Chapter 2

An Exact Algorithm for the Single-Machine
Earliness—Tardiness Scheduling Problem

Shunji Tanaka

Abstract This paper introduces our exact algorithm for the single-machine total
weighted earliness—tardiness scheduling problem, which is based on the Successive
Sublimation Dynamic Programming (SSDP) method. This algorithm starts from a
Lagrangian relaxation of the original problem and then constraints are successively
added to it until the gap between lower and upper bounds becomes zero. The relax-
ations are solved by dynamic programming, and unnecessary dynamic programming
states are eliminated in the course of the algorithm to suppress the increase of states
caused by the addition of constraints. This paper explains the methods employed
in our algorithm to construct the Lagrangian relaxations, to eliminate states and to
compute an upper bound together with some other improvements. Then, numerical
results for known benchmark instances are given to show the effectiveness of our
algorithm.

2.1 Introduction

This paper introduces our exact algorithm [29] for the single-machine total weighted
earliness—tardiness scheduling problem. Let us consider that n jobs (job 1,..., job
n) are to be processed on a single machine that can process at most one job at a time.
No preemption is allowed and once the machine starts processing a job, it cannot
be interrupted. After the machine finishes processing a job, it can be idle even when
there exist unprocessed jobs. Each job i is given a processing time p;, due date d;
and release date r;, where d; > r; + p;. It is also given a earliness weight ¢; and a
tardiness weight ;. The earliness E; and the tardiness T; are defined by

E,‘ = max(di — C,‘,O), T, = max(C[ — d,‘,O), (2.1)

Shunji Tanaka
Department of Electrical Engineering, Kyoto University, Kyotodaigaku-Katsura,
Nishikyo-ku, Kyoto 615-8510, Japan, e-mail: tanaka@kuee.kyoto-u.ac.jp

R.Z. Rios-Mercado and Y.A. Rios-Solis (eds.), Just-in-Time Systems, Springer 21
Optimization and Its Applications 60, DOI 10.1007/978-1-4614-1123-9_2,
(© Springer Science+Business Media, LLC 2012


tanaka@kuee.kyoto-u.ac.jp

22 Shunji Tanaka

where C; denotes the completion time of job i. Our objective is to find a schedule
that minimizes ¥ <;<, (04 E; + BiT;).

This problem, the single-machine total weighted earliness—tardiness problem
(1| 2(04E; + BiT;) and 1|r;|X(owE; + BiT;) according to the standard classification
of scheduling problems [11]) includes the single-machine total weighted tardiness
problem (1|| X w;T;) as a special class! that appears frequently in the literature as a
typical strongly NP-hard scheduling problem [17, 18]. Therefore, it is also strongly
NP-hard. Nonetheless, many researchers have tackled this problem and constructed
exact algorithms [3,6,7,10,13,16,22,25,26,33,34] because of its importance in JIT
scheduling. Almost all the existing algorithms are branch-and-bound algorithms. To
the best of the author’s knowledge, the best algorithm so far is that by Sourd [26]
and it can solve instances with up to 50 or 60 jobs within 1,000s.

On the other hand, our exact algorithm proposed in [29] is based on the Succes-
sive Sublimation Dynamic Programming (SSDP) method [14]. The SSDP method
is a dynamic-programming-based exact algorithm that starts from a relaxation of
the original problem and then repeats the following procedure until the gap between
lower and upper bounds becomes zero:

1. The relaxation is solved by dynamic programming and a lower bound is com-
puted.

2. Unnecessary states are eliminated.

3. A relaxation with more detailed information of the original problem, which is
referred to as sublimation, is constructed.

In [15], the SSDP method was applied to 1||Y.(otE; + B;T;) without idle time by uti-
lizing the relaxations proposed in [1] as sublimations. Their algorithm could solve
instances with up to 35 jobs and hence was better than the branch-and-bound algo-
rithm in [1] that could solve only those with up to 25 jobs. However, they concluded
that it is not easy to apply the algorithm to larger instances because of its heavy
memory usage for storing dynamic programming states.

Things have changed much from those days and more powerful computers with
several gigabytes memory are now readily accessible. It motivated us to improve and
extend their algorithm for the total weighted earliness—tardiness problem. First, we
showed in [28] that their algorithm with several significant improvements can solve
instances with up to 300 jobs of 1|| X w;7T; and 1|| > (04 E; + B;T;) without idle time.
Next, in [29], we extended the algorithm to the problem with idle time and showed
that it can solve benchmark instances of 1||X.(o4E; + B;T;) and 1|r;| Y.(04E; + BiT;)
with even 200 jobs. Moreover, the framework is not restricted to these problems, but
is applicable to a wide class of single-machine scheduling problems.

The purpose of this paper is to introduce this algorithm, but only its essential
part will be given because of limited space. For details, please refer to our papers
[28,29]. Up-to-date information will be available on the web page:

http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/.

