enumerated loop variable. You get the starting
member with first function and the next member with next. A for loop ends when
the loop variable is outside the defined bounds, but the next function always returns
a value inside the enumeration. If you use the test current!= current.last (),
the loop ends before using the last value. If you use current<=current. last (), you
get an infinite loop, as next never gives you a value that is greater than the final
value. This is similar to trying to make a for loop that steps through the values 0..3
with an index declared asbit [1:0]. The loop never exits! You can get around this
limitation by either using an integer variable in the loop, or incrementing the
enumerated variable, but both of these solutions can give illegal values if your
enumerated values are not contigious, such as 1, 2, 3, 5, 8.

You can use a do..while loop to step through all the values, checking when the
value wraps around, as shown in Sample 2.59.

60 2 Data Types

Sample 2.59 Stepping through all enumerated members

typedef enum {RED, BLUE, GREEN} color e;
color e color;
color = color.first;
do
begin
$display("Color = %04/%s", color, color.name());
color = color.next;
end
while (color != color.first); // Done at wrap-around

2.13.3 Converting to and from Enumerated Types

The default type for an enumerated type is int (2-state). You can take the value of an
enumerated variable and assign it to a non-enumerated variable such as an int with
a simple assignment. System Verilog does not, however, let you store an integer value
in an enum without explicitly changing the type. Instead, it requires you to explicitly
cast the value to make you realize that you could be writing an out-of-bounds value.

Sample 2.60 Assignments between integers and enumerated types

typedef enum {RED, BLUE, GREEN} color e;
color e color, c2;
int c;

initial begin

color = BLUE; // Set to known good value
¢ = color; // Convert from enum to int (1)
Ct++; // Increment int (2)

if (!$cast(color, c)) // Cast int back to enum
$display("Cast failed for c=%0d4", c);
$display("Color is %04 / %s", color, color.name());

C++; // 3 is out-of-bounds for enum
c2 = COLOR E' (c); // No type checking
$display("c2 is %04 / '%s'", c2, c2.name());

end

When called as a function as shown in Sample 2.60, $cast () tried to assign
the right value to the left variable. If the assignment succeeds, $cast () returns 1.
If the assignment fails because of an out-of-bounds value, no assignment is made
and the function returns 0. If you use Scast () as a task and the operation fails,
SystemVerilog prints an error.

You can also cast the value using the type' (val) as shown in the example, but
this does not do any type checking, so the result may be out-of-bounds. For example,

2.15 Strings 61

after the static cast in Sample 2.60, c2 has an out-of-bounds value. You should avoid
this style of casting with enumerated types.

2.14 Constants

There are several types of constants in SystemVerilog. The classic Verilog way to
create a constant is with a text macro. On the plus side, macros have global scope
and can be used for bit field definitions and type definitions. On the negative side,
macros are global, so that they can cause conflicts if you just need a local constant.
Lastly, a macro requires the * character so that it is recognized and expanded by the
compiler.

A Verilog parameter was loosely typed and was limited in scope to a single
module. Verilog-2001 added typed parameters, but their limited scope kept param-
eters from being widely used. In SystemVerilog, parameters can be declared in a
package so they can be used across multiple modules. This approach can replace
most Verilog macros that were just being used as constants.

SystemVerilog also supports the const modifier that allows you to make a vari-
able that can be initialized in the declaration but not written by procedural code.

Sample 2.61 Declaring a const variable

initial begin
const byte colon = ":";

end

In Sample 2.61, the value of colon is initialized at run time, when the initial
block is entered. In the next chapter, Sample 3.11 shows a const routine argument.

2.15 Strings

If you have ever tried to use a Verilog reg variable to hold a string of characters,
your suffering is over. The SystemVerilog string type holds variable-length
strings. An individual character is of type byte. The elements of a string of length
N are numbered O to N-1. Note that, unlike C, there is no null character at the end of
a string, and any attempt to use the character “\0” is ignored. Memory for strings is
dynamically allocated, so you do not have to worry about running out of space to
store the string.

Sample 2.62 shows various string operations. The function getc (N) returns the
byte at location N, while toupper returns an upper-case copy of the string and
tolower returns a lowercase copy. The curly braces {} are used for concatenation.
The task putc(y, C) writes a byte C into a string at location ¥, that must be between 0

62 2 Data Types

and the length as given by len. The substr(start,end) function extracts
characters from location start to end.
Sample 2.62 String methods

string s;

initial begin

s = "IEEE “;

$display(s.getc(0)); // Display: 73, ASCII value of 'I'
$display(s.tolower()) ; // Display: 'ieee '
s.putc(s.len()-1, "-"); // change ' '-> '-!'

s = {s, "1800"}; // "IEEE-1800"

$display(s.substr(2, 5)); // Display: EE-1

// Create temporary string, note format
my_ log($sformatf ("%s %5d", s, 42));
end

function void my log(string message);
// Print a message to a log
$display ("@%0t: %s", $time, message);
endfunction

Note how useful dynamic strings can be. In other languages such as C, you have
to keep making temporary strings to hold the result from a function. In Sample 2.62,
the $sformat £ function is used instead of $sformat, from Verilog-2001. This new
function returns a formatted temporary string that, as shown above, can be passed
directly to another routine. This saves you from having to declare a temporary string
and passing it between the formatting statement and the routine call. The undocu-
mented function $psprintf has the same functionality as Ssformat £, but is not in
the LRM, even though most vendors support this non-standard system function.

