Chapter 2
Diffraction and Light Scattering

Light interacts with matter. This is the foundation for all the rich phenomena and
useful applications associated with light and biological media. The interaction takes
many forms. Light can be absorbed, or transmitted, or reflected, or scattered. All
these processes can participate in interference phenomena in biology and medicine.

The interaction of light with matter (Fig. 2.1) is characterized as a scattering
process that converts an incident (initial) optical mode into an outgoing (final)
optical mode

(ki, 1, pi) — (ke, oox, pr) 2.1

A single mode is an infinite plane wave with a frequency wj, a wave-vector ki and a
polarization p;. The amplitude of the outgoing mode is related to the amplitude of
the incident mode through the scattering function

Eg(wrp) = Si(0, ¢, o — o) Ei (o) (2.2)

where the scattering function S}(G, ¢; wf — ;) is a matrix connecting the input
polarizations with the output polarizations of the light field, and 6 and ¢ define the
scattering direction relative to the incident direction. When the light scattering is
elastic, the incident and final frequencies are equal. Inelastic light scattering can
also occur, as when scatterers are in motion or when the scattered light is shifted to
new frequencies, for instance through Doppler or Raman effects.

Elastic scattering is a general term that can be divided roughly into two separate
contributions: geometric ray optics and diffraction. Geometric ray optics involves
the reflection or refraction of light. Light rays are reflected or refracted by material
density differences when the spatial scale of the inhomogeneity is larger than the
wavelength of light. The reflection by a surface, or the bending of a light ray by a
change in the index of refraction, is geometric ray optics. The other contribution to
scattering is from diffraction. Diffraction is an essential wave phenomenon in
which each part of an incident wavefront becomes the source for secondary
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Fig. 2.1 The scattering process converts an incoming optical mode (defined by k-vector,
frequency w and polarization p) to an outgoing mode
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Fig. 2.2 Wave diffraction converts an incident wavefront into a diffracted wavefront

wavelets through Huygen’s principle (Fig. 2.2). The secondary wavelets all inter-
fere with each other to produce the observed diffracted light intensities. In this
sense, diffraction is the result of wave interference.

2.1 Diffraction

All diffraction is a form of wavefront-splitting interferometry. The interference of
partial waves that travel different paths from different parts of a wavefront leads to
the complex and beautiful phenomena that fall under the topic of diffraction.
Indeed, this summing up of the interference of parts of a wave is the basis for the
diffraction integral, which is the main engine of diffraction applications.

2.1.1 Scalar Diffraction Theory

Although electromagnetic waves are vector waves that must satisfy Maxwell’s
equations at boundaries, a significant simplification is achieved in diffraction theory
by treating the field amplitudes as scalar fields. This simplification is often very
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Fig. 2.3 Geometry for the Fresnel-Kirchhoff diffraction approximation

accurate, especially when the diffracting objects are weakly diffracting and produce
small perturbations on an incident wave. This is the case if the diffracting objects
have small variations in optical path length, and if these variations are on length
scales large relative to a wavelength of light. Examples for which scalar diffraction
theory fail include Mie scattering by spheres (discussed later in this chapter)
because a sphere has a large variation of optical path length, and photonic crystals
with photonic bandgaps, because refractive indices vary rapidly on the scale of a
wavelength.

The starting point for scalar diffraction is the Helmholtz—Kirchhoff integral for a
scalar field

r

ikr ikr
w@;JPWC )ﬁ vﬂ.Ma (2.3)

The simple configuration in Fig. 2.3 shows a source point S creating a wave that is
incident on an aperture that diffracts the wave to an observation point P.
The incident field is a spherical wave

ikrg

Wine = A (2.4)
I's
and the Helmholtz—Kirchhoff integral becomes
1 i kr i kr
P(xp) = J |:q]incv (eﬁ ) —er V‘Pmc] - nda (2.5)
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After applying the gradient operator, this is

1 ik 1Y .. etk (ik 1
W@MZZ%J[%m(7—ﬁ)€m%—77(7—ﬁ>&%m%]n® (2.6)

8
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In the limit of large distances, only the terms that are linearly inverse to distance
contribute and the equation becomes

Kirchhoff diffraction integral:
Ak [ 1 0
Y(xp) = J—e‘k(’ *75)(ep — eg) - nda 2.7)

ar | rrg
ap

Often, the incident wave is a plane wave of constant amplitude across the aperture,
and this integral reduces to

Y(xp) = —iAk J %e”"" B (cos Os + cos Op) | da (2.8)

ap

where the term in square brackets is the Fresnel obliquity factor, which is approxi-
mately unity for small-angle forward diffraction.

One of the most important features of the Kirchhoff diffraction integral for
interferometry is the imaginary number —i in the prefactor. This has the important
consequence that the diffracted wave has a m/2 phase advance relative to the
incident wave. This phase shift plays important roles in many aspects of light
scattering and diffraction. The mathematical source of this phase shift is the
gradient in (2.5) on the dynamic phase of the wave. All extended sources of
radiation experience this phase shift upon diffraction. However, point sources do
not have this phase shift. This phase difference between extended and point sources
is the key element in the origin of refractive index.

A final simplifying step in the development of scalar diffraction integrals takes
the observation point far from a planar aperture, known as the Fraunhofer approxi-
mation. The geometry in this approximation is shown in Fig. 2.4. This leads to the
Fraunhofer diffraction integral

Fraunhofer diffraction integral:

AeikR . 4 29
@ _ —ik(xsin0+ysing) 4, 4 (2.9)
(XP) 1 TR Je y

ap

where R is the (large) distance from the aperture to the observation point, and
Xx/R = sin 0, y/R = sin ¢.
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Fig. 2.4 Fraunhofer diffraction geometry. All rays are parallel and inclined at an angle 6. The
reference ray from the origin defines zero phase. The path length difference is x sin 6, with x
increasing vertically and 6 positive in the counter-clockwise direction

There are an endless number of configurations of sources and apertures that
appear in diffraction problems. Several of the most common will be presented as
examples that can be extended to more complicated cases that may be encountered
in biological applications.

2.1.2 Fraunhofer Diffraction from Apertures and Gratings

Some types of molecular biosensors are based on Fraunhofer diffraction from
apertures and gratings. This section presents several basic examples of diffraction
that are used in later chapters in this book. Some of the examples include the
diffraction effects of thin biolayers, and the molecular responsivities of these
diffraction structures are defined.

Example: Diffraction from a Single Square Slit

The single square slit is the simplest example, and is always the starting point to build
up to more complicated diffraction patterns. The slit has a width equal to a, shown
in Fig. 2.5. The Fraunhofer integral is

al2
J efikx sin 0 dx (210)

—a/2

EoeikR
Ep— —i
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To Observation
Point

Fig. 2.5 Fraunhofer diffraction geometry for a single slit. The lens converts a point source to a
plane wave

where E| is the field amplitude in the aperture. The Fraunhofer integral is evaluated
to be

a2
,E()ClkR ik sing
E — 1 s dx
PT TR Je
—a/2

_.Eo et 2 [ ~(ika sin0)/2 _ gilka sinﬁ)/2i|
AR 2ik sin0

E 1kR 1 k E ikR k
=-2i 0°¢ sin(_a SinG) = —ia 0° sinc<?a sin@) (2.11)

ARk sinf 2 AR

giving the field

. ikR i . .
Ep = —iEge ( /IR) sinc(ka sin 6/2) (2.12)
and intensity
a2
b = Py (E) sinc? (ka sin 0/2) (2.13)
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Example: Diffraction from a Slit with a Partial Biolayer

Diffraction is one way to detect thin molecular films, such as biomolecules captured
by high-affinity capture molecules (like antibodies on surfaces). As an example,
consider a rectangular aperture that is half covered by a thin film of refractive index
n and thickness d. We want to consider how the presence of the film changes the
diffracted intensity in the far-field. The field (2.12) is the starting point for this
solution. The answer can be written down by inspection as

Ep = —iEy ek ZzR sinc (l%a sin 0) |:ei(l<a sin0)/4 | gik(n=1)d o ~i(ka sin ())/4} (2.14)

which is the sum of fields from two apertures of width a/2, one of which has the
extra phase 6 = k(n — 1)d. The diffracted intensity is

B a 2. ,fka . ka . X
Ip =21, (%—R> sinc (4 sin 0> {1 + cos (2 sin 0 — b)] (2.15)

which still has the basic sinc® envelope, with an extra term (the second term in
the square brackets) that causes a small shift in the far-field diffraction. This
small shift provides a measure of the thickness of the film and is one way to use
optical interferometry (in this case diffraction) to detect biolayers in an optical
biosensor.

