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 SystemVerilog offers many improved data structures compared with Verilog. Some 
of these were created for designers but are also useful for testbenches. In this chapter 
you will learn about the data structures most useful for verifi cation. 

 System Verilog introduces new data types with the following benefi ts.
   Two-state: better performance, reduced memory usage  • 
  Queues, dynamic and associative arrays: reduced memory usage, built-in support • 
for searching and sorting  
  Classes and structures: support for abstract data structures  • 
  Unions and packed structures: allow multiple views of the same data  • 
  Strings: built-in string support  • 
  Enumerated types: code is easier to write and understand    • 

    2.1   Built-In Data Types 

 Verilog-1995 has two basic data types: variables and nets, both which hold 4-state 
values: 0, 1, Z, and X. RTL code uses variables to store combinational and sequen-
tial values. Variables can be unsigned single or multi-bit ( reg [7:0] m ), signed 
32-bit variables ( integer ), unsigned 64-bit variables ( time ), and fl oating point 
numbers ( real ). Variables can be grouped together into arrays that have a fi xed 
size. A net is used to connect parts of a design such as gate primitives and module 
instances. Nets come in many fl avors, but most designers use scalar and vector 
wires to connect together the ports of design blocks. Lastly, all storage is static, 
meaning that all variables are alive for the entire simulation and routines cannot use 
a stack to hold arguments and local values. Verilog-2001 allows you to switch 
between static and dynamic storage, such as stacks. 

 SystemVerilog adds many new data types to help both hardware designers and 
verifi cation engineers. 

    Chapter 2   
 Data Types                  
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    2.1.1   The Logic Type 

 The one thing in Verilog that always leaves new users scratching their heads is the 
difference between a  reg  and a  wire . When driving a port, which should you use? 
How about when you are connecting blocks? SystemVerilog improves the classic 
 reg  data type so that it can be driven by continuous assignments, gates, and mod-
ules, in addition to being a variable. It is given the synonym  logic  as some people 
new to Verilog thought that  reg  declared a digital register, and not a signal. A  logic  
signal can be used anywhere a net is used, except that a  logic  variable cannot 
be driven by multiple structural drivers, such as when you are modeling a bidirec-
tional bus. In this case, the variable needs to be a net type such as  wire  so that 
SystemVerilog can resolve the multiple values to determine the fi nal value. 

 Sample  2.1   shows the SystemVerilog  logic  type.  

  Sample 2.1     Using the logic type       

     You can use the  logic  type to fi nd netlist bugs as this type can 
only have a single driver. Rather than trying to choose between 
 reg  and  wire , declare all your signals as  logic , and you’ll get a 
compilation error if it has multiple drivers. Of course, any signal 
that you do want to have multiple drivers, such as a bidirectional 
bus, should be declared with a net type such as  wire  or  tri .  

    2.1.2   2-State Data Types 

 SystemVerilog introduces several 2-state data types to improve simulator perfor-
mance and reduce memory usage, compared to variables declared as 4-state types. 
The simplest type is the  bit , which is always unsigned. There are four signed 2-state 
types:  byte, shortint, int , and  longint . as shown in Sample  2.2  .  
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  Sample 2.2     Signed data types       

  Sample 2.3     Checking for 4-state values       

     You might be tempted to use types such as  byte  to replace more 
verbose declarations such as  logic [7:0] . Hardware design-
ers should be careful as these new types are signed variables, so 
a  byte  variable can only count up to 127, not the 255 you may 

expect. (It has the range −128 to +127.) You could use  byte  unsigned, but that is 
more verbose than  just bit [7:0] . Signed variables can also cause unexpected 
results with randomization, as discussed in   Chapter 6    . 

     Be careful connecting 2-state variables to the design under test, 
especially its outputs. If the hardware tries to drive an X or Z, these 
values are converted to a 2-state value, and your testbench code 
may never know. Don’t try to remember if they are converted to 
0 or 1; instead, always check for propagation of unknown values. 

Use the  $isunknown()  operator that returns 1 if any bit of the expression is X or Z, 
as shown in Sample  2.3  .  

 The format  %0t  and the argument  $time  print the current simulation time, for-
matted as specifi ed with the  $timeformat()  routine. Time values are explored in 
more detail in Section 3.7.   

    2.2   Fixed-Size Arrays 

 SystemVerilog offers several fl avors of arrays beyond the single-dimension, fi xed-
size Verilog-1995 arrays. Additionally, many new features have been added to sup-
port these data types. 
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    2.2.1   Declaring and Initializing Fixed-Size Arrays 

 Verilog requires that the low and high array limits must be given in the declaration. 
Since almost all arrays use a low index of 0, SystemVerilog lets you use the shortcut 
of just giving the array size, which is similar to C’s style, as shown in Sample  2.4  .  

  Sample 2.6     Declaring and using multi-dimensional arrays       

  Sample 2.5     Calculating the address width for a memory       

  Sample 2.4     Declaring fi xed-size arrays       

 How can you compute the number of bits needed to address a given array size? 
SystemVerilog has the  $clog2()  function that calculates the ceiling of log base 2, 
as shown in Sample  2.5  .  

 You can create multi-dimensional fi xed-size arrays by specifying the dimensions 
after the variable name. Sample  2.6   creates several two-dimensional arrays of inte-
gers, 8 entries by 4, and sets the last entry to 1. Multi-dimensional arrays were 
introduced in Verilog-2001, but the compact declaration style is new.  

 If your code accidently tries to read from an out-of-bounds address, System-
Verilog will return the default value for the array element type. That just means 
that an array of 4-state types, such as  logic , will return X’s, whereas an array of 
2-state types, such as  int  or  bit , will return 0. This applies for all array types – 
fi xed, dynamic, associative, or queue, and also if your address has an X or Z. An 
undriven net is Z. 

 Many SystemVerilog simulators store each element on a 32-bit word boundary. 
So a  byte, shortint , and  int  are all stored in a single word, whereas a  longint  
is stored in two words. 

 An unpacked array, such as the one shown in Sample  2.7  , stores the values in the 
lower portion of the word, whereas the upper bits are unused. The array of bytes, 
 b_unpack , is stored in three words, as shown in Fig.  2.1  .   
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  Sample 2.7     Unpacked array declarations       

b_unpack[1]
234567

Unused space
b_unpack[2]

b_unpack[0] 01
01234567
01234567

  Fig. 2.1     Unpacked array storage       

 Packed arrays are explained in Section  2.2.6 . 
 Simulators generally store 4-state types such as  logic  and  integer  in two or 

more consecutive words, using twice the storage as 2-state variables.  

    2.2.2   The Array Literal 

 Sample  2.8   shows how to initialize an array using an array literal, which is an apos-
trophe followed by the values in curly braces. (This is not the accent grave used for 
compiler directives and macros.) You can set some or all elements at once. You can 
replicate values by putting a count before the curly braces.  

  Sample 2.8     Initializing an array       

 Notice that in Sample  2.8  , the declaration of the array ascend includes an initial 
value. The 2009 LRM states that these variables must be declared either in a static 
block, or have the  static  keyword. Since this book recommends always declaring 
your test modules and programs as  automatic , you need to add the  static  key-
word to a declaration plus initialization when it is inside an  initial  block. 