There are two ways to compare strings, but they behave differ-

ently. The equality operator, s1==s2, returns 1 if the strings are
identical, and O if they are not. The string comparison function,
sl.compare (s2),returns 1 if s1 is greater than s2, 0 if they are
equal, and —1 if s1 is less than s2. While this matches the ANSIC strcmp () behav-
ior, it may not be what you expect.

2.16 Expression Width

A prime source for unexpected behavior in Verilog has been the width of expres-
sions. Sample 2.63 adds 1+1 using four different styles. Addition A uses two 1-bit
variables, so with this precision 1+1=0. Addition B uses 8-bit precision because

2.17 Conclusion 63

there is an 8-bit variable on the left side of the assignment. In this case, 1+1=2.
Addition C uses a dummy constant to force SystemVerilog to use 2-bit precision.
Lastly, in addition D, the first value is cast to be a 2-bit value with the cast operator,
so 1+1=2.

Sample 2.63 Expression width depends on context

bit [7:0] bS8;

bit one = 1'bl; // Single bit
$displayb (one + one); // A: 1+1 = 0
b8 = one + one; // B: 1+1 = 2

$displayb (b8) ;

$displayb(one + one + 2'b0); // C: 1+1 2 with constant

$displayb(2' (one) + one); // D: 1+1 2 with cast

There are several tricks you can use to avoid this problem. First, avoid situations
where the overflow is lost, as in addition A. Use a temporary, such as b8, with the
desired width. Or, you can add another value to force the minimum precision, such
as 2'b0. Lastly, in SystemVerilog, you can cast one of the variables to the desired
precision.

2.17 Conclusion

SystemVerilog provides many new data types and structures so that you can create
high-level testbenches without having to worry about the bit-level representation.
Queues work well for creating scoreboards for which you constantly need to add
and remove data. Dynamic arrays allow you to choose the array size at run time for
maximum testbench flexibility. Associative arrays are used for sparse memories and
some scoreboards with a single index. Enumerated types make your code easier to
read and write by creating groups of named constants.

Don’t go off and create a procedural testbench with just these constructs. Explore
the OOP capabilities of SystemVerilog in Chapter 5 to learn how to design code at
an even higher level of abstraction, thus creating robust and reusable code.

64 2 Data Types

2.18 Exercises

1. Given the following code sample:

byte my byte;

integer my integer;

int my int;

bit [15:0] my bit;
shortint my short intl;
shortint my short int2;

my integer = 32'b000 1111 XXXX ZZZZ;
my int = my integer;

my bit = 16'h8000;

my short intl = my bit;

my short int2 = my short intl-1;

a. What is the range of values my byte can take?
b. What is the value of my int in hex?

c. What is the value of my bit in decimal?

d. What is the value of my short int1 in decimal?
e. What is the value of my short int2 in decimal?

2. Given the following code sample:

bit [7:0] my mem[3];
logic [3:0] my logicmem[4];
logic [3:0] my logic;

my mem = '{default:8'hA5};
my logicmem = '{0,1,2,3};
my logic = 4'hF;

Evaluate the following statements in the given order and give the result for
each assignment

my mem[2] = my logicmem[4];
my logic = my logicmem[4];
my logicmem[3] = my mem[3];
.my mem[3] = my logic;

my logic = my logicmem[1l];
my logic = my mem[1];

whe Ao TR

.my logic = my logicmem[my logicmem[41];

2.18 Exercises 65

3. Write the SystemVerilog code to:

a. Declare a 2-state array, my array, that holds four 12-bit values
b. Initialize my array so that:

* my array[0] = 12'h012
* my array[l] = 12'h345
* my array[2] = 12'h678
* my array([3] = 12'h9AB

c. Traverse my array and print out bits [5:4] of each 12-bit element

* With a for loop
* With a foreach loop

4. Declare a 5 by 31 multi-dimensional unpacked array, my arrayl.Each element
of the unpacked array holds a 4-state value.

a. Which of the following assignment statements are legal and not out of bounds?

* my arrayl[4][30] = 1'bl;
* my arrayl[29][4] = 1'Dbl;
* my arrayl[4] = 32'bl;

b. Draw my arrayl after the legal assignments complete.

5. Declare a 5 by 31 multi-dimensional packed array, my array2. Each element of
the packed array holds a 2-state value.

a. Which of the following assignment statements are legal and not out of bounds?