The performance of diffraction-based optical biosensors is characterized by
the responsivity that is defined as the intensity change per optical path length
difference of the biolayer & = (n — 1)d. The responsivity of this diffraction-based
biosensor is

d[p [0 a
R~:—:——(—
7T ds 2 UR

) " sinc(ka sin 0/4) sin (%“ sin 9) (2.16)
which continues to have the sinc? envelope, but now with the extra sine term at the
end. The angular responsivity on the detection x-axis is shown in Fig. 2.6. The shift
in the far-field diffraction caused by the biolayer leads to an asymmetric intensity
change. If only the total intensity is measured, then the biolayer effect would not be
detected. However, by placing a split detector on the detection plane, and
differencing the left and right detected intensities, then the difference signal is
linearly proportional to the thickness of the biolayer. This diffraction-based biosen-
sor configuration is closely related to phase-contrast detection on bio-optical
compact disks (BioCDs) [1].
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Single-Slit Diffractive Biosensor Responsivity
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Fig. 2.6 Rectangular-aperture diffractive biosensor responsivity. A rectangular aperture is half-
covered by a molecular film of thickness d and refractive index n. The interferometric responsivity
is the change in the diffracted intensity per phase shift caused by the film. The film causes an
asymmetric far-field diffraction pattern with a responsivity approaching unity

Example: Diffraction by a Circular Aperture

One of the most common apertures encountered in experimental optics is the
circular aperture. The Fraunhofer diffraction integral is expressed in polar
coordinates (r, @) on the detection plane

2n

ikR
Je i(kr'r/R) cos(p=®) g 0! 4! (2.17)
0

E(r,®) = —1\/56/1

O%g

integrated over (7, ) on the aperture plane, where

R=+IL12+12 (2.18)

and L is the distance to the screen (or is the focal length of a Fourier-transform lens).
This integral is re-expressed using Bessel functions

2n
Jm(u) _- J ei(mv+ucosv) dv (219)
0
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The diffraction integral becomes

a
= —iy/S JJO (kr'r/R)r dr (2.20)
0
that is evaluated using
Ju’JO(u’)du' = uJi(u) (2.21)
0

to yield

b -G ()3 - [l

el [2/1 (ka sin 9)]

Q

—i\/So (2.22)

Mﬂ

ka sin 0

where r/R = sin 0, and the value of J;(x)/x = 1/2 as x goes to zero. The angular
intensity is approximately (for small angles 0)

. 2
100) =1, <—2Jl (ka sin 0)> (2.23)

ka sin 0

that has an oscillatory behavior qualitatively similar to the sinc squared function of
a rectangular aperture.

Example: Diffraction by Multiple Square Slits

Multiple slits form a diffraction grating. The diffraction from each slit is given by
(2.12). This is modulated by a periodic part determined by the periodic spacing A of
the multiple slits. For the periodic part, the total field is

E = Epe i ¢t [1 +e? 4+ () 4 () 4+ ()" ’1} (2.24)

where ¢ = kA sin0, and where E, = —iE¢e'*® (a/AR)sinc(Ka sin 0/2) is the field
from a single slit located at r;. The term in brackets is a geometric series with the value

(e™N —1) _ i(N=1)¢/2 sin N¢/2
(el —1) © sin ¢/2 (2:2)

The total field is then

T in No/2
E — Epe—iot iflr+(N—1)gp/2] ( SN P/ 2 2.26
pe € sin ¢/2 (2:20)
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If the array is referenced to its center, then the periodic factor is

_ o ikk—ior (SIMNG/2
E=FEpe ( a2 ) 2.27)

with a total field

_ iR —ioor (SN NG /2 .
E=Epe ( Sin 9/2 sinc(ka sin 6/2) (2.28)
and an intensity
in> Nop/2
=1, (szd’/) sinc?(ka sin 0/2) (2.29)
sin” ¢/2

Note that this is the product of the rectangular grating diffraction pattern and the
diffraction pattern of N point sources placed in a regular array with a spacing A.
Because diffraction is equivalent to a Fourier transform, the convolution of two
aperture functions on the object plane becomes the product of the diffraction
patterns in the far-field.

Example: Diffraction of a Gaussian Beam by Multiple Slits

A Gaussian beam with radius wy illuminating a multiple slit grating diffracts as a
Gaussian beam. The field is

. M
Ec(0) = —iEy sinc(ka 20) > exp<—z(%)2sin2<9—9m>) (230)

m=—M
for a periodicity A and a slit width a < A. The conditions on the diffraction orders are

sin 0, = mA/A
M = trunc(A/A) (2.31)

The periodic part can be given its own function definition as

Po (6, wo/A) = f: exp (—z(%)zsmz(e _ 9,,,)) 2.32)

m=—M
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which is encountered any time a Gaussian beam is diffracted from a periodic
grating. It replaces the periodic function in (2.29)

A I
where the effective number of slits is
N = nwy/A (2.34)
When there is no overlap between the diffraction orders, the intensity is
I(0) = Iy sinc? (ka szin 6) m_XM_:M exp (— (2711}0) 2sin2(9 - 0m)>
— Iy sinc? (’“’ Szi“ 6) PG (0, wo/A)J (2.35)

The term in the summation is a series of Gaussian beams with angular widths
given by

A
AO =

= e (2.36)

Example: Diffraction by a Periodic Biolayer Grating

One class of diffraction-based biosensors uses a periodic grating of capture molecules
on a surface. When exposed to a sample containing the target biomolecules, these
bind in a stripe pattern, shown in Fig. 2.7. The thin nature of the biomolecular stripes
imparts a periodic phase modulation on a reflected optical wave. If we assume a
sinusoidal phase modulation, the transmitted field is

E. = Egexpliko(n — 1)d(1 — cos(Kx + ¢))] (2.37)

Using the Bessel function identity

o0

explid cos(Kx + ¢)] = Z I (0) explim(Kx + ¢ + n/2)] (2.38)

m=—0o<0

the reflected field just after reflection (in the near field) can be written as

E,=Ege® > J,,(0)explim(Kx + ¢ + 7/2)] (2.39)

m=—0o0
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Fig. 2.7 A periodic square
grating of N stripes on a
rectangular aperture
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where 0 = ko(n — 1)d. The Fraunhofer diffraction integral for the mth diffraction
order selects out each of the Bessel functions as

E, =E, eiég ei(me+md)+m7z/2)Jm (k()(l’l _ 1)d) (240)

The Bessel function is expanded as

In(x) = —— 2.41
() 2" m! (241)
and the first-order diffraction is then
Eyy = Egei% K020k (n — 1)d)2 (2.42)
with a diffraction efficiency given by
K(n—1)°d?
_kln =17 (2.43)

4

for the sinusoidal grating.

