Chapter 2
Compact Modeling of High-Speed
Interconnects

High-speed interconnects are essentially planar transmission lines. The funda-
mental mode of propagation in transmission line interconnects is the transverse
electromagnetic (TEM) wave [1]. In ideal case, when the conductivity of the line is
infinity the basic mode of propagation would be the TEM mode. This is assuming
that the medium in which the line is embedded is considered to be homogeneous,
lossless and isotropic. However for most practical cases, the lines have finite
conductivity that results in a deviation from the TEM mode. The properties of the
dielectric material are also far from ideal with dielectric losses dominating con-
ductor losses as frequency scales up. Therefore, interconnect lines embedded in
inhomogeneous substrates cannot support pure TEM mode. The modified mode of
propagation has small axial components of the electric and magnetic fields. The
field distribution in such a non-ideal transmission line interconnect closely repre-
sents the ideal TEM mode with negligible electric/magnetic field components and is
called the quasi-TEM mode [1, 2]. Transmission line theory has two aspects: In one
case, the propagation of electromagnetic waves is studied when the characteristic
parameters of the line are given. In the other case, the conductor geometry is known
and the line parameters such as the characteristic impedance, attenuation constant,
propagation constant and the shunt capacitance are to be obtained. This aspect is
particularly suited for interconnect design and analysis. With the quasi-TEM
approximation, the calculation of these line parameters requires the solution of the
two-dimensional Laplace’s equation. This solution is based on the computation of
the boundary conditions governed by the geometry of the line.

There are many analytical techniques available in the literature for the solution
of the Laplace’s equation. This chapter presents a qualitative overview of some of
the most commonly used analytical techniques, which includes, among others, the
conformal transformation method [1, 3—6], the finite-difference method [7-10] and
the variational method [1, 2, 11-13]. In the following section, a comparative
overview of these techniques is presented. In the latter half of this chapter,
we propose the application of a unified approach for analysis of high-speed
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interconnects. Based on the comparative summary of the major analytical
approaches and the relative advantages of this unified approach; we feel that this
technique is well suited for planar chip—chip interconnects. Derivation of line
parameters using a unified approach that combines the variational method with the
transverse transmission line technique [2, 14] is presented. This chapter makes an
attempt to highlight the relative advantages and applicability of the unified
approach and concludes that this technique fits in our analytical models better than
other available methods. Although the comparison presented in the next section is
qualitative only, it would provide reasonable insight to the reader; further leaving a
scope for the employment of above-listed techniques to be used in the modeling of
high-speed interconnects.

2.1 Review of the Analytical Methods

A lot of research has been presented in the past on transmission line modeling.
Most of the earlier works focused on problems in MICs and other microwave
circuits. However, with the signal frequencies now entering well into the GHz
range, it is only appropriate to apply some of these analytical techniques to address
signal integrity issues in high-speed VLSI and chip—chip interconnects. The
techniques available to solve TEM and quasi-TEM problems can be broadly
classified into two classes, namely exact and approximate [15]. Some of the most
common approaches under these two classes are shown in Fig. 2.1.

Since most of these techniques are extensively covered in the published
research on microwave theory; we will only highlight their relative merits and
drawbacks with an objective to justify the choice of the method of analysis used in
this book. The formulae obtained using conformal mapping are derived using the
Schwartz-Christoffel conformal transformation. This method enables one to
evaluate the capacitances and characteristic impedance between straight-sided
conductors when the problem can be reduced to two dimensions, for example the
cross-section plane of a transmission line. The boundary of the cross-section is
transformed into a simpler boundary for which the solution is known using
transformations in the complex plane. Finally the capacitance and characteristic
impedance of the original boundary are equal to the respective quantities of the
transformed boundary [4, 5]. The conformal transformation technique is exact and
accurate. Since, the capacitance term of each element retains the correct depen-
dencies on the line geometry; we require very few 2D simulations resulting in
lesser computational time. However, in case of transmission lines with inhomo-
geneous medium the application of conformal transformation may become quite
complicated. To overcome this problem, the Discrete Variational Conformal
(DVC) transformation method suggested by Diaz [15] seems to be more suitable in
cases where the geometry of the structure under analysis is not simple. However,
in case of microstrip-like interconnects (that are commonly encountered in chip—
chip interconnects) the DVC method provides results that are virtually identical.
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Analytical approaches

|

Exact

1) Direct Conformal mapping

Approximate

1) Conformal mapping [5];