 A great new feature in the 2009 LRM is printing with the %p format specifi er. 
This prints an assignment pattern that is equivalent to the data object’s value. You can 
print any data type in SystemVerilog including arrays, structures, classes, and more. 
Sample  2.9   shows how to print an array with the %p format specifi er.   
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    2.2.3   Basic Array Operations —  for  and  Foreach  

 The most common way to manipulate an array is with a  for  or  foreach  loop. In 
Sample  2.10 , the variable i is declared local to the  for  loop. The SystemVerilog 
function  $size  returns the size of the array. In the  foreach  loop, you specify the 
array name and an index in square brackets, and SystemVerilog automatically steps 
through all the elements of the array. The index variable is automatically declared 
for you and is local to the loop.  

  Sample 2.10    Using arrays with for- and foreach loops       

  Sample 2.11    Initialize and step through a multi-dimensional array       

  Sample 2.9     Printing with %p print specifi er       

 Note that in Sample  2.11 , the syntax of the  foreach  loop for multi-dimensional 
arrays may not be what you expected. Instead of listing each subscript in separate 
square brackets,  [i][j] , they are combined with a comma:  [i,j] .  

 The output from Sample  2.11  is shown in Sample  2.12 .  

 

 

 



312.2 Fixed-Size Arrays

 You can omit some dimensions in the  foreach  loop if you don’t need to step 
through all of them. Sample  2.13  prints a two-dimensional array in a rectangle. 
It steps through the fi rst dimension in the outer loop, and then through the second 
dimension in the inner loop.  

  Sample 2.12    Output from printing multi-dimensional array values       

  Sample 2.13    Printing a multi-dimensional array       

 Sample  2.13  produces the output shown in Sample  2.14  .  

  Sample 2.14    Output from printing multi-dimensional array values       

 Lastly, a  foreach  loop iterates using the ranges in the original declaration. The 
array  f[5]  is equivalent to  f[0:4] , and a  foreach  (f[i])  is equivalent to  for 
 (int  i=0;i<=4;  i++ ). With the array  rev[6:2] , the statement  foreach(rev[i] ) is 
equivalent to  for(int i=6; i>=2; i-- ).  

 

 

 



32 2 Data Types

    2.2.4   Basic Array Operations – Copy and Compare 

 You can perform aggregate compare and copy of arrays without loops. (An aggregate 
operation works on the entire array as opposed to working on just an individual 
element.) Comparisons are limited to just equality and inequality. Sample  2.15  shows 
several examples of compares. The  ? :  conditional operator is a mini  if-else  state-
ment. In Sample  2.15 , it is used to choose between two strings. The fi nal compare 
uses an array slice,  src[1:4] , which creates a temporary array with 4 elements.  

  Sample 2.15    Array copy and compare operations       

 A copy between fi xed arrays of different sizes causes a compile error. You can 
not perform aggregate arithmetic such as addition or subtraction on arrays, for 
example,  a  =  b  +  c . Instead, use  foreach  loops. For logical operations such as  xor , 
you have to either use a loop or use packed arrays as described in Section  2.2.6 .  

    2.2.5   Bit and Array Subscripts, Together at Last 

 A common annoyance in Verilog-1995 is that you cannot use array and bit sub-
scripts together. Verilog-2001 removes this restriction for fi xed-size arrays. Sample 
 2.16  prints the fi rst array element (binary 101), its lowest bit (1), and the next two 
higher bits (binary 10).  
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 Although this change is not new to SystemVerilog, many users may not 
know about this useful improvement in Verilog-2001. FYI - a double comma in a 
 $display  statement inserts a space.  

    2.2.6   Packed Arrays 

 For some data types, you may want both to access the entire value and also to divide 
it into smaller elements. For example, you may have a 32-bit register that sometimes 
you want to treat as four 8-bit values and at other times as a single, unsigned value. 
A SystemVerilog packed array is treated as both an array and a single value. It is 
stored as a contiguous set of bits with no unused space, unlike an unpacked array.  

    2.2.7   Packed Array Examples 

 The packed bit and array dimensions are specifi ed as part of the type, before the 
variable name. These dimensions must be specifi ed in the  [msb:lsb]  format, not 
 [size] . Sample  2.17  shows the variable  bytes , a packed array of four bytes that 
are stored in a single 32-bit word as shown in Fig.  2.2  .   

  Sample 2.16    Using word and bit subscripts together       

  Sample 2.17    Packed array declaration and usage       

bytes 01234567

bytes[3]

012345670123456701234567

bytes[3][7]

  Fig. 2.2     Packed array layout       
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 You can mix packed and unpacked dimensions. You may want to make an array 
that represents a memory that can be accessed as bits, bytes, or longwords. Sample 
 2.18  shows  barray , an unpacked array of fi ve packed elements, each four bytes 
wide, which are stored in memory as shown in Fig.  2.3  .   

  Sample 2.18    Declaration for a mixed packed/unpacked array       

barray[0][3] barray[0][1][6]

barray[1] 01234567012345670123456701234567
barray[0] 01234567012345670123456701234567

barray[2] 01234567012345670123456701234567
barray[3] 01234567012345670123456701234567
barray[4] 01234567012345670123456701234567

  Fig. 2.3     Packed array bit layout       

 With a single subscript, you get a word of data,  barray[0] .With two subscripts, 
you get a byte of data,  barray[0][3] . With three subscripts, you can access a 
single bit,  barray[0][1][6] . Because one dimension is specifi ed after the name, 
 barray[5] , that dimension is unpacked, so you must always give at least one 
subscript. 

 The last line of Sample  2.18  copies between two packed arrays. Since the under-
lying values are just bits, you can copy even if the arrays have different dimensions.  

    2.2.8   Choosing Between Packed and Unpacked Arrays 

 Which should you choose — a packed or an unpacked array? A packed array is 
handy if you need to convert to and from scalars. For example, you might need to 
reference a memory as a byte or as a word. The  barray  in Fig.  2.3   can handle this 
requirement. Any array type can be packed, including dynamic arrays, queues and 
associative arrays, which are explained in Sections  2.3 ,  2.4 , and  2.5 . 

 If you need to wait for a change in an array, you have to use a packed array. 
Perhaps your testbench might need to wake up when a memory changes value, so 
you want to use the  @  operator. This is only legal with scalar values and packed 
arrays. In Sample  2.18  you can block on the variables  lw  or  barray[0] , but not the 
entire array  barray  unless you expand it:  @(barray[0] or barray[1] or 
barray[2] or barray[3] or barray[4]) .   
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    2.3   Dynamic Arrays 

 The basic Verilog array type shown so far is known as a fi xed-size array, as its size 
is set at compile time. What if you do not know the size of the array until run time? 
For example, you may want generate a random number of transactions at the start 
of simulation. If you stored the transactions in a fi xed-size array, it would have to be 
large enough to hold the maximum number of transactions, but would typically hold 
far fewer, thus wasting memory. SystemVerilog provides a dynamic array that can 
be allocated and resized during simulation so your simulation consumes a minimal 
amount of memory. 

 A dynamic array is declared with empty word subscripts  [] . This means that you 
do not specify the array size at compile time; instead, give it at run time. The array is 
initially empty, so you must call the  new[]  constructor to allocate space, passing in 
the number of entries in the square brackets. If you pass an array name to the  new[]  
constructor, the values are copied into the new elements, as shown in Sample  2.19 .  