If the grating is a square grating (commonly encountered with protein patterning
using lithography) as shown in Fig. 2.7, then the diffracted intensity is given by
(2.15) modulated with the periodic envelope function of (2.27)
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A\ [sin(NkoA sin0/2)\* .
I =2l inc2(kA sin 0/4
P O(ZN/IR) < sin(koA sin 0/2) > sinc” (kA sin 0/4)

[1 4 cos(kA sin 0/2 — §)] (2.44)

The diffraction efficiency of the square grating is

2\*1—cos & (2\ke*(n—1)*d?
—(2) =0 (2) R @ 2.45
K (n> 1+ cos o <n) 4 (245)

which can be compared with (2.43).

2.1.3 Linear vs. Quadratic Response and Detectability

An important issue for the detectability of small signals is whether linear sensitivity
(when signal intensity is proportional to the quantity to be detected), or quadratic
sensitivity (when signal intensity is proportional to the squared value of the
quantity) gives the best ability to detect small quantities. The answer to this
question is generally not fundamental, but depends on details of the noise sources,
which in turn usually depend on intensity. For example, diffracted intensity
depends on the square of the phase modulation induced by the biolayer, while
interferometric intensity (in quadrature) is linear in the phase modulation. Because
phase modulation caused by a biolayer is typically less than 1%, linear detection
has a much larger absolute modulation caused by a biolayer than diffraction does.
On the other hand, interferometric linear detection has a much higher background
(lower contrast) that can cause more noise. This is a basic trade-off between the two
types of biosensors: linear detection with high-background and low-contrast vs.
quadratic detection with low-background and high-contrast. As a general rule,
linear detection is more sensitive for detection of very sub-monolayer films in the
weak-signal limit, while quadratic detection can have better signal-to-noise in the
strong-signal limit.

To make these arguments more quantitative, consider three contributions to
the noise

I} = CxnI5BW + hvIgBW + CoBW (2.46)

where BW refers to the detection bandwidth, and Iy is the background intensity
incident on the detector. The first term is relative intensity noise (RIN), the second
term is shot noise and the third term is a system noise floor (usually electronic
noise). It is important to remember that these noise contributions are frequency
dependent, usually with a 1/f behavior at low detection frequencies, evolving into
white noise at higher detection frequencies. The linear dependence on signal
bandwidth is strictly true only for white noise. The signal is characterized by
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Als = I[,CY AP + I,CVAP? (2.47)

where the first term is the linear dependence and the second term is quadratic, and
the intensity [, is related to the average intensity on the detector. The signal-
to-noise ratio is then

Al B(CVAP + QAP
s =1 25) =— g< o ) (2.48)
R~ CRI3BW + hvIgBW + CoBW

which can be interpreted in different limits. If RIN is dominant, then the S/N ratio is
independent of intensity. If shot noise is dominant, then the S/N ratio increases
linearly with intensity. If the system noise floor dominates, then the S/N ratio
increases quadratically with intensity. This general behavior of the S/N ratio was
discussed and shown in Fig. 1.10.

The relative importance of linear sensitivity vs. quadratic sensitivity depends on
the intensity dependence of the signal, and the relationship between /; and /5. To
illustrate this, consider the classic performance of the two-port interferometer. The
background intensity is given by

Is :%0(1 +m cos ¢) (2.49)

and the signal is obtained as

Iy + Als 2%0(1 +m cos( + Ad))

1
= 304—[0% [cos ¢ cos Ap — sin ¢ sin A¢]

_[0 m 1 2 m .
=5 + 1 > cos</><1 2A¢ ) Iy > sin pA¢ (2.50)

The linear and quadratic coefficients are

ct = —% sin ¢

cQ = —% cos ¢ (2.51)
The S/N ratio for the simple interferometer is

- m? (sin AP + 1 cos ¢A¢2)2
C2(1 +m cos ¢)*BW + 2hv(1 + m cos ¢)BW + CoBW

SIN (2.52)

When the detection is limited by RIN, then for optimized quadratic sensitivity to
exceed optimized linear sensitivity the condition
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Fig. 2.8 S/N ratio for A¢ = 0.002 and a 0.01% RIN for a two-wave interferometer as a function of
phase bias for three contrasts of m = 0.5, 0.95 and 0.98. A phase bias near m reduces the
background noise while still allowing a (small) linear response

m A h?
2 A0 S _MAP (2.53)
Cr(l —m)vBW CrvBW
should hold, which gives
A¢quad>2(1 —m) (2.54)

and a quadratic detection would be favored over linear only if the contrast m of the
interferometer can be constructed to be larger than

k(n — ny)d

>1—
m 2

(2.55)

or m > 0.998 for 1 nm of protein in a water ambient. Otherwise linear detection in
quadrature is favored.

A different approach to this analysis sets a maximum practical contrast m, and
considers what phase bias ¢ of the interferometer gives the largest S/N ratio. This
yields phase biases that are between n/2 and =, but approaching 7 as m approaches
unity, because of the suppression of the noise by suppressing the background
intensity. Indeed, most diffraction-based biosensors have a slight structural bias
that introduces a small linear dependence in addition to the quadratic dependence
of diffraction on the magnitude of the grating. This small linear dependence
can dominate the signal for small grating amplitudes, while giving a strong S/N
ratio because of the low background. This is shown in Fig. 2.8 for a two-mode
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interferometer for contrasts of m = 0.50, 0.95 and 0.98. A phase bias near « reduces
the background noise while still allowing a (small) linear response. Diffraction-
based biosensors are discussed in Chap. 7.

2.2 Fourier Optics

Fourier optics provides a particularly useful point of view of diffraction.
The foundation of Fourier optics is the recognition that the Fraunhofer integral is
equivalent to a mathematical Fourier transform. Furthermore, a lens can perform
the equivalent of a Fourier transform under appropriate object and screen distances
relative to the focal length of the lens. This allows the far-field Fraunhofer condition
to be realized on focal planes of lenses in compact optical systems. Fourier optics
combines the power of Fourier analysis with the ease of use of lenses, leading to a
fruitful approach to understand image formation as well as diffraction phenomena.

To begin, an object is considered to be composed of a superposition of multiple
spatial frequencies with periodicities A and associated K-vectors. For quasi-planar
objects, the K-vectors lie in the object plane. An example of a single spatial
frequency is shown in Fig. 2.9, in which the object amplitude is

flxy)= Aexp[f'[’f'” Kr-"]]

>y
([}
(]
2

Fig. 2.9 A planar object consisting of a single spatial periodicity. The periodicities in the x and y
directions are A, and A,, with the associated spatial frequencies v, and v,
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f(x,y) = A exp[i(Kex + Kyy)] (2.56)

where the components of the K-vector are

2n 2n
K-Xx=K cos ¢ =— cos ¢ =— = 2mv,
¢ A ¢ Ay

2 2
K, =K-§ =K sin ¢ = — sin ¢ = - = 2mv, (2.57)
A A,

K

The spatial frequencies that appear in the Fraunhofer integral and the Fourier
integral are

(2.58)

To see the connection between spatial periodicities and the Fourier transform,
consider a single harmonic grating

flx,y) = A expli(Kx + K, y)] = A exp[i2n(vyex + vyy)] (2.59)

The diffraction integral is

271
Eq(0y,0,) J F(x,y)exp {—17(sm 0,x + sin Oyy)} dxdy

”A exp [i27(vex + vyy)] exp [12%(sm 0,x + sin Oyy)} dxdy

Ad ( ( s“; b ) : <vy - Sir; 0}’) ) (2.60)

which defines a delta function at the diffraction angles given by

sin 0, = Av,
sin 0y = Avy (2.61)

This can be interpreted physically as a mapping of a unique scattering angle to a
unique point on the observation (Fourier) plane. In other words, all rays leaving the
object with a given angle converge to a single point on the Fourier plane. This
viewpoint becomes especially easy to visualize when a lens performs the Fourier
transform (see Fig. 2.12 below).
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2.2.1 Fresnel Diffraction

If f{x, y) is a combination of harmonics
fly) = JJF(VX, vy) expli2z(vyex + vyy)]dv, dv, (2.62)
then the transmitted field just after the screen is
Ei(x,y,z) = JJF(VX, vy) expli2n(vix + vyy)] explik.z]dv, dv, (2.63)

where

/1
kzqukz—k'%—k§:2n ?—vﬁ—vf (264)

For small angles this is approximately

2 2
k2 = % 1= =22 % — n2z(v +42) (2.65)

The transmitted field can then be written as

Ei(x,y,z) = JJF(VX, vy) expli2m(vex + vyy)] exp(ikz) exp[—iniz(v: + v3)]dv, dv,

= JJF(VX, vy) expi27(vix + vyy)|H (vy, vy )dvy dvy

(2.66)

where
H(vy,vy) = exp(ikz) exp[—iniz(v? +?)] (2.67)

is known as the free-space propagator in the Fresnel approximation.

