
Chapter 2

Diffraction and Light Scattering

Light interacts with matter. This is the foundation for all the rich phenomena and

useful applications associated with light and biological media. The interaction takes

many forms. Light can be absorbed, or transmitted, or reflected, or scattered. All

these processes can participate in interference phenomena in biology and medicine.

The interaction of light with matter (Fig. 2.1) is characterized as a scattering

process that converts an incident (initial) optical mode into an outgoing (final)

optical mode

ð~ki;oi; p̂iÞ ! ð~kf ;of ; p̂fÞ (2.1)

A single mode is an infinite plane wave with a frequency oi, a wave-vector ~ki and a
polarization p̂i. The amplitude of the outgoing mode is related to the amplitude of

the incident mode through the scattering function

EfðofÞ ¼ Sijðy;f;of � oiÞEiðoiÞ (2.2)

where the scattering function Sijðy;f;of � oiÞ is a matrix connecting the input

polarizations with the output polarizations of the light field, and y and f define the

scattering direction relative to the incident direction. When the light scattering is

elastic, the incident and final frequencies are equal. Inelastic light scattering can

also occur, as when scatterers are in motion or when the scattered light is shifted to

new frequencies, for instance through Doppler or Raman effects.

Elastic scattering is a general term that can be divided roughly into two separate

contributions: geometric ray optics and diffraction. Geometric ray optics involves

the reflection or refraction of light. Light rays are reflected or refracted by material

density differences when the spatial scale of the inhomogeneity is larger than the

wavelength of light. The reflection by a surface, or the bending of a light ray by a

change in the index of refraction, is geometric ray optics. The other contribution to

scattering is from diffraction. Diffraction is an essential wave phenomenon in

which each part of an incident wavefront becomes the source for secondary
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wavelets through Huygen’s principle (Fig. 2.2). The secondary wavelets all inter-

fere with each other to produce the observed diffracted light intensities. In this

sense, diffraction is the result of wave interference.

2.1 Diffraction

All diffraction is a form of wavefront-splitting interferometry. The interference of

partial waves that travel different paths from different parts of a wavefront leads to

the complex and beautiful phenomena that fall under the topic of diffraction.

Indeed, this summing up of the interference of parts of a wave is the basis for the

diffraction integral, which is the main engine of diffraction applications.

2.1.1 Scalar Diffraction Theory

Although electromagnetic waves are vector waves that must satisfy Maxwell’s

equations at boundaries, a significant simplification is achieved in diffraction theory

by treating the field amplitudes as scalar fields. This simplification is often very

Fig. 2.1 The scattering process converts an incoming optical mode (defined by k-vector,
frequency o and polarization p) to an outgoing mode

Fig. 2.2 Wave diffraction converts an incident wavefront into a diffracted wavefront
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accurate, especially when the diffracting objects are weakly diffracting and produce

small perturbations on an incident wave. This is the case if the diffracting objects

have small variations in optical path length, and if these variations are on length

scales large relative to a wavelength of light. Examples for which scalar diffraction

theory fail include Mie scattering by spheres (discussed later in this chapter)

because a sphere has a large variation of optical path length, and photonic crystals

with photonic bandgaps, because refractive indices vary rapidly on the scale of a

wavelength.

The starting point for scalar diffraction is the Helmholtz–Kirchhoff integral for a

scalar field

CðxÞ ¼ 1

4p

ð
ap

Cr ei kr

r

� �
� ei kr

r
rC

� �
� nda (2.3)

The simple configuration in Fig. 2.3 shows a source point S creating a wave that is

incident on an aperture that diffracts the wave to an observation point P.

The incident field is a spherical wave

Cinc ¼ A
ei krs

rs
(2.4)

and the Helmholtz–Kirchhoff integral becomes

CðxpÞ ¼ 1

4p

ð
ap

Cincr ei kr

r

� �
� ei kr

r
rCinc

� �
� nda (2.5)

Fig. 2.3 Geometry for the Fresnel–Kirchhoff diffraction approximation
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After applying the gradient operator, this is

CðxpÞ ¼ 1

4p

ð
ap

Cinc

ik

r
� 1

r2

� �
ei krep � ei kr

r

ik

rs
� 1

r2s

� �
rsCinceS

� �
� nda (2.6)

In the limit of large distances, only the terms that are linearly inverse to distance

contribute and the equation becomes

Kirchhoff diffraction integral:

CðxPÞ ¼ iAk

4p

ð
ap

1

rrs
eikðrþrsÞðeP � eSÞ � nda (2.7)

Often, the incident wave is a plane wave of constant amplitude across the aperture,

and this integral reduces to

CðxPÞ ¼ �iAk

ð
ap

1

r
ei kr

1

2
ðcos yS þ cos yPÞ

� �
da (2.8)

where the term in square brackets is the Fresnel obliquity factor, which is approxi-

mately unity for small-angle forward diffraction.

One of the most important features of the Kirchhoff diffraction integral for

interferometry is the imaginary number �i in the prefactor. This has the important

consequence that the diffracted wave has a p/2 phase advance relative to the

incident wave. This phase shift plays important roles in many aspects of light

scattering and diffraction. The mathematical source of this phase shift is the

gradient in (2.5) on the dynamic phase of the wave. All extended sources of

radiation experience this phase shift upon diffraction. However, point sources do

not have this phase shift. This phase difference between extended and point sources

is the key element in the origin of refractive index.

A final simplifying step in the development of scalar diffraction integrals takes

the observation point far from a planar aperture, known as the Fraunhofer approxi-

mation. The geometry in this approximation is shown in Fig. 2.4. This leads to the

Fraunhofer diffraction integral

Fraunhofer diffraction integral:

CðxPÞ ¼�i
AeikR

lR

ð
ap

e�ikðx sinyþy sinfÞdxdy (2.9)

where R is the (large) distance from the aperture to the observation point, and

x/R ¼ sin y, y/R ¼ sinf.

52 2 Diffraction and Light Scattering



There are an endless number of configurations of sources and apertures that

appear in diffraction problems. Several of the most common will be presented as

examples that can be extended to more complicated cases that may be encountered

in biological applications.

2.1.2 Fraunhofer Diffraction from Apertures and Gratings

Some types of molecular biosensors are based on Fraunhofer diffraction from

apertures and gratings. This section presents several basic examples of diffraction

that are used in later chapters in this book. Some of the examples include the

diffraction effects of thin biolayers, and the molecular responsivities of these

diffraction structures are defined.

Example: Diffraction from a Single Square Slit

The single square slit is the simplest example, and is always the starting point to build

up to more complicated diffraction patterns. The slit has a width equal to a, shown
in Fig. 2.5. The Fraunhofer integral is

EP ¼ �i
E0 e

i kR

lR

ða=2
�a=2

e�i kx sin y dx (2.10)

Fig. 2.4 Fraunhofer diffraction geometry. All rays are parallel and inclined at an angle y. The
reference ray from the origin defines zero phase. The path length difference is x sin y, with x
increasing vertically and y positive in the counter-clockwise direction
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where E0 is the field amplitude in the aperture. The Fraunhofer integral is evaluated

to be

EP ¼ �i
E0 e

i kR

lR

ða=2
�a=2

e�i kx sin y dx

¼ i
E0 e

i kR

lR
2

2ik sin y
e� i ka sin yð Þ=2 � ei ka sin yð Þ=2
h i

¼ �2i
E0 e

i kR

lR
1

k sin y
sin

ka

2
sin y

� �
¼ �ia

E0 e
i kR

lR
sinc

ka

2
sin y

� �
(2.11)

giving the field

EP ¼ �iE0 e
i kR a

lR

� �
sinc(ka sin y/2) (2.12)

and intensity

IP ¼ P0

a

lR

� �2
sinc2ðka sin y/2Þ (2.13)

Fig. 2.5 Fraunhofer diffraction geometry for a single slit. The lens converts a point source to a

plane wave
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Example: Diffraction from a Slit with a Partial Biolayer

Diffraction is one way to detect thin molecular films, such as biomolecules captured

by high-affinity capture molecules (like antibodies on surfaces). As an example,

consider a rectangular aperture that is half covered by a thin film of refractive index

n and thickness d. We want to consider how the presence of the film changes the

diffracted intensity in the far-field. The field (2.12) is the starting point for this

solution. The answer can be written down by inspection as

EP ¼ �iE0 e
ikR a

2lR
sinc

ka

4
sin y

� �
ei ka sin yð Þ=4 þ ei k n�1ð Þd e�iðka sin yÞ=4
h i

(2.14)

which is the sum of fields from two apertures of width a/2, one of which has the

extra phase d ¼ kðn� 1Þd. The diffracted intensity is

IP ¼ 2I0
a

2lR

� �2
sinc2

ka

4
sin y

� �
1þ cos

ka

2
sin y� d

� �� �
(2.15)

which still has the basic sinc2 envelope, with an extra term (the second term in

the square brackets) that causes a small shift in the far-field diffraction. This

small shift provides a measure of the thickness of the film and is one way to use

optical interferometry (in this case diffraction) to detect biolayers in an optical

biosensor.