2) Discrete variational conformal technique [15]
3) Finite-difference method [9,10]

4) Method of moments [16]

5) Variational approach [2, 11, 14]

6) Spectral domain or full-wave method [17,18]
7) Finite element method

8) Variational series method [20]

Fig. 2.1 Classification of analytical methods. © 1986 IEEE reprinted, with permission, from
Diaz [15]

Finite-difference method is also widely used for analysis of planar transmission
lines. The application of the finite-difference method to TEM transmission lines
involves the solution of Laplace’s equation in the cross-sectional plane subject to
boundary conditions on the inner and the outer conductors. The entire domain
between the conductors is divided into a finite set of mesh points. Laplace’s
equation is then solved in the finite-difference form by digital computation [14].
This method can be applied to TEM lines and has been extended to quasi-TEM
transmission lines with limited inhomogeneity and is elaborately explained in
[7, 8]. However, the finite-difference technique is vastly limited to homogeneous
and geometrically simpler structures. With complex interconnect layout designers
do not have the luxury to assume such simplifications. The accuracy of the method
depends on the fineness of the mesh size (as in coupled strip transmission lines).
This results in very large set of equations to be solved, leading to the problem of
convergence and therefore inaccuracy. Kammler’s method given in [16] can be
used to analyze interconnects with multiple layers of dielectrics, but it may prove
to be computationally cumbersome. Other techniques like the finite element
method and the spectral domain analysis also suffer from problems in analyzing
open microstrip cases and thus have limited applications. In case of open multi-
dielectric planar lines, the application of finite elements leads to two difficulties;
namely.
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e the infinite field extension due to the open structure,
e and, the field singularities caused by the conductor edges.

A combined approach making use of the variational series based on the con-
formal transformation has been reported by Smith [19]. This method overcomes
the difficulties of convergence and singularities encountered in the finite-difference
method and/or finite elements.

Finally, the variational method [2, 11, 14] is generally applied to those prob-
lems where the physical system under study acts so that some function of its
behavior attains the least or the greatest value. The variational method can be used
to obtain the expression for line capacitance of a transmission line in an inho-
mogeneous, isotropic/anisotropic media. This geometrical environment is exactly
the case in high-speed interconnects. When combined with the transverse trans-
mission line technique of determining the Green’s function [7, 8, 20], line
parameters can be computed for a variety of structures. The method is simple and
generalized due to the ease of computing Green’s function using the transverse
transmission line technique and gives fairly accurate results without much com-
putational effort. This method has certain limitations also; namely

e dielectric material should be of low loss,
o the method assumes a TEM mode and neglects radiation effects,
e and, the accuracy of the results depends on the trial function.

In case of the modern day interconnect design the above-mentioned points are
largely taken care of. Also, the trial function can be chosen after experimental
verification leaving lesser scope for inaccuracy. To summarize the above discus-
sion, the authors feel that the variational analysis in the space domain combined
with the transverse transmission line technique offers a robust approach for
analysis of high-speed transmission line interconnects. The conformal mapping
technique can be very complicated in the case of inhomogeneous interconnects.
Modern IC layouts cannot certainly guarantee homogeneity. Also, the finite-
difference method involves a numerical evaluation and is thus limited to simpler
structures. The other listed techniques have even less applicability than these
methods. The variational method—though approximate—offers a simpler way of
determining propagation parameters including line parasitics. When combined
with the transverse transmission line technique of determining the Green’s func-
tion [7, 8, 15], the derivation for the capacitance of the interconnect line becomes
quite simple and reasonably accurate and is therefore suited for CAD applications.
Since the variational method treats the dielectric boundary conditions in a gen-
eralized way, it is possible to analyze multilayer interconnect lines. The accuracy
of this method is insensitive to the choice of the trial function (discussed in the
following sections). Authors in [14] suggest that it is possible to take into account
all the dielectric boundary conditions no matter how many planar boundaries exist
in these lines. The method is based on the calculation of the line capacitance by the
static field theory and therefore is an approximation to EM theory. It is felt that
unlike conformal mapping and other mentioned techniques—which are also static