The Green’s function solution (response to a delta function) for an impulse
function on the object plane is the inverse Fourier transform of the free-space
propagator

1 2 2
G(x,y,z) = 0 exp(ikz) exp [ikx ;_Zy } (2.68)
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Object Plane Observation Plane
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Fig. 2.10 Fresnel diffraction geometry. A delta function on the object plane has an associated
Green’s function. Convolution of the object function f{x’, y") with the Green’s function gives the
field at the observation plane

so that the general scattered field at z is a convolution of the object function over the
Green’s function

Ey(x,y,z) = ”f(X’,y’)G(x —x,y—y, z)d dy

=)+ =)

dx' dy’ (2.69)
2z

= i exp(ikz) J Jf(x', y') exp lik

This is the Fresnel integral that can be used for general scattering problems,
including holography and lens-free imaging. Holographic reconstruction in digital
holography uses the Fresnel integral explicitly to reconstruct three-dimensional
aspects of an object. The scattering geometry with the object and observation plane
are shown in Fig. 2.10.

2.2.2 Optical Fourier Transforms

The Fresnel regime converts to the Fraunhofer (far-field) regime when the distance
to the observation plane is much larger than the size of the scattering object. The
cross-over condition is captured quantitatively in terms of the Fresnel number

Ne =7 (2.70)

where a is the size of the scattering object and L is the distance to the detection
plane. The scattering is in the Fresnel regime when Ng > 1 (but still L > 1), and in
the Fraunhofer regime when Ng < 1. The cross-over is not a sharp threshold, so it is
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best to satisfy Ng < 1 to ensure that the scattering is the Fraunhofer regime. As an
example, a 10 pm object illuminated with visible light scatters to the Fraunhofer
regime for an observation distance greater than a millimeter.

In the far-field regime at a large distance L from the object screen the Fresnel
integral becomes

1 2 2
EF(x,y) = —— exp(ikL) exp {ikx ;y ]

iAL
24y

/ /
[ [resrens [—ik @} a dy’
1 +

=l exp(ikL) exp {1/{ T3 ]F(vx, vy)

(2.71)

in which F(v,,v,) is the Fourier transform of f(x, y), and where the spatial
frequencies of the object are identified as
X Y

V= —

o %=1 2.72)

This result has the important consequence that the far-field diffraction pattern is
proportional to the Fourier transform of the object modulation function. It is an easy
way to do a Fourier transform — just diffract to the far-field. However, it is usually
convenient to work with lenses, and these too perform an optical Fourier transform.

A single simple (thin) lens of focal length f can be viewed mathematically as
imposing a quadratic phase profile on an incoming wave by the transmission function

2 2
M] (2.73)

t = —i
) =]l
The geometry of the Fourier lens is shown in Fig. 2.11 with the distance L from the
object to the lens, and with the observation plane a distance f from the lens. The
angle-to-point transformation that is achieved by a Fourier lens is illustrated in
Fig. 2.12. Using (2.73) in (2.71) gives

1 2 4 )L —
Er(v,y) = {17 plik(L +f)]exp {—in (’CHL—W] F(% f-f) (2.74)

This is proportional to the Fourier transform of f(x, y), but with a quadratic phase
factor. When the object distance L = f, then

EF(x7y) /qf if ;Lf

which is the desired Fourier transform with a simple phase factor.

exp(ik2f)F (x ,l> (2.75)
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Object Plane Observation Plane

Transform
y Lens Y

Fxy

E,(x.y) o exp|-ind

)

Fig. 2.11 Configuration of a Fourier lens. When the object, lens, and observation plane are in a
1f~1f condition (both the object plane and the image plane are a distance f from the lens), then the
field on the observation plane (now called the Fourier plane) is the Fourier transform of the object
amplitude

Object Fourier Fourier-Plane
Plane Lens

A

Fig. 2.12 A Fourier lens in a 1f~1f configuration. All rays emitted from the object at a given angle
are focused by the lens to a point (actually a point spread function) on the Fourier plane

2.2.3 Gaussian Beam Optics

In laser optics, one of the most common intensity distributions is the Gaussian
beam. This is a beam that has the transverse intensity profile given by

I(x,y) = So exp(—(x* + y*)/w}) (2.76)
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with an integrated power
P= ”I(x,y)dx dy = Sonw} (2.77)

Because a Gaussian beam has a limited lateral extent, it self-diffracts into the far-
field, even without any aperture to diffract off of. This is an important part of the
principle of wave propagation. No matter how a field is spatially modulated,
whether by a physical aperture, or simply because fields are inhomogeneous,
these fields propagate as partial waves with relative phases and relative path lengths
that cause interference and hence diffraction.

For a Gaussian beam at its focal plane, the dimensionless field amplitude is

E = VI=/Spexp(—(x* +y*)2w?) (2.78)

and the diffraction integral is
oo
Eq = —iy/So J exp(—(x + y*)/2wp e i s dy (2.79)
This has the diffraction field

2.2
0

2
E0,7) = —i/?ok% exp(—k il

(sin® 0 + sin’ ¢)> (2.80)

which is again a Gaussian, but now expressed as an angular distribution in angles
0 and ¥. When Fourier transformed using a lens of focal distance f, the field at
the Fourier plane is

2 2 2 2.2
E(X,Y) = —iv/So ;:VO exp <—ﬁ(x’2 +y'2)> 2.81)

illustrated in Fig. 2.13 as the focal waist of a Gaussian beam. The intensity at the
Fourier plane is

;o 27[ 2 4 27[ 2 2, 12 2
I(x,y):So(f—)> Wy exp _(f_)) wy(x'" 4+ ") (2.82)
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Focused Gaussian Beam

-10 -5 0 5 10

z-axis
Fig. 2.13 Profile of a focused Gaussian beam. The beam waist w( occurs at the focal plane at z = 0.

At distances large relative to the Rayleigh range z, the beam converges or diverges with angle 6.
The beam evolution is self diffraction

with a beam radius given by

17

21wy

(2.83)

/ —_—
Wo =

This result is of special importance in Fourier optics. It expresses the inverse
relationship between the widths of Fourier-transform pairs of Gaussians. Tightly
focused beams are transformed into broad beams, and vice versa. This inverse
relation also holds generally for smooth non-Gaussian beams, but with different
numerical factors.

2.3 Dipoles and Rayleigh Scattering

The origin of all light-scattering phenomena is the interaction of the electric and
magnetic fields of a light wave with electric and magnetic multipole moments of
electrons in atoms and molecules. For optical interactions, the strongest interactions
are usually through the electric dipole interaction, which tends to be stronger than
the magnetic dipole interaction by the ratio ¢*/fic = 1/137. However, in cases in
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which the electric dipole interaction is not allowed for symmetry reasons, magnetic
dipole or other multipole moments can dominate. In this book, we consider electric
dipole interaction exclusively.