The performance of diffraction-based optical biosensors is characterized by

the responsivity that is defined as the intensity change per optical path length

difference of the biolayer h ¼ ðn� 1Þd. The responsivity of this diffraction-based

biosensor is

Rd ¼ dIP
dd

¼ � I0
2

a

lR

� �2
sinc2ðka sin y/4Þ sin ka

2
sin y

� �
(2.16)

which continues to have the sinc2 envelope, but now with the extra sine term at the

end. The angular responsivity on the detection x-axis is shown in Fig. 2.6. The shift
in the far-field diffraction caused by the biolayer leads to an asymmetric intensity

change. If only the total intensity is measured, then the biolayer effect would not be

detected. However, by placing a split detector on the detection plane, and

differencing the left and right detected intensities, then the difference signal is

linearly proportional to the thickness of the biolayer. This diffraction-based biosen-

sor configuration is closely related to phase-contrast detection on bio-optical

compact disks (BioCDs) [1].
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Example: Diffraction by a Circular Aperture

One of the most common apertures encountered in experimental optics is the

circular aperture. The Fraunhofer diffraction integral is expressed in polar

coordinates (r, F) on the detection plane

Eðr;FÞ ¼ �i
ffiffiffiffiffi
S0

p ei kR

lR

ða
0

ð2p
0

e�iðkr0r=RÞ cosð’�FÞ d’r0 dr0 (2.17)

integrated over (r0, ’) on the aperture plane, where

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ r2

p
(2.18)

and L is the distance to the screen (or is the focal length of a Fourier-transform lens).

This integral is re-expressed using Bessel functions

JmðuÞ ¼ i�m

2p

ð2p
0

eiðmvþu cos vÞ dv (2.19)

Fig. 2.6 Rectangular-aperture diffractive biosensor responsivity. A rectangular aperture is half-

covered by a molecular film of thickness d and refractive index n. The interferometric responsivity

is the change in the diffracted intensity per phase shift caused by the film. The film causes an

asymmetric far-field diffraction pattern with a responsivity approaching unity
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The diffraction integral becomes

Eðr;FÞ ¼ �i
ffiffiffiffiffi
S0

p eikR

lL
2p
ða
0

J0ðkr0r/RÞr0 dr0 (2.20)

that is evaluated using

ðu
0

u0J0ðu0Þdu0 ¼ uJ1ðuÞ (2.21)

to yield

EðrÞ ¼ �i
ffiffiffiffiffi
S0

p eikR

lL
2pa2

R

kar

� �
J1

kar

R

� �
¼ �i

ffiffiffiffiffi
S0

p eikR

lL
pa2

2J1
kar
R

	 

kar
R

	 

" #

� �i
ffiffiffiffiffi
S0

p eikR

lL
pa2

2J1ðka sin yÞ
ka sin y

� �
(2.22)

where r/R ¼ sin y, and the value of J1(x)/x ¼ 1/2 as x goes to zero. The angular

intensity is approximately (for small angles y)

IðyÞ ¼ I0
2J1ðka sin yÞ

ka sin y

� �2

(2.23)

that has an oscillatory behavior qualitatively similar to the sinc squared function of

a rectangular aperture.

Example: Diffraction by Multiple Square Slits

Multiple slits form a diffraction grating. The diffraction from each slit is given by

(2.12). This is modulated by a periodic part determined by the periodic spacing L of

the multiple slits. For the periodic part, the total field is

E ¼ EP e
�iot eikr1 1þ eif þ ðeifÞ2 þ ðeifÞ3 þ � � � þ ðeifÞN�1

h i
(2.24)

where f ¼ kL sin y, and where Ep ¼ �iE0e
iKRða=lRÞsincðKa sin y=2Þ is the field

from a single slit located at r1. The term in brackets is a geometric series with the value

ðeiNf � 1Þ
ðeif � 1Þ ¼ eiðN�1Þf=2 sin Nf=2

sin f/2

� �
(2.25)

The total field is then

E ¼ EPe
�iot ei kr1þðN�1Þf=2½ � sin Nf=2

sin f/2

� �
(2.26)
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If the array is referenced to its center, then the periodic factor is

E ¼ EP e
ikR�iot sin Nf=2

sin f/2

� �
(2.27)

with a total field

E ¼ EP e
ikR�iot sin Nf=2

sin f/2

� �
sincðka sin y/2Þ (2.28)

and an intensity

I ¼ I0
sin2 Nf=2
sin2 f/2

� �
sinc2ðka sin y/2Þ (2.29)

Note that this is the product of the rectangular grating diffraction pattern and the

diffraction pattern of N point sources placed in a regular array with a spacing L.
Because diffraction is equivalent to a Fourier transform, the convolution of two

aperture functions on the object plane becomes the product of the diffraction

patterns in the far-field.

Example: Diffraction of a Gaussian Beam by Multiple Slits

A Gaussian beam with radius w0 illuminating a multiple slit grating diffracts as a

Gaussian beam. The field is

EGðyÞ ¼ �iE0 sinc
ka sin y

2

� � XM
m¼�M

exp �2
pw0

L

� �2
sin2ðy� ymÞ

� �
(2.30)

for a periodicityL and a slit width a < L. The conditions on the diffraction orders are

sin ym ¼ ml/L

M ¼ truncðL/lÞ (2.31)

The periodic part can be given its own function definition as

PGðy;w0=LÞ ¼
XM

m¼�M

exp �2
pw0

L

� �2
sin2ðy� ymÞ

� �
(2.32)
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which is encountered any time a Gaussian beam is diffracted from a periodic

grating. It replaces the periodic function in (2.29)

PGðy;w0/LÞ � sin2 NkL sin y=2
sin2 kL sin y/2

� �
(2.33)

where the effective number of slits is

N ¼ pw0/L (2.34)

When there is no overlap between the diffraction orders, the intensity is

IGðyÞ ¼ I0 sinc2
ka sin y

2

� � XM
m¼�M

exp � 2pw0

L

� �2

sin2ðy� ymÞ
 !

¼ I0 sinc2
ka sin y

2

� �
½PGðy;wo/LÞ�2 (2.35)

The term in the summation is a series of Gaussian beams with angular widths

given by

Dy ¼ L
2pw0

(2.36)

Example: Diffraction by a Periodic Biolayer Grating

One class of diffraction-based biosensors uses a periodic grating of capture molecules

on a surface. When exposed to a sample containing the target biomolecules, these

bind in a stripe pattern, shown in Fig. 2.7. The thin nature of the biomolecular stripes

imparts a periodic phase modulation on a reflected optical wave. If we assume a

sinusoidal phase modulation, the transmitted field is

Er ¼ E0 exp½ik0ðn� 1Þdð1� cosðKxþ fÞÞ� (2.37)

Using the Bessel function identity

exp½id cosðKxþ fÞ� ¼
X1

m¼�1
JmðdÞ exp½imðKxþ fþ p/2Þ� (2.38)

the reflected field just after reflection (in the near field) can be written as

Er ¼ E0 e
id0
X1

m¼�1
JmðdÞ exp½im(Kxþ fþ p/2)� (2.39)
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where d ¼ k0ðn� 1Þd. The Fraunhofer diffraction integral for the mth diffraction

order selects out each of the Bessel functions as

Em ¼ E0 e
id0 ei mKxþmfþmp=2ð ÞJmðk0ðn� 1ÞdÞ (2.40)

The Bessel function is expanded as

JmðxÞ ¼ xm

2mm!
(2.41)

and the first-order diffraction is then

E�1 ¼ E0 e
id0 eið�Kx�f�p=2Þk0ðn� 1Þd/2 (2.42)

with a diffraction efficiency given by

� ¼ k20ðn� 1Þ2d2
4

(2.43)

for the sinusoidal grating.