  Sample 2.19    Using dynamic arrays       

 In Sample  2.19 , Line A calls  new[5]  to allocate 5 array elements. The dynamic 
array  dyn  now holds 5  int’s . Line B sets the value of each element of the array to 
its index value. Line C allocates another array and copies the contents of  dyn  into 
it. Lines D and E show that the arrays  dyn  and  d2  are separate. Line F allocates 20 
new elements, and copies the existing 5 elements of  dyn  to the beginning of the 
array. Then the old 5-element  dyn  array is deallocated. The result is that  dyn  points 
to a 20-element array. The last call to  new[]  allocates 100 elements, but the existing 
values are not copied. The old 20-element array is deallocated. Finally, line H 
deletes the  dyn  array. 

 The  $size  function returns the size of a fi xed or dynamic array. Dynamic arrays 
have several built-in routines, such as  delete  and  size . 

 If you want to declare a constant array of values but do not want to bother counting 
the number of elements, use a dynamic array with an array literal. In Sample  2.20  
there are 9 mask elements of 8-bits each. You should let SystemVerilog count them, 
rather than making a fi xed-size array and accidently choosing the wrong array size.  
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 You can make assignments between fi xed-size and dynamic arrays as long as 
they have the same base type such as  int . You can assign a dynamic array to a fi xed 
array as long as they have the same number of elements. 

 When you copy a fi xed-size array to a dynamic array, SystemVerilog calls the 
 new[]  constructor to allocate space, and then copies the values. 

 You can have multi-dimensional dynamic arrays, so long as you are careful when 
constructing the sub-arrays. Remember, a multi-dimensional array in SystemVerilog 
can be thought of as an array of other arrays. First you need to construct the left-
most dimension. Then construct the sub-arrays. In Sample  2.21 , each sub-array has 
a different size.   

  Sample 2.20    Using a dynamic array for an uncounted list       

  Sample 2.21    Multi-dimensional dynamic array       

    2.4   Queues 

 SystemVerilog introduces a new data type, the queue, which combines the best of a 
linked list and array. Like a linked list, you can add or remove elements anywhere 
in a queue, without the performance hit of a dynamic array that has to allocate a new 
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array and copy the entire contents. Like an array, you can directly access any ele-
ment with an index, without linked list’s overhead of stepping through the preced-
ing elements. 

 A queue is declared with word subscripts containing a dollar sign:  [$] . The ele-
ments of a queue are numbered from 0 to $. Sample  2.22  shows how you can add 
and remove values from a queue using methods. Note that queue literals only have 
curly braces, and are missing the initial apostrophe of array literals. 

 The SystemVerilog queue is similar to the Standard Template Library’s deque 
data type. You create a queue by adding elements. SystemVerilog typically allocates 
extra space so you can quickly insert additional elements. If you add enough ele-
ments that the queue runs out of that extra space, SystemVerilog automatically allo-
cates more. As a result, you can grow and shrink a queue without the performance 
penalty of a dynamic array, and SystemVerilog keeps track of the free space for you. 
Note that you never call the  new[]  constructor for a queue.  

  Sample 2.22    Queue methods       

 The LRM does not allow inserting a queue in another queue using the above 
methods, though some simulators permit this. 

 You can use word subscripts and concatenation instead of methods. As a short-
cut, if you put a $ on the left side of a range, such as  [$:2] , the  $  stands for the 
minimum value,  [0:2] . A  $  on the right side, as in  [1:$] , stands for the maximum 
value,  [1:2] , in fi rst line of the initial block of Sample  2.23 .  
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 The queue elements are stored in contiguous locations, so it is effi cient to push 
and pop elements from the front and back. This takes a fi xed amount of time no 
matter how large the queue. Adding and deleting elements in the middle of a queue 
requires shifting the existing data to make room. The time to do this grows linearly 
with the size of the queue. 

 You can copy the contents of a fi xed or dynamic array into a queue.  

    2.5   Associative Arrays 

 Dynamic arrays are good if you want to occasionally create a big array, but what if 
you want something really large? Perhaps you are modeling a processor that has a 
multi-gigabyte address range. During a typical test, the processor may only touch a 
few hundred or thousand memory locations containing executable code and data, so 
allocating and initializing gigabytes of storage is wasteful. 

 SystemVerilog offers associative arrays that store entries in a sparse matrix. This 
means that while you can address a very large address space, SystemVerilog only 
allocates memory for an element when you write to it. In the following picture, the 
associative array holds the values 0:3, 42, 1000, 4521, and 200,000. The memory 
used to store these is far less than would be needed to store a fi xed or dynamic array 
with 200,000 entries, as shown in Figure  2.4  .  

  Sample 2.23    Queue operations        
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 An associative array can be stored by the simulator as a tree or hash table. This 
additional overhead is acceptable when you need to store arrays with widely sepa-
rated index values, such as packets indexed with 32-bit addresses or 64-bit data 
values. An associative array is declared with a data type in square brackets, such as 
 [ int ]. or [ Packet ]. Sample  2.24  shows declaring, initializing, printing, and step-
ping through an associative array.  

  Sample 2.24    Declaring, initializing, and using associative arrays       

data

0…..3 42 1000 4521 200,000index

  Fig. 2.4     Associative array       

 Sample  2.24  has the associative array, assoc, with very scattered elements: 1, 2, 
4, 8, 16, etc. A simple  for  loop cannot step through them; you need to use a  foreach  
loop. If you want fi ner control, you can use the  fi rst  and  next  functions in a 
 do…while  loop. These functions modify the index argument, and return 0 or 1 
depending on whether any elements are left in the array. You can fi nd the number of 
elements in an associative array with the  num  or  size  functions. 

 Associative arrays can also be addressed with a string index, similar to Perl’s 
hash arrays. Sample  2.25  reads a fi le with strings and builds the associative array 
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 switch  so you can quickly map from a string value to a number. Strings are 
explained in more detail in Section  2.15 . 

 If you try to read an element of an associative array that has not been written, 
SystemVerilog returns the default value for the array base type, such as 0 for 2-state 
types such as  bit  or  int , or X for 4-state types such as  logic . The simulator may 
also give a warning message. You can use the function  exists()  to check if an 
element has been allocated, as shown in Sample  2.25 .  

  Sample 2.25    Using an associative array with a string index       

 You can initialize an associative array with the array literal with index:element 
pairs as shown in Sample  2.26 . When you print the array with  %p , the elements are 
displayed in the same format.  
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 You can also declare an associative array with wildcard subscripts, as in wild[*]. 
However, this style is not recommended as you are allowing an index of almost any 
data type. One of the many resulting problems is with  foreach –loops: what type is 
the variable j in  foreach(wild[j] )? Integer, string, bit, or logic?  

    2.6   Array Methods 

 There are many array methods that you can use on any unpacked array types: fi xed, 
dynamic, queue, and associative. These routines can be as simple as giving the cur-
rent array size or as complex as sorting the elements. The parentheses are optional 
if there are no arguments. 

    2.6.1   Array Reduction Methods 

 A basic array reduction method takes an array and reduces it to a single value, as 
shown in Sample  2.27 . You can calculate the sum, product, or perform a logical 
operation on all the elements.  

