
Chapter 2
The Approach of Moments for Polynomial
Equations

Monique Laurent and Philipp Rostalski

2.1 Introduction

Computing all points x ∈ Kn (K = R or C) at which a given system of polynomials
in n variables

h1, . . . ,hm ∈ R[x1, . . . , xn] = R[x]

vanishes simultaneously, is an old problem arising in many mathematical models in
science and engineering, with numerous applications in different areas ranging from
control, cryptography, computational geometry, coding theory and computational
biology to optimization, robotics, statistics and many others (see, e.g., [43]). In this
chapter we will focus on the characterization and the (numerical) computation of all
real roots or, more generally, of all roots lying in some given basic semi-algebraic
set, i.e., satisfying some prescribed polynomial inequalities. A variety of methods
has been proposed to tackle such problems, some of which will be briefly recalled in
the next section. In this chapter we will focus on a new approach based on sums of
squares of polynomials and the dual theory of moments. In this context, semidefinite
programming will be the tool permitting to distinguish algorithmically between real
and complex nonreal elements.
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2.1.1 Existing Methods

Solving polynomial equations has a long tradition covered in a vast literature;
for information and further references see e.g. the monographs of Basu et al. [2],
Dickenstein and Emiris [9], Mora [27, 28], Elkadi and Mourrain [10], Stetter [42],
Sturmfels [43]. We do not attempt a complete description of all existing methods,
but instead we only try to give a coarse classification. Most existing algorithms can
be roughly categorized according to the following criteria: local vs. global search,
numerical vs. exact/symbolic computation, and solving over the complex numbers
vs. solving over the real numbers.

2.1.1.1 Existing Methods over the Complex Numbers

Symbolic Methods

Gröbner bases, resultants or, more generally, border bases and generalized normal
form algorithms are typical representatives of this class of methods. The main
idea is to compute the structure of the quotient algebra R[x]/I (where I is the
ideal generated by the given polynomials hi) and to use this information to
characterize the roots, e.g., using the shape lemma, or Stickelberger’s theorem (viz.
the eigenvalue method), or the rational univariate representation.

The following basic fact plays a crucial role: The system of polynomial equations
h1 = · · · = hm = 0 has finitely many roots if and only if the quotient ring R[x]/I of the
underlying ideal I = 〈h1, . . . ,hm〉 is finite dimensional as a vector space. This in turn
enables to reduce the computation of all complex roots to tasks of finite dimensional
linear algebra (like eigenvalue computations). Roughly speaking, the basic idea is
to replace the given system hi = 0 by a new equivalent system g j = 0 with the same
set of complex roots, but with a much easier structure facilitating the extraction of
the roots.

For instance, one may find an equivalent system comprising polynomials in
triangular form g1∈R[x1],g2∈R[x1, x2], . . . ,gn∈R[x1, . . . , xn], which can be solved
by solving a sequence of univariate root finding problems. Such an approach suffers
however from the propagation of numerical errors and triangular representations
are difficult to compute, typically involving lexicographic Gröbner bases. A more
efficient approach is the rational univariate representation, where the new system
has a parametric representation:

x1 = h1(t)/h(t), . . . , xn = hn(t)/h(t), f (t) = 0 (hi,h, f ∈R[t]),

which requires the solution of a single univariate polynomial: f (t) = 0 (see [37]).
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Symbolic-Numeric Methods

Motivated by the great success of numerical linear algebra, a new trend in applied
mathematics is to carefully combine symbolic methods (mostly border bases
methods) with numerical calculations, such as singular value decomposition, LU-
factorization and other workhorses of numerical linear algebra in order to derive
powerful algorithms for large scale problems (see e.g. [30] for details). As men-
tioned above, symbolic methods are able to transform the given system hi = 0 into a
new, better structured system g j = 0. Then the task of computing the complex roots is
reduced to (numerical) linear algebra, like computing the eigenvalues/eigenvectors
of companion matrices (cf. Sect. 2.2.2 below), or univariate root finding.

Numerical Methods

The most successful approach in this class of methods is homotopy continuation.
Such methods rely on Bertini’s theorem allowing to deform an easier instance with
known solutions of the class of problems to be solved into the original system,
without encountering singularities along the path (cf. [39] for details). Keeping track
of the roots during this deformation allows to compute the desired roots.

2.1.1.2 Existing Methods over the Real Numbers

While the task of solving polynomial equations over the complex numbers is
relatively well understood, computing only the real roots is still largely open. The
need for methods tailored to real root finding is mainly motivated by applications,
where often only the real roots are meaningful, and whose number is typically much
smaller than the total number of complex solutions. As an illustration, just consider
the simple equation x2

1 + x2
2 = 0, where not even the dimensions of the real and

complex solution sets agree!
So far, real solving methods were mostly build upon local methods combined

with a bisection search strategy. More recently, two new global approaches have
been considered which can be seen as refinements of complex root finding methods
mentioned above: the SDP based moment approach (which is the focus of this
chapter), and a new homotopy continuation method tuned to real roots. The three
main classes of methods for real roots are briefly discussed below.

Subdivision Methods

Combining exclusion criteria to remove parts of the search space not containing
any real root and identify regions containing isolated real roots, with local search
strategies such as Newton–Raphson or higher order methods, are the basis for
the class of subdivision methods. The search space is subdivided until it contains
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only a single root and Newton’s method converges (cf. e.g. [31] for a recent
account). Exclusion criteria include real root counting techniques based e.g. on
Sturm-Habicht sequences, Descartes’ rule of signs (for univariate polynomials), or
signatures of Hermite forms (in the multivariate case). Such techniques, combined
with deformation techniques using Puiseux series, are also extended to the problem
of computing at least one point in each connected component of an algebraic variety
(possibly of positive dimension) (cf. [2] for a detailed account).

Khovanskii-Rolle Continuation

This method is a recent extension of curve following methods (like homotopy
continuation for complex roots) tailored to real roots. It exploits the fact that there
are sharp bounds for the number of real roots of systems of equations with few
monomials, combined with Gale duality. The approach allows to track significantly
fewer paths of an auxiliary system leading to all nondegenerate real solutions of the
original system. It is still under investigation, but has the potential to become an
efficient algorithm for real root finding (see [3, 40] for details).

Moment Methods

This class of methods was first proposed in [17] with extensions in [18, 19], and is
the focus of this chapter. The basic idea is to compute the real roots by working in a
smaller quotient space, obtained by taking the quotient by the real radical ideal

R
√

I
of the original ideal I, consisting of all polynomials that vanish at the set of common
real roots of the original system hi = 0. In this way, computing the real roots is again
reduced to a task of numerical linear algebra, now in the finite dimensional vector
space R[x]/

R
√

I (assuming only that the number of real roots is finite, while the total
number of complex roots could be infinite). Finding the real radical ideal is achieved
by computing the kernel of a generic moment matrix obtained by solving iteratively
certain semidefinite programming problems.

2.1.2 The Basic Idea of the Moment Method

Most symbolic and symbolic/numeric algorithms for solving a system of polynomi-
als decompose the structure of the polynomial ring into its ideal structure (namely,
the ideal I generated by the equations to be solved) and its vector space structure
(corresponding to the quotient of the polynomial ring by this ideal). While the
former is treated with symbolic methods one can use efficient linear algebra for
the latter. We start with an elementary introduction. Let

h1(x) = · · · = hm(x) = 0 (2.1)
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be the system of polynomial equations to be solved. Denote by D ∈N the maximum
degree of the polynomials hi and let I = 〈h1, . . . ,hm〉 be the ideal generated by these
polynomials, i.e., the set of all polynomials

∑
i uihi with ui ∈ R[x]. If we form the

matrix H whose rows are the coefficient vectors of the polynomials hi, then the roots
of the system (2.1) are precisely the elements x ∈ Cn satisfying H[x]D = 0, where
for any integer t ∈ N,

[x]t = (1, x1, . . . , xn, x
2
1, x1x2, . . . , x

t
n)

denotes the vector of all monomials of degree at most t. Augmenting the system
(2.1) with new polynomials obtained by multiplying the hi’s by monomials does
not change its set of common roots. Given an integer t, we add all possible
multiples of the hi’s with degree at most t, i.e., we add all ‘valid’ equations:
xαhi = 0 where |α| ≤ t − deg(hi). This yields a new, larger system of polynomials
whose coefficient vectors make the rows of a matrix H̃t (known as Sylvester or
Macaulay-like matrix). Again, the roots of (2.1) are those elements x ∈Cn satisfying
H̃t[x]t = 0.

The basic idea is to linearize this system of equations by introducing variables
y = (yα) for the monomials xα and to solve instead a linear system:

H̃ty = 0. (2.2)

The kernel of the matrix H̃t is a linear subspace, which contains the vectors [x]t

for all roots x of the system (2.1) and thus also their linear span. When the system
(2.1) has finitely many complex roots, it turns out that, for t large enough, (some
projection of) the kernel of H̃t coincides with the linear span of the monomial
vectors corresponding to the roots of (2.1), which opens the way to extracting the
roots. More precisely, the central observation (dating back to [23]) is that for t large
enough a Gaussian elimination on the Sylvester matrix H̃t will reveal a Gröbner
basis for the ideal I and thus the desired quotient ring structure R[x]/I. This in turn
can be used to reduce the multivariate root finding problem to a simple eigenvalue
calculation (as recalled in Sect. 2.2.2).

If we want to compute the real roots only, we need a mechanism to cancel
out all (or as many as possible) nonreal solutions among the complex ones. This
cancellation can be done by augmenting the original system (2.1) with additional
polynomials derived from sums of squares of polynomials in the ideal I. We
introduce this idea by means of a simple example.

Example 2.1. Consider the ideal I ⊆ R[x1, x2] generated by the polynomial h = x2
1+

x2
2. The complex variety is positive dimensional, since it consists of infinitely many

complex roots: x2 = ±ix1 (x1 ∈ C), while the origin (0,0) is the only real root. If we
add the two polynomials p1 = x1, p2 = x2 to I the real variety remains unchanged, but
none of the complex nonreal roots survives this intersection. Note that p1, p2 have
the property that the polynomial p2

1 + p2
2 = h is a sum of squares of polynomials

belonging to I.
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This example illustrates the following fact: If the pi’s are polynomials for which
∑

i p2
i ∈ I, then each pi vanishes at all the real roots of the ideal I (but not necessarily

at its complex nonreal roots!). Thus we can add the pi’s to the original system (2.1)
without altering its set of real roots. The formal tool behind this augmentation is the
Real Nullstellensatz (see Theorem 2.1), which states that the set of real solutions to
the system (2.1) remains unchanged if we add to it any polynomial appearing with
an even degree in a sum of squares polynomial that belongs to I. The set of all such
polynomials is known as the real radical ideal of I, denoted as

R
√

I (see Sect. 2.2
for definitions). A main feature of the moment matrix method is that it permits
to generate the polynomials in the real radical ideal in a systematic way, using
duality.

Let us first look directly at the additional properties that are satisfied by a vector
y = [x]t ∈ Ker H̃t, when x is a real root of (2.1). Obviously the matrix [x]s[x]T

s is
positive semidefinite for any integer s and by ‘linearizing’ (replacing xα by yα)
we obtain the following matrix of generalized Hankel type: Ms(y) = (yα+β)α,β∈Nn

s
.