If the grating is a square grating (commonly encountered with protein patterning

using lithography) as shown in Fig. 2.7, then the diffracted intensity is given by

(2.15) modulated with the periodic envelope function of (2.27)

Fig. 2.7 A periodic square

grating of N stripes on a

rectangular aperture
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IP ¼ 2I0
L

2NlR

� �2
sinðNk0L sin y=2Þ
sinðk0L sin y/2Þ

� �2

sinc2 kL sin y/4ð Þ

1þ cosðkL sin y/2� dÞ½ � (2.44)

The diffraction efficiency of the square grating is

� ¼ 2

p

� �2
1� cos d
1þ cos d

� 2

p

� �2 k0
2ðn� 1Þ2d2

4
(2.45)

which can be compared with (2.43).

2.1.3 Linear vs. Quadratic Response and Detectability

An important issue for the detectability of small signals is whether linear sensitivity

(when signal intensity is proportional to the quantity to be detected), or quadratic

sensitivity (when signal intensity is proportional to the squared value of the

quantity) gives the best ability to detect small quantities. The answer to this

question is generally not fundamental, but depends on details of the noise sources,

which in turn usually depend on intensity. For example, diffracted intensity

depends on the square of the phase modulation induced by the biolayer, while

interferometric intensity (in quadrature) is linear in the phase modulation. Because

phase modulation caused by a biolayer is typically less than 1%, linear detection

has a much larger absolute modulation caused by a biolayer than diffraction does.

On the other hand, interferometric linear detection has a much higher background

(lower contrast) that can cause more noise. This is a basic trade-off between the two

types of biosensors: linear detection with high-background and low-contrast vs.

quadratic detection with low-background and high-contrast. As a general rule,

linear detection is more sensitive for detection of very sub-monolayer films in the

weak-signal limit, while quadratic detection can have better signal-to-noise in the

strong-signal limit.

To make these arguments more quantitative, consider three contributions to

the noise

I2N ¼ C2
RINI

2
BBWþ hnIBBWþ C0BW (2.46)

where BW refers to the detection bandwidth, and IB is the background intensity

incident on the detector. The first term is relative intensity noise (RIN), the second

term is shot noise and the third term is a system noise floor (usually electronic

noise). It is important to remember that these noise contributions are frequency

dependent, usually with a 1/f behavior at low detection frequencies, evolving into

white noise at higher detection frequencies. The linear dependence on signal

bandwidth is strictly true only for white noise. The signal is characterized by
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DIS ¼ I0C
ðLÞDfþ I0C

ðQÞDf2 (2.47)

where the first term is the linear dependence and the second term is quadratic, and

the intensity I0 is related to the average intensity on the detector. The signal-

to-noise ratio is then

S/N ¼ ðDISÞ2
I2N

¼ I20ðCðLÞDfþ CðQÞDf2Þ2
C2
RI

2
BBWþ hnIBBWþ C0BW

(2.48)

which can be interpreted in different limits. If RIN is dominant, then the S/N ratio is

independent of intensity. If shot noise is dominant, then the S/N ratio increases

linearly with intensity. If the system noise floor dominates, then the S/N ratio

increases quadratically with intensity. This general behavior of the S/N ratio was

discussed and shown in Fig. 1.10.

The relative importance of linear sensitivity vs. quadratic sensitivity depends on

the intensity dependence of the signal, and the relationship between I0 and IB. To
illustrate this, consider the classic performance of the two-port interferometer. The

background intensity is given by

IB ¼ I0
2
ð1þ m cos fÞ (2.49)

and the signal is obtained as

IB þ DIS ¼ I0
2
ð1þ m cosðfþ DfÞÞ

¼ I0
2
þ I0

m

2
½cos f cosDf� sin f sin Df�

¼ I0
2
þ I0

m

2
cosf 1� 1

2
Df2

� �
� I0

m

2
sin fDf (2.50)

The linear and quadratic coefficients are

CðLÞ ¼ �m

2
sin f

CðQÞ ¼ �m

4
cos f (2.51)

The S/N ratio for the simple interferometer is

S/N ¼ m2 sin fDfþ 1
2
cos fDf2

	 
2
C2
Rð1þ m cos fÞ2BWþ 2hnð1þ m cos fÞBWþ C0BW

(2.52)

When the detection is limited by RIN, then for optimized quadratic sensitivity to

exceed optimized linear sensitivity the condition
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m
2
Df2

CRð1� mÞ ffiffiffiffiffiffiffiffi
BW

p >
mDf

CR

ffiffiffiffiffiffiffiffi
BW

p (2.53)

should hold, which gives

Dfquad>2ð1� mÞ (2.54)

and a quadratic detection would be favored over linear only if the contrast m of the

interferometer can be constructed to be larger than

m>1� kðn� nmÞd
2

(2.55)

or m > 0.998 for 1 nm of protein in a water ambient. Otherwise linear detection in

quadrature is favored.

A different approach to this analysis sets a maximum practical contrast m, and
considers what phase bias f of the interferometer gives the largest S/N ratio. This

yields phase biases that are between p/2 and p, but approaching p as m approaches

unity, because of the suppression of the noise by suppressing the background

intensity. Indeed, most diffraction-based biosensors have a slight structural bias

that introduces a small linear dependence in addition to the quadratic dependence

of diffraction on the magnitude of the grating. This small linear dependence

can dominate the signal for small grating amplitudes, while giving a strong S/N
ratio because of the low background. This is shown in Fig. 2.8 for a two-mode

Fig. 2.8 S/N ratio for Df¼ 0.002 and a 0.01% RIN for a two-wave interferometer as a function of

phase bias for three contrasts of m ¼ 0.5, 0.95 and 0.98. A phase bias near p reduces the

background noise while still allowing a (small) linear response
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interferometer for contrasts of m¼ 0.50, 0.95 and 0.98. A phase bias near p reduces

the background noise while still allowing a (small) linear response. Diffraction-

based biosensors are discussed in Chap. 7.

2.2 Fourier Optics

Fourier optics provides a particularly useful point of view of diffraction.

The foundation of Fourier optics is the recognition that the Fraunhofer integral is

equivalent to a mathematical Fourier transform. Furthermore, a lens can perform

the equivalent of a Fourier transform under appropriate object and screen distances

relative to the focal length of the lens. This allows the far-field Fraunhofer condition

to be realized on focal planes of lenses in compact optical systems. Fourier optics

combines the power of Fourier analysis with the ease of use of lenses, leading to a

fruitful approach to understand image formation as well as diffraction phenomena.

To begin, an object is considered to be composed of a superposition of multiple

spatial frequencies with periodicities L and associated K-vectors. For quasi-planar
objects, the K-vectors lie in the object plane. An example of a single spatial

frequency is shown in Fig. 2.9, in which the object amplitude is

Fig. 2.9 A planar object consisting of a single spatial periodicity. The periodicities in the x and y
directions are Lx and Ly, with the associated spatial frequencies nx and ny
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f ðx; yÞ ¼ A exp i(Kxxþ Kyy)
� �

(2.56)

where the components of the K-vector are

Kx ¼ K � x̂ ¼ K cos f ¼ 2p
L

cos f ¼ 2p
Lx

¼ 2pnx

Ky ¼ K � ŷ ¼ K sin f ¼ 2p
L

sin f ¼ 2p
Ly

¼ 2pny (2.57)

The spatial frequencies that appear in the Fraunhofer integral and the Fourier

integral are

nx ¼ 1

Lx
ny ¼ 1

Ly
(2.58)

To see the connection between spatial periodicities and the Fourier transform,

consider a single harmonic grating

f ðx; yÞ ¼ A exp½i(Kxxþ Kyy)� ¼ A exp½i2pðnxxþ nyyÞ� (2.59)

The diffraction integral is

Edðyx;yyÞ¼
ðð

f ðx;yÞexp �i
2p
l
ðsin yxxþ sin yyyÞ

� �
dxdy

¼
ðð

A exp i2pðnxxþ nyyÞ
� �

exp �i
2p
l
ðsin yxxþ sin yyyÞ

� �
dxdy

¼Ad nx� sin yx
l

� �
; ny� sin yy

l

� �� �
(2.60)

which defines a delta function at the diffraction angles given by

sin yx ¼ lnx
sin yy ¼ lny (2.61)