All molecules have a molecular polarizability, that is, a tensor relation between
the applied field and the structure and symmetry of the molecule

P = emoyE (2.84)

where oc; is the molecular polarizability tensor and ¢, is the isotropic dielectric
constant of the surrounding medium. Because protein molecules lack general
symmetry, the tensor polarizability is simplified through configurational averaging
to a scalar property relating the induced dipole moment to the applied electric field.

p = emoE (2.85)

Many protein molecules are globular in structure, such as the immunoglobulins,
and to lowest approximation may be viewed as dielectric spheres. The polarizabil-
ity of a dielectric sphere of radius a is

Polarizability of adielectric sphere:

(6 — &m)
— 4
o 7(8 2em) TEyd

X (2.86)

where ¢ is the dielectric function of the sphere. For comparison, the polarizability of
a metallic sphere is

Polarizability of a metallic sphere:

o= 47r£0a3 (2-87)
Given an induced dipole moment p, the resulting dipole field is
Dipole field:

which falls off as the inverse cube of the distance from the dipole. The dipole field
of the dipole induced by an incident field is the origin of molecular scattering and
ultimately of the refractive index of a layer of biological molecules.

The first approximation for understanding molecular scattering is scattering in
the Rayleigh limit. The incident electric and magnetic fields in a dielectric medium
with k,, = nnko are

Eine = €9Eg "™
Bine = X Eine (2.89)

Vm
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where ng is the unit vector in the direction of the incident field. The scattered fields
from the induced dipole are

eikr

E, =K, pr—— [(n x p) x n
1

Bse = —n x Eg (2.90)
Vm

where n is the unit vector in the direction of the scattered wave. The Poynting
vector is

1
S=—ExB (2.91)
Ho

and the differential scattering cross-section is constructed from the Poynting vector
along the scattering direction

do r2[8(0, ¢)|? K 1
00 = 1' ( ¢)|2 - 2E2|p|2§(1+cos 0) (2.92)
§V880|E0‘ (4meeo) Eg

where 0 is measured relative to the incident k-vector direction.

Example: Small Dielectric Sphere in Vacuum

In the case of scattering by a small dielectric sphere, the induced dipole is

-1
p = 4ng <§ n 2) @’ Eine (2.93)

with a scattering cross-section

2

1
i P E (2.94)

do 46
e+2

dQ

The scattering cross-section is decomposed into expressions for each incident
polarization relative to the scattering plane

doy  KdaSle—1

e 0

Q" 2 |er2 5%

do | Kable —1]7

e — 2.95
dQ 2 |le+2 ( )
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When these are averaged over polarization, they become

Rayleigh differential cross-section:

e— 1121 (2.96)
S | 29
) 2( + cos” 0)

L

dQ

with the familiar angular distribution of scattered light with symmetry between
forward-scattering and back-scattering. The differential cross-section is integrated
over all scattering angles to obtain the total cross-section

(2.97)

The scattering cross-section depends on the sixth power of the radius and on the
fourth power of the frequency. The cross-section has units of area, as seen when it is
expressed as

Rayleigh total cross-section:
8 g 2.98
o= <§ (ka)* ) na® 9%

The effective scattering area of a dielectric sphere is proportional to the cross-
sectional area of the sphere, but reduced by the factor in parentheses in front. For
biological molecules with a radius of 1 nm and a dielectric constant of 2 the
reduction is approximately 2 x 107'°. The effective cross-section for such a

molecule is ¢ = 1072% cm?.

e—1
e+2

Example: Small Dielectric Sphere in Water

There are many applications in which the dielectric sphere is in a water environ-
ment. It is important in this case to be clear about the vacuum k-vector k, and the
medium k-vector, which is k,, = nnko. In addition, the dielectric water medium
modifies the polarization as

T ) preod® (2.99)

Therefore, the differential cross-section in water is

do 2

dQ

& — &m
&+ 2¢em

! (1 + cos®0) (2.100)

__ 21406
—Smkoa E
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Table 2.1 Rayleigh

: In air In medium
eatiering o = D dnead o = i) Ame 43
= 12 20 T (e42em) 0
—1 o a3 _ [ e—étm s o3
p= (;r—2>4m,0a Einc p= (U‘+2*£n|>4na,n&0a Einc
do _ p4,60e=1% 1 2 2
2 =k*a® .57 5 (1 + cos™0 do _ 2,4 6|e=em| 1 2
da |s+2 2 ( ) do = emk0d [T 5 (1 +cos*0)
— (8 (ka4 e=L ) 2 4] ey |2
o= (3 (ka)" |5 )M o= (g (kma)* |20 ) na?

with the corresponding total cross-section (real dielectric function: no absorption)

8 4
o= <§ (kma)

Selected formulas for Rayleigh scattering are given in Table 2.1.

& —&m
&+ 2em

2
)naz (2.101)

2.4 Refractive Index of a Dilute Molecular Film

Refractive index is a macroscopic property of a material that relates the phase
velocity of a light wave to frequency and wavelength through the expression

vy = % - (2.102)

In this section, we approach the derivation of the refractive index using concepts
from diffraction theory.

An apparent paradox arises in relation to the phase shifts experienced upon
scattering from a dipole and the phase shifts that are detected in the far-field that are
attributed to, or interpreted as, refractive index. The central paradox is that the
scattered wave from a dipole is in phase with the incident field. If the scattered field
and incident field have the same phase, then why is a phase shift detected in the far-
field? The answer to this paradox comes from diffraction theory (scalar Kirchhoff
diffraction suffices) due to the difference between a continuous field distribution
compared with the discrete scatterer. An outline of the physics is shown in
Fig. 2.14. Two phasor diagrams are shown, one in the near-field and one in the
far-field. In the near-field, the local field and the scattered field are in phase.
However, as the local field propagates to the far-field, it acquires a m/2 phase
shift, while the scattered field does not. Therefore, in the far-field, the scattered
field is in phase quadrature with the continuous field, which is manifested as a phase
shift. Mathematically, integrating the diffraction integral over a finite-size continu-
ous distribution yields a factor of -i, while a discrete delta-function scatterer simply
produces a spherical wave that propagates to the far-field without any phase shift.



76 2 Diffraction and Light Scattering

Scattering and Phase Quadrature

—in /2

e
Near Field:in-phase Far Field: in-quadrature
(ikr-io 1) 1 ( |
E. _ +_-_ eikr—mnE dzx
E ~JE, sor = S r ! rf e
Im{E} Im{E}
Re{E}
Resultant Efar

Resultant
Es

Fig. 2.14 Light scattering from a molecule and the 7/2 phase shift. In the near field, the scattered
wave is in-phase with the incident field. In the far-field, a /2 phase shift has occurred that places
the scattered wave in phase-quadrature with the original wave, representing a phase modulation
related to the refractive index

2.4.1 Phase Shift of a Single Molecule
in a Focused Gaussian Beam

A single molecule in a tightly focused Gaussian beam will scatter light and impart a
small phase shift on the direct wave in the far-field. This phase shift is a direct
consequence of diffraction and interference. An interesting question is whether this
single-molecule phase shift might be detectable experimentally. The induced dipole
from (2.86) on the optic axis and on the focal plane of the Gaussian beam is

- <8 - 1>a3E0 (2.103)

where the field on the optic axis is Ey = 1/So. The local scattered electric field is
then

ikr -1
E. =K (;—2) &\/S (2.104)

This field is transformed to the Fourier plane using a lens of focal length f and
diameter D > ﬁ % The power collected by this lens is
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Py =Tk (e 2a6S (2.105)
scat — 4 fz 8+2 0 .
and the field at the Fourier plane is
kK (e—1
Eica = 4 3 2.1
scat f(8+2)a So (2.106)

The interfering fields (the original field plus the scattered field) at the Fourier
plane are now

E = Escat + EO
kv/So |, 3 (s - 1> .5 2w o (2.107)
= ka —iwjexp| ——— (" +
f 8+2 0 p (f)v)z ( y )

The phase shift on the optic axis of the detected Gaussian field is given by

ka® (e —1
t ~— | —— 2.1
e () o

For a molecule of radius ¢ = 3 nm with ¢ = 1.43% = 2 at a wavelength of 500 nm
and a beam radius of 0.5 pm, this phase shift is about 1 x 10~ radians.