Matrices with this generalized Hankel structure are also known as moment matrices
(see Definition 2.3). As an illustration we display Ms(y) for the case n = 2:

[x]s[x]T
s =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 x1 x2 x2
1 . . .

x1 x2
1 x1x2 x3

1 . . .

x2 x1x2 x2
2 x2

1 x2 . . .

x2
1 x3

1 x2
1x2 x4

1 . . .
...
...

...
...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� Ms(y) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 y10 y01 y20 . . .

y10 y20 y11 y30 . . .

y01 y11 y02 y21 . . .

y20 y30 y21 y40 . . .
...
...
...
...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, we can restrict the search in the kernel of the Sylvester matrix H̃t to the
vectors y satisfying the additional positive semidefiniteness condition: Ms(y) � 0
for all s ≤ t/2. This condition captures precisely the ‘real algebraic’ nature of real
numbers vs. complex numbers, as it would not be valid for vectors y corresponding
to complex nonreal roots.

Example 2.2 (Example 2.1 cont). Say we wish to compute the real roots of the
polynomial h= x2

1+ x2
2. After linearization, the constraint Hy= 0 reads: y20+y02 = 0.

Positive semidefiniteness requires y20 ≥ 0, y02 ≥ 0 which, combined with y20+y02 =

0 implies y20 = y02 = 0 and thus y10 = y01 = y11 = 0 (using again M1(y) � 0).
Therefore, we find y = (1,0,0,0,0,0) as the unique solution, so that y = [x]2

corresponds to the unique real root x = (0,0) of h. The kernel of M1(y) contains
the vectors (0,1,0) and (0,0,1), which can be seen as the coefficient vectors of the
two polynomials p1 = x1 and p2 = x2 in the monomial basis {1, x1, x2} of R[x]1.
In other words the kernel of M1(y) already contains a basis of the real radical
ideal

R
√

I.

Although the above example is extremely simplistic, it conveys the main idea: The
kernel of Ms(y) characterizes (for s large enough) the real radical ideal and plays
the role of the range space of H in standard normal form algorithms.
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2.1.3 Organization of the Chapter

First we recall some basic material from polynomial algebra in Sect. 2.2. This
material can be found in most standard textbooks and is used throughout the chapter.
The relation between moment matrices and real radical ideals as well as the moment
method for real root finding is discussed in Sect. 2.3. This section and in particular
the semidefinite characterization of the real radical ideal form the heart of the
chapter. We also discuss the link to some complex root finding methods and in
Sect. 2.4 we briefly touch some related topics: polynomial optimization and the
study of semi-algebraic sets, emptyness certificates, positive dimensional varieties,
and quotient ideals. Throughout the chapter we illustrate the results with various
examples.

2.2 Preliminaries of Polynomial Algebra

2.2.1 Polynomial Ideals and Varieties

2.2.1.1 The Polynomial Ring and Its Dual

For the sake of simplicity we deal with polynomials with real coefficients only
although some results remain valid for polynomials with complex coefficients.
Throughout R[x] := R[x1, . . . , xn] denotes the ring of multivariate polynomials in n
variables. For α ∈Nn, xα denotes the monomial xα1

1 · · · xαn
n , with degree |α| :=∑n

i=1αi.
Set Nn

t := {α ∈ Nn | |α| ≤ t} and let

[x]∞ = (xα)α∈Nn , [x]t = (xα)α∈Nn
t

denote the vectors comprising all monomials (resp., all monomials of degree at
most t) in n variables. A polynomial p ∈ R[x] can be written as p =

∑
α∈Nn pαxα

with finitely many nonzero pα’s; its support is the set of monomials appearing with
a nonzero coefficient, its (total) degree deg(p) is the largest degree of a monomial in
the support of p, and vec(p) = (pα) denotes the vector of coefficients of p. The set
R[x]t consists of all polynomials with degree at most t.

Given a vector space A on R, its dual space A∗ consists of all linear functionals
from A to R. The orthogonal complement of a subset B ⊆ A is

B⊥ := {L ∈ A∗ | L(b) = 0 ∀b ∈ B}
and Span

R
(B) denotes the linear span of B. Then, Span

R
(B) ⊆ (B⊥)⊥, with equality

when A is finite dimensional. We consider here the cases A = R[x] and A = R[x]t.
Examples of linear functionals on R[x] are the evaluation

Λv : p ∈ R[x] �→ Λv(p) = p(v) (2.3)
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at a point v ∈ Rn and, more generally, the differential functional

∂αv : p ∈ R[x] �→ ∂αv (p) =
1

∏n
i=1αi!

⎛
⎜⎜⎜⎜⎝

∂|α|

∂xα1
1 . . .∂xαn

n
p

⎞
⎟⎟⎟⎟⎠ (v), (2.4)

which evaluates at v ∈ Rn the (scaled) α-th derivative of p (where α ∈N). For α = 0,
∂αv coincides with the evaluation at v, i.e., ∂0

v = Λv. For α,β ∈ Nn,

∂α0 (xβ) = 1 if α = β, and 0 otherwise.

Therefore, any linear form Λ ∈ R[x]∗ can be written in the form:

Λ =
∑

α∈Nn

Λ(xα)∂α0 .

This is in fact a formal power series as in general infinitely many Λ(xα) are nonzero.
Let y = (yα) denote the coefficient series of Λ in (∂α0 ), i.e., yα = Λ(xα), such that
Λ(p) = yT vec(p) for all p ∈ R[x]. For instance, the evaluation at v ∈ Rn reads Λv =∑
α v
α∂α0 , with coefficient series [v]∞ = (vα)α∈Nn in (∂α0 ).

2.2.1.2 Ideals and Varieties

A linear subspace I ⊆ R[x] is an ideal if p ∈ I, q ∈ R[x] implies pq ∈ I. The ideal
generated by h1, . . . ,hm ∈ R[x] is defined as

I = 〈h1, . . .hm〉 :=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

m∑

j=1

u jh j | u1, . . . ,um ∈ R[x]

⎫
⎪⎪⎪⎬
⎪⎪⎪⎭

and the set {h1, . . . ,hm} is then called a basis of I. By the finite basis theorem [6,
Sect. 2.5, Theorem 4], every ideal in R[x] admits a finite basis. Given an ideal I ⊆
R[x], the algebraic variety of I is the set

VC(I) =
{
v ∈ Cn | h j(v) = 0 ∀ j = 1, . . . ,m

}

of common complex zeros to all polynomials in I and its real variety is

VR(I) := VC(I)∩Rn.

The ideal I is said to be zero-dimensional when its complex variety VC(I) is finite.
The vanishing ideal of a subset V ⊆ Cn is the ideal

I(V) := { f ∈ R[x] | f (v) = 0 ∀v ∈ V}.
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For an ideal I ⊆ R[x], we may also define the ideal

√
I :=

{
f ∈ R[x]

∣∣∣ f m ∈ I for some m ∈ N \ {0}
}
,

called the radical ideal of I, and the real radical ideal (or real ideal)

R
√

I :=
{
p ∈ R[x]

∣∣∣ p2m+
∑

j

q2
j ∈ I for some q j ∈ R[x],m ∈ N \ {0}

}
.

An ideal I is said to be radical (resp., real radical) if I =
√

I (resp., I =
R
√

I). For
instance, the ideal I = 〈x2

1 + x2
2〉 is not real radical since x1, x2 ∈ R

√
I \ I. As can be

easily verified, I is radical if and only if p2 ∈ I implies p ∈ I, and I is real radical
if and only if

∑
i p2

i ∈ I implies pi ∈ I for all i. We have the following chains of
inclusion:

I ⊆ √
I ⊆ I(VC(I)), I ⊆ R

√
I ⊆ I(VR(I)).

The relation between vanishing and (real) radical ideals is stated in the following
two famous theorems:

Theorem 2.1. Let I ⊆ R[x] be an ideal.

(i) Hilbert’s Nullstellensatz (see, e.g., [6, Sect. 4.1]) The radical ideal of I is
equal to the vanishing ideal of its variety, i.e.,

√
I = I(VC(I)).

(ii) Real Nullstellensatz (see, e.g., [4, Sect. 4.1]) The real radical ideal of I is
equal to the vanishing ideal of its real variety, i.e.,

R
√

I = I(VR(I)).

2.2.2 The Eigenvalue Method for Complex Roots

2.2.2.1 The Quotient Space R[x]/I

The quotient set R[x]/I consists of all cosets [ f ] := f + I = { f +q | q ∈ I} for f ∈R[x],
i.e. all equivalent classes of polynomials in R[x] modulo I. This quotient set R[x]/I
is an algebra with addition [ f ]+ [g] := [ f +g], scalar multiplication λ[ f ] := [λ f ] and
multiplication [ f ][g] := [ fg], for λ ∈ R, f ,g ∈ R[x]. The following classical result
relates the dimension of R[x]/I and the cardinality of the variety VC(I) (see e.g.
[6, 42]).

Theorem 2.2. Let I be an ideal in R[x]. Then,

|VC(I)| <∞⇐⇒ dimR[x]/I <∞.

Moreover, |VC(I)| ≤ dim R[x]/I, with equality if and only if I is radical.
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Assume that the number of complex roots is finite and set N := dimR[x]/I, so
that |VC(I)| ≤ N < ∞. Consider a set B := {b1, . . . ,bN} ⊆ R[x] for which the cosets
[b1], . . . , [bN] are pairwise distinct and {[b1], . . . , [bN]} is a (linear) basis of R[x]/I.
By abuse of language we also say that B itself is a basis of R[x]/I. Then every
f ∈ R[x] can be written in a unique way as f =

∑N
i=1 cibi+ p, where ci ∈ R and p ∈ I.

The polynomial

NB( f ) :=
N∑

i=1

cibi

is called the normal form of f modulo I with respect to the basis B. In other words,
we have the direct sum decomposition:

R[x] = Span
R

(B)⊕ I,

and Span
R

(B) and R[x]/I are isomorphic vector spaces. We now introduce the
eigenvalue method for computing all roots of a zero-dimensional ideal, which we
first describe in the univariate case.

2.2.2.2 Computing Roots with Companion Matrices

Consider first a univariate polynomial p = xd−ad−1xd−1− . . .−a1x−a0 and the ideal
I = 〈p〉. Then the set B = {1, x, . . . , xd−1} is a basis of R[x]/I. The following matrix

X :=

(
0 a0

Id−1 a

)

where a = (a1, . . . ,ad−1)T ,

is known as the companion matrix of the polynomial p. One can easily verify that
det(X− xI) = (−1)d p(x), so that the eigenvalues of X are precisely the roots of the
polynomials p. Therefore the roots of a univariate polynomial can be found with
an eigenvalue computation. Moreover, the columns of the companion matrix X
correspond to the normal forms of the monomials in xB = {x, x2, . . . , xd} modulo
I with respect to the basis B. As we now see these facts extend naturally to the
multivariate case.