This can be interpreted physically as a mapping of a unique scattering angle to a

unique point on the observation (Fourier) plane. In other words, all rays leaving the

object with a given angle converge to a single point on the Fourier plane. This

viewpoint becomes especially easy to visualize when a lens performs the Fourier

transform (see Fig. 2.12 below).
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2.2.1 Fresnel Diffraction

If f(x, y) is a combination of harmonics

f ðx; yÞ ¼
ð ð

Fðnx; nyÞ exp½i2pðnxxþ nyyÞ�dnx dny (2.62)

then the transmitted field just after the screen is

Esðx; y; zÞ ¼
ð ð

Fðnx; nyÞ exp½i2pðnxxþ nyyÞ� exp½ikzz�dnx dny (2.63)

where

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � k2x � k2y

q
¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l2
� n2x � n2y

r
(2.64)

For small angles this is approximately

kzz ¼ 2pz
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2n2x � l2n2y

q
� 2pz

l
� plzðn2x þ n2yÞ (2.65)

The transmitted field can then be written as

Esðx; y; zÞ ¼
ð ð

Fðnx; nyÞ exp½i2pðnxxþ nyyÞ� expðikzÞ exp½�iplzðn2x þ n2xÞ�dnx dny

¼
ð ð

Fðnx; nyÞ exp½i2pðnxxþ nyyÞ�Hðnx; nyÞdnx dny
(2.66)

where

Hðnx; nyÞ ¼ expðikzÞ exp½�iplzðn2x þ n2xÞ� (2.67)

is known as the free-space propagator in the Fresnel approximation.

The Green’s function solution (response to a delta function) for an impulse

function on the object plane is the inverse Fourier transform of the free-space

propagator

Gðx; y; zÞ ¼ 1

ilz
expðikzÞ exp ik

x2 þ y2

2z

� �
(2.68)
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so that the general scattered field at z is a convolution of the object function over the
Green’s function

Esðx; y; zÞ ¼
ð ð

f ðx0; y0ÞGðx� x0; y� y0; zÞdx0 dy0

¼ 1

ilz
expðikzÞ

ð ð
f ðx0; y0Þ exp ik

ðx� x0Þ2 þ ðy� y0Þ2
2z

" #
dx0 dy0 (2.69)

This is the Fresnel integral that can be used for general scattering problems,

including holography and lens-free imaging. Holographic reconstruction in digital

holography uses the Fresnel integral explicitly to reconstruct three-dimensional

aspects of an object. The scattering geometry with the object and observation plane

are shown in Fig. 2.10.

2.2.2 Optical Fourier Transforms

The Fresnel regime converts to the Fraunhofer (far-field) regime when the distance

to the observation plane is much larger than the size of the scattering object. The

cross-over condition is captured quantitatively in terms of the Fresnel number

NF ¼ a2

lL
(2.70)

where a is the size of the scattering object and L is the distance to the detection

plane. The scattering is in the Fresnel regime when NF > 1 (but still L � l), and in
the Fraunhofer regime when NF < 1. The cross-over is not a sharp threshold, so it is

Fig. 2.10 Fresnel diffraction geometry. A delta function on the object plane has an associated

Green’s function. Convolution of the object function f(x0, y0) with the Green’s function gives the

field at the observation plane
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best to satisfy NF � 1 to ensure that the scattering is the Fraunhofer regime. As an

example, a 10 mm object illuminated with visible light scatters to the Fraunhofer

regime for an observation distance greater than a millimeter.

In the far-field regime at a large distance L from the object screen the Fresnel

integral becomes

EFðx; yÞ ¼ 1

ilL
expðikLÞ exp ik

x2 þ y2

2L

� � ð ð
f ðx0; y0Þ exp �ik

xx0 þ yy0

L

� �
dx0 dy0

¼ 1

ilL
expðikLÞ exp ik

x2 þ y2

2L

� �
Fðnx; nyÞ

(2.71)

in which Fðnx; nyÞ is the Fourier transform of f(x, y), and where the spatial

frequencies of the object are identified as

nx ¼ x

lL
ny ¼ y

lL
(2.72)

This result has the important consequence that the far-field diffraction pattern is

proportional to the Fourier transform of the object modulation function. It is an easy

way to do a Fourier transform – just diffract to the far-field. However, it is usually

convenient to work with lenses, and these too perform an optical Fourier transform.

A single simple (thin) lens of focal length f can be viewed mathematically as

imposing a quadratic phase profile on an incoming wave by the transmission function

tðx; yÞ ¼ exp �ip
ðx2 þ y2Þ

lf

� �
(2.73)

The geometry of the Fourier lens is shown in Fig. 2.11 with the distance L from the

object to the lens, and with the observation plane a distance f from the lens. The

angle-to-point transformation that is achieved by a Fourier lens is illustrated in

Fig. 2.12. Using (2.73) in (2.71) gives

EFðx; yÞ ¼ 1

ilf
exp½ikðLþ f Þ� exp �ip

ðx2 þ y2ÞðL� f Þ
Llf

� �
F

x

lf
;
y

lf

� �
(2.74)

This is proportional to the Fourier transform of f(x, y), but with a quadratic phase

factor. When the object distance L ¼ f, then

EFðx; yÞ ¼ 1

ilf
expðik2f ÞF x

lf
;
y

lf

� �
(2.75)

which is the desired Fourier transform with a simple phase factor.
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2.2.3 Gaussian Beam Optics

In laser optics, one of the most common intensity distributions is the Gaussian

beam. This is a beam that has the transverse intensity profile given by

Iðx; yÞ ¼ S0 expð�ðx2 þ y2Þ/w2
0Þ (2.76)

Fig. 2.11 Configuration of a Fourier lens. When the object, lens, and observation plane are in a

1f–1f condition (both the object plane and the image plane are a distance f from the lens), then the

field on the observation plane (now called the Fourier plane) is the Fourier transform of the object

amplitude

Fig. 2.12 A Fourier lens in a 1f–1f configuration. All rays emitted from the object at a given angle

are focused by the lens to a point (actually a point spread function) on the Fourier plane
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with an integrated power

P ¼
ð ð

Iðx; yÞdx dy ¼ S0pw2
0 (2.77)

Because a Gaussian beam has a limited lateral extent, it self-diffracts into the far-

field, even without any aperture to diffract off of. This is an important part of the

principle of wave propagation. No matter how a field is spatially modulated,

whether by a physical aperture, or simply because fields are inhomogeneous,

these fields propagate as partial waves with relative phases and relative path lengths

that cause interference and hence diffraction.

For a Gaussian beam at its focal plane, the dimensionless field amplitude is

E ¼
ffiffi
I

p
¼

ffiffiffiffiffi
S0

p
expð�ðx2 þ y2Þ/2w2

0Þ (2.78)

and the diffraction integral is

Ed ¼ �i
ffiffiffiffiffi
S0

p ð1
�1

expð�ðx2 þ y2Þ/2w2
0Þeikx sin y eiky sin c dx dy (2.79)

This has the diffraction field

Eðy;CÞ ¼ �i
ffiffiffiffiffi
S0

p kw2
0

R
exp � k2w2

0

2
ðsin2 yþ sin2 cÞ

� �
(2.80)

which is again a Gaussian, but now expressed as an angular distribution in angles

y and C. When Fourier transformed using a lens of focal distance f, the field at

the Fourier plane is

Eðx0; y0Þ ¼ �i
ffiffiffiffiffi
S0

p 2pw2
0

fl
exp � 2p2w2

0

ðflÞ2 ðx02 þ y02Þ
 !

(2.81)

illustrated in Fig. 2.13 as the focal waist of a Gaussian beam. The intensity at the

Fourier plane is

Iðx0; y0Þ ¼ S0
2p
fl

� �2

w4
0 exp � 2p

fl

� �2

w2
0ðx02 þ y02Þ

 !
(2.82)
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with a beam radius given by

w0
0 ¼

fl
2pw0

(2.83)

This result is of special importance in Fourier optics. It expresses the inverse

relationship between the widths of Fourier-transform pairs of Gaussians. Tightly

focused beams are transformed into broad beams, and vice versa. This inverse

relation also holds generally for smooth non-Gaussian beams, but with different

numerical factors.

2.3 Dipoles and Rayleigh Scattering

The origin of all light-scattering phenomena is the interaction of the electric and

magnetic fields of a light wave with electric and magnetic multipole moments of

electrons in atoms and molecules. For optical interactions, the strongest interactions

are usually through the electric dipole interaction, which tends to be stronger than

the magnetic dipole interaction by the ratio e2=�hc ¼ 1=137. However, in cases in

Fig. 2.13 Profile of a focused Gaussian beam. The beamwaistw0 occurs at the focal plane at z¼ 0.