  Sample 2.26    Initializing and printing associative arrays       

  Sample 2.27    Array reduction operations       

 Other array reduction methods are  or , and  xor . 
 SystemVerilog does not have a method specifi cally for choosing a random ele-

ment from an array, so use the index  $urandom_range(array.size()−1)  for 
queues and dynamic arrays, and  $urandom_range($size(array)−1)  for fi xed 
arrays, queues, dynamic and associative arrays. See Section 6.10 for more informa-
tion on  $urandom_range . 

 If you need to choose a random element from an associative array, you need to step 
through the elements one by one as there is no one-line way to access the  N th element. 
Sample  2.28  shows how to choose a random element from an associative array 
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indexed by integers by fi rst picking a random number, then stepping through the array. 
If the array was indexed by a string, just change the type of  idx  to  string .   

  Sample 2.29    Array locator methods: min, max, unique       

  Sample 2.28    Picking a random element from an associative array       

    2.6.2   Array Locator Methods 

 What is the largest value in an array? Does an array contain a certain value? The 
array locator methods fi nd data in an unpacked array. At fi rst you may wonder why 
these return a queue of values. After all, there is only one maximum value in an 
array. However, SystemVerilog needs a queue for the case when you ask for a value 
from an empty queue or dynamic array. 

 Sample  2.29  shows the array locator methods:  min  and  max  functions fi nd the 
smallest and largest elements in an array. These methods also work for associative 
arrays. The  unique  method returns a queue of the unique values from the array — 
duplicate values are not included.  

 You could search through an array using a  foreach  loop, but SystemVerilog can 
do this in one operation with a locator method. The  with  expression tells 
SystemVerilog how to perform the search, as shown in Sample  2.30 . These methods 
return an empty queue if the value you are searching for does not exist in the array.  
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 In a  with  clause, the name  item  is called the iterator argument and represents a 
single element of the array. You can specify your own name by putting it in the argu-
ment list of the array method as shown in Sample  2.31 .  

  Sample 2.30    Array locator methods: fi nd       

  Sample 2.31    Declaring the iterator argument       

  Sample 2.32    Array locator methods       

 Sample  2.32  shows various ways to total up a subset of the values in the array. 
The fi rst line compares the item with 7. This relational returns a 1 (true) or 0 (false) 
so the calculation is a sum of the array {1,0,1,0,0,0}. The second multiplies the bool-
ean result with the array element being tested. So the total is the sum of {9,0,8,0,0,0}, 
which is 17. The third calculates the total of elements less than 8. The fourth total is 
computed using the ? : conditional operator. The last counts the number of 4’s.  

 When you combine an array reduction such as  sum  using the  with  clause, the 
results may surprise you. In Sample  2.32 , the  sum  operator totals the number of 
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times that the expression is true. For the fi rst statement in Sample  2.32 , there are two 
array elements that are greater than 7 (9 and 8) so  count  is set to 2. 

     The array locator methods that return an index, such as  fi nd_
index , return a queue of type  int , not  integer . Your code 
may not compile if you use the wrong queue type with these 
statements. 

     Be careful of SystemVerilog’s rules for the width of operations. 
Normally, if you were to add a set of single bit values, SystemVer-
ilog would make the calculations with enough precision not to 
lose any bits. But the  sum  method uses the width of the array. So, 

if you add the values of a single-bit array, the result is a single bit, which is probably 
not what you expected. The solution is to use a  with  expression as shown in 
Sample  2.33 .   

  Sample 2.34    Sorting an array       

  Sample 2.33    Creating the sum of an array of single bits       

    2.6.3   Array Sorting and Ordering 

 SystemVerilog has several methods for changing the order of elements in an array. 
You can sort the elements, reverse their order, or shuffl e the order as shown in 
Sample  2.34 . Notice that these change the original array, unlike the array locator 
methods in Section  2.6.2 , which create a queue to hold the results.  
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 The  reverse  and  shuffl e  methods have no  with -clause, so they work on the 
entire array. Sample  2.35  shows how to sort a structure by sub-fi elds. Structures and 
packed structures are explained in Section  2.9 .  

  Sample 2.35    Sorting an array of structures       

  Sample 2.36    A scoreboard with array methods       

 Only fi xed and dynamic arrays, plus queues can be sorted, reversed, or shuffl ed. 
Associative arrays can not be reordered.  

    2.6.4   Building a Scoreboard with Array Locator Methods 

 The array locator methods can be used to build a scoreboard. Sample  2.36  defi nes 
the  Packet  structure, then creates a scoreboard made from a queue of these struc-
tures. Section  2.8  describes how to create structures with  typedef .  
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 The  check_addr()  function in Sample  2.36  looks up an address in the score-
board. The  fi nd_index()  method returns an  int  queue. If the queue is empty 
(size==0), no match was found. If the queue has one member (size==1), a single 
match was found, which the  check_addr()  function deletes. If the queue has mul-
tiple members (size > 1), there are multiple packets in the scoreboard whose address 
matching the requested one. 

 A better choice for storing packet information is a class, which is described in 
  Chapter 5    . You can read more about structures in Section  2.9 .   

    2.7   Choosing a Storage Type 

 Here are some guidelines for choosing the right storage type based on fl exibility, 
memory usage, speed, and sorting. These are just rules of thumb, and results may 
vary between simulators. 

    2.7.1   Flexibility 

 Use a fi xed-size or dynamic array if it is accessed with consecutive positive integer 
indices: 0, 1, 2, 3… Choose a fi xed-size array if the array size is known at compile 
time, or choose a dynamic array if the size is not known until run time. For example, 
variable-size packets can easily be stored in a dynamic array. If you are writing 
routines to manipulate arrays, consider using just dynamic arrays, as one routine 
can work with any size dynamic array as long as the element types match:  int, 
string , etc. Likewise, you can pass a queue of any size into a routine as long as the 
element type matches the queue argument. Associative arrays can also be passed 
regardless of size. However, a routine with a fi xed-size array argument only accepts 
arrays of the specifi ed length. 

 Choose associative arrays for nonstandard indices such as widely separated val-
ues because of random values or addresses. Associative arrays can also be used to 
model content-addressable memories. 

 Queues are a good way to store values when the number of elements grows and 
shrinks a lot during simulation, such as a scoreboard that holds expected values.  

    2.7.2   Memory Usage 

 If you want to reduce the simulation memory usage, use 2-state elements. You 
should choose data sizes that are multiples of 32 bits to avoid wasted space. 
Simulators usually store anything smaller in a 32-bit word. For example, an array of 
1024 bytes wastes ¾ of the memory if the simulator puts each element in a 32-bit 
word. Packed arrays can also help conserve memory. 
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 For arrays that hold up to a thousand elements, the type of array that you choose 
does not make a big difference in memory usage (unless there are many instances of 
these arrays). For arrays with a thousand to a million active elements, fi xed-size and 
dynamic arrays are the most memory effi cient. You may want to reconsider your 
algorithms if you need arrays with more than a million active elements. 

 Queues are slightly less effi cient to access than fi xed-size or dynamic arrays 
because of additional pointers. However, if your data set grows and shrinks often, 
and you store it in a dynamic memory, you will have to manually call  new[]  to 
allocate memory and copy. This is an expensive operation and would wipe out any 
gains from using a dynamic memory. 