2.1 Review of the Analytical Methods 19

field theories—the analytical treatment of multiple boundaries is easier by the
variational method [2, 14]. The computational time is also far less than for other
techniques which makes it suitable for CAD-related applications.

The above discussion illustrates the possible application of variational method
combined with the transverse transmission line technique for the analysis of the
chip—chip interconnects. However, interested readers are strongly encouraged to
read the literature presented by authors in [7, 14, 20]. It is felt that the method is
explained in detail in these literatures.

2.2 Unified Approach

Classically speaking the unified approach refers to the variational analysis com-
bined with the transverse transmission line technique. The approach was first
reported for analysis of Microwave Integrated Circuit (MIC), Monolithic Micro-
wave Integrated Circuit (MMIC) and planar transmission lines. In this approach,
the expression for the capacitance of a transmission line is determined by the
variational technique. The Green’s function is computed using the transverse
transmission line technique in the space domain. In this section, derivation for the
line capacitance using unified approach is reproduced from the historical litera-
tures for both single as well as coupled line structures.

2.2.1 Computing Green’s Function

Let us assume a unit charge located at (xy, yo) as shown in Fig. 2.2. The Green’s
function should satisfy the Poisson’s differential equation in the x—y plane and is
given by:

V,zG(x,y/xo,yo) = —%5()(? - xo) : 5()’ - YU) (21>

For an interconnect line over a multilayered substrate, the boundaries at the
interface of the dielectrics are given by:

G(x, si—0) = G(x, sjt0) (2.2)

0G(x, sj0) . 16G(x, 5j+0)

Figure 2.3a, b represent the configuration corresponding to a microstrip line
with rectangular side walls and a corresponding geometry required to compute the
Green’s function.
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Fig. 2.2 Geometry of an n-layer dielectric with side walls and a point charge at (xy, yp). © 1978
IEEE reprinted, with permission, from Crampagne et al. [20]
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Fig. 2.3 a Microstrip line with rectangular side walls. b Geometry to calculate the Green’s
function. © 1978 IEEE reprinted, with permission, from Crampagne et al. [20]

Figure 2.3 represents only a particular case and the number of cases depends on
the boundary conditions at the rectangular walls. The boundary conditions satisfied
at the vertical walls can be either of the Dirichlet type (electric wall, G = 0) or of
the Neumann type (magnetic wall, 0G/On = 0). The boundary conditions on the
lower and upper surfaces (or horizontal walls) can be taken into account using
the transverse transmission line technique and will be discussed later. If we assume
any arbitrary conditions on the horizontal walls, then there could be three specific
cases of boundary conditions on the vertical walls as shown in Fig. 2.4.

The Green’s function can be expressed as the summation of the product of
elementary functions given below:

G=> Gu(x)Gu(y) (2.4)
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Fig. 2.4 Magnetic (solid line) and electric (dashed line) boundaries. © 1978 IEEE reprinted,
with permission, from Crampagne et al. [20]

We should now derive the identities G,(x) and G,(y). In order to satisfy the
boundary conditions on the vertical walls separated by wall spacing ¢, the fol-

lowing expressions are found for G, (x) for three separate cases corresponding to
Fig. 2.4.