At distances large relative to the Rayleigh range z0 the beam converges or diverges with angle y0.
The beam evolution is self diffraction
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which the electric dipole interaction is not allowed for symmetry reasons, magnetic

dipole or other multipole moments can dominate. In this book, we consider electric

dipole interaction exclusively.

All molecules have a molecular polarizability, that is, a tensor relation between

the applied field and the structure and symmetry of the molecule

pi ¼ emaijE
j (2.84)

where aij is the molecular polarizability tensor and em is the isotropic dielectric

constant of the surrounding medium. Because protein molecules lack general

symmetry, the tensor polarizability is simplified through configurational averaging

to a scalar property relating the induced dipole moment to the applied electric field.

p ¼ emaE (2.85)

Many protein molecules are globular in structure, such as the immunoglobulins,

and to lowest approximation may be viewed as dielectric spheres. The polarizabil-

ity of a dielectric sphere of radius a is

Polarizability of a dielectric sphere:

a ¼ ðe� emÞ
ðeþ 2emÞ 4pe0a

3
(2.86)

where e is the dielectric function of the sphere. For comparison, the polarizability of

a metallic sphere is

Polarizability of ametallic sphere:

a ¼ 4pe0a3
(2.87)

Given an induced dipole moment p, the resulting dipole field is

Dipole field:

EðrÞ ¼ 3ðp � rÞr� r2p

4peme0r5
(2.88)

which falls off as the inverse cube of the distance from the dipole. The dipole field

of the dipole induced by an incident field is the origin of molecular scattering and

ultimately of the refractive index of a layer of biological molecules.

The first approximation for understanding molecular scattering is scattering in

the Rayleigh limit. The incident electric and magnetic fields in a dielectric medium

with km ¼ nmk0 are

Einc ¼ «0E0 e
ikmn̂0�x

Binc ¼ n̂0
vm

	 Einc (2.89)
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where n0 is the unit vector in the direction of the incident field. The scattered fields

from the induced dipole are

Esc ¼ k2m
eikr

4peme0r
½ðn	 pÞ 	 n�

Bsc ¼ 1

vm
n	 Esc (2.90)

where n is the unit vector in the direction of the scattered wave. The Poynting

vector is

S ¼ 1

m0
E	 B (2.91)

and the differential scattering cross-section is constructed from the Poynting vector

along the scattering direction

ds
dO

ðy;fÞ ¼ r2jS y;fð Þj2
1

2
vee0jE0j2

¼ k4m
ð4pee0Þ2E2

0

jpj2 1
2
ð1þ cos yÞ (2.92)

where y is measured relative to the incident k-vector direction.

Example: Small Dielectric Sphere in Vacuum

In the case of scattering by a small dielectric sphere, the induced dipole is

p ¼ 4pe0
e� 1

eþ 2

� �
a3Einc (2.93)

with a scattering cross-section

ds
dO

¼ k4a6
e� 1

eþ 2











2

je
 � e0j2 (2.94)

The scattering cross-section is decomposed into expressions for each incident

polarization relative to the scattering plane

dsk
dO

¼ k4a6

2

e� 1

eþ 2











2

cos2 y

ds?
dO

¼ k4a6

2

e� 1

eþ 2











2

(2.95)
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When these are averaged over polarization, they become

Rayleigh differential cross-section:

ds
dO

¼ k4a6
e� 1

eþ 2











2
1

2
ð1þ cos2 yÞ

(2.96)

with the familiar angular distribution of scattered light with symmetry between

forward-scattering and back-scattering. The differential cross-section is integrated

over all scattering angles to obtain the total cross-section

s ¼
ð
ds
dO

dO ¼ 8p
3
k4a6

e� 1

eþ 2











2

(2.97)

The scattering cross-section depends on the sixth power of the radius and on the

fourth power of the frequency. The cross-section has units of area, as seen when it is

expressed as

Rayleigh total cross-section:

s ¼ 8

3
ðkaÞ4 e� 1

eþ 2











2

 !
pa2

(2.98)

The effective scattering area of a dielectric sphere is proportional to the cross-

sectional area of the sphere, but reduced by the factor in parentheses in front. For

biological molecules with a radius of 1 nm and a dielectric constant of 2 the

reduction is approximately 2 	 10�10. The effective cross-section for such a

molecule is s ¼ 10�23 cm2.

Example: Small Dielectric Sphere in Water

There are many applications in which the dielectric sphere is in a water environ-

ment. It is important in this case to be clear about the vacuum k-vector k0, and the

medium k-vector, which is km ¼ nmk0. In addition, the dielectric water medium

modifies the polarization as

a ¼ ðe� emÞ
ðeþ 2emÞ 4pe0a

3 (2.99)

Therefore, the differential cross-section in water is

ds
dO

¼ e2mk
4
0a

6 e� em
eþ 2em











2
1

2
ð1þ cos2 yÞ (2.100)
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with the corresponding total cross-section (real dielectric function: no absorption)

s ¼ 8

3
ðkmaÞ4 e� em

eþ 2em











2

 !
pa2 (2.101)

Selected formulas for Rayleigh scattering are given in Table 2.1.

2.4 Refractive Index of a Dilute Molecular Film

Refractive index is a macroscopic property of a material that relates the phase

velocity of a light wave to frequency and wavelength through the expression

vp ¼ o
k
¼ c

nðoÞ (2.102)

In this section, we approach the derivation of the refractive index using concepts

from diffraction theory.

An apparent paradox arises in relation to the phase shifts experienced upon

scattering from a dipole and the phase shifts that are detected in the far-field that are

attributed to, or interpreted as, refractive index. The central paradox is that the

scattered wave from a dipole is in phase with the incident field. If the scattered field

and incident field have the same phase, then why is a phase shift detected in the far-

field? The answer to this paradox comes from diffraction theory (scalar Kirchhoff

diffraction suffices) due to the difference between a continuous field distribution

compared with the discrete scatterer. An outline of the physics is shown in

Fig. 2.14. Two phasor diagrams are shown, one in the near-field and one in the

far-field. In the near-field, the local field and the scattered field are in phase.

However, as the local field propagates to the far-field, it acquires a p/2 phase

shift, while the scattered field does not. Therefore, in the far-field, the scattered

field is in phase quadrature with the continuous field, which is manifested as a phase

shift. Mathematically, integrating the diffraction integral over a finite-size continu-

ous distribution yields a factor of -i, while a discrete delta-function scatterer simply

produces a spherical wave that propagates to the far-field without any phase shift.

Table 2.1 Rayleigh

scattering
In air In medium

a ¼ ðe�1Þ
ðeþ2Þ 4pe0a

3 a ¼ ðe�emÞ
ðeþ2emÞ 4pe0a

3

p ¼ e�1
eþ2

� �
4pe0a3Einc p ¼ e�em

eþ2em

� �
4peme0a3Einc

ds
dO

¼ k4a6 e�1
eþ2



 

2 1
2
ð1þ cos2yÞ ds

dO
¼ e2mk

4
0 a

6 e�em
eþ2em




 


2 1
2
ð1þ cos2yÞ

s ¼ 8
3
ðkaÞ4 e�1

eþ2



 

2� �
pa2 s ¼ 8

3
ðkmaÞ4 e�em

eþ2em




 


2� �
pa2
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2.4.1 Phase Shift of a Single Molecule
in a Focused Gaussian Beam

A single molecule in a tightly focused Gaussian beam will scatter light and impart a

small phase shift on the direct wave in the far-field. This phase shift is a direct

consequence of diffraction and interference. An interesting question is whether this

single-molecule phase shift might be detectable experimentally. The induced dipole

from (2.86) on the optic axis and on the focal plane of the Gaussian beam is

p ¼ e� 1

eþ 2

� �
a3E0 (2.103)

where the field on the optic axis is E0 ¼
ffiffiffiffiffi
S0

p
. The local scattered electric field is

then

Esc ¼ k2
eikr

r

e� 1

eþ 2

� �
a3

ffiffiffiffiffi
S0

p
(2.104)

This field is transformed to the Fourier plane using a lens of focal length f and
diameter D > 1

2p
fl
w0
. The power collected by this lens is

Fig. 2.14 Light scattering from a molecule and the p/2 phase shift. In the near field, the scattered

wave is in-phase with the incident field. In the far-field, a p/2 phase shift has occurred that places

the scattered wave in phase-quadrature with the original wave, representing a phase modulation

related to the refractive index
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Pscat ¼ p
4
D2 k

4

f 2
e� 1

eþ 2

� �2

a6S0 (2.105)

and the field at the Fourier plane is

Escat ¼ k2

f

e� 1

eþ 2

� �
a3

ffiffiffiffiffi
S0

p
(2.106)

The interfering fields (the original field plus the scattered field) at the Fourier

plane are now

E ¼ Escat þ E0

¼ k
ffiffiffiffiffi
S0

p
f

ka3
e� 1

eþ 2

� �
� iw2

0 exp � 2p2w2
0

ðflÞ2 ðx02 þ y02Þ
 !" #

(2.107)

The phase shift on the optic axis of the detected Gaussian field is given by

tan f � ka3

w2
0

e� 1

eþ 2

� �
(2.108)

For a molecule of radius a ¼ 3 nm with e ¼ 1.432 ¼ 2 at a wavelength of 500 nm

and a beam radius of 0.5 mm, this phase shift is about 1 	 10�7 radians.