 Modeling memories larger than a few megabytes should be done with an associa-
tive array. Note that each element in an associative array can take several times more 
memory than a fi xed-size or dynamic memory because of pointer overhead.  

    2.7.3   Speed 

 Choose your array type based on how many times it is accessed per clock cycle. For 
only a few reads and writes, you could use any type, as the overhead is minor com-
pared with the DUT. As you use an array more often, its size and type matters. 

 Fixed-size and dynamic arrays are stored in contiguous memory, so any element 
can be found in the same amount of time, regardless of array size. 

 Queues have almost the same access time as a fi xed-size or dynamic array for 
reads and writes. The fi rst and last elements can be pushed and popped with almost 
no overhead. Inserting or removing elements in the middle requires many elements 
to be shifted up or down to make room. If you need to insert new elements into a 
large queue, your testbench may slow down, so consider changing how you store 
new elements. 

 When reading and writing associative arrays, the simulator must search for the 
element in memory. The LRM does not specify how this is done, but popular ways 
are hash tables and trees. These require more computation than other arrays, and 
therefore associative arrays are the slowest.  

    2.7.4   Data Access 

 Since SystemVerilog can sort any single-dimension array (fi xed-size, dynamic, and 
associative arrays plus queues), you should pick the array type based on how often 
the values are added to it. If the values are received all at once, choose a fi xed-size 
or dynamic array so that you only have to allocate the array once. If the data slowly 
dribbles in, choose a queue, as adding new elements to the head or tail is very 
effi cient. 

 If you have unique and noncontiguous values, such as  ¢  {1, 10, 11, 50} , you 
can store them in an associative array by using them as an index. Using the routines 
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 fi rst, next , and  prev , you can search an associative array for a value and fi nd 
successive values. Lists are doubly linked, so you can fi nd values both larger and 
smaller than the current value. Both of these support removing a value. However, 
the associative array is much faster in accessing any given element given an index. 

 For example, you can use an associative array of bits to hold expected 32-bit 
values. When the value is created, write to that location. When you need to see if a 
given value has been written, use the  exists  function. When done with an element, 
use  delete  to remove it from the associative array.  

    2.7.5   Choosing the Best Data Structure 

 Here are some suggestions on choosing a data structure.
    • Network packets . Properties: fi xed size, accessed sequentially. Use a fi xed-size or 
dynamic array for fi xed- or variable-size packets.  
   • Scoreboard of expected values . Properties: array size not known until run time, 
accessed by value, and a constantly changing size. In general, use a queue, as you 
are continually adding and deleting elements during simulation. If you can give 
every transaction a fi xed ID, such as 1, 2, 3, …, you could use this as an index 
into the queue. If your transaction is fi lled with random values, you can just push 
them into a queue and search for unique values. If the scoreboard may have hun-
dreds of elements and you are often inserting and deleting them from the middle, 
an associative array may be faster. If you model your transactions as objects, the 
scoreboard can be a queue of handles. See   Chapter 5     for more information of 
classes.  
   • Sorted structures . Use a queue if the data comes out in a predictable order or an 
associative array if the order is unspecifi ed. If the scoreboard never needs to be 
searched, just store the expected values in a mailbox as shown in Section 7.6.  
   • Modeling very large memories, greater than a million entries . If you do not need 
every location, use an associative array as a sparse memory. If you do plan on 
accessing every location, try a different approach where you do not need so much 
live data. Be sure to use 2-state values packed into 32-bits to conserve simulation 
memory.  
   • Command names or opcodes from a fi le . Property: translate a string to a fi xed 
value. Read string from a fi le, and then look up the commands or opcodes in an 
associative array using the command as a string index.      

    2.8   Creating New Types with typedef 

 You can create new types using the  typedef  statement. For example, you may have 
an ALU that can be confi gured at compile time to use 8, 16, 24, or 32-bit operands. 
In Verilog you would defi ne a macro for the operand width and another for the type 
as shown in Sample  2.37 .  
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 You are not really creating a new type; you are just performing text substitution. 
In SystemVerilog you create a new type as shown in Sample  2.38 . This book uses 
the convention that user-defi ned types use the suffi x “ _t ” except for the basic  uint .  

  Sample 2.37    User-defi ned type-macro in Verilog       

  Sample 2.39    Defi nition of uint       

  Sample 2.38    User-defi ned type in SystemVerilog       

 In general, SystemVerilog lets you copy between these basic types with no warning, 
either extending or truncating values if there is a width mismatch. 

 Note that  parameter  and  typedef  statements can be put in a package so they 
can be shared across the design and testbench, as shown in Section  2.10 . 

     One of the most useful types you can create is an unsigned, 2-state, 
32-bit integer as shown in Sample  2.39 . Most values in a testbench are 
positive integers such as fi eld length or number of transactions 
received, and so having a signed integer can cause problems. Put the 
defi nition of  uint  in a package of common defi nitions so it can be 
used anywhere.  

 The syntax for defi ning a new array type is not obvious. You need to put the array 
subscripts on the new name. Sample  2.40  creates a new type,  fi xed_array5_t , 
a fi xed array with 5 elements. It then declares an array of this type and initializes it.  
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 A good use for a user defi ned type is an associative array, which must be declared 
with an index that is a simple type. You could change Sample  2.24  to use 64 bit 
values by changing the fi rst line as shown in Sample  2.41 .   

  Sample 2.40    User-defi ned array type       

  Sample 2.42    Creating a single pixel type       

  Sample 2.41    User-defi ned associative array index       

    2.9   Creating User-Defi ned Structures 

 One of the biggest limitations of Verilog is the lack of data structures. In SystemVer-
ilog you can create a structure using the  struct  statement, similar to what is avail-
able in C. However, a  struct  has just a subset of the functionality of a class, so use 
a class instead for your testbenches, as shown in   Chapter 5    . Just as a Verilog module 
combines both data (signals) and code (always/initial blocks plus routines), a class 
combines data and routines to make an entity that can be easily debugged and 
reused. A  struct  just groups data fi elds together. Without the code that manipu-
lates the data, you are only creating half of the solution. 

 Since a  struct  is just a collection of data, it can be synthesized. If you want to 
model a complex data type, such as a pixel, in your design code, put it in a  struct . 
This can also be passed through module ports. Eventually, when you want to gener-
ate constrained random data, look to classes. 

    2.9.1    Creating a   Struct   and a New Type  

 You can combine several variables into a structure. Sample  2.42  creates a structure 
called  pixel  that has three unsigned bytes for red, green, and blue.  
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 The problem with the preceding declaration is that it creates a single pixel of this 
type. To be able to share pixels using ports and routines, you should create a new 
type instead, as shown in Sample  2.43 .  

  Sample 2.43    The pixel struct       

  Sample 2.44    Initializing a struct       

 Use the suffi x “ _s ” when declaring a  struct . This makes it easier to spot user-
defi ned types, simplifying the process of sharing and reusing code.  

    2.9.2   Initializing a Structure 

 You can assign multiple values to a struct just like an array, either in the declaration 
or in a procedural assignment. Just surround the values with an apostrophe and 
braces, as shown in Sample  2.44 .   