* my array2[4][30] 1'bl;
* my array2[29][4] = 1'Dbl;
* my array2[3] = 32'bl;

b. Draw my array?2 after the assignment statements complete.

6. Given the following code, determine what will be displayed.

module test;
string street[$]:;

initial begin
street = {"Tejon", "Bijou", "Boulder"};
$display("Street[0] = %s", street[0]);
street.insert (2, "Platte");
$display("Street[2] = %s", street[2]);
street.push front("St. Vrain");
$display("Street[2] = %s", street[2]);
$display("pop back = %s", street.pop back);
$display("street.size = %d", street.size);

end

endmodule // test

66

2 Data Types

7. Write code for the following problems.

a.

C.

Create memory using an associative array for a processor with a word width of
24 bits and an address space of 22° words. Assume the PC starts at address 0 at
reset. Program space starts at 0x400. The ISR is at the maximum address.

Fill the memory with the following instructions:

* 24'hA50400; // Jump to location 0x400 for the main code
* 24'h123456; // Instruction 1 located at location 0x400
* 24'h789ABC; // Instruction 2 located at location 0x401
* 24'h0QF1E2D; // ISR = Return from interrupt

Print out the elements and the number of elements in the array.

8. Create the SystemVerilog code for the following requirements

@ o a0 o

Create a 3-byte queue and initialize it with 2, —1, and 127
Print out the sum of the queue in the decimal radix

Print out the min and max values in the queue

Sort all values in the queue and print out the resulting queue
Print out the index of any negative values in the queue

Print out the positive values in the queue

. Reverse sort all values in the queue and print out the resulting queue

9. Define a user defined 7-bit type and encapsulate the fields of the following
packet in a structure using your new type. Lastly, assign the header to 7'hSA.

27

21 20 14 13 7 6 0

header cmd data crc

10. Create the SystemVerilog code for the following requirements

a0 op

=)

Create a user-defined type, nibble, of 4 bits
Create a real variable, r, and initialize it to 4.33
Create a short int variable, i_pack

. Create an unpacked array, k, containing 4 elements of your user defined type

nibble and initialize it to 4'h0, 4'hF, 4'hE, and 4'hD
Print out k
Stream k into i_pack right to left on a bit basis and print it out

. Stream k into i_pack right to left on a nibble basis and print it out
. Type convert real r into a nibble, assign it to k[0], and print out k

2.18 Exercises 67

11. An ALU has the opcodes shown in Table 2.1.

Table 2.1 ALU Opcodes

Opcode Encoding
Add: A+B 2'b00
Sub: A-B 2'b01
Bit-wise invert: A 2'b10
Reduction Or: B 2'bl1

a0 o

Write a testbench that performs the following tasks.

Create an enumerated type of the opcodes: opcode e
Create a variable, opcode, of type opcode_e
Loop through all the values of variable opcode every 10ns

. Instantiate an ALU with one 2-bit input opcode

2 Springer
http://www.springer.com/978-1-4614-0714-0

Systemerilog for Verification

A Guide to Learning the Testbench Language Features
Spear, C.; Tumbush, G.

2012, XLV, 464 p., Hardcover

ISBEMN: 278-1-4614-0714-0

	Chapter 2: Data Types
	2.1 Built-In Data Types
	2.1.1 The Logic Type
	2.1.2 2-state Data Types

	2.2 Fixed-Size Arrays
	2.2.1 Declaring and initializing fixed-size arrays
	2.2.2 The Array Literal
	2.2.3 Basic array operations — for and foreach
	2.2.4 Basic array operations – copy and compare
	2.2.5 Bit and Array Subscripts, Together at last
	2.2.6 Packed arrays
	2.2.7 Packed Array Examples
	2.2.8 Choosing between packed and unpacked arrays

	2.3 Dynamic Arrays
	2.4 Queues
	2.5 Associative Arrays
	2.6 Array Methods
	2.6.1 Array reduction methods
	2.6.2 Array Locator Methods
	2.6.3 Array sorting and ordering
	2.6.4 Building a scoreboard with array locator methods

	2.7 Choosing a Storage Type
	2.7.1 Flexibility
	2.7.2 Memory usage
	2.7.3 Speed
	2.7.4 Data access
	2.7.5 Choosing the best data structure

	2.8 Creating New Types with typedef
	2.9 Creating User-Defined Structures
	2.9.1 Creating a struct and a new type
	2.9.2 Initializing a structure
	2.9.3 Making a union of several types
	2.9.4 Packed structures
	2.9.5 Choosing between packed and unpacked structures

	2.10 Packages
	2.11 Type Conversion
	2.11.1 The static cast
	2.11.2 The dynamic cast

	2.12 Streaming operators
	2.13 Enumerated Types
	2.13.1 Defining enumerated values
	2.13.2 Routines for enumerated types
	2.13.3 Converting to and from enumerated types

	2.14 Constants
	2.15 Strings
	2.16 Expression Width
	2.17 Conclusion
	2.18 Exercises