Given h ∈ R[x], we define the multiplication (by h) operator in R[x]/I as

Xh : R[x]/I −→ R[x]/I

[ f ] �−→ Xh([ f ]) := [h f ] , (2.5)

which can be represented by its matrix (again denoted Xh for simplicity) with
respect to the basis B of R[x]/I. Namely, if we set NB(hb j) :=

∑N
i=1 ai jbi (where

ai j ∈ R), then the jth column of Xh is the vector (ai j)N
i=1. Note also that, since

hb j −NB(hb j) ∈ I, polynomials in I can be read directly from Xh. This fact will
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play an important role for border bases (see Sect. 2.2.3). In the univariate case, when
I = 〈p〉 and h = x, the multiplication matrix Xx is precisely the companion matrix X
of p introduced above. Throughout we also denote by Xi := Xxi the multiplication
operator by the variable xi in the multivariate case.

The following famous result (see e.g. [5, Chap. 2, Sect. 4]) relates the eigenvalues
of the multiplication operators in R[x]/I to the algebraic variety VC(I). This result
underlies the well known eigenvalue method, which plays a central role in many
algorithms for complex root solving.

Theorem 2.3 (Stickelberger theorem). Let I be a zero-dimensional ideal in R[x],
let B be a basis of R[x]/I, and let h ∈ R[x]. The eigenvalues of the multiplication
operator Xh are the evaluations h(v) of the polynomial h at the points v ∈ VC(I).
Moreover, for all v ∈ VC(I),

(Xh)T [v]B = h(v)[v]B,

setting [v]B = (b(v))b∈B; that is, the vector [v]B is a left eigenvector of the
multiplication operator with eigenvalue h(v).

Therefore the eigenvalues of the matrices Xi are the ith coordinates of the points
v ∈ VC(I), which can be derived from the left eigenvectors [v]B. Practically, one can
recover the roots from the left eigenvectors when the eigenspaces of XT

h all have
dimension one. This is the case when the values h(v) (v ∈ VC(I)) are pairwise distinct
(easy to achieve, e.g., if we choose h to be a generic linear form) and when the ideal
I is radical (since the dimension of R[x]/I is then equal to the number of roots so
that the vectors [v]B (v ∈ VC(I)) form a complete basis of eigenvectors).

Summarizing, the task of solving a system of polynomial equations is reduced
to a task of numerical linear algebra once a basis of R[x]/I and a normal form
algorithm are available, as they permit the construction of the multiplication
matricesXi, Xh. Moreover, the roots v ∈ VC(I) can be successfully constructed from
the eigenvectors/eigenvalues of Xh when I is radical and h is generic. Our strategy
for computing the real variety VR(I) will be to compute a linear basis of the quotient
space R[x]/

R
√

I and the corresponding multiplication matrices, so that we we can
apply the eigenvalue method precisely in this setting of having a radical (even real
radical) ideal.

The number of (real) roots can be counted using Hermite’s quadratic form:

S h : R[x]/I×R[x]/I → R
([ f ], [g]) �→ Tr(X fgh).

Here, Tr(X fgh) is the trace of the multiplication (by the polynomial fgh) matrix.
As S h is a symmetric matrix, all its eigenvalues are real. Denote by σ+(S h) (resp.,
σ−(S h)) its number of positive (resp., negative) eigenvalues. The following classical
result shows how to count the number of roots satisfying prescribed sign conditions
(cf. e.g. [2]).
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Theorem 2.4. Let I ⊆ R[x] be a zero-dimensional ideal and h ∈ R[x]. Then,

rankS h = |{v ∈ VC(I) | h(v) � 0}| ,

σ+(S h)−σ−(S h) = |{v ∈ VR(I) | h(v) > 0}| − |{v ∈ VR(I) | h(v) < 0}| .
In particular, for the constant polynomial h = 1,

rank(S 1) = |VC(I)| and σ+(S 1)−σ−(S 1) = |VR(I)|.

2.2.3 Border Bases and Normal Forms

The eigenvalue method for solving polynomial equations (described in the preced-
ing section) requires the knowledge of a basis of R[x]/I and of an algorithm to
compute the normal form of a polynomial with respect to this basis.

A well known basis of R[x]/I is the set of standard monomials with respect
to some monomial ordering. The classical way to find standard monomials is to
construct a Gröbner basis of I (then the standard monomials are the monomials
not divisible by any leading monomial of a polynomial in the Gröbner basis).
Moreover, once a Gröbner basis is known, the normal form of a polynomial can
be found via a polynomial division algorithm (see, e.g., [6, Chap. 1] for details).
Other techniques have been proposed, producing more general bases which do not
depend on a specific monomial ordering and often are numerically more stable. In
particular, algorithms have been proposed for constructing border bases of I leading
to general (connected to 1) bases of R[x]/I (see [9, Chap. 4], [14, 29, 42]); these
objects are introduced below. The moment matrix approach for computing real
roots presented in this chapter leads naturally to the computation of such general
bases.

Definition 2.1. Given a set B of monomials, define the new sets of monomials

B+ := B∪
n⋃

i=1

xiB = B∪{xib | b ∈ B, i = 1, . . . ,n} , ∂B = B+ \B,

called, respectively, the one-degree prolongation of B and the border of B. The
set B is said to be connected to 1 if 1 ∈ B and each m ∈ B \ {1} can be written as
m = xi1 . . . xik with xi1 , xi1 xi2 , . . . , xi1 · · · xik ∈ B. Moreover, B is said to be stable by
division if all divisors of m ∈ B also belong to B. Obviously, B is connected to 1 if
it is stable by division.

Assume B is a set of monomials which is connected to 1. For each border
monomial m ∈ ∂B, consider a polynomial fm of the form

fm := m− rm, where rm ∈ Span
R

(B). (2.6)
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The family F := { fm |m ∈ ∂B} is called a rewriting family for B in [30,32]. Using F,
one can express all border monomials in ∂B as linear combinations of monomials in
B modulo the ideal 〈F〉. Moreover, the rewriting family F can be used in a division
algorithm to rewrite any polynomial p ∈ R[x] as

p = r+
∑

m∈∂B
um fm, where r ∈ Span

R
(B), um ∈ R[x]. (2.7)

This expression is in general not unique, as it depends on the order in which the
polynomials of F are used throughout the division process.

Example 2.3. Let B = {1, x1, x2} with border set ∂B = {x2
1, x1x2, x2

2}, and consider
the rewriting family

F =
{

fx2
1
= x2

1 +1, fx1 x2 = x1x2−1, fx2
2
= x2

2 +1
}

.

There are two possibilities to rewrite the polynomial p = x2
1 x2. Either, first divide by

fx1 x2 and obtain p = x2
1x2 = x1 fx1 x2 + x1 with r = x1, or first divide by fx2

1
and obtain

p = x2
1x2 = x2 fx2

1
− x2 with r = −x2.

In view of (2.7), the set B spans the vector space R[x]/〈F〉, but is in general not
linearly independent. Linear independence guaranties uniqueness of the decompo-
sition (2.7) and, as Theorem 2.5 below shows, is equivalent to the commutativity of
certain formal multiplication operators.

Consider the linear operator Xi : Span
R

(B) → Span
R

(B) defined using the
rewriting family F, namely, for b ∈ B,

Xi(b) =

{
xib if xib ∈ B,
xib− fxib = rxib otherwise,

and extend Xi to Span
R

(B) by linearity. Denote also by Xi the matrix of this linear
operator, which can be seen as a formal multiplication (by xi) matrix.

Theorem 2.5 ([29]). Let F be a rewriting family for a set B of monomials
connected to 1, and consider the ideal J := 〈F〉. The following conditions are
equivalent:

(i) The formal multiplication matrices X1, . . . ,Xn commute pairwise.
(ii) The set B is a (linear) basis of R[x]/J, i.e., R[x] = Span

R
(B)⊕ J.

Then, the set F is said to be a border basis of the ideal J, and the matrixXi represents
the multiplication operator by xi in R[x]/J with respect to B.

This theorem is the crucial tool for efficient root finding algorithms based on normal
form reductions, which iteratively construct a system of polynomial equations
giving a rewriting family corresponding to a commuting family of multiplication
matrices (thus reducing the root finding problem to an eigenvalue computation,
see [30]). We illustrate Theorem 2.5 on a small example.
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Example 2.4. Let B = {1, x1} with border set ∂B = {x2, x1x2, x2
1}, and consider the

rewriting family

F =
{

fx2
1
= x2

1 +1, fx1 x2 = x1x2−1, fx2 = x2+ x1

}

.

As x1 ∈ B, x2
1 = fx2

1
−1, x2 = fx2 − x1, and x2x1 = fx1 x2 +1, we have

X1 =

(
0 −1
1 0

)

, X2 =

(
0 1
−1 0

)

.

As the formal multiplication matrices X1, X2 commute, we can conclude that F is
a border basis of 〈F〉 and R[x] = Span

R
(B)⊕〈F〉.

2.3 The Moment Method for Real Root Finding

We just saw that computing the complex roots of an ideal can be reduced to an
eigenvalue computation. This technique applies only when the number of complex
roots is finite, and involves matrices whose size is at least the number of complex
roots. However, in most applications one is only interested in the real roots, whose
number can be a very small fraction of the total number of roots. Therefore one
needs a tool to isolate the real roots from the complex nonreal ones. As we briefly
mentioned in the Introduction, a possible strategy is to add new polynomials from
the real radical ideal to the original system to be solved. To find these polynomials in
a systematic way we propose to work on the ‘dual side’, i.e., to consider linear forms
Λ on the polynomial ring R[x] or its subspaces R[x]t of bounded degree. Indeed, it
turns out that the kernel of such linear forms carries all information about the real
radical ideal and the real variety when the linear form is assumed to satisfy some
positivity condition. In this section we explain the method in detail and illustrate it
on a few examples.

2.3.1 Positive Linear Forms and Real Radical Ideals

Given a linear form Λ ∈ R[x]∗, consider the quadratic form on R[x]

QΛ : f ∈ R[x] �→ QΛ( f ) = Λ( f 2) ∈ R,

with kernel KerQΛ := { f ∈ R[x] | Λ( fg) = 0 ∀g ∈ R[x]}.
Definition 2.2 (Positivity). Λ ∈ R[x]∗ is said to be positive if Λ( f 2) ≥ 0 for all f ∈
R[x], i.e., if the quadratic form QΛ is positive semidefinite.
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The following simple lemma provides the link to real radical polynomial ideals.

Lemma 2.1 ([20,26]). Let Λ ∈R[x]∗. Then Ker QΛ is an ideal in R[x], which is real
radical when Λ is positive.

Proof. Ker QΛ is obviously an ideal, from its definition. Assume Λ is positive. First
we show that, for p ∈ R[x], Λ(p2) = 0 implies Λ(p) = 0. Indeed, if Λ(p2) = 0 then,
for any scalar t ∈ R, we have:

0 ≤ Λ((p+ t)2) = Λ(p2)+2tΛ(p)+ t2Λ(1) = t(2Λ(p)+ tΛ(1)),

which implies Λ(p) = 0. Assume now
∑

i p2
i ∈ Ker QΛ for some pi ∈ R[x]; we show

pi ∈ Ker QΛ. For any g ∈ R[x], we have 0 = Λ(g2(
∑

i p2
i )) =

∑
iΛ(p2

i g
2) which, as

Λ(p2
i g

2) ≥ 0, implies Λ(p2
i g

2) = 0. By the above, this in turn implies Λ(pig) = 0, thus
showing pi ∈ Ker QΛ. Therefore, Ker QΛ is real radical. ��

We now introduce moment matrices, which permit to reformulate positivity of Λ
in terms of positive semidefiniteness of an associated matrix M(Λ).