    2.9.3   Making a Union of Several Types 

 In hardware, the interpretation of a set of bits in a register may depend on the value 
of other bits. For example, a processor instruction may have many layouts based on 
the opcode. Immediate-mode operands might store a literal value in the operand 
fi eld. This value may be decoded differently for integer instructions than for fl oating 
point instructions. Sample  2.45  stores both the unsigned bit vector  b  and the integer  i  
in the same location.  
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 Use the suffi x “ _u ” when declaring a union. 

     Unions are useful when you frequently need to read and write a 
register in several different formats. However, don’t go overboard, 
especially just to save memory. Unions may help squeeze a few 
bytes out of a structure, but at the expense of having to create and 
maintain a more complicated data structure. Instead, make a class 
with a discriminant variable, as shown in Section 8.4.4. This “kind” 

variable indicates which type of transaction you have, and thus which fi elds to read, 
write, and randomize. If you just need an array of values, plus all the bits, use a 
packed array as described Section in  2.2.6   

    2.9.4   Packed Structures 

 SystemVerilog allows you more control in how bits are laid out in memory by using 
packed structures. A packed structure is stored as a contiguous set of bits with no 
unused space. The  struct  for a pixel in Sample  2.43  has three values, so it is stored 
in three longwords, even though it only needs three bytes. You can specify that it 
should be packed into the smallest possible space with the  packed  keyword, as 
shown in Sample  2.46 .  

  Sample 2.45    Using typedef to create a union       

  Sample 2.46    Packed structure       

   Packed structures are used when the underlying bits represent a numerical value or 
when you are trying to reduce memory usage. For example, you could pack together 
several bit-fi elds to make a single register. Or you might pack together the opcode and 
operand fi elds to make a value that contains an entire processor instruction.  

    2.9.5   Choosing Between Packed and Unpacked Structures 

 When you are trying to choose between packed and unpacked structures, consider 
how the structure is most commonly used and the alignment of the elements. If you 
plan on making aggregate operations on the structure, such as copying the entire 
structure, a packed structure is more effi cient. However, if your code accesses 
the individual members more than the entire structure, use an unpacked structure. 
The difference in performance is greater if the elements are not aligned on byte 
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boundaries, have sizes that don’t match the typical byte, or have word instructions 
used by processors. Reading and writing elements with odd sizes in a packed struc-
ture requires expensive shift and mask operations.   

    2.10   Packages 

 At the start of a project, you need to create new types and parameters. For example, 
if your processor communicates with your company’s ABC bus, your testbench 
needs to defi ne ABC data types, and parameters to specify the bus width and timing. 
Another project may want to use these types, plus those for the XYZ bus. 

 You could create separate fi les for each bus and use the  'include  statement to 
bring in the fi les during compilation. But then every name associated with each bus 
must be unique, even those that are internal variables, never intended to be visible. 
How can you organize these types to avoid name confl icts? 

 The SystemVerilog package allows you to share declarations among modules, 
packages, plus programs and interface, which are described in   Chapter 4    . Sample 
 2.47  shows the package for the ABC bus.  

  Sample 2.48    Importing packages       

  Sample 2.47    Package for ABC bus       

 You import symbols from a package with the  import  statement. The compiler only 
looks in imported packages when a symbol is not defi ned in the usual search path. In 
Sample  2.48 , the fi rst  import  statement makes the symbols  abc_data_width, 
abc_data_t , and  timeout  visible if there is no local variable with the same name. 
The variable  message  in ABC is hidden by the one in the module.  
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 If you really want to see the  message  variable in ABC, use ABC:: message . 
 You can import specifi c symbols from a package with the scope operator, ::. 

Sample  2.49  imports all the symbols from ABC, plus just the  timeout  variable 
from XYZ.  

  Sample 2.49    Importing selected symbols from a package       

 Packages can only see symbols defi ned inside themselves, or packages that they 
import. You can not have hierarchical references to symbols such as signals, rou-
tines, or modules from outside the package. Think of a package as being completely 
standalone, able to plug in where needed, with no outside dependencies. 

 A package can contain routines, plus classes, as shown in Section 5.4.  

    2.11   Type Conversion 

 SystemVerilog has several rules to ensure that expressions are evaluated with little 
or no loss of accuracy. For example, if you add two 8-bit values, the addition is done 
with 9-bit precision to avoid overfl ow. Multiply two 8-bit values, and SystemVerilog 
calculates a 16-bit result. 

 The proliferation of data types in SystemVerilog means that you may need to 
convert between them. If the layout of the bits between the source and destination 
variables are the same, such as an integer and enumerated type, cast between the 
two values. If the bit layouts differ, such as an array of bytes and words, use the 
streaming operators to rearrange the bits as described in Section  2.12 . 

    2.11.1   The Static Cast 

 The static cast operation converts between two types with no checking of values. 
You specify the destination type, an apostrophe, and the expression to be converted 
as shown in Sample  2.50 . Note that Verilog has always implicitly converted between 
types such as integer and real, and also between different width vectors.   
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    2.11.2   The Dynamic Cast 

 The dynamic cast,  $cast , allows you to check for out-of-bounds values. See Section 
 2.13.3  for an explanation and example with enumerated types. 

     Use a static cast when you want SystemVerilog to use a type with 
more precision, like when using the  sum  method for a single bit 
array. Use the dynamic cast when converting from a type with a 
larger number of values than the destination, such as int to an enu-
merated variable.   

    2.12   Streaming Operators 

 When used on the right side of an assignment, the streaming operators << and >> 
take an expression, structure, or array, and packs it into a stream of bits. The >> 
operator streams data from left to right while << streams from right to left, as shown 
in Sample  2.51 . You can also give a slice size, used to break up the source before 
being streamed. You can not assign the bit stream result directly to an unpacked 
array. Instead, use the streaming operators on the left side of an assignment to 
unpack the bit stream into an unpacked array.  

  Sample 2.51    Basic streaming operator       

  Sample 2.50    Converting between int and real with static cast        
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 You could do the same operations with many concatenation operators, {}, but 
the streaming operators are more compact and easier to read. 

 If you need to pack or unpack arrays, use the streaming operator to convert 
between arrays of different element sizes. For instance, you can convert an array of 
bytes to an array of words. You can use fi xed size arrays, dynamic arrays, and 
queues. Sample  2.52  converts between queues, but would also work with dynamic 
arrays. Array elements are automatically allocated as needed.  

  Sample 2.52    Converting between queues with streaming operator       

      A common mistake when streaming between arrays is mis-
matched array subscripts. The word subscript [ 256 ] in an array 
declaration is equivalent to [ 0:255 ], not [ 255:0 ]. Since many 
arrays are declared with the word subscripts [ high:low ], 

streaming them to an array with the subscript [ size ] would result in the elements 
ending up in reverse order. Likewise, streaming an unpacked array declared as bit
 [ 7:0 ]  src[255:0]  to the packed array declared as bit [ 7:0 ] [ 255:0 ] dst will 
scramble the order of values. The correct declaration for a packed array of bytes is 
 bit [255:0] [7:0] dst . 