To estimate how detectable this phase shift is, consider a situation when the /2
phase shift between the Gaussian field and the scattered field is shifted to zero to
place it in the condition of constructive interference. Then the intensity at the

Fourier plane is
k2S() 47‘[2W2 2 2
= f—z [Wé exp <_ (fi); (x’ er’ )

—1 27‘[2W2 2 2
wika® (S SRy 2.109
+ W0a<8+2 exp ) (" +y") ( )
When this is integrated over the Fourier plane, it yields
Jlda—S w? + 4dnka’ e—1 (2.110)
B e+2 '

and the relative modulation is

Al 4kd [e—1
e (A Q.111)
1 wi \&+2
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which is four times the value of the phase shift along the optic axis. One factor of
two is from the interference cross terms, and the other is from the integration over
the Gaussian profile. Therefore, for typical values of the parameters, the relative
intensity modulation from a single macromolecules is about one part per million.

The approximate shot noise that this corresponds to is a photon number of 1 x 10",
which is about 400 nJ. If this energy is detected in a millisecond detection time,
the power at the detector would be about 400 pW, which is an easy power level to
achieve with conventional photodiodes. Therefore, a single macromolecule could be
detected interferometrically under shot-noise-limited detection conditions.

2.4.2 Phase Shift from a Dilute Collection of Molecules

The effective phase shift of a collection of molecules in a Gaussian beam can be
obtained by extending the single-molecule result. The scattered field for a molecule
off the optic axis is

2 _
E.. = k? (i - ;) a*\/Soexp(—r?/2wd) exp(ikxX'[f) exp(ikyy'[f)  (2.112)

where the primed coordinates are in the Fourier (detection) plane, and the unprimed
coordinates are in the focal plane. The contribution of a distribution of molecules
is obtained using the integration

J 2mre /2 dr = 2mw? (2.113)
0

to give, for a surface density No = N/ nwé, the effective number of scatterers

N
—2nwg = 2N (2.114)
TEWO
The phase is then
ka® (e —1
t ~2N— 2.115
an ¢ wh (8 + 2) ( )

This is turned into an effective index of refraction for a layer with a thickness
equal to 2a as

ka® (e —1
¢ ~ 2NW_% (H_Q,) = (”av — 1)2a (2116)
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or

a? (e—1 e—1
v=1+N= =1+ nNpsd? | — 2.117
Ty + W2 (8+2> + nNaa <8+2> ( )

where N, is the area number density (particles per area). This is restated in terms of
the volume fraction f, using

4/3)1d 2
fo = %NA = SmaN (2.118)
to give
3 (e—1
Mo = 1451 (;—2) (2.119)

which is consistent with the Maxwell Garnett effective medium in the Rayleigh
limit, which is described next.

2.5 Local Fields and Effective Medium Approaches

Effective medium theories seek to convert a distribution of discrete and stochastic
elements into an effective homogeneous medium that behaves with appropriately
averaged properties. For instance, the optical effects of a dilute dispersion of
particles on a surface (such as biomolecules in optical biosensors) can be treated
as if the particles constituted a thin layer having an average refractive index. These
approaches can never capture the “full” physics, especially when fluctuations
dominate the optical behavior, but they give a heuristic approach, usually with
analytic formulas that can be evaluated and compared against experiment.

2.5.1 Local Fields and Depolarization

The scattering from a dilute collection of scatterers as a function of increasing
scatterer density is straightforward until multiple scattering becomes significant. In
the case of discrete scatterers, the scattered field from each is added to the total field
self consistently as a new incident field that is scattered by the collection. To treat
this problem explicitly using self-consistent approaches is numerically exhaustive,
such as through the discrete dipole approximation [2]. A simpler approach, that
works well when the medium is dense, is a mean field approach that uses the mean
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local fields of neighboring induced dipoles as a depolarization field experienced by
an individual scatterer.

In the case of a spherical dielectric particle, the polarizability is the well-known
result

(e —é&m)

= 4nea’ 2.120
o TEod (6 + 26m) ( )
The uniform field inside the particle is reduced from the field nearby as
P
Ein = Epear + 53— (2.121)
380

If the material has high symmetry or is isotropic, then the average near-field is zero,
and the induced dipole moment of a molecule at the center is

p = 0em(E + Eip) (2.122)

For a collection of dipoles with number density N, the polarizability is

P
P = Noey, (E + > = ygE (2.123)
380
Solving for y yields
1  Noey
1= - (2.124)

P : Noe,
38()

Using the relationship ¢ = 1 + y yields the Clausius—Mossotti relation

e—1 én
=— Njo; 2.125
e+2  3g zj: i% ( )
This expression includes the local fields generated by nearby molecules.
The Clausius—Mossotti relationship is most accurate for dilute systems such as gases.
However, it still holds as a heuristic relationship even for denser liquids and solids.

2.5.2 Effective Medium Models

There are many different approaches to effective medium approximations. Each is
equivalent in the dilute Rayleigh limit, but each is slightly different in the case of
mixtures of different materials. Furthermore, different approximations relate to
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different situations. For instance, small spherical inclusions distributed inside a
homogeneous medium are best approximated by Maxwell Garnett formula, while
two uniformly mixed phases are best approximated by the Bruggeman formula.

2.5.2.1 Maxwell Garnett

When the collection of scatterers is no longer dilute, but is not sufficiently dense or
symmetric to follow the Clausius—Mossotti relation, then a working alternative is
the Maxwell Garnett approximation. The Maxwell Garnett model assumes a col-
lection of small particles (inclusions) of material with bulk index n with radius
much smaller than a wavelength embedded in a medium with a thickness much

larger than the diameters of the spheres.
The average field is

(E) = (1 —f)(En) + >_fi(Ex) (2.126)
k

where (E.,) is the average field in the medium. The volume fraction of each particle
sums to the total volume fraction

Y h=f (2.127)
k

The average polarization is

(P) = (1 —f)(Pm) + > fi(Py) (2.128)
k

which is related to the average susceptibility tensor by
(P) = 207y (E) (2.129)

The total self-consistent field now satisfies

(1= f)(Eay — &m)(Em) + > fi(€ay — €)(Ex) =0 (2.130)
k

The next assumption is the central assumption of the Maxwell Garnett model. It
states that the uniform field inside the kth particle is related to the external uniform
field in the medium through the tensor relation

E; = Z4En (2.131)
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Table 2.2 Geometric factors

Prolate spheroids Oblate spheroids

b/a L] L2 = L'; a/b L] L2 = L3
0 (needle) 0 0.5 0 (disk) 1.0 0.0

0.2 0.056 0.472 0.2 0.750 0.125
0.4 0.134 0.433 0.4 0.588 0.206
0.6 0.210 0.395 0.6 0.478 0.261
0.8 0.276 0.362 0.8 0.396 0.302
1.0 0.333 0.333 1.0 0.333 0.333

for the tensor /. The principal components of the ], tensor along the principal axes of
the ellipsoid are

&
li=— 2.132
! e+ Li(e — m) ( )

and the anisotropy factors L; for spheroids are given in Table 2.2.
The self-consistent field equation is now

(1= F)(Fay = &m) + Y _fe(Eay — €)1 =0 (2.133)
k

which is still a tensor expression with a sum over the individual particles in the
medium.