Definition 2.3 (Moment matrix). A symmetric matrix M = (Mα,β) indexed by Nn

is said to be a moment matrix (or a generalized Hankel matrix) if its (α,β)-entry
depends only on the sum α+β of the indices. Given Λ ∈ R[x]∗, the matrix

M(Λ) := (Λ(xαxβ))α,β∈Nn

is called the moment matrix of Λ.

If y ∈RNn
is the coefficient series of Λ ∈R[x]∗, i.e., Λ =

∑
α yα∂

α
0 , then its moment

matrix M(y) = (yα+β)α,β∈Nn coincides with the moment matrix M(Λ) of Λ. These
two definitions are obviously equivalent and, depending on the context, it is more
convenient to use M(y) or M(Λ).

Note that QΛ(p) = Λ(p2) = vec(p)T M(Λ)vec(p) for all p ∈ R[x]. Hence, M(Λ) is
the matrix of the quadratic form QΛ in the monomial base, and Λ is positive if and
only if M(Λ) � 0.

Moreover, a polynomial p belongs to the kernel of QΛ if and only if its coefficient
vector belongs to Ker M(Λ). Throughout we identify polynomials p =

∑
α pαxα with

their coefficient vectors vec(p) = (pα)α and thus Ker QΛ with Ker M(Λ). Hence we
view Ker M(Λ) as a set of polynomials. By Lemma 2.1, Ker M(Λ) is an ideal of
R[x], which is real radical when M(Λ) � 0. Moreover, the next lemma shows that
Ker M(Λ) is a zero-dimensional ideal precisely when the matrix M(Λ) has finite
rank.

Example 2.5. For n = 2, consider the linear form Λ ∈ R[x]∗ defined by Λ(1) =
Λ(x2

1)= 1 andΛ(xα1
1 xα2

2 )= 0 for all other monomials. ThenΛ is positive, rank M(Λ)=
2 and the kernel of M(Λ) is the ideal 〈x2,1− x2

1〉.
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Lemma 2.2. Let Λ ∈ R[x]∗ and let B be a set of monomials. Then, B indexes a
maximal linearly independent set of columns of M(Λ) if and only if B corresponds
to a basis of R[x]/Ker M(Λ). That is,

rank M(Λ) = dimR[x]/Ker M(Λ).

Next we collect some properties of the moment matrix of evaluations at points
of Rn.

Lemma 2.3. If Λ = Λv is the evaluation at v ∈ Rn, then M(Λv) = [v]∞[v]T∞ has rank
1 and its kernel is I(v), the vanishing ideal of v. More generally, if Λ is a conic
combination of evaluations at real points, say Λ=

∑r
i=1 λiΛvi where λi > 0 and vi ∈Rn

are pairwise distinct, then M(Λ) =
∑r

i=1 λi[vi]∞[vi]T∞ has rank r and its kernel is
I(v1, . . . , vr), the vanishing ideal of the vi’s.

The following theorem of Curto and Fialkow [7] shows that any positive linear
form Λ with a finite rank moment matrix is a conic combination of evaluations at
real points. In other words, it shows that the implication of Lemma 2.3 holds as an
equivalence. This result will play a crucial role in our approach. We give a proof,
based on [20], although some details are simplified.

Theorem 2.6 (Finite rank moment matrix theorem [7]). Assume that Λ ∈ R[x]∗
is positive with rank M(Λ)=: r <∞. Then, Λ=

∑r
i=1 λiΛvi for some distinct v1, . . . , vr ∈

R
n and some scalars λi > 0. Moreover, {v1, . . . , vr} = VC(Ker M(Λ)).

Proof. By Lemma 2.1, J := Ker M(Λ) is a real radical ideal and, by Lemma 2.2
(combined with Theorem 2.2), the ideal J is zero-dimensional and satisfies dim
R[x]/J = r. Therefore, |VC(J)| = r and VC(J) ⊆ Rn. Say,

VC(J) = {v1, . . . , vr} ⊆ Rn

so that J = I(v1, . . . , vr) is the vanishing ideal of the vi’s. Let p1, . . . , pr be interpola-
tion polynomials at v1, . . . , vr, respectively, that is, pi(v j) = 1 if i = j and 0 otherwise.
We first claim:

The set {p1, . . . , pr} forms a basis of the quotient space R[x]/J.

Indeed if, for some scalars λi, the polynomial
∑r

i=1 λi pi vanishes at all vi’s, then
λi = 0 for all i. Hence the set {p1, . . . , pr} is linearly independent in R[x]/J and thus
it is a basis, since r = dimR[x]/J. Consider the linear form

Λ′ :=
r∑

i=1

Λ(p2
i )Λvi .

We claim that Λ = Λ′. As both Λ and Λ′ vanish on the ideal J, it suffices to show
that Λ and Λ′ take the same values at all members of the basis {p1, . . . , pr} of
R[x]/J. Indeed, Λ′(p j) = Λ(p2

j) (since p j(vi) = δi, j), and Λ(p j)= Λ(p2
j) as well (since

p j − p2
j ∈ J). ��
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Example 2.6. Consider the linear form Λ = 1
2Λ(0,0) +

1
2Λ(1,2) ∈ R[x]∗, with moment

matrix (indexed by 1, x1, x2, x2
1, . . . ):

M(Λ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
2

1
1
2

· · ·
1
2

1
2

1
1
2

· · ·
1 1 2 1 · · ·
1
2

1
2

1
1
2

· · ·
...
...
...
...
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
1
2

[v1]∞[v1]T∞
∣∣∣∣
v1=(0,0)

+
1
2

[v2]∞[v2]T∞
∣∣∣∣
v2=(1,2)

Note e.g. that the 2nd and 4th columns of M(Λ) coincide, yielding the polynomial
g1 = −x1 + x2

1 in the kernel of M(Λ). In fact, the polynomials g1, g2 = −2x1 + x2,
g3 = −2x1+ x1x2 provide a basis of the real radical ideal Ker M(Λ), whose variety is
VC(Ker M(Λ)) = {(0,0), (1,2)} ⊆ R2.

As background information we mention (without proof) the following charac-
terization for the linear forms Λ ∈ R[x]∗ with a finite rank moment matrix. When
positivity is dropped, the evaluations at points v ∈ VC(Λ) do not suffice, one also
needs the more general differential operators ∂αv (defined in (2.4)).

Theorem 2.7. (see [9, Theorem 2.2.7], [10, Chap. 7]) Let Λ ∈ R[x]∗ satisfying
rank M(Λ) <∞. Say, VC(Ker M(Λ)) = {v1, . . . , vr}, so that r ≤ rank M(Λ). Then,

Λ =

r∑

i=1

∑

α∈Ai

aα,i∂
α
vi
,

where Ai ⊆ Nn are finite and aα,i ∈ R \ {0}. Moreover, Ker M(Λ) is radical if and
only if

Λ =
r∑

i=1

aiΛvi , (2.8)

where ai � 0 (i.e., Ai = {0} for all i). Furthermore, Ker M(Λ) is real radical precisely
when (2.8) holds with {v1, . . . , vr} ⊆ Rn.

Excursion: Why is M(Λ) called a moment matrix? We briefly recall how the matrices
M(Λ) arise naturally in the context of the classical moment problem in mathematics
(cf. e.g. [1]). Given a finite positive Borel measure μ on Rn, the quantity

∫

Rn
xαdμ

is called its moment of order α ∈Nn, and the sequence yμ = (
∫

xαdμ)α∈Nn is called its
moment sequence. The moment problem asks to characterize the sequences y ∈ RNn
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that are the sequence of moments of some finite positive Borel measure on (some
subset of) Rn or, equivalently, to characterize the linear forms Λ ∈ R[x]∗ of the form

Λ = Λμ(p) :=
∫

p(x)dμ for p ∈ R[x]. (2.9)

When (2.9) holds, μ is called a representing measure for Λ. A well known result of
Haviland [11] claims that Λ has a representing measure if and only if Λ(p) ≥ 0 for
all polynomials p that are nonnegative on Rn. However, except in some exceptional
cases1 no characterization is known for the nonnegative polynomials on Rn. Yet we
find the following well known necessary condition: If Λ has a representing measure,
then Λ(p2) ≥ 0 for all polynomials p, i.e., Λ is positive, which is characterized by
M(Λ) � 0.

Positivity of Λ is in general only a necessary condition for existence of a rep-
resenting measure. However, the above result of Curto and Fialkow (Theorem 2.6)
shows equivalence in the case when M(Λ) has finite rank, in which case the measure
μ is finite atomic with support VC(Ker M(Λ)).

When μ = δv is the Dirac measure at a point v ∈ Rn, its moment sequence
is yμ = [v]∞ with corresponding linear form Λμ = Λv, the evaluation at v. More
generally, when μ is finitely atomic, i.e., of the form μ=

∑r
i=1 λiδvi with finite support

{v1, . . . , vr} ⊆ Rn, then its moment sequence is yμ =
∑r

i=1 λi[vi]∞ with corresponding
linear form Λμ =

∑r
i=1 λiΛvi .

Characterizing real radical ideals using positive linear forms on R[x]. We now
combine the above results to obtain a semidefinite characterization of real radical
ideals using positive linear forms. For this define the convex set

K = {
Λ ∈ R[x]∗ |Λ(1) = 1,M(Λ) � 0 and Λ(p) = 0 ∀p ∈ I

}
. (2.10)

For any Λ ∈ K , Ker M(Λ) is a real radical ideal, which contains I and thus its real
radical

R
√

I. This implies:

dimR[x]/Ker M(Λ) ≤ dimR[x]/
R
√

I.

When the real variety VR(I) is finite, R[x]/
R
√

I has finite dimension as a vector space,
equal to |VR(I)|, and thus Ker M(Λ) is zero-dimensional with

rank M(Λ) = dimR[x]/Ker M(Λ) ≤ dimR[x]/
R
√

I = |VR(I)|

1A celebrated result of Hilbert (cf. e.g. [2]) shows that there are three sets of parameters (n,d)
for which the following equivalence holds: For any polynomial p in n variables and degree 2d, p
is nonnegative on Rn if and only if p can be written as a sum of squares of polynomials. These
parameters are (n = 1,d) (univariate polynomials), (n,d = 1) (quadratic polynomials), and (n =
3,d = 2) (ternary quartic polynomials). In all other cases there are polynomials that are nonnegative
on Rn but cannot be written as a sum of squares of polynomials.
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(using Lemma 2.2 for the left most equality). Equality: rank M(Λ) = |VR(I)| holds,
for instance, for the element Λ = 1

|VR(I)|
∑
v∈VR(I)Λv of K . This fact motivates the

following definition:

Definition 2.4 (Generic linear forms). Let K be defined as in (2.10) and assume
|VR(I)| <∞. A linear form Λ ∈ K is said to be generic if M(Λ) has maximum rank,
i.e., if rank M(Λ) = |VR(I)|.