 You can also use the streaming operator to pack and unpack structures, such as 
an ATM cell, into an array of bytes. In Sample  2.53  a structure is streamed into a 
dynamic array of bytes, then the byte array is streamed back into the structure.   
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    2.13   Enumerated Types 

 An enumerated type allows you to create a set of related but unique constants such 
as states in a state machine or opcodes. In classic Verilog, you had to use text mac-
ros. Their global scope is too broad, and their value might not be visible in the 
debugger. An enumeration creates a strongly typed variable that is limited to a set of 
specifi ed names. For example, the names ADD, MOVE, or ROTW make your code 
easier to write and maintain than if you had used literals such as  8 ' h01  or macros. 
A weaker alternative for defi ning constants is a parameter. These are fi ne for indi-
vidual values, but an enumerated type automatically gives a unique value to every 
name in the list. 

 The simplest enumerated type declaration contains a list of constant names and 
one or more variables as shown in Sample  2.54 . This creates an anonymous enumer-
ated type, but it cannot be used for any other variables than the ones in this 
declaration.  

  Sample 2.53    Converting between a structure and an array with streaming operators       

  Sample 2.54    A simple enumerated type, not recommended       
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 Use the suffi x “ _e ” when declaring an enumerated type name. 

    2.13.1   Defi ning Enumerated Values 

 The actual values default to  int  starting at 0 and then increase. You can choose your 
own enumerated values. The code in Sample  2.56  uses the default value of 0 for 
 INIT , then 2 for  DECODE , and 3 for  IDLE .  

  Sample 2.55    Enumerated types, recommended style       

  Sample 2.56    Specifying enumerated values       

 Enumerated constants, such as  INIT  in Sample  2.56 , follow the same scoping 
rules as variables. Consequently, if you use the same name in several enumerated 
types (such as  INIT  in different state machines), they have to be declared in differ-
ent scopes such as modules, program blocks, packages, routines, or classes. 

 It is recommended to create a named enumerated type so you can declare 
multiple variables of the same type, especially if these are used as routine argu-
ments or module ports. You fi rst create the enumerated type, and then the vari-
ables of this type, as shown in Sample  2.55 . You can get the string representation 
of an enumerated variable with the built-in function  name() .  
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      An enumerated type is stored as  int  unless you specify other-
wise. Be careful when assigning values to enumerated constants, 
as the default value of an  int  is 0. In Sample  2.57 ,  position  is 
initialized to 0, which is not a legal  ordinal_e  variable. This 

behavior is  not  a tool bug – it is how the language is specifi ed. So always specify an 
enumerated constant with the value of 0, as shown in Sample  2.58 , just to catch the 
testbench error.    

  Sample 2.57    Incorrectly specifying enumerated values       

  Sample 2.58    Correctly specifying enumerated values       

    2.13.2   Routines for Enumerated Types 

 SystemVerilog provides several functions for stepping through enumerated types.

    • fi rst ()  returns the fi rst member of the enumeration.  
   • last()  returns the last member of the enumeration.  
   • next()  returns the next element of the enumeration.  
   • next (N)  returns the  N   th  next element.  
   • prev ()  returns the previous element of the enumeration.  
   • prev(N)  returns the  N   th  previous element.    

 The functions  next  and  prev  wrap around when they reach the beginning or end 
of the enumeration. 

 Note that there is no clean way to write a  for  loop that steps through all members 
of an enumerated type if you use an enumerated loop variable. You get the starting 
member with  fi rst  function and the  next  member with next. A for loop ends when 
the loop variable is outside the defi ned bounds, but the  next  function always returns 
a value inside the enumeration. If you use the test  current!= current.last() ,  
the loop ends before using the last value. If you use  current<=current.  last  () , you 
get an infi nite loop, as  next  never gives you a value that is greater than the fi nal 
value. This is similar to trying to make a  for  loop that steps through the values 0..3 
with an index declared as  bit [1:0] . The loop never exits! You can get around this 
limitation by either using an integer variable in the loop, or incrementing the 
 enumerated variable, but both of these solutions can give illegal values if your 
 enumerated values are not contigious, such as 1, 2, 3, 5, 8. 

 You can use a  do…while  loop to step through all the values, checking when the 
value wraps around, as shown in Sample  2.59 .   
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    2.13.3   Converting to and from Enumerated Types 

 The default type for an enumerated type is  int  (2-state). You can take the value of an 
enumerated variable and assign it to a non-enumerated variable such as an  int  with 
a simple assignment. SystemVerilog does not, however, let you store an integer value 
in an  enum  without explicitly changing the type. Instead, it requires you to explicitly 
cast the value to make you realize that you could be writing an out-of-bounds value.  

  Sample 2.59    Stepping through all enumerated members       

  Sample 2.60    Assignments between integers and enumerated types       

 When called as a function as shown in Sample  2.60 ,  $cast()  tried to assign 
the right value to the left variable. If the assignment succeeds,  $cast()  returns 1. 
If the assignment fails because of an out-of-bounds value, no assignment is made 
and the function returns 0. If you use  $cast()  as a task and the operation fails, 
SystemVerilog prints an error. 

 You can also cast the value using the  type ' (val)  as shown in the example, but 
this does not do any type checking, so the result may be out-of-bounds. For example, 
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after the static cast in Sample  2.60 ,  c2  has an out-of-bounds value. You should avoid 
this style of casting with enumerated types.   

    2.14   Constants 

 There are several types of constants in SystemVerilog. The classic Verilog way to 
create a constant is with a text macro. On the plus side, macros have global scope 
and can be used for bit fi eld defi nitions and type defi nitions. On the negative side, 
macros are global, so that they can cause confl icts if you just need a local constant. 
Lastly, a macro requires the ` character so that it is recognized and expanded by the 
compiler. 

 A Verilog  parameter  was loosely typed and was limited in scope to a single 
module. Verilog-2001 added typed parameters, but their limited scope kept param-
eters from being widely used. In SystemVerilog, parameters can be declared in a 
package so they can be used across multiple modules. This approach can replace 
most Verilog macros that were just being used as constants. 

 SystemVerilog also supports the  const  modifi er that allows you to make a vari-
able that can be initialized in the declaration but not written by procedural code.  

  Sample 2.61    Declaring a const variable       

 In Sample  2.61 , the value of  colon  is initialized at run time, when the  initial  
block is entered. In the next chapter, Sample 3.11 shows a  const  routine argument.  

    2.15   Strings 

 If you have ever tried to use a Verilog  reg  variable to hold a string of characters, 
your suffering is over. The SystemVerilog  string  type holds variable-length 
strings. An individual character is of type  byte . The elements of a string of length 
 N  are numbered 0 to  N -1. Note that, unlike C, there is no null character at the end of 
a string, and any attempt to use the character “\0” is ignored. Memory for strings is 
dynamically allocated, so you do not have to worry about running out of space to 
store the string. 

 Sample  2.62  shows various string operations. The function  getc ( N ) returns the 
byte at location  N , while  toupper  returns an upper-case copy of the string and 
 tolower  returns a lowercase copy. The curly braces {} are used for concatenation. 
The task  putc ( M ,  C ) writes a byte  C  into a string at location  M , that must be between 0 
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and the length as given by  len . The  substr(start,end)  function extracts 
 characters from location  start  to  end .  