For a collection of randomly distributed spheroids, the tensor equation is
converted to a scalar equation for &, by integrating over all the particle
orientations. This gives

(1 _f)gm +fﬁ8

fay = —————— 2.134
a =7 +7p ( )
which is the final Maxwell Garnett equation.
The most important special cases for Maxwell Garnett are for spheres
3ém
= 2.135
i e T 26 ( )
3f (ﬁz?‘ ) e(1+2f) +2(1 — f)e
by =m |l +————4—| =¢ , s 2.136
v - (5m) m[ e(1—F)+ (2+/)em (130
e+2em
An alternative expression for the Maxwell Garnett result is
b “Em &7 m (2.137)

Eav + 26m T e+ 26,

which captures the relationship of this model to the Clausius—Mossotti relation.
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2.5.2.2 Bruggemann

The Maxwell Garnett formula is not symmetric with respect to the inclusions and
the matrix. It specifically applies to spheroids in a homogeneous medium. However,
in many situations, it is difficult to identify which material is the inclusion and
which is the matrix. In such a case, a slightly different effective medium model can
be used that is symmetric between the two phases. This is the Bruggeman model
that applies for a two-phase mixture

A D RO (2.138)

f.s + 260 em + 2€av

For dilute systems (of either phase) this gives the same result as Maxwell Garnett to
lowest order. This expression is easily extended to multi-component systems by

Zf "8 _ (2.139)

i =
g + 24y

where the f; are the individual fractions of the different components.

2.6 Mie Scattering

Many approaches to optical biosensors use nanoparticles and gold and glass beads,
which can be large and outside of the Rayleigh limit. When their size approaches an
appreciable fraction of a wavelength of light, they enter into the Mie, or resonant
scattering, regime. Of special interest are spherical particles and their light-scattering
properties.

2.6.1 Spherical Particles

The relationship between the incident fields and the scattered fields is

EHS eiklr=2) S, 0 E”i
= 2.140
(ELS ) —ikr \ O S1 )\ EL ( )

where parallel || and perpendicular L relate to the scattering plane. The scattering
matrix elements are

2n+1
S, = ZT(%T[” + byty) (2.141)
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2n+1
S, = —(ayt, + b7, 2.142
2 Xn:n(n—i—l)(af + buttn) ( )

and the series are terminated after a sufficient number of terms. In the forward
direction S;(0°) = §,(0°) = S(0°).
The angle-dependent functions are

P,ll B dP}I
T, = sin 0 Tn = d0 (2.143)
where
1_ 4Py
P, a0 (2.144)
is the derivative of the Legendre polynomials P,,.
The Mie coefficients are
ml//n(mx)l//n (X) B lpn (x)lp/n (mx)
n = 7 7 2.145
()€ (5) — GO, ) 1)
lpn(mX)lﬁ/n(X) B mlﬁn (x)lp/n (mx>
b, = y ; 2.146
0, (1), (5) = mE, (W, () (2140

where m = n/n,, is the relative refractive index of the particle relative to the
surrounding medium, and the functions are defined as

Va(p) = pinp)  &ilp) = phVu(p) (2.147)
The spherical Bessel functions are

Y Y

nlp) = Zﬁm/z(ﬂ) yalp) = ZYnH/z(P) (2.148)

These are combined into the spherical Hankle functions

WV (p) = ju(p) + iva(p) (2.149)

The scattering cross-section is

2n
Caa =15 > @n+ V)(|an* + baf) (2.150)
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and the extinction cross-section is
C 27IZ(z + 1)Re(a, + by) 2.151)
ext — T n elan n .
' k2 n

For a particle that is small relative to the wavelength, the scattering matrix
elements are

Rayleigh particle scattering coefficients:

S = -t (2.152)
s 3mPi—1

Sy = —ix’ 5 cos 0

where x = n,koa = k,a. These may also be expressed in terms of polarizability o as

—ik3
P — (2.153)
47'580
using the polarizability
Esph — €m
o = 4me, a3 s Tm 2.154
0 &sph + 2em ( )

Note that the scattered far-field of the Rayleigh particle is purely real and positive if
the particle dielectric constant is purely real. The exciting local field (assume a
focused Gaussian beam) is also real, but acquires a 7/2 phase shift upon free-space
propagation to the far-field. Therefore, a nonabsorbing Rayleigh particle in a
nonabsorbing medium induces a phase shift on the combined scattered and original
wave in the far-field.

2.6.2 Effective Refractive Index of a Dilute Plane of Particles

The effective refractive index of a dilute collection of Mie scatterers detected in
transmission is obtained by generalizing (2.107) to a collection of particles. This is
a mean scattered field approach, and differs in its predictions from effective
medium models like Maxwell Garnett. The mean scattered field approach is better
suited to describe effective scattering properties of particles on surfaces. The total
field in the far-field of a single particle on the optic axis is

_ k/So [S(0)

EO) fo-ike

iw} exp(—k*wj0°/2) (2.155)
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When there is an area density of spherical scatterers, the integral over the particle
density weighted by the Gaussian incident field is

o0
Na J e/ 2mrdr = 2nNA Wl (2.156)
0

then the total far-field becomes

22 w2
k\]{S_o {ZnNAwS 50) iw? exp (_7;2“’092)] (2.157)

E(0) = —ik2

The field on the optic axis (0 = 0°) is

kv/So
f

If this is compared with the extinction of a wave in a homogeneous medium with
refractive index n,,

E(0) =

2nN
(—iwé) {1 _ <A

o 5(0)} (2.158)

E(0) = Eg e ~ Ey(1 + ikd(ny — 1)) (2.159)
the average refractive index is

27N
ey = 1 +i ’;3"

5(0) (2.160)

where Ny = N,/d is the equivalent volume density. The real and imaginary parts of
the effective refractive index n = n’ + ix are

27'CNV
n/av =1 77]}7’1{5(0)}
27‘CNV
K = 5 Re{S(0)} (2.161)

In terms of the volume fraction

= ?chﬁ (2.162)
these are
3fv
Wy =1— T Im{S(0)}
3fv
Kay = 5.5 yRe{S(0)} (2.163)
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In the Rayleigh limit, with

S(0) = —ik’d® m -1 (2.164)
= —1K a .
m2+2
in a medium with index n,, and relative index m = n/n,,, these are
3 m?—1
n/av =nm+ EfVRe{mz T 2}
3 m? — 1
v = = fvi 2.1
Kay = 31y m{m2+2} (2.165)

The effective index is linear in the volume fraction fy in this limit. For denser
dispersions, local screening modifies these values and more general approaches
must be used, such as generalized Mie theory [3]. Equation (2.165) is consistent
with Maxwell Garnett in the dilute limit.

2.7 Nanoparticle Light-Scattering

Nanoparticles have become essential tools for biomedical research. They are used
in two main applications: (1) light scattering or emitting labels to image molecular
and cellular processes and (2) drug delivery vehicles. In the labeling application,
the distinct signature of the light scattering provides specific identification of the
nanoparticle density and distribution within a biological sample. In the drug
application, light scattering can track the transport and clearing of the drug delivery
vehicles.