A simple geometric property of positive semidefinite matrices yields the follow-
ing equivalent definition for generic elements of K . This is in fact the key tool used
in [17] for computing the real radical ideal

R
√

I.

Lemma 2.4. Assume |VR(I)| < ∞. An element Λ ∈ K is generic if and only if
Ker M(Λ) ⊆ Ker M(Λ′) for all Λ′ ∈ K . Moreover, Ker M(Λ) =

R
√

I for all generic
Λ ∈ K .

Proof. Assume first that rank M(Λ) = r, with r = |VR(I)| and VR(I) = {v1, . . . , vr}. As
Λ+Λ′ ∈ K for Λ′ ∈ K , we have

Ker M(Λ+Λ′) = Ker M(Λ)∩Ker M(Λ′) ⊆ Ker M(Λ),

implying r ≥ rank M(Λ+Λ′) ≥ rank M(Λ). Hence equality holds throughout which
implies Ker M(Λ) = Ker M(Λ)∩Ker M(Λ′) ⊆ Ker M(Λ′).

Conversely, assume Ker M(Λ) ⊆ Ker M(Λ′) for all Λ′ ∈ K . Consider Λ′ =
∑r

i=1Λvi ∈K whose kernel is I(v1, . . . , vr). This implies Ker M(Λ) ⊆ I(v1, . . . , vr) and
thus

rank M(Λ) = dimR[x]/Ker M(Λ) ≥ dimR[x]/I(v1, . . . , vr) = r.

Hence, rank M(Λ) = r and Ker M(Λ) = I(v1, . . . , vr) =
R
√

I (using the Real Nullstel-
lensatz, Theorem 2.1 (ii), for the last equality). ��
Example 2.7 (Example 2.6 cont.). Consider the set K corresponding to the ideal
I = 〈h1,h2,h3〉 ⊆ R[x1, x2], where

h1 = x4
2x1 + 3x3

1 − x4
2 − 3x2

1, h2 = x2
1x2 − 2x2

1, h3 = 2x4
2x1 − x3

1 − 2x4
2 + x2

1.

Then, Λ = 1
2Λ(0,0) +

1
2Λ(1,2) is a generic element of K . Thus the real radical ideal of

I is
R
√

I = Ker M(Λ) = 〈g1,g2,g3〉, with g1,g2,g3 as in Example 2.6.

2.3.2 Truncated Positive Linear Forms and Real Radical Ideals

In view of the results in the previous section (in particular, Lemmas 2.2 and 2.4), the
task of finding the real radical ideal

R
√

I as well as a linear basis of the quotient space
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R[x]/
R
√

I can be reduced to finding a generic linear form Λ in the set K (defined in
(2.10)). In order to be able to deal with such linear forms computationally, we will
work with linear forms on finite dimensional subspaces R[x]s of the polynomial
ring. Given Λ ∈ (R[x]2s)∗, we can define the quadratic form:

QΛ : f ∈ R[x]s �→ QΛ( f ) = Λ( f 2) ,

whose matrix

Ms(Λ) = (Λ(xαxβ))α,β∈Nn
s

in the monomial basis of R[x]s is called the truncated moment matrix of order s of
Λ. Thus Λ is positive (i.e., Λ( f 2) ≥ 0 ∀ f ∈ R[x]s) if and only if Ms(Λ) � 0. Again
we identify the kernels of QΛ and of Ms(Λ) (by identifying polynomials with their
coefficient sequences) and view Ker Ms(Λ) as a subset of R[x]s.

Flat extensions of moment matrices. We now present the following crucial result of
Curto and Fialkow [7] for flat extensions of moment matrices.

Theorem 2.8 (Flat extension theorem [7], see also [21]). Let Λ ∈ (R[x]2s)∗ and
assume that Ms(Λ) is a flat extension of Ms−1(Λ), i.e.,

rank Ms(Λ) = rank Ms−1(Λ). (2.11)

Then one can extend (uniquely) Λ to Λ̃ ∈ (R[x]2s+2)∗ in such a way that Ms+1(Λ̃) is
a flat extension of Ms(Λ); thus rank Ms+1(Λ̃) = rank Ms(Λ).

The proof is elementary and relies on the following lemma showing that the kernel
of a truncated moment matrix behaves like a ‘truncated ideal’.

Lemma 2.5. Let Λ ∈ (R[x]2s)∗ and f ,g ∈ R[x] with f ∈ Ker Ms(Λ).

(i) Assume rank Ms(Λ) = rank Ms−1(Λ). Then Ker Ms−1(Λ) ⊆ Ker Ms(Λ) and fg ∈
Ker Ms(Λ) if deg( fg) ≤ s.

(ii) Assume Ms(Λ) � 0. Then Ker Ms−1(Λ) ⊆ Ker Ms(Λ) and fg ∈ Ker Ms(Λ) if
deg( fg) ≤ s−1.

Indeed, using property (2.11) and Lemma 2.5 (i), we see that for every monomial m
of degree s, there exists a polynomial of the form fm = m+ rm ∈ Ker Ms(Λ), where
rm ∈ R[x]s−1. If an extension Λ̃ exists, then all the polynomials fm, xi fm must lie in
the kernel of Ms+1(Λ̃) and they can be used to determine the unknown columns of
Ms+1(Λ̃) indexed by monomials of degree s+1. The main work consists of verifying
the consistency of this construction; namely, that the matrix constructed in this way
is a moment matrix, i.e. that its (α,β)th entry depends only on the sum α+ β when
|α+β| = 2s+1,2s+2.

The flat extension theorem plays a crucial role in the moment matrix approach
as it allows to deduce information about the infinite moment matrix M(Λ) from its
finite section Ms(Λ).
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Theorem 2.9 ([17]). Let Λ ∈ (R[x]2s)∗ and assume that (2.11) holds. Then one can
extend Λ to Λ̃ ∈ R[x]∗ in such a way that M(Λ̃) is a flat extension of Ms(Λ), and the
ideal Ker M(Λ̃) is generated by the polynomials in Ker Ms(Λ), i.e.,

rank M(Λ̃) = rank Ms(Λ) and Ker M(Λ̃) = 〈Ker Ms(Λ)〉.

Moreover, any monomial set B indexing a basis of the column space of Ms−1(Λ) is a
basis of the quotient space R[x]/Ker M(Λ̃). If, moreover, Ms(Λ) � 0, then the ideal
〈Ker Ms(Λ)〉 is real radical and Λ is of the form Λ =

∑r
i=1 λiΛvi , where λi > 0 and

{v1, . . . , vr} = VC(Ker Ms(Λ)) ⊆ Rn.

Proof. The existence of Λ̃ follows by applying iteratively Theorem 2.8 and the
inclusion 〈Ker Ms(Λ)〉 ⊆ Ker M(Λ̃) follows using Lemma 2.5 (i). If B is a set of
monomials indexing a column basis of Ms−1(Λ), then B is also a column basis
of M(Λ̃) and thus a basis of R[x]/Ker M(Λ̃) (by Lemma 2.2). One can verify
the direct sum decomposition R[x] = Span

R
(B) ⊕ 〈Ker Ms(Λ)〉, which implies

Ker M(Λ̃) = 〈Ker Ms(Λ)〉. Finally, as Λ̃ is a flat extension of Λ, Ms(Λ)�0 implies
M(Λ̃) � 0, so that 〈Ker Ms(Λ)〉= Ker M(Λ̃) is real radical (by Lemma 2.1). The final
statement follows directly by applying Theorem 2.6 to Λ̃. ��
Example 2.8 (Example 2.6 cont). Consider the linear form Λ ∈ R[x]∗ in
Example 2.6. Recall that Ker M(Λ) is generated by g1,g2,g3 ∈ R[x]2. First
note that these polynomials imply the rank condition: rank M2(Λ) = rank M1(Λ)
and thus permit to construct M2(Λ) from M1(Λ). Moreover, they permit to
recover the infinite matrix M(Λ) from its submatrix M1(Λ). For instance, since
x2

1x2 = x2(x1 + g1) = 2x1 + g3 + g1x2 and g1,g2,g3 ∈ Ker M2(Λ) ⊆ Ker M(Λ), we
deduce that the column of M(Λ) indexed by x2

1x2 is equal to twice its column
indexed by x1. Using the fact that Ker M(Λ) = 〈Ker M2(Λ)〉 , we can analogously
define iteratively all columns of M(Λ).

Computing real radical ideals using truncated positive linear forms on R[x]t.
We saw above how to use positive linear forms on R[x] to characterize the real
radical ideal

R
√

I. We now combine this characterization with the above results
about flat extensions of truncated moment matrices to obtain a practical algorithm
for computing

R
√

I operating on finite dimensional subspaces R[x]t ⊆ R[x] only. As
before I = 〈h1, . . . ,hm〉 is the ideal generated by the polynomial equations hi to be
solved. For t ∈ N, define the set

Ht = {hix
α | i = 1, . . . ,m, |α| ≤ t−deg(hi)} (2.12)

of prolongations up to degree t of the polynomials hi, and the truncated analogue of
the set K :

Kt = {Λ ∈ (R[x]t)
∗ | Λ(1) = 1, M�t/2�(Λ) � 0 and Λ( f ) = 0 ∀ f ∈ Ht}. (2.13)

Note that the constraint: Λ( f ) = 0 ∀ f ∈ Ht (i.e., Λ ∈ H⊥
t ) corresponds to the

constraint (2.2) of Sect. 2.1.2. As the convex set Kt is described by the positive
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semidefiniteness of an affinely parametrized matrix, it is an instance of a spectra-
hedron, cf. Chaps. 5 and 13 of this volume. The following lemma is the truncated
analogue of Lemma 2.4.

Lemma 2.6 (Generic truncated linear forms). The following assertions are
equivalent for Λ ∈ (R[x]t)∗ :

(i) rank M�t/2�(Λ) ≥ rank M�t/2�(Λ′) for all Λ′ ∈ Kt .
(ii) Ker M�t/2�(Λ) ⊆ Ker M�t/2�(Λ′) for all Λ′ ∈ Kt .

(iii) The linear form Λ lies in the relative interior of the convex set Kt.

Then Λ is called a generic element of Kt and the kernel Nt = Ker M�t/2�(Λ) is
independent of the particular choice of the generic element Λ ∈ Kt .

Theorem 2.10. We have:Nt ⊆Nt+1 ⊆ . . . ⊆ R
√

I, with equality
R
√

I = 〈Nt〉 for t large
enough.

Proof. Let Λ ∈ Kt+1 be generic. Its restriction to (R[x]t)∗ lies in Kt, implying

Nt+1 = Ker M�(t+1)/2�(Λ) ⊇ Ker M�t/2�(Λ) ⊇ Nt.