Case a Electric wall at x = 0 and c:

Go(x) =sin ™Y n=1,2,...,0 (2.5)
Cc

Case b Electric wall at x = 0 and magnetic wall at x = c:

Mt
Gn(x):sinw, n=01,2,. .. 00 (2.6)

Case ¢ Magnetic walls at x = 0 and c:

Gp(x) = cos == n=2,3,...,00 (2.7)
&

It is seen that the functions, sin (n7x/c), sin [(2n + 1)7mx/2c¢] and cos (nnx/c) are
orthogonal in the interval (0, c¢). Substituting the expressions in (2.5)—(2.7) the
following differential equations are obtained:

Case a
d? nm\ 2 2 . ATX,
{W (7) ]Gn(y) = =00y —yo)sin— (2.8)
Case b
d’ (2n+ 1)m\> 2 _ (@2n+nx,
[@ < e ) Ga(y) = =0y = yo) sin————— (2.9)
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Case ¢

[d—z - (%) 2} Ga(y) = - éé(y — ¥o) cos (2.10)

The Green’s function, G and G,(y), should satisfy the boundary conditions at
the various dielectric interfaces given by Egs. (2.2) and (2.3).

2.2.2 Transverse Transmission Line Technique

Having derived G,(x) in the last section we now compute the identity G, (y). The
Transverse transmission line technique provides a simpler method that numerically
evaluates the Green’s function. For N number of dielectric layers, the solution of
above differential equations leads to a set on linear equations with 2N number of
rows. Consider a transmission line with a current source of intensity /; at the charge
plane y = y,. The voltage and current relations along the line are found to be:

av

— = —ZI, 2.11
&y~ (2.11)
dl Y

=LV LSy — v, 2.12
o= 7 + 1,0(y — ¥o) (2.12)

Here, Z is the characteristic impedance of the line and 7y is the propagation
constant. Solving (2.11) and (2.12), we get:

&

dy2 - VzV = _Vchsé(y - yo) (213)

If we consider the transmission line as a set of stepped characteristic admit-
tances in parallel with Y ; as the characteristic admittance of the jth section of
transmission line, then the continuity conditions at the interfaces between the two
differential admittances are given by:

Vi =Vin (2.14)

and I_; = I;;; Thus we get:

ov;
Y=L = Y5
Qy

Vi1

5 (2.15)
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Comparing Egs. (2.13), (2.14) and (2.15), author in [14] came up with the
following similarities:

1. The functions characterizing the Green’s function can be identified by the
voltage along the line.

V =G,(y) (2.16)

2. The dielectric constant of the jth layer can be identified by the characteristic
admittance of the transmission line for that section.

Yi=¢ 2.17
i

Thus, the boundary conditions satisfied by the Green’s function at the various
dielectric interfaces are equivalent to the boundary conditions satisfied by the
voltages at the interfaces between two dissimilar characteristic admittances. The
voltage on the transmission line at y = y, is given by:

I

V|y=yn %

(2.18)

where Y is the admittance at y = y,. We can now obtain the Green’s function for
the three cases listed in Fig. 2.4 as given by [14]:

Case a
1 2
Z=-, y:@, and [Y:—sinnnxo
€ c nm c
2 . nmx,
Gu(Y)l;=),= —ySin— (2.19)

Substituting (2.5) and (2.19) in (2.4), the Green’s function at the charge plane
y =y, becomes:

=\ 2 . nmx . nmx,
G(x>y/xoay0)|y:y0: ZﬁSIHTSIn - (220)
n=1
Case b
Z:l y:M and I — 4 sin(2n+l)nx”
&’ 2¢ 7 ' (2n+ D 2c
4 . (2n+ )mx,
Gu)ly=y,= 221
(y)l)fyl, (2n+ l)anm B ( )

Substituting (2.6) and (2.21) in (2.4), the Green’s function at the charge plane
y =y, becomes:
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G(x,5/%0,Y0)|y—y, = g on +41)7rY i (2" ;Cl)nx i (2" zcl)nxo (2.22)
Case c
Z :l, y :E, and I :icosnnxo
& C nm C
GaV)l,,, = %cos@ (2.23)

Substituting (2.7) and (2.23) in (2.4), the Green’s function at the charge plane
y =y, becomes:

> 2 nwx  nmx,
G . = —_— —_— o
(Xa y/xo 5 yu) |y7y0 n% nn COS - CcOS

(2.24)

We can now see that the Green’s function can be deduced from the admittance
Y that can be obtained using the standard transmission line admittance equation.
As mentioned earlier the unified approach is a combination of the variational
technique and the transverse transmission line technique. In that the Green’s
function is computed using the latter as shown in the preceding discussion.
Table 2.1 gives the identification of all the characteristic parameters concerned in
the above discussion.