To estimate how detectable this phase shift is, consider a situation when the p/2
phase shift between the Gaussian field and the scattered field is shifted to zero to

place it in the condition of constructive interference. Then the intensity at the

Fourier plane is

I ¼ k2S0
f 2

w4
0 exp � 4p2w2

0

ðflÞ2 ðx02 þ y02Þ
 !"

þ 2w2
0ka

3 e� 1

eþ 2

� �
exp � 2p2w2

0

ðflÞ2 ðx02 þ y02Þ
 !#

(2.109)

When this is integrated over the Fourier plane, it yieldsð
I da ¼ S0 pw2

0 þ 4pka3
e� 1

eþ 2

� �� �
(2.110)

and the relative modulation is

DI
I
¼ 4ka3

w2
0

e� 1

eþ 2

� �
(2.111)
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which is four times the value of the phase shift along the optic axis. One factor of

two is from the interference cross terms, and the other is from the integration over

the Gaussian profile. Therefore, for typical values of the parameters, the relative

intensity modulation from a single macromolecules is about one part per million.

The approximate shot noise that this corresponds to is a photon number of 1	 1012,

which is about 400 nJ. If this energy is detected in a millisecond detection time,

the power at the detector would be about 400 mW, which is an easy power level to

achieve with conventional photodiodes. Therefore, a single macromolecule could be

detected interferometrically under shot-noise-limited detection conditions.

2.4.2 Phase Shift from a Dilute Collection of Molecules

The effective phase shift of a collection of molecules in a Gaussian beam can be

obtained by extending the single-molecule result. The scattered field for a molecule

off the optic axis is

E0
scat ¼

k2

f

e� 1

eþ 2

� �
a3

ffiffiffiffiffi
S0

p
expð�r2=2w2

0Þ expðikxx0/f Þ expðikyy0/f Þ (2.112)

where the primed coordinates are in the Fourier (detection) plane, and the unprimed

coordinates are in the focal plane. The contribution of a distribution of molecules

is obtained using the integration

ð1
0

2pr e�r2=2w2
0 dr ¼ 2pw2

0 (2.113)

to give, for a surface density NA ¼ N=pw2
0, the effective number of scatterers

N

pw2
0

2pw2
0 ¼ 2N (2.114)

The phase is then

tan f � 2N
ka3

w2
0

e� 1

eþ 2

� �
(2.115)

This is turned into an effective index of refraction for a layer with a thickness

equal to 2a as

f � 2N
ka3

w2
0

e� 1

eþ 2

� �
¼ kðnav � 1Þ2a (2.116)
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or

nav ¼ 1þ N
a2

w2
0

e� 1

eþ 2

� �
¼ 1þ pNAa

2 e� 1

eþ 2

� �
(2.117)

where NA is the area number density (particles per area). This is restated in terms of

the volume fraction fv using

fv ¼ ð4=3Þpa3
2a

NA ¼ 2

3
pa2NA (2.118)

to give

nav ¼ 1þ 3

2
fv

e� 1

eþ 2

� �
(2.119)

which is consistent with the Maxwell Garnett effective medium in the Rayleigh

limit, which is described next.

2.5 Local Fields and Effective Medium Approaches

Effective medium theories seek to convert a distribution of discrete and stochastic

elements into an effective homogeneous medium that behaves with appropriately

averaged properties. For instance, the optical effects of a dilute dispersion of

particles on a surface (such as biomolecules in optical biosensors) can be treated

as if the particles constituted a thin layer having an average refractive index. These

approaches can never capture the “full” physics, especially when fluctuations

dominate the optical behavior, but they give a heuristic approach, usually with

analytic formulas that can be evaluated and compared against experiment.

2.5.1 Local Fields and Depolarization

The scattering from a dilute collection of scatterers as a function of increasing

scatterer density is straightforward until multiple scattering becomes significant. In

the case of discrete scatterers, the scattered field from each is added to the total field

self consistently as a new incident field that is scattered by the collection. To treat

this problem explicitly using self-consistent approaches is numerically exhaustive,

such as through the discrete dipole approximation [2]. A simpler approach, that

works well when the medium is dense, is a mean field approach that uses the mean

2.5 Local Fields and Effective Medium Approaches 79



local fields of neighboring induced dipoles as a depolarization field experienced by

an individual scatterer.

In the case of a spherical dielectric particle, the polarizability is the well-known

result

a ¼ 4pe0a3
ðe� emÞ
ðeþ 2emÞ (2.120)

The uniform field inside the particle is reduced from the field nearby as

Ein ¼ Enear þ P

3e0
(2.121)

If the material has high symmetry or is isotropic, then the average near-field is zero,

and the induced dipole moment of a molecule at the center is

p ¼ aemðEþ EinÞ (2.122)

For a collection of dipoles with number density N, the polarizability is

P ¼ Naem Eþ P

3e0

� �
¼ we0E (2.123)

Solving for w yields

w ¼ 1

e0

Naem

1� Naem
3e0

(2.124)

Using the relationship e ¼ 1þ w yields the Clausius–Mossotti relation

e� 1

eþ 2
¼ em

3e0

X
j

Njaj (2.125)

This expression includes the local fields generated by nearby molecules.

The Clausius–Mossotti relationship is most accurate for dilute systems such as gases.

However, it still holds as a heuristic relationship even for denser liquids and solids.

2.5.2 Effective Medium Models

There are many different approaches to effective medium approximations. Each is

equivalent in the dilute Rayleigh limit, but each is slightly different in the case of

mixtures of different materials. Furthermore, different approximations relate to
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different situations. For instance, small spherical inclusions distributed inside a

homogeneous medium are best approximated by Maxwell Garnett formula, while

two uniformly mixed phases are best approximated by the Bruggeman formula.

2.5.2.1 Maxwell Garnett

When the collection of scatterers is no longer dilute, but is not sufficiently dense or

symmetric to follow the Clausius–Mossotti relation, then a working alternative is

the Maxwell Garnett approximation. The Maxwell Garnett model assumes a col-

lection of small particles (inclusions) of material with bulk index n with radius
much smaller than a wavelength embedded in a medium with a thickness much
larger than the diameters of the spheres.

The average field is

Eh i ¼ ð1� f Þ Emh i þ
X
k

fk Ekh i (2.126)

where Emh i is the average field in the medium. The volume fraction of each particle

sums to the total volume fraction

X
k

fk ¼ f (2.127)

The average polarization is

Ph i ¼ ð1� f Þ Pmh i þ
X
k

fk Pkh i (2.128)

which is related to the average susceptibility tensor by

Ph i ¼ e0w
$
av Eh i (2.129)

The total self-consistent field now satisfies

ð1� f Þðe$av � e$mÞ Emh i þ
X
k

fkðe$av � e$Þ Ekh i ¼ 0 (2.130)

The next assumption is the central assumption of the Maxwell Garnett model. It

states that the uniform field inside the kth particle is related to the external uniform

field in the medium through the tensor relation

Ek ¼ l
$
kEm (2.131)
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for the tensor l
$
. The principal components of the l

$
tensor along the principal axes of

the ellipsoid are

lj ¼ em
em þ Ljðe� emÞ (2.132)

and the anisotropy factors Lj for spheroids are given in Table 2.2.