Now let Λ be a generic element ofKt so thatNt =Ker M�t/2�(Λ). The inclusion:Nt ⊆
I(VR(I)) follows using Lemma 2.6 (ii). Indeed, Λv ∈ Kt for all v ∈ VR(I), which im-
plies Ker M�t/2�(Λ) ⊆ Ker M�t/2�(Λv) ⊆ I(v) and thus Ker M�t/2�(Λ) ⊆⋂

v∈VR(I)I(v) =

I(VR(I)) =
R
√

I (by the Real Nullstellensatz).
We now show equality:

R
√

I = 〈Nt〉 for t large enough. For this, let {g1, . . . ,gL} be
a basis of the ideal

R
√

I; we show that gl ∈ Nt for all l. We have:

g2k
l +

∑

j

s2
j =

m∑

i=1

uihi for some k ∈ N and s j,ui ∈ R[x].

Since Λ ∈ H⊥
t , we have hi ∈ Nt if t ≥ 2deg(hi). Using Lemma 2.5 (ii), this implies

that, for t large enough, Nt contains each uihi and thus g2k
l +

∑
j s2

j . In particular,

Λ(g2k
l +

∑
j s2

j ) = 0. On the other hand, Λ(g2k
l ),Λ(s2

j ) ≥ 0 (since M�t/2�(Λ) � 0),

thus implying Λ(g2k
l ) = 0. An easy induction on k now permits to conclude that

gl ∈ Nt. ��
When VR(I) is finite, one can guaranty the equality

R
√

I = 〈Nt〉 using the rank
condition (2.11). The next results provide all the ingredients of the moment matrix
algorithm for real roots, whose description is given in Sect. 2.3.3: Theorem 2.11 will
provide a stopping criterion (when |VR(I)|<∞) and Theorem 2.12 below will imply
its termination, as well as provide a criterion permitting to check the (non-)existence
of real roots.

Theorem 2.11 ([17]). Let I= 〈h1, . . . ,hm〉 be an ideal in R[x], D=maxi deg(hi), and
d = �D/2�. Let Λ ∈ Kt be a generic element and assume that at least one of the
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following two conditions holds:

rank Ms(Λ) = rank Ms−1(Λ) for some D ≤ s ≤ �t/2�, (2.14)

rank Ms(Λ) = rank Ms−d(Λ) for some d ≤ s ≤ �t/2�. (2.15)

Then,
R
√

I = 〈Ker Ms(Λ)〉, and any basis of the column space of Ms−1(Λ) is a basis
of the quotient space R[x]/

R
√

I.

Proof. The ideal J := 〈Ker Ms(Λ)〉 is real radical (by Theorem 2.9). Moreover,

Ker Ms(Λ) ⊆ Ker M�t/2�(Λ) ⊆ R
√

I

(since Λ is generic and using Theorem 2.10) and thus J ⊆ R
√

I. Remains to show
R
√

I ⊆ J. Suppose first that (2.14) holds. The condition Λ ∈ H⊥
t implies that hi ∈

Ker Ms(Λ) (since s+ deg(hi) ≤ t/2+ deg(hi) ≤ t, as t ≥ 2D). Thus I ⊆ J, implying
R
√

I ⊆ J as J is real radical.
Suppose now that (2.15) holds. Again from Theorem 2.9 we know that VC(Ker

Ms(Λ)) = {v1, . . . , vr} ⊆ Rn and Λ =
∑r

i=1 λiΛvi where λi > 0. Let p1, . . . , pr be
interpolation polynomials at the vi’s, i.e., such that p j(vi) = δi, j. An easy but crucial
observation (made in [20]) is that we may assume that each p j has degree at most
s− d. Indeed, we can replace each interpolation polynomial p j by its normal form
modulo J with respect to a basis of R[x]/J. As such a basis can be obtained by
picking a column basis of Ms−d(Λ), its members are monomials of degree at most s−
d, and the resulting normal forms of the p j’s are again interpolation polynomials at
the vi’s but now with degree at most s−d. As deg(p2

j)≤ 2(s−d)≤ t−2d ≤ t−deg(hi),

we can claim that Λ(p2
jhi)= 0 and in turn 0=Λ(p2

jhi)=
∑r

l=1 λl p2
j (vl)hi(vl)= λ jhi(v j).

Since hi(v j)= 0 for all i, j, we conclude that {v1, . . . , vr} ⊆ VR(I), implying the desired
inclusion

R
√

I = I(VR(I)) ⊆ I(v1, . . . , vr) = J. ��
Theorem 2.12 ([17]). Let I be an ideal in R[x].

(i) If VR(I) = ∅, then Kt = ∅ for t large enough.
(ii) If 1 ≤ |VR(I)| <∞ then, for t large enough, there exists an integer s for which

(2.15) holds for all Λ ∈ Kt.

Proof. Let {g1, . . . ,gL} be a Gröbner basis of
R
√

I with respect to a total degree
monomial ordering, and let B be the corresponding set of standard monomials,
forming a basis of R[x]/

R
√

I. The argument used in the proof of Theorem 2.10
shows the existence of t0 ∈ N for which {g1, . . . ,gL} ⊆ Ker M�t/2�(Λ) for all t ≥ t0
and Λ ∈ Kt.

(i) If VR(I) = ∅, then {1} is a basis of
R
√

I = R[x]. Thus 1 ∈ Ker M�t/2�(Λ), implying
Λ(1) = 0 if Λ ∈ Kt, contradicting Λ(1) = 1 and thus showing Kt = ∅.
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Table 2.1 Ranks of Ms(Λ)
for generic Λ ∈ Kt in
Example 2.9

s = 0 1 2 3

t = 5 1 3 5 –
t = 6 1 2 2 4

(ii) As VR(I) is finite, s := d +maxb∈B deg(b) is well defined. Recall that d =
maxi�deg(hi)/2�. Choose t ≥ t0 such that s< �t/2�. For α ∈Nn

s , decompose xα as

xα =
∑

b∈B
λbb+

L∑

l=1

ulgl ∈ Span
R

(B)⊕ R
√

I,

where λb ∈R, ul ∈R[x], deg(
∑

b λbb)≤ s−d, and deg(ulgl)≤ s< �t/2� (as the gl’s
form a Gröbner basis for a total degree ordering, we can claim deg(ulgl)≤ s). As
gl ∈ Ker M�t/2�(Λ) and deg(ulgl) < �t/2�, we also have that ulgl ∈ Ker M�t/2�(Λ)
(recall Lemma 2.5 (ii)). Hence, xα−∑

b∈Bλbb ∈Ker M�t/2�(Λ), which shows that
Ms(Λ) is a flat extension of Ms−d(Λ). ��

Example 2.9 (Example 2.7 cont). Consider again the ideal I = (h1,h2,h3) from
Example 2.7. Then, D = 5, dimR[x]/I = 9, and the variety VC(I) consists of two real
points, one of them with multiplicity eight. Table 2.1 shows the ranks of the moment
matrix Ms(Λ) for generic Λ ∈ Kt. The rank condition holds at order (t, s) = (6,2).
Then we can extract the two roots v1 = (0,0) and v2 = (1,2) as well as the (border)
basis {g1,g2,g3} of

R
√

I (already discussed in Example 2.7). This is possible although
here s=2 is strictly smaller than d = 3 and D= 5; indeed, in view of Theorem 2.5, we
can simply check whether the formal multiplication matrices commute and whether
hi(v) = 0 for all i = 1, . . . ,m and v ∈ VC(Ker Ms(Λ)).

We conclude with two remarks about Theorem 2.11, which is the central result
of this section. Namely we mention a generalization and an application.

First, observe that one may work with moment matrices MB(y) indexed by
an arbitrary monomial set B, instead of moment matrices Mt(y) indexed by all
monomials up to a given degree t, which leads to possible generalizations of
Theorem 2.11. More precisely, let Λ be a generic element in Kt. Assume that we
can find a monomial set B, connected to 1, indexing a linearly independent set of
columns of the moment matrix M�t/2�(Λ), and for which the submatrices MB(Λ) and
MB+ (Λ) indexed, respectively, by B and B+, satisfy the rank condition:

rank MB+ (Λ) = rank MB(Λ).

Then one can show that the ideal J = 〈Ker MB+ (Λ)〉 is real radical, zero-dimensional,
and contained in

R
√

I, and thus VR(I) ⊆ VC(J); this result relies on a generalization
of the flat extension theorem (Theorem 2.8) proved in [22, Theorem 1.4]. Hence,
one can compute the variety VC(J) ⊆ Rn, and select from it the desired real variety
VR(I).
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Next, as a byproduct of Theorem 2.11, we see that the rank condition (2.14)
(or (2.15)) also implies a full description of the convex hull of the variety VR(I).
Indeed, under (2.14), we can apply Theorem 2.9 to deduce that, for any Λ ∈ Kt, its
restriction π2s(Λ) can be written as a conic combination of evaluations at points of
VR(I). Combining with Theorem 2.12, we obtain:

Corollary 2.1. Assume 1 ≤ |VR(I)| <∞. For some integers 1 ≤ s ≤ �t/2�, the set

{(Λ(xα))α∈Nn
2s
| Λ ∈ Kt}

is equal to the convex hull of the set {[v]2s | v ∈ VR(I)}.
The Chap. 5 of this Handbook considers in detail the problem of characterizing
the convex hull of a real variety VR(I). Although the points of view and emphasis
are different in both chapters, there are some connections. Roughly speaking, both
chapters can be cast within the more general realm of polynomial optimization (see
Sect. 2.4.1); however, while we work here with truncated sections of the ideal I,
Chap. 5 deals with linear forms on the full quotient space R[x]/I.

2.3.3 The Moment Matrix Algorithm for Computing Real Roots

We now describe the moment matrix algorithm for computing real roots, summa-
rized in Algorithm 1 below.

Algorithm 1 The moment matrix algorithm for VR(I)
Input: Generators h1, . . . ,hm of some ideal I = 〈h1, . . . ,hm〉 with |VR(I)| <∞.
Output: A basis of the ideal

R
√

I, a basis of R[x]/
R
√

I, and the set VR(I).
1: Set t = D.
2: Find a generic element Λ ∈ Kt .
3: Check if (2.14) holds for some D ≤ s ≤ �t/2�,

or if (2.15) holds for some d ≤ s ≤ �t/2�.
4: if yes then
5: Set J = 〈Ker Ms(Λ)〉.
6: Compute a basis B ⊆ R[x]s−1 of the column space of Ms−1(Λ).
7: Compute the multiplication matrices Xi in R[x]/J.
8: Compute a basis g1, . . . , gl ∈ R[x]s of the ideal J.
9:

10: return the basis B of R[x]/J and the generators g1, . . . , gl of J.
11: else
12: Iterate (go to Step 2) replacing t by t+1.
13: end if
14: Compute VR(I) = VC(J) (via the eigenvalues/eigenvectors of the multiplication matrices Xi).
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Theorem 2.11 implies the correctness of the algorithm (i.e., equality J =
R
√

I) and
Theorem 2.12 shows its termination. Algorithm 1 consists of four main parts, which
we now briefly discuss (see [17, 35] for details).