2.2.3 Variational Method

In the unified approach the variational method is used to compute the capacitance
per unit length [1]. Let us consider a system of perfect conductors S;, S», ... Sy
with Q;, Q,,... On as the charges on the conductors and V;, V,,..., Vy as the
potential difference. The potential function ¢ in the space domain happens to be
the solution of the Laplace’s equation. The electrostatic energy stored in such a
system would be given by:

W, zg/V(p-V(pdV (2.25)
vol

There could be an incremental change in the energy function due to displace-
ment of charges from their mean position. This is given by:

SW, :g / Vop - Vigpdv (2.26)

vol
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Fig. 2.5 Lateral view of y
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permission, from Bhat and b/2
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Authors in [1, 14] have elaborated on the upper and lower bounds of this
capacitance. The upper bound on capacitance per unit length of the line is
given by:

e [ |Vip|Pdxdy
& xy—plane
C:W H|me@:y” (2.27)

2
S
xy—plane <]‘ vtd) . dl)
S

where, V, is the line integral of V,¢ from S; to S,. For an approximate value of ¢,
the calculated value of C will always be greater than the true value.
Similarly, the lower bound on capacitance is given by:

11
c @

/w@ww&dﬂl (2.28)

Sy

Note that for any trial function p(x,, y,), the calculated value of 1/C is always
larger than the true value, which defines the lower bound. We now combine the
two techniques to compute the capacitance per unit length for single and coupled
transmission line interconnects.

2.2.4 Unified Approach for Calculation of Capacitance Per Unit
Length for Single Interconnect Lines

In the earlier section we have derived the variational expression for the capaci-
tance of any two-conductor line having an arbitrary cross-section, as shown in
Fig. 2.5. For such an interconnect geometry the charge distribution is given as:

p(x,y) = f(x)o(y — o) (2.29)
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Substituting this charge distribution function in (2.28), the variational formula
for the capacitance per unit length for a multilayer structure with side walls is
given as:

1 ffGXy/meo ( )ddeo
= (2.30)

e

Here, Green’s function for various boundary conditions derived in the previous
section as (2.20), (2.22) and (2.24) can be substituted in (2.29). We get the
expressions for capacitance for the three cases of boundary conditions as:

Case a

oy

> 2 [ [0 s dx]z 231)

n=1

Case b

ey 2

S

e 4 . (2n+1)nx g (232)
ZO (2n+1)nY |::!f(x) S = dx:|

Case ¢

e 2

2
MY [ff cos%dx}

C= (2.33)

n=1

At any interface of the dielectrics the admittance can be decomposed into two
parts: the Y, and Y_ representing the admittances above and below the charge
plane, respectively. The total admittance at the charge plane is a parallel combi-
nation of these two terms and is therefore a summation of the upper and lower
admittances as Y = Y, + Y_. Using the expression for the input admittance Y, the
admittance of a particular section /; can be computed. The input admittance Y, ; is
given by:

Yinj = (2.34)

' Y + Y tanh(y;l;)
“|Y; + Y tanh(y;1))



28 2 Compact Modeling of High-Speed Interconnects

where Y); is the load admittance of the jth section which will be the input
admittance Y;, j,; of the next (j + 1)th section. Also, Y,; and 7, are the charac-
teristic admittance and propagation constant of the jth section.

ch =& (235)
and

;=7 =nn/c, for cases (a) and (c)
= (2n+ 1)n/2¢, for case (b)
We now need to calculate the charge distribution f{x) before performing the

integration in capacitance formula above. The charge density is concentrated at the
edges of the strip. For such a case, the function is given by:

F6) = 1= {@ml—e/2] " (e-w)/2<x< (et w)2

-0 otherwise

(2.36)