The self-consistent field equation is now

ð1� f Þðe$av � e$mÞ þ
X
k

fkðe$av � e$Þl$k ¼ 0 (2.133)

which is still a tensor expression with a sum over the individual particles in the

medium.

For a collection of randomly distributed spheroids, the tensor equation is

converted to a scalar equation for eav by integrating over all the particle

orientations. This gives

eav ¼ ð1� f Þem þ fbe
1� f þ fb

(2.134)

which is the final Maxwell Garnett equation.

The most important special cases for Maxwell Garnett are for spheres

b ¼ 3em
eþ 2em

(2.135)

eav ¼ em 1þ
3f e�em

eþ2em

� �
1� f e�em

eþ2em

� �
2
4

3
5 ¼ em

eð1þ 2f Þ þ 2ð1� f Þem
eð1� f Þ þ ð2þ f Þem

� �
(2.136)

An alternative expression for the Maxwell Garnett result is

eav � em
eav þ 2em

¼ f
e� em
eþ 2em

(2.137)

which captures the relationship of this model to the Clausius–Mossotti relation.

Table 2.2 Geometric factors

Prolate spheroids Oblate spheroids

b/a L1 L2 ¼ L3 a/b L1 L2 ¼ L3

0 (needle) 0 0.5 0 (disk) 1.0 0.0

0.2 0.056 0.472 0.2 0.750 0.125

0.4 0.134 0.433 0.4 0.588 0.206

0.6 0.210 0.395 0.6 0.478 0.261

0.8 0.276 0.362 0.8 0.396 0.302

1.0 0.333 0.333 1.0 0.333 0.333
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2.5.2.2 Bruggemann

The Maxwell Garnett formula is not symmetric with respect to the inclusions and

the matrix. It specifically applies to spheroids in a homogeneous medium. However,

in many situations, it is difficult to identify which material is the inclusion and

which is the matrix. In such a case, a slightly different effective medium model can

be used that is symmetric between the two phases. This is the Bruggeman model

that applies for a two-phase mixture

f
e� eav
eþ 2eav

¼ ðf � 1Þ em � eav
em þ 2eav

(2.138)

For dilute systems (of either phase) this gives the same result as Maxwell Garnett to

lowest order. This expression is easily extended to multi-component systems by

X
j

fj
ej � eav
ej þ 2eav

¼ 0 (2.139)

where the fj are the individual fractions of the different components.

2.6 Mie Scattering

Many approaches to optical biosensors use nanoparticles and gold and glass beads,

which can be large and outside of the Rayleigh limit. When their size approaches an

appreciable fraction of a wavelength of light, they enter into the Mie, or resonant

scattering, regime. Of special interest are spherical particles and their light-scattering

properties.

2.6.1 Spherical Particles

The relationship between the incident fields and the scattered fields is

Eks
E?s

� �
¼ eikðr�zÞ

�ikr

S2 0

0 S1

� �
Eki
E?i

� �
(2.140)

where parallel k and perpendicular ? relate to the scattering plane. The scattering

matrix elements are

S1 ¼
X
n

2nþ 1

nðnþ 1Þ ðanpn þ bntnÞ (2.141)
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S2 ¼
X
n

2nþ 1

nðnþ 1Þ ðantn þ bnpnÞ (2.142)

and the series are terminated after a sufficient number of terms. In the forward

direction S1(0
�) ¼ S2(0

�) ¼ S(0�).
The angle-dependent functions are

pn ¼ P1
n

sin y
tn ¼ dP1

n

dy
(2.143)

where

P1
n ¼ � dPn

dy
(2.144)

is the derivative of the Legendre polynomials Pn.

The Mie coefficients are

an ¼ mcnðmxÞc0
nðxÞ � cnðxÞc0

nðmxÞ
mcnðmxÞx0nðxÞ � xnðxÞc0

nðmxÞ
(2.145)

bn ¼ cnðmxÞc0
nðxÞ � mcnðxÞc0

nðmxÞ
cnðmxÞx0nðxÞ � mxnðxÞc0

nðmxÞ
(2.146)

where m ¼ n/nm is the relative refractive index of the particle relative to the

surrounding medium, and the functions are defined as

cnðrÞ ¼ rjnðrÞ xnðrÞ ¼ rhð1ÞnðrÞ (2.147)

The spherical Bessel functions are

jnðrÞ ¼
ffiffiffiffiffiffi
p
2r

r
Jnþ1=2ðrÞ ynðrÞ ¼

ffiffiffiffiffiffi
p
2r

r
Ynþ1=2ðrÞ (2.148)

These are combined into the spherical Hankle functions

hð1Þn ðrÞ ¼ jnðrÞ þ iynðrÞ (2.149)

The scattering cross-section is

Csca ¼ 2p
k2

X
n

ð2nþ 1Þðjanj2 þ jbnj2Þ (2.150)
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and the extinction cross-section is

Cext ¼ 2p
k2

X
n

ð2nþ 1ÞReðan þ bnÞ (2.151)

For a particle that is small relative to the wavelength, the scattering matrix

elements are

Rayleigh particle scattering coefficients:

S1 ¼ �ix3 m2�1
m2þ2

S2 ¼ �ix3 m2�1
m2þ2

cos y

(2.152)

where x¼ nmk0a¼ kma. These may also be expressed in terms of polarizability a as

S1 ¼ �ik3ma
4pe0

(2.153)

using the polarizability

a ¼ 4pe0a3
esph � em
esph þ 2em

(2.154)

Note that the scattered far-field of the Rayleigh particle is purely real and positive if

the particle dielectric constant is purely real. The exciting local field (assume a

focused Gaussian beam) is also real, but acquires a p/2 phase shift upon free-space

propagation to the far-field. Therefore, a nonabsorbing Rayleigh particle in a

nonabsorbing medium induces a phase shift on the combined scattered and original

wave in the far-field.

2.6.2 Effective Refractive Index of a Dilute Plane of Particles

The effective refractive index of a dilute collection of Mie scatterers detected in

transmission is obtained by generalizing (2.107) to a collection of particles. This is

a mean scattered field approach, and differs in its predictions from effective

medium models like Maxwell Garnett. The mean scattered field approach is better

suited to describe effective scattering properties of particles on surfaces. The total

field in the far-field of a single particle on the optic axis is

EðyÞ ¼ k
ffiffiffiffiffi
S0

p
f

SðyÞ
�ik2

� iw2
0 expð�k2w2

0y
2/2Þ

� �
(2.155)
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When there is an area density of spherical scatterers, the integral over the particle

density weighted by the Gaussian incident field is

NA

ð1
0

e�r2=2w2
02prdr ¼ 2pNA w2

0 (2.156)

then the total far-field becomes

EðyÞ ¼ k
ffiffiffiffiffi
S0

p
f

2pNAw
2
0

SðyÞ
�ik2

� iw2
0 exp � 2p2w2

0

l2
y2

� �� �
(2.157)

The field on the optic axis (y ¼ 0�) is

Eð0Þ ¼ k
ffiffiffiffiffi
S0

p
f

ð�iw2
0Þ 1� 2pNA

k2
Sð0Þ

� �
(2.158)

If this is compared with the extinction of a wave in a homogeneous medium with

refractive index nav

Eð0Þ ¼ E0 e
ikdðnav�1Þ � E0ð1þ ikdðnav � 1ÞÞ (2.159)

the average refractive index is

nav ¼ 1þ i
2pNV

k3
Sð0Þ (2.160)

where NV ¼ NA/d is the equivalent volume density. The real and imaginary parts of

the effective refractive index n ¼ n0 þ ik are

n0av ¼ 1� 2pNV

k3
ImfSð0Þg

kav ¼ 2pNV

k3
RefSð0Þg (2.161)

In terms of the volume fraction

fV ¼ 4p
3
NVa

3 (2.162)

these are

n0av ¼ 1� 3fV
2k3a3

ImfSð0Þg

kav ¼ 3fV
2k3a3

RefSð0Þg (2.163)
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In the Rayleigh limit, with

Sð0Þ ¼ �ik3a3
m2 � 1

m2 þ 2
(2.164)

in a medium with index nm and relative index m ¼ n/nm, these are

n0av ¼ nm þ 3

2
fVRe

m2 � 1

m2 þ 2

� �

kav ¼ 3

2
fVIm

m2 � 1

m2 þ 2

� �
(2.165)

The effective index is linear in the volume fraction fV in this limit. For denser

dispersions, local screening modifies these values and more general approaches

must be used, such as generalized Mie theory [3]. Equation (2.165) is consistent

with Maxwell Garnett in the dilute limit.