(i) Finding a generic element in Kt. The set Kt can be represented as the feasible
region of a semidefinite program and we have to find a point lying in its
relative interior. Such a point can be found by solving several semidefinite
programs with an arbitrary SDP solver (cf. [17, Remark 4.15]), or by solving
a single semidefinite program with an interior-point algorithm using a self-
dual embedding technique (see, e.g., [8, 44]). Indeed consider the semidefinite
program:

min
Λ∈(R[x]t )∗

1 such that Λ(1) = 1, M�t/2�(Λ) � 0,

Λ(hix
α) = 0 ∀i ∀|α| ≤ t−deg(hi), (2.16)

whose dual reads:

max λ such that 1−λ = s+
m∑

i=1

uihi where s,ui ∈ R[x],

s is a sum of squares, deg(s),deg(uihi) ≤ t. (2.17)

The feasible region of (2.16) is the setKt, as well as its set of optimal solutions,
since we minimize a constant objective function over Kt. There is no duality
gap, as λ = 1 is obviously feasible for (2.17). Solving the program (2.16)
with an interior-point algorithm using a self-dual embedding technique yields2

either a solution Λ lying in the relative interior of the optimal face (i.e., a
generic element of Kt), or a certificate that (2.16) is infeasible thus showing
VR(I) = ∅.

(ii) Computing the ranks of submatrices of Mt(Λ). In order to check whether one of
the conditions (2.14) or (2.15) holds we need to compute the ranks of matrices
consisting of numerical values. This computationally challenging task may
be done by detecting zero singular values and/or a large decay between two
subsequent values.

(iii) Computing a basisB for the column space of Ms−1(Λ). The set of monomialsB
indexing a maximum nonsingular principle submatrix of Ms(Λ) directly reveals
a basis of the quotient space R[x]/J (by Theorem 2.9). The choice of this
basis may influence the numerical stability of the extracted set of solutions
and the properties of the border basis of J as well. The options range from
a monomial basis obtained using a greedy algorithm or more sophisticated
polynomial bases (see [35]).

2This follows under certain technical conditions on the semidefinite program, which are satisfied
for (2.16); see [17] for details.
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(iv) Computing a basis of J and the formal multiplication matrices. Say B is the
monomial basis (connected to 1) of the column space of Ms−1(Λ) constructed at
the previous step (iii). Under the rank condition (2.14) or (2.15), for any b ∈ B,
the monomial xib can be written as xib = ri,b + q, where ri,b ∈ Span

R
(B) and

q ∈Ker Ms(Λ). These polynomials directly give a (border) basis of J, consisting
of the polynomials {xib−ri,b | i≤ n, b ∈B} (recall Theorem 2.5) and thus permit
the construction of multiplication matrices and the computation of VC(J)
(= VR(I)).

Existing implementations and performance. The basic algorithm discussed above
has been implemented in Matlab using Yalmip (see [25]) as part of a new toolbox
Bermeja for computations in Convex Algebraic Geometry (see [36]). In its current
form, the implemented algorithm merely provides a proof of concept and only
solves real root finding problems with a rather limited number of variables (≤10)
and of moderate degree (≤6). This is mainly due to the fact that sparsity in the
support of the polynomials is not utilized. This leads to large moment matrices,
easily touching on the limitations of current SDP solvers. We refer to [17, 19] for
a more detailed discussion and some numerical results. In an ongoing project a
more efficient, Buchberger-style, version of this real root finding method will be
implemented based on the more general version of the flat extension theorem, which
was described at the end of Sect. 2.3.2. A flavor of how existing complex root finding
methods may be tailored for real root finding is discussed in the next section.

2.3.4 Real vs. Complex Root Finding

As we saw in the previous section, the moment matrix approach for real roots relies
on finding a suitable (generic) linear form Λ in the convex set Kt (from (2.13)).
Let us stress again that the positivity condition on Λ is the essential ingredient
that permits to focus solely on the real roots among the complex ones. This is best
illustrated by observing (following [18]) that, if we delete the positivity condition
in the moment matrix algorithm (Algorithm 1), then the same algorithm permits
to compute all complex roots (assuming their number is finite). In other words,
consider the following analogue of the set Kt:

KCt =
{
Λ ∈ (R[x]t)∗ |Λ(1) = 1 and Λ( f ) = 0 ∀ f ∈Ht

}
, (2.18)

whereHt is as in (2.12). Call an elementΛ ∈KCt generic3 if rank Ms(Λ) is maximum
for all s ≤ �t/2�. Then the moment matrix algorithm for complex roots is analogous
to Algorithm 1, but with the following small twist: Instead of computing a generic
element in the convex setKt, we have to compute a generic (aka random) element in

3When Λ is positive, the maximality condition on the rank of M�t/2�(Λ) implies that the rank of
Ms(Λ) is maximum for all s ≤ �t/2�. This is not true for Λ non-positive.
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Table 2.2 Ranks of Ms(Λ) in Example 2.10

(a) Generic Λ ∈ Kt (b) Generic Λ ∈ H⊥
t

s = 0 1 2 3 s = 0 1 2 3 4

t = 2 1 4 – – t = 2 1 4 – – –
t = 3 1 4 – – t = 3 1 4 – – –
t = 4 1 4 8 – t = 4 1 4 8 – –
t = 5 1 2 8 – t = 5 1 4 8 – –
t = 6 1 2 2 10 t = 6 1 4 8 11 –

t = 7 1 4 8 10 –
t = 8 1 4 8 9 10
t = 9 1 4 8 8 10

the affine space KCt , thus replacing the semidefinite feasibility problem by a linear
algebra computation. We refer to [18] for details on correctness and termination of
this algorithm.

Alternatively one can describe the above situation as follows: the complex
analogue of Algorithm 1 is an algorithm for complex roots, which can be turned
into an algorithm for real roots simply by adding the positivity condition on Λ.
This suggests that the same recipe could be applied to other algorithms for complex
roots. This is indeed the case, for instance, for the prolongation-projection algorithm
of [34] which, as shown in [19], can be turned into an algorithm for real roots by
adding a positivity condition. The algorithm of [34] works with the space KCt but
uses a different stopping criterion instead of the rank condition (2.14). Namely one
should check whether, for some D ≤ s≤ t, the three affine spaces πs(KCt ), πs−1(KCt ),
and πs(KCt+1) have the same dimensions (where πs(Λ) denotes the restriction of
Λ ∈ (R[x]t)∗ to (R[x]s)∗); if so, one can compute a basis of R[x]/I and extract VC(I).
Roughly speaking, to turn this into an algorithm for real roots, one adds positivity
and considers the convex set Kt instead of KCt ; again one needs to check that three
suitably defined spaces have the same dimensions; if so, then one can extract VR(I).
We refer to [19] for details, also about the links between the rank condition and the
above alternative stopping criterion.

Example 2.10. We apply the real vs. complex moment matrix algorithms to the
ideal I = 〈h1,h2,h3〉 (taken from [5, Example 4, p. 57]), where

h1 = x2
1−2x1x3 +5, h2 = x1x2

2+ x2x3+1, h3 = 3x2
2−8x1x3,

with D = 3, |VC(I)| = 8 and |VR(I)| = 2. Table 2.2 shows the ranks of the generic
moment matrices when applying the real vs. complex versions of the moment
matrix algorithm. We see that the algorithm terminates earlier in the real case,
namely at order t = 6, compared to order t = 9 in the complex case. If we replace each
polynomial hi by hi · (1+∑

i x2
1), we obtain an example with a positive dimensional

complex variety, while the real variety is unchanged. The real root finding algorithm
still terminates (now at order t = 7) and allows the extraction of the two real roots.
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2.4 Further Directions and Connections

The moment approach for real solving polynomial equations can be extended and
applied in various directions. We briefly mentioned at the end of Sect. 2.3.2 the link
to the approach of the Chap. 5 of this Handbook for approximating the convex hull
of a real variety. We now touch a few selected extensions: polynomial optimization,
emptyness certificates for real varieties, the positive dimensional case, and quotient
ideals.

2.4.1 Optimization and Polynomial Inequalities

The research field of polynomial optimization, which roots, in particular, in work
of Lasserre [15], Parrilo [33], Shor [38], has recently undergone a spectacular
development. We refer e.g. to the monograph [16] or the survey [21] for overview
and further references. The moment approach was originally proposed in [15] for
solving general nonlinear optimization problems of the form

f ∗ =min
x

f (x) such that h1(x) = 0, . . . ,hm(x) = 0,

g1(x) ≥ 0, . . . ,gp(x) ≥ 0, (2.19)

where f ,hi,g j ∈ R[x]. Let I = 〈h1, . . . ,hm〉 be the ideal generated by the hi’s, and set

S = {x ∈ Rn | g1(x) ≥ 0, . . . ,gp(x) ≥ 0}, (2.20)

so that (2.19) asks to minimize f over the semi-algebraic set VR(I)∩ S . The basic
observation in [15] is that the problem (2.19) can be reformulated as

min
μ
Λμ( f ) such that μ is a probability measure on VR(I)∩S ,

where Λμ is as in (2.9). Such a linear form satisfies: Λ(h) = 0 for all h ∈ I, as well
as the positivity condition: Λ(g j f 2) ≥ 0 for all f ∈ R[x] and j = 1, . . . , p. The latter
conditions can be reformulated as requiring that the localizing moment matrices
M� t−deg(g j)

2 �(g jΛ) be positive semidefinite. Here, for g ∈ R[x], gΛ is the new linear

form defined by gΛ(p) = Λ(pg) for all p ∈ R[x].
The semidefinite program (2.16) can be modified in the following way to yield a

relaxation of (2.19):

f ∗t = min
Λ∈(R[x]t )∗

Λ( f ) such that Λ(1) = 1, Λ(h) = 0 ∀h ∈ Ht,

M� t−deg(g j)
2 �(g jΛ) � 0 ( j = 0,1, . . . , p) (2.21)
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(setting g0 = 1). The dual semidefinite program reads:

max λ such that f −λ =
p∑

j=0

σ jg j +

m∑

i=1

uihi (2.22)

where ui ∈ R[x], σ j are sums of squares of polynomials with deg(uihi), deg(σ jg j) ≤
t. Then, f ∗t ≤ f ∗ for all t. Moreover, asymptotic convergence of (2.21) and (2.22)
to the minimum f ∗ of (2.19) can be shown when the feasible region of (2.19) is
compact and satisfies some additional technical condition (see [15]). We now group
some results showing finite convergence under certain rank condition, which can be
seen as extensions of Theorems 2.11 and 2.12.

Theorem 2.13 ([12, 17, 21]). Let D := maxi, j(deg(hi),deg(g j)), d := �D/2�, t ≥
max(deg( f ),D), and let Λ be a generic optimal solution to (2.21) (i.e., for which
rank M�t/2�(Λ) is maximum), provided it exists.

(i) If the rank condition (2.15) holds with 2s ≥ deg( f ), then f ∗t = f ∗ and
VC(Ker Ms(Λ)) is equal to the set of global minimizers of the program (2.19).

(ii) If VR(I) is nonempty and finite, then (2.15) holds with 2s ≥ deg( f ).
(iii) If VR(I) = ∅, then the program (2.21) is infeasible for t large enough.