Here w is the width of the strip conductor. Authors in [14] report an accurate
trial function and is given by (2.37):

£ = (w1 + A/ —e/2F), (= w)/2<x< (c+w)/2

( ) (2.37)
0 otherwise

Substituting (2.37) in (2.31) and simplifying, the unified formula for capaci-
tance per unit length is:

(14 0.25A)
> ((Ln +AMn)2Pn/Y)

nodd

Cc= (2.38)

where
L,=sin(f,w/2)

M, =2/ )’ [3{(Bw/2) =2} cos(B.w/2)+(B,w/2){ (Bw/2)* =6 }sin(B,w/2) +6]
Pa=(2/nm)(2/ )"

p,=nn/c
Z (Ln —4Mn)LnPn/Y
A=— nodd

> (L, —4M,)M,P, /Y
nodd

(2.39)

Note that in (2.38), we only need to evaluate the admittance Y at the charge
plane depending on the structure under investigation and the corresponding
boundaries present.
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edge-coupled microstrip-like
interconnect structure.

© 1982 IEEE reprinted, with
permission, from Bhat and
Koul. [2]
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2.2.5 Unified Approach for Calculation of Capacitance
Jor Coupled Interconnect Lines

In case of edge-coupled stripline structure, as shown in Fig. 2.6, the even- and
odd-mode capacitances can be obtained by placing a magnetic wall and an electric
wall, respectively, at the center of the coupled lines, and by considering half the
structure between x = 0 and x = ¢/2. The even- and odd-mode charge distribution
functions are assumed to be of the form given by:

odd

(2/W>(x7 (c—s— W)/z)‘3:|7 for((c—s5)/2—w<x<(c—ys)/2

=0, otherwise.

f(x)(g) = <l/w> {1 +A(ﬁ)

(2.40)

Applying the transverse transmission line method, the even- and odd-mode
Green’s function can be expressed as:

)= > (4/nnY)sin(B,x) sin(B,xo), (2.41)

even
n(ndd)

G(x,yo/xo, }’0)(

even
odd

where
p, =nn/c. (2.42)

The expression for the admittance Y at the charge plane y = y, for each coupled
line structure is the same as that for the corresponding single line conductor
configuration (as discussed in the previous subsection). The variational expression
for the capacitance C is given by:

2
(1 n O.ZSA(LZ,))

) <(L + M,,A(%))zpn /y)

n( odd )
even

, (2.43)

C (22) =

odd
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where

Ly = sin(p,w/2)sin{ p, (1)},

3{(Bw/2)” =2} cos(,w/2)

M, = (2/Bw)’ Sin{ﬁn (;)} +(/3,,W/2){(ﬁnw/2)2 - 6} sin(B,w/2) + 6

2

P, = (4/nm)(2/B,w)*, and
> (L, —4M,)L,P, /Y

even __ ’1}’(,[5,,
odd S (L, — 4M,)M,,P, /Y
nodd

(2.44)

2.3 Concluding Remarks

This chapter presents detailed derivation of the unified approach. We present a
qualitative comparison of some of the widely used analytical techniques for anal-
ysis of transmission line interconnects. In that we feel that the unified approach is
best suited for parameter extraction, computation of propagation constants and
CAD programs. It is simple yet accurate with less computational resources. Chip—
chip interconnects are essentially planar transmission lines and this technique can
be used for analysis of single edge- and broadside-coupled interconnects.

The unified approach essentially combines transverse transmission line tech-
nique for computation of Green’s function with the variational method for
capacitance calculations. Nowadays, high-speed interconnects have a complex
layout with presence or absence of ground. This technique can be very efficiently
used to address these modified boundary conditions. In the next chapter we shall
illustrate the application of this technique to such interconnect structures. In that
single and coupled interconnects with modified geometrical configurations will be
analyzed. These modified geometries suggest recalculation of the admittance
parameters based on the appropriate boundary conditions. The authors strongly
recommend further reading of the unified approach and other techniques proposed
by authors in [1, 2, 7, 20] for greater understanding of analytical approaches that
can be used in developing compact interconnect models.
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