2.7 Nanoparticle Light-Scattering

Nanoparticles have become essential tools for biomedical research. They are used

in two main applications: (1) light scattering or emitting labels to image molecular

and cellular processes and (2) drug delivery vehicles. In the labeling application,

the distinct signature of the light scattering provides specific identification of the

nanoparticle density and distribution within a biological sample. In the drug

application, light scattering can track the transport and clearing of the drug delivery

vehicles.

There are many varieties of biomedical nanoparticles. The simplest are nano-

beads that are dielectric spheres that scatter light through Rayleigh or Mie scatter-

ing. These beads can be transparent, or dyed with dye molecules (chromophores)

having identifiable absorption spectra. Beads also can be fluorescent emitters that

are detected using fluorescence interference microscopy. Among the brightest

nanoparticle emitters are semiconductor quantum dots. The emission wavelengths

of quantum dots are tuned by controlling the size of the semiconductor particle

using quantum confinement effects to shift the electron quantum states. Gold and

silver nanoparticles scatter light resonantly (and hence strongly) through surface

plasmon oscillations that are excited by the incident light fields. The optical

properties of these nanoparticles are tuned by selecting a wide variety of sizes

and shapes, from nanorods to nanostars.
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2.7.1 Quantum Dots

Quantum dots are semiconductor nanocrystals typically 2–10 nm in diameter.

Semiconductors have distinct and strong optical properties because of the bandgap

between valence states occupied by holes and conduction states occupied by

electrons. When an electron in the conduction band falls across the bandgap to

fill a hole in the valence band, light is emitted with a photon energy equal to the

energy that the electron loses in the process. For large nanocrystals, the energy is

approximately equal to the bandgap between the top of the valence band and the

bottom of the conduction band

�hog ¼ hc

lg
¼ Eg ¼ Ec � Ev (2.166)

One of the important properties of quantum dots is the size dependence of the

emission wavelength. This is caused by quantum confinement effects on the

electrons and holes. In quantum mechanics, when a particle is confined to a finite

volume, there is a quantum energy associated with the confinement. The stronger

the confinement, the larger the confinement energy. Therefore, as the quantum dots

get smaller, the emission wavelength shifts to the blue (higher energy).

The structure of a luminescent quantum dot is illustrated in Fig. 2.15 for a CdSe

nanocrystal encased in a CdS shell. The shell reduces surface recombination that

Fig. 2.15 Luminescent quantum dot structure. A CdSe nanocrystal is encased in a CdS shell to

prevent nonradiative surface recombination. The photon energy of the luminescence is determined

by the bandgap and by quantum confinement of the electrons in the conduction band and the holes

in the valence band
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lowers the luminescence efficiency of the quantum dot. The emitted photon energy

is determined by the bandgap of the nanocrystal plus the quantum confinement.

For a spherical quantum dot of radius R, the emission energy of the photon is

E � Eg þ �h2p2

2R2

1

m

e

þ 1

m

h

� �
� 1:786e2

4pe0eR
� 0:248ERy (2.167)

where the first term is the crystalline bandgap, the second term is the quantum

confinement energy for the electrons and holes, and the third and fourth terms are a

binding energy between the electron and hole caused by the Coulomb interaction

between the particles [4]. The bound state of the electron and the hole is called an

exciton, and the binding energy is the solid-state analog of the hydrogen atom. In

(2.167) m

e is the electron effective mass, m


h is the hole effective mass, e is the

dielectric constant, and ERy is the Rydberg energy of the exciton. The emission

energy of CdSe quantum dots as a function of radius is shown in Fig. 2.16 compared

with the numerical result of (2.167). Examples of absorption and emission for CdSe

quantum dots are shown in Fig. 2.17.

2.7.2 Gold and Silver Nanoparticles

Gold and silver nanoparticles are among the most commonly used particles in

labeling applications of light scattering and interferometry. These particles show

Fig. 2.16 CdSe luminescence energy from assorted experiments as a function of the quantum dot

radius. Reproduced with permission from [5]
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strong plasmonic resonances with plasmonically enhanced absorption and light

scattering. In the Rayleigh limit, the particles contribute to enhanced effective-

medium properties, while in the large Mie-scattering limit, they provide single-

particle detectability and finite-particle statistics in applications such as imaging and

laser scanning.

The plasmonic enhancements of gold and silver arise from the nearly free-

electron behavior of these noble metals. The dielectric functions for a free-electron

gas, including the bulk dielectric function eb ¼ 6þ i1:6, is

e1 ¼ ReðebÞ �
o2

p

o2 þ g2

e2 ¼ ImðebÞ þ io2
p

g=o
o2 þ g2

(2.168)

For gold, the plasmon energy is approximately �hop ¼ 7:5 eV, and the damping rate

is approximately �hg ¼ 0:25 eV. The free-electron functions for gold are shown in

Fig. 2.18. The real part of the dielectric function has a zero near 400 nm. This is not

near op ¼ 7.5 eV at a wavelength of 165 nm because of the background dielectric

function arising from interband transitions among the gold orbitals. There is also a

significant imaginary component caused by damping (scattering) of the free

electrons and from the interband transitions.

Free-electron models capture the rough behavior of real noble metals, but fail to

capture the contributions from interband absorption and the associated effects on

Fig. 2.17 Absorbance of CdSe quantum dots clad with ZnS as a function of wavelength for

increasing diameters of (a) 2.30, (b) 4.20, (c) 4.80, and (d) 5.50 nm. (Reproduced with permission

from [6])
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the refractive index. A more accurate parameterization for gold has been provided

in [7], including the role of the finite size of gold particles. As the particle size

decreases, the electron scattering by the surface increases, and the overall damping

of the plasmon resonance increases. This is parameterized as

gpðdÞ ¼
1

1/gpð1Þ þ 1/Ad
(2.169)

where A is a scattering parameter and d is the particle diameter in nanometers. The

total dielectric function can be expressed as

eðlÞ ¼ e1 � 1

l2pð1/l2 þ i/gplÞ

þ
X
i¼1;2

Ai

li

eif1

1/li � 1/l� i/gi
þ e�if1

1/li þ 1/lþ i/gi

� �
(2.170)

The first term is the plasmon contribution, while the second term is the contribution

from interband absorption. The parameters that best fit the data in [8] are given in

Table 2.3.

The real and the imaginary parts of the dielectric functions are plotted in Fig. 2.19.

Strong finite-size effects on the imaginary part occur for particle radii smaller than

40 nm. However, the real part is only significantly affected for radii smaller

than 10 nm.

Fig. 2.18 Real and imaginary components of the dielectric functions of gold assuming a

free-electron model
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The dipole moment of a sphere was given in (2.93). When the sphere is

embedded in a medium with dielectric constant em, it is

p ¼ 4peme0
e� em
eþ 2em

� �
a3Einc (2.171)

Therefore, when egold ¼ �2em a spherical nanoparticle has a plasma resonance that

occurs in both the absorption and the scattering cross-sections. The absorption

and scattering efficiencies of gold nanoparticles are calculated numerically using

Table 2.3 Parameters in the

parameterization of the gold

dielectric function by

Etchegoin [7]

Data parameters Value

e1 1.53

lp 145 nm

gpð1Þ 17,000 nm

A 170

A1 0.94

f1 �p/4
l1 468 nm

g1 2,300 nm

A2 1.36

f2 �p/4
l2 331 nm

g2 940 nm
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Fig. 2.19 Dielectric function of gold parameterized [7] and fit to the data [8]. The surface plasmon

resonance of a spherical nanoparticle in vacuum occurs when Re(e) ¼ �2
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Mie theory and (2.170) and shown in Fig. 2.20. A particle with a radius of 40 nm

shows a strong absorption resonance with enhanced scattering. Smaller particles

have broader resonances because of increased surface scattering of the free electrons,

and smaller efficiencies because theymove into theRayleigh limit. The particles begin

to move out of the Raleigh limit and into the Mie regime as the particle radii become

larger than about 50 nm. Experimental normalized absorbance of gold nanoparticles in

solution is shown in Fig. 2.21 from [9] for diameters from 9 to 99 nm. The resonance

shifts to longer wavelengths with increasing size.
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Fig. 2.20 Numerical simulations of the absorption and scattering efficiencies of gold nanoparticles

calculated using Mie theory and the gold dielectric function of (2.170)
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