In other words, under the rank condition (2.15), one can compute all global
minimizers of the program (2.19), since, as before, one can compute a basis of
the space R[x]/〈Ker Ms(Λ)〉 from the moment matrix and thus apply the eigenvalue
method. Moreover, when the equations hi = 0 have finitely many real roots, the rank
condition is guaranteed to hold after finitely many steps.

By choosing the constant objective function f =1 in (2.19), we can also compute
the S -radical ideal:

S√
I := I(VR(I)∩S ).

When |VR(I)| is nonempty and finite, one can show that

I(VR(I)∩S ) = 〈Ker Ms(Λ)〉

for a generic optimal solution Λ of (2.21) and s, t large enough. An analogous result
holds under the weaker assumption that |VR(I)∩ S | is nonempty and finite. In this
case Λ needs to be a generic feasible solution of the modified semidefinite program
obtained by adding to (2.21) the positivity conditions:

M� t−deg(g)
2 �(gΛ) � 0 for g = ge1

1 · · ·gep
p ∀e ∈ {0,1}p.

The key ingredient in the proof is to use the Positivstellensatz to characterize the
polynomials in I(VR(I)∩ S ) (see [41]) instead of the Real Nullstellensatz (used in
Theorem 2.10 to characterize the polynomials in I(VR(I))).

Let us illustrate on an example how to ‘zoom in’ on selected roots, by
incorporating semi-algebraic constraints or suitably selecting the cost function.
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Table 2.3 Ranks of Ms(Λ) in Example 2.11

(a) Generic Λ ∈ Kt (b) Generic Λ ∈ Kt with M� t−1
2 �(gΛ) � 0

s = 0 1 2 3 s = 0 1 2

t = 2 1 6 – – t = 2 1 6 –
t = 3 1 6 – – t = 3 1 6 –
t = 4 1 6 16 – t = 4 1 5 5
t = 5 1 6 16 –
t = 6 1 6 12 12

Example 2.11. Consider the following system, known as Katsura 5 (see [13]):

h1 = 2x2
6+2x2

5+2x2
4+2x2

3+2x2
2+ x2

1− x1,

h2 = x6x5+ x5x4+2x4x3+2x3x2+2x2x1− x2,

h3 = 2x6x4 +2x5x3+2x4x2+ x2
2+2x3x1− x3,

h4 = 2x6x3 +2x5x2+2x3x2+2x4x1− x4,

h5 = x2
3 +2x6x1 +2x5x1+2x4x1− x5,

h6 = 2x6+2x5+2x4+2x3+2x2+ x1−1,

with D = 2, |VC(I)| = 32, and |VR(I)| = 12. Table 2.3a shows the ranks of the generic
moment matrices for the moment matrix algorithm to compute VR(I). At order
(t, s) = (6,3), the algorithm finds all twelve real roots.

Next we apply the moment matrix algorithm to compute the real roots in S = {x ∈
R

6 | g(x) = x1 −0.5 ≥ 0}; the ranks are shown in Table 2.3b and all five elements of
VR(I)∩S can be computed at order (t, s) = (4,2).

If we are interested e.g. only in the roots in VR(I) ∩ S with the smallest x2-
coordinate then we minimize the polynomial x2 (instead of the constant one
polynomial). The moment matrix algorithm now terminates at order (t, s) = (2,1)
and finds the unique element of VR(I)∩S with the smallest x2-coordinate.

2.4.2 Exact Certificates of Emptiness

If the moment method is applied to an empty real variety VR(I) (or subset VR(I)∩ S ),
then the underlying semidefinite optimization problem is infeasible for t large
enough, which thus can be thought of as a numerical certificate of emptiness (see
Theorems 2.12, 2.13). If we solve the semidefinite program (2.16) with a primal-
dual interior point solver and infeasibility is detected, an improving ray is returned,
i.e., a solution to the dual problem (2.17) of the form:

1−λ∗ = σ+
m∑

i=1

uihi where σ,ui ∈ R[x] and σ is a sum of squares, (2.23)
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with λ∗ > 1. By scaling both sides with an arbitrary positive number, one can
generate a feasible solution of the dual problem (2.17) with an arbitrary high cost
function value, thus certifying infeasibility of the primal problem.

On the other hand, by the Real Nullstellensatz, we know that an algebraic
certificate for emptyness of VR(I) is that 1 ∈ R

√
I, i.e.,

1+σ =
m∑

i=1

uihi for some σ,ui ∈ R[x] where σ is a sum of squares. (2.24)

In principle, such a certificate can be directly derived from an improving ray
such as (2.23). The difficulty, however, arise from numerical imprecisions and the
certificate computed using semidefinite programming does not hold exactly when
all computations are done in floating point arithmetics. We may thus only derive
polynomials ui,σ satisfying

1+σ+ ε =
m∑

i=1

uihi, (2.25)

where ε ∈ R[x]t represents the cumulated error term. However, as shown in [35,
Proposition 7.38], this approximate certificate can still be used to produce an exact
certificate for the nonexistence of roots in some ball Bδ of radius δ around the origin.
Namely, if |ε(0)| � 1, then one can compute an explicit δ for which one can prove
that VR(I)∩Bδ = ∅. This is illustrated on the following example.

Example 2.12. Consider the ideal I = 〈h1,h2,h3〉 generated by

h1 = x4
1+ x4

2+ x4
3−4, h2 = x5

1 + x5
2+ x5

3−5, h3 = x6
1 + x6

2+ x6
3−6

with D = 6, |VC(I)|=120, and VR(I)=∅. At order t=6 already, the primal (moment)
problem is infeasible, the solver returns an improving direction for the dual (SOS)
problem, and we obtain a numerical certificate of the form (2.25). The error
polynomial ε ∈ R[x] is a dense polynomial of degree 6, its coefficients are smaller
than 4.1e-11, with constant term ε(0) < 8.53e-14. Using the conservative estimate
of [35, Sect. 7.8.2] one can rigorously certify the emptiness of the set VR(I)∩ Bδ
for δ = 38.8. In other words, even if we only solved the problem numerically with a
rather low accuracy, we still obtain a proof that the ideal I does not have any real root
v ∈ VR(I) with ‖v‖2 < 38.8. By increasing the accuracy of the SDP solver the radius
δ of the ball can be further increased. This example illustrates that it is sometimes
possible to draw exact conclusions from numerical computations.

2.4.3 Positive Dimensional Ideals and Quotient Ideals

Dealing with positive dimensional varieties is a challenging open problem, already
for complex varieties (see e.g. the discussion in [24]). The algorithm presented so
far for computing the real variety VR(I) and the real radical ideal

R
√

I works under
the assumption that VR(I) is finite. Indeed, the rank condition (2.14) (or (2.15))
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implies that dimR[x]/
R
√

I = rank Ms−1(Λ) is finite (by Theorem 2.11). Nevertheless,
the moment method can in principle be applied to find a basis of

R
√

I also in the
positive dimensional case. Indeed Theorem 2.10 shows that, for t large enough,
the kernel of M�t/2�(Λ) (for generic Λ ∈ Kt) generates the real radical ideal

R
√

I.
The difficulty however is that it is not clear how to recognize whether equality
R
√

I = 〈Ker M�t/2�(Λ)〉 holds in the positive dimensional case. These questions relate
in particular to the study of the Hilbert function of

R
√

I (see [35]). An interesting
research direction is whether the moment matrix approach can be applied to
compute some form of “parametric representation” of the real variety. On some
instances it is indeed possible to compute parametric multiplication matrices (see
[35] for details).

Another interesting object is the quotient (or colon) ideal

I : g = {p ∈ R[x] | pg ∈ I}

for an ideal I and g ∈ R[x]. The moment approach can be easily adapted to find
a semidefinite characterization of the ideal

R
√

I : g = I(VR(I) \VR(g)). Indeed, for
generic Λ, the kernel of the localizing moment matrix of gΛ carries all information
about this ideal.

Proposition 2.1. Let g ∈ R[x]k, ρ := 1+ �k/2� and D = maxi deg(hi). Let Λ be a
generic element in Kt+k.

(i) 〈Ker M�t/2�(gΛ)〉 ⊆ R
√

I : g, with equality for t large enough.
(ii) If the rank condition: rank Ms(Λ) = rank Ms−ρ(Λ) holds for some s with

max(D,ρ) ≤ s ≤ �t/2�, then
R
√

I : g = 〈Ker Ms−ρ+1(gΛ)〉.
(iii) If VR(I) is nonempty finite, then the rank condition in (ii) holds at some order

(t, s).

Proof. Note that p ∈Ker M�t/2�(gΛ) if and only if pg ∈Ker M�t/2�(Λ) when deg(p) ≤
�t/2�− k.

(i) As Λ is generic, Ker M�t/2�(Λ) ⊆ R
√

I, implying 〈Ker M�t/2�(gΛ)〉 ⊆ R
√

I : g. The
proof of equality for t large enough is similar to the proof of Theorem 2.10:
Pick a basis {g1, . . . ,gL} of the ideal

R
√

I : g, so that each glg belongs to
R
√

I;
apply the Real Nullstellensatz to glg to conclude that, for t large enough, glg ∈
Ker M�t/2�(Λ) and thus gl ∈ Ker M�t/2�(gΛ).

(ii) Assume now rank Ms(Λ) = rank Ms−ρ(Λ) for D,ρ ≤ s ≤ �t/2�. Then there exists
Λ̃ ∈ R[x]∗ for which M(Λ̃) is a flat extension of Ms(Λ̃) and

R
√

I = Ker M(Λ̃) =
〈Ker Ms−ρ+1(Λ)〉 (use Theorems 2.9 and 2.11). Therefore,

R
√

I : g = Ker M(Λ̃) :
g = Ker M(gΛ̃). One can verify that M(gΛ̃) is a flat extension of Ms−ρ(gΛ̃),
which implies that Ker M(gΛ̃) = 〈Ker Ms−ρ+1(gΛ̃)〉 (using Theorem 2.9) is thus
equal to 〈Ker Ms−ρ+1(gΛ)〉 (since Λ̃ and Λ coincide on R[x]2s).

(iii) Follows from an easy modification of the proof of Theorem 2.12. ��
We conclude this chapter with a small example on quotient ideals.
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Table 2.4 Rank sequences for generic Λ ∈ Kt in Example 2.13

(a) rank Ms(Λ) (b) rank Ms(gΛ)

s = 0 1 2 3 s = 0 1 2 3

t = 4 1 3 3 – t = 4 1 2 – –
t = 5 1 3 3 – t = 5 1 2 – –
t = 6 1 3 3 3 t = 6 1 2 2 –

Example 2.13. Consider I = 〈x2− x2
1, x

2
2− x2〉, with roots (0,0) (double) and (±1,1),

and
R
√

I = 〈x2 − x2
1, x

2
2 − x2, x1x2 − x1〉. The quotient ideal computation with g = x1

terminates at order (t, s) = (6,3) and we obtain that
R
√

I : g is generated by x2 −
x2

1, x2 − 1, with variety VR(I) \VR(g) = {(−1,1), (1,1)}. The corresponding ranks of
Ms(Λ) and Ms(gΛ) are shown in Table 2.4.
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