  Sample 2.62    String methods       

 Note how useful dynamic strings can be. In other languages such as C, you have 
to keep making temporary strings to hold the result from a function. In Sample  2.62 , 
the  $sformatf  function is used instead of  $sformat , from Verilog-2001. This new 
function returns a formatted temporary string that, as shown above, can be passed 
directly to another routine. This saves you from having to declare a temporary string 
and passing it between the formatting statement and the routine call. The undocu-
mented function  $psprintf  has the same functionality as  $sformatf , but is not in 
the LRM, even though most vendors support this non-standard system function. 

      There are two ways to compare strings, but they behave differ-
ently. The equality operator,  s1==s2 , returns 1 if the strings are 
identical, and 0 if they are not. The string comparison function, 
 s1.compare(s2) , returns 1 if s1 is greater than s2, 0 if they are 

equal, and −1 if s1 is less than s2. While this matches the ANSI C  strcmp()  behav-
ior, it may not be what you expect.  

    2.16   Expression Width 

 A prime source for unexpected behavior in Verilog has been the width of expres-
sions. Sample  2.63  adds 1+1 using four different styles. Addition A uses two 1-bit 
variables, so with this precision 1+1=0. Addition B uses 8-bit precision because 
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there is an 8-bit variable on the left side of the assignment. In this case, 1+1=2. 
Addition C uses a dummy constant to force SystemVerilog to use 2-bit precision. 
Lastly, in addition D, the fi rst value is cast to be a 2-bit value with the cast operator, 
so 1+1=2.  

  Sample 2.63    Expression width depends on context       

 There are several tricks you can use to avoid this problem. First, avoid situations 
where the overfl ow is lost, as in addition A. Use a temporary, such as  b8 , with the 
desired width. Or, you can add another value to force the minimum precision, such 
as  2 ' b0 . Lastly, in SystemVerilog, you can cast one of the variables to the desired 
precision.  

    2.17   Conclusion 

 SystemVerilog provides many new data types and structures so that you can create 
high-level testbenches without having to worry about the bit-level representation. 
Queues work well for creating scoreboards for which you constantly need to add 
and remove data. Dynamic arrays allow you to choose the array size at run time for 
maximum testbench fl exibility. Associative arrays are used for sparse memories and 
some scoreboards with a single index. Enumerated types make your code easier to 
read and write by creating groups of named constants. 

 Don’t go off and create a procedural testbench with just these constructs. Explore 
the OOP capabilities of SystemVerilog in   Chapter 5     to learn how to design code at 
an even higher level of abstraction, thus creating robust and reusable code.  
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    2.18   Exercises 

     1.    Given the following code sample:      

   a.    What is the range of values  my_byte  can take?  
   b.    What is the value of  my_int  in hex?  
   c.    What is the value of  my_bit  in decimal?  
   d.    What is the value of  my_short_int1  in decimal?  
   e.    What is the value of  my_short_int2  in decimal?      

    2.    Given the following code sample:       

 Evaluate the following statements in the given order and give the result for 
each assignment

   a.     my_mem[2] = my_logicmem[4] ;  
   b.     my_logic = my_logicmem[4] ;  
   c.     my_logicmem[3] = my_mem[3] ;  
   d.     my_mem[3] = my_logic ;  
   e.     my_logic = my_logicmem[1] ;  
   f.     my_logic = my_mem[1] ;  
   g.     my_logic = my_logicmem[my_logicmem[41] ;      
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    3.    Write the SystemVerilog code to:

   a.    Declare a 2-state array,  my_array , that holds four 12-bit values  
   b.    Initialize  my_array  so that:

   *  my_array[0] = 12 ' h012   
  *  my_array[1] = 12 ' h345   
  *  my_array[2] = 12 ' h678   
  *  my_array[3] = 12 ' h9AB      

   c.    Traverse  my_array  and print out bits [5:4] of each 12-bit element

   * With a  for  loop  
  * With a  foreach  loop         

    4.    Declare a 5 by 31 multi-dimensional unpacked array,  my_array1 . Each element 
of the unpacked array holds a 4-state value.

   a.    Which of the following assignment statements are legal and not out of bounds?

   *  my_array1[4][30] = 1 ' b1 ;  
  *  my_array1[29][4] = 1 ' b1 ;  
  *  my_array1[4] = 32 ' b1 ;     

   b.    Draw  my_array1  after the legal assignments complete.      

    5.    Declare a 5 by 31 multi-dimensional packed array,  my_array2 . Each element of 
the packed array holds a 2-state value.

   a.    Which of the following assignment statements are legal and not out of bounds?

   *  my_array2[4][30] = 1 ' b1 ;  
  *  my_array2[29][4] = 1 ' b1 ;  
  *  my_array2[3] = 32 ' b1 ;     

   b.    Draw  my_array2  after the assignment statements complete.      

    6.    Given the following code, determine what will be displayed.        
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    7.    Write code for the following problems.

   a.     Create memory using an associative array for a processor with a word width of 
24 bits and an address space of 2 20  words. Assume the PC starts at address 0 at 
reset. Program space starts at 0´400. The ISR is at the maximum address.  

   b.    Fill the memory with the following instructions:

   *  24 ' hA50400; // Jump to location 0´400 for the main code   
  *  24 ' h123456; // Instruction 1 located at location 0´400   
  *  24 ' h789ABC; // Instruction 2 located at location 0´401   
  *  24 ' h0F1E2D; // ISR = Return from interrupt      

   c.    Print out the elements and the number of elements in the array.      

    8.    Create the SystemVerilog code for the following requirements

   a.    Create a 3-byte queue and initialize it with 2, −1, and 127  
   b.    Print out the sum of the queue in the decimal radix  
   c.    Print out the min and max values in the queue  
   d.    Sort all values in the queue and print out the resulting queue  
   e.    Print out the index of any negative values in the queue  
   f.    Print out the positive values in the queue  
   g.    Reverse sort all values in the queue and print out the resulting queue      

    9.    Defi ne a user defi ned 7-bit type and encapsulate the fi elds of the following 
packet in a structure using your new type. Lastly, assign the header to 7 ' h5A.        

header datacmd crc

07 61314202127

    10.    Create the SystemVerilog code for the following requirements

   a.    Create a user-defi ned type, nibble, of 4 bits  
   b.    Create a real variable, r, and initialize it to 4.33  
   c.    Create a short int variable, i_pack  
   d.     Create an unpacked array, k, containing 4 elements of your user defi ned type 

nibble and initialize it to 4 ' h0, 4 ' hF, 4 ' hE, and 4 ' hD  
   e.    Print out k  
   f.    Stream k into i_pack right to left on a bit basis and print it out  
   g.    Stream k into i_pack right to left on a nibble basis and print it out  
   h.    Type convert real r into a nibble, assign it to k[0], and print out k      
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    11.    An ALU has the opcodes shown in Table  2.1  .  

 Write a testbench that performs the following tasks.

   a.    Create an enumerated type of the opcodes:  opcode_e   
   b.    Create a variable,  opcode , of type  opcode_e   
   c.    Loop through all the values of variable  opcode  every 10ns  
   d.    Instantiate an ALU with one 2-bit input opcode               

   Table 2.1    ALU Opcodes   

  Opcode    Encoding  

 Add: A + B  2 ' b00 
 Sub: A − B  2 ' b01 
 Bit-wise invert: A  2 ' b10 
 Reduction Or: B  2 ' b11 
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