There are many varieties of biomedical nanoparticles. The simplest are nano-
beads that are dielectric spheres that scatter light through Rayleigh or Mie scatter-
ing. These beads can be transparent, or dyed with dye molecules (chromophores)
having identifiable absorption spectra. Beads also can be fluorescent emitters that
are detected using fluorescence interference microscopy. Among the brightest
nanoparticle emitters are semiconductor quantum dots. The emission wavelengths
of quantum dots are tuned by controlling the size of the semiconductor particle
using quantum confinement effects to shift the electron quantum states. Gold and
silver nanoparticles scatter light resonantly (and hence strongly) through surface
plasmon oscillations that are excited by the incident light fields. The optical
properties of these nanoparticles are tuned by selecting a wide variety of sizes
and shapes, from nanorods to nanostars.
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Fig. 2.15 Luminescent quantum dot structure. A CdSe nanocrystal is encased in a CdS shell to
prevent nonradiative surface recombination. The photon energy of the luminescence is determined
by the bandgap and by quantum confinement of the electrons in the conduction band and the holes
in the valence band

2.7.1 Quantum Dots

Quantum dots are semiconductor nanocrystals typically 2-10 nm in diameter.
Semiconductors have distinct and strong optical properties because of the bandgap
between valence states occupied by holes and conduction states occupied by
electrons. When an electron in the conduction band falls across the bandgap to
fill a hole in the valence band, light is emitted with a photon energy equal to the
energy that the electron loses in the process. For large nanocrystals, the energy is
approximately equal to the bandgap between the top of the valence band and the
bottom of the conduction band

h.
;—C:Eg:EC—EV (2.166)
‘g

howg =
One of the important properties of quantum dots is the size dependence of the
emission wavelength. This is caused by quantum confinement effects on the
electrons and holes. In quantum mechanics, when a particle is confined to a finite
volume, there is a quantum energy associated with the confinement. The stronger
the confinement, the larger the confinement energy. Therefore, as the quantum dots
get smaller, the emission wavelength shifts to the blue (higher energy).
The structure of a luminescent quantum dot is illustrated in Fig. 2.15 for a CdSe
nanocrystal encased in a CdS shell. The shell reduces surface recombination that
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Fig. 2.16 CdSe luminescence energy from assorted experiments as a function of the quantum dot
radius. Reproduced with permission from [5]

lowers the luminescence efficiency of the quantum dot. The emitted photon energy
is determined by the bandgap of the nanocrystal plus the quantum confinement.
For a spherical quantum dot of radius R, the emission energy of the photon is

E~E;, +

Pt (1 1 1.786¢2
” ( ) S 0.248Eg, (2.167)

2R? \m;  m; 4reeR
where the first term is the crystalline bandgap, the second term is the quantum
confinement energy for the electrons and holes, and the third and fourth terms are a
binding energy between the electron and hole caused by the Coulomb interaction
between the particles [4]. The bound state of the electron and the hole is called an
exciton, and the binding energy is the solid-state analog of the hydrogen atom. In
(2.167) m; is the electron effective mass, my, is the hole effective mass, ¢ is the
dielectric constant, and Egy is the Rydberg energy of the exciton. The emission
energy of CdSe quantum dots as a function of radius is shown in Fig. 2.16 compared
with the numerical result of (2.167). Examples of absorption and emission for CdSe
quantum dots are shown in Fig. 2.17.

2.7.2 Gold and Silver Nanoparticles

Gold and silver nanoparticles are among the most commonly used particles in
labeling applications of light scattering and interferometry. These particles show
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Fig. 2.17 Absorbance of CdSe quantum dots clad with ZnS as a function of wavelength for
increasing diameters of (a) 2.30, (b) 4.20, (c) 4.80, and (d) 5.50 nm. (Reproduced with permission
from [6])

strong plasmonic resonances with plasmonically enhanced absorption and light
scattering. In the Rayleigh limit, the particles contribute to enhanced effective-
medium properties, while in the large Mie-scattering limit, they provide single-
particle detectability and finite-particle statistics in applications such as imaging and
laser scanning.

The plasmonic enhancements of gold and silver arise from the nearly free-
electron behavior of these noble metals. The dielectric functions for a free-electron
gas, including the bulk dielectric function &, = 6 4 11.6, is

R “
& = C(Sb) m
) y/o
=1 2l 2.168
&2 = Im(ep) + i3 pr ( )

For gold, the plasmon energy is approximately 7w, = 7.5 eV, and the damping rate
is approximately 7y = 0.25eV. The free-electron functions for gold are shown in
Fig. 2.18. The real part of the dielectric function has a zero near 400 nm. This is not
near w, = 7.5 eV at a wavelength of 165 nm because of the background dielectric
function arising from interband transitions among the gold orbitals. There is also a
significant imaginary component caused by damping (scattering) of the free
electrons and from the interband transitions.

Free-electron models capture the rough behavior of real noble metals, but fail to
capture the contributions from interband absorption and the associated effects on
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Fig. 2.18 Real and imaginary components of the dielectric functions of gold assuming a
free-electron model

the refractive index. A more accurate parameterization for gold has been provided
in [7], including the role of the finite size of gold particles. As the particle size
decreases, the electron scattering by the surface increases, and the overall damping
of the plasmon resonance increases. This is parameterized as

1

= 2.1
1/7,(00) + 1/Ad (2.169)

7p(d)

where A is a scattering parameter and d is the particle diameter in nanometers. The
total dielectric function can be expressed as

1
tA) =t ——5—F5—
2 Af)(l//lz +i/7,4)
Ai eid)l efid)l
— 2.170
+i§1;2 Ai |:1M~i_ 1/i—i/yi+ 1/ + 1/7.+i/y; ( )

The first term is the plasmon contribution, while the second term is the contribution
from interband absorption. The parameters that best fit the data in [8] are given in
Table 2.3.

The real and the imaginary parts of the dielectric functions are plotted in Fig. 2.19.
Strong finite-size effects on the imaginary part occur for particle radii smaller than
40 nm. However, the real part is only significantly affected for radii smaller
than 10 nm.
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Table 2.3~ Pgrameters in the Data parameters Value
parameterization of the gold

dielectric function by ‘500 1.53
Etchegoin [7] Ap 145 nm
7p(0) 17,000 nm
A 170
Ay 0.94
o —mn/4
A 468 nm
71 2,300 nm
Ay 1.36
& —n/4
o 331 nm
Y2 940 nm
Au Dielectric Function
10 T T T T 10
psasiaER R i inaa §
5 [ ﬁ
&
120 nm
140 nm
0
-5
-10
300 400 500 600 700 800

Wavelength (nm)
Fig. 2.19 Dielectric function of gold parameterized [7] and fit to the data [8]. The surface plasmon

resonance of a spherical nanoparticle in vacuum occurs when Re(e) = —2

The dipole moment of a sphere was given in (2.93). When the sphere is
embedded in a medium with dielectric constant &, it is

e—¢
= dneney | ——— | a’Eiy 2.171
p = 4ne 80<8+23m)a c ( )
Therefore, when &401¢ = —2é&y, a spherical nanoparticle has a plasma resonance that

occurs in both the absorption and the scattering cross-sections. The absorption
and scattering efficiencies of gold nanoparticles are calculated numerically using
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Fig. 2.20 Numerical simulations of the absorption and scattering efficiencies of gold nanoparticles
calculated using Mie theory and the gold dielectric function of (2.170)
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Fig. 2.21 Experimental absorbance of gold nanoparticles in solution reprinted with permission
from [9] as a function of particle radius

Mie theory and (2.170) and shown in Fig. 2.20. A particle with a radius of 40 nm
shows a strong absorption resonance with enhanced scattering. Smaller particles
have broader resonances because of increased surface scattering of the free electrons,
and smaller efficiencies because they move into the Rayleigh limit. The particles begin
to move out of the Raleigh limit and into the Mie regime as the particle radii become
larger than about 50 nm. Experimental normalized absorbance of gold nanoparticles in
solution is shown in Fig. 2.21 from [9] for diameters from 9 to 99 nm. The resonance
shifts to longer wavelengths with increasing size.
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