1 When ¢ are chosen as zero, the total weighted earliness-tardiness problem is reduced to the total
weighted tardiness problem.


http://turbine.kuee.kyoto-u.ac.jp/~tanaka/SiPS/.
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This paper is organized as follows. In Sect.2.2, our problem will be given as
so-called a time-indexed formulation and then its network representation will be in-
troduced. In Sect. 2.3, Lagrangian relaxations of the problem, which are utilized as
the relaxation and sublimations in our algorithm (3. in the SSDP method), will be
expressed in terms of the network representation. Dynamic programming recursions
to solve them (1. in the SSDP method) will also be explained. Next, Sect. 2.4 will
state how to reduce the networks corresponding to the Lagrangian relaxations (2. in
the SSDP method). Then, Sect. 2.5 will summarize our algorithm. Section 2.6 will
describe how to obtain a tight upper bound from a solution of the Lagrangian re-
laxation in this algorithm. Section 2.7 will present results of numerical experiments
and show the effectiveness of our algorithm. Finally, in Sect. 2.8, the contents of this
paper and future research directions will be summarized.

2.2 Problem Formulation

This section will give a time-indexed formulation [8,21,27,31] of our problem and
its network representation. It is well-known that a tight lower bound can be obtained
by a linear programming (LP) relaxation of a time-indexed formulation. However,
there is a major drawback that the number of decision variables is very large. In our
algorithm, an alternative way to apply the Lagrangian relaxation technique is taken
to obtain a lower bound, which will be explained in the next section by the network
representation.

2.2.1 Time-Indexed Formulation

Let us assume that the processing times p;, duedates d; and release dates r; are
all integral. Then, we can assume without loss of optimality that the job completion
times C; are also integral. Thus, we introduce binary decision variables x;; (1 <i<n,

1 <t < Tg) such that
1 ifG =1,
i = {0 otherwise, 22)

where Tg is a scheduling horizon and can be chosen, e.g., as

Tg = max d; + 2 Di- 2.3)

1<izn 1<i<n

We also introduce a cost function f;(¢) (1 <i<n, 1 <t < Tg) defined by

e t <ri+pi
i) = {max(oci(di —1),Bi(t—d;)) t>ri+pi. @
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Then, the problem can be formulated as follows:

(P):min Y fi(t)x, (2.5)
X 1<izan
1<t<Tg

s.t. D xis <1, 1<t<T, (2.6)

1<i<n
t<s<min(r+p;—1,Tg)

Z -xilzla 1§1Sn7 (27)
ISISTE

xi €{0,1}, 1<i<n, 1<t<Tg. (2.8)

In (P), the constraints (2.6) require that at most one job can be processed in the
interval [t — 1,7), and the constraints (2.7) ensure that each job is processed exactly
once. This type of formulation is referred to as time-indexed formulation.

For convenience hereafter, let us assume that a dummy job is processed when
no (ordinary) job is processed and the machine is idle. For this purpose, job 0 with
po=land fy(r) =0 (1 <t < Tg) is introduced. This job, which is referred to as idle
job, is processed (T — Y1 <;<, pi) times because it is the total length of idle time.
By using the idle job, the problem (P) can be reformulated as follows.

(P):min Y fi(t)xi, (2.9)
X 0<i<n
1<t<Tg
s.t. D xis=1, 1<t<T, (2.10)
0<i<n
t<s<min(r+p;—1,Tg)
Y xi=1, 1<i<n, (2.11)
1<t<Tg
xi € {0,1}, 0<i<n, 1<t<Tg. (2.12)

In this formulation, the constraint on the number of occurrences is not imposed on
the idle job because it is automatically satisfied. Please also note that the inequality
constraints (2.6) in (P) become the equality constraints (2.10) in (P’).

2.2.2 Network Representation

The problem (P’) formulated in the preceding subsection can be converted to a con-
strained shortest path problem on a network. In this subsection, this network repre-
sentation will be introduced as a preparation for the next section.

To construct the network, that is, an acyclic weighted directed graph G = (V,A),
we allocate a node to every decision variable x;;. More specifically, the node set V
is defined by

V={vup10t UVoU{vpr1r41}, (2.13)
Vo={vi|0<i<n, 1<t<Tg}. (2.14)
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Here, another dummy job n+ 1 with p,+1 = 1, f,+1(t) = 0 is introduced. This job is
assumed to be completed at 0 and 7g + 1, and v, 1 o and v, 741 denote the source
and sink nodes, respectively. The arc set A is defined by

A:{(Vijp,'uvit)|Vj,t7p,’7vit EV} (215)

In addition, the length (weight) of an arc (v;;—p,,vi) € A is given by f;().

Let us consider a path from v, 1 ¢ t0 v,,4-1 741 on this network. Then, its length is
equal to the objective value (2.9) of (P’) if we choose x; = 1 when v (0 <i < n)is
on the path. These decision variables satisfy the resource constraints (2.10) but do
not always satisfy the constraints (2.11). To satisfy (2.11), vi; (1 <t < Tg) should
be visited exactly once for any i (1 < i < n). Therefore, (P’) is equivalent to the
problem to find a shortest path from v, 1 to v,y1, 741 on G under the constraints
that v;; (1 <t < Tg) should be visited exactly once for any i (1 <i < n).

Here, some notation and definitions are introduced. Let us denote by & a set
of nodes visited by a path from v, to v,41 741 on G. A node set & and the
corresponding path are both referred to as “path &7 unless there is ambiguity. Let
L(2) be the length of a path &2 defined by

L(2)="Y fi= 3 fi{). (2.16)
V,’,Ey V,'IE.@
0<i<n 1<i<n

We also define by %;(Z) (1 <i < n) the number of occurrences of v; (1 <t < Tg)
in Z. That is,

Yi(P) = {vie|vie € P} (2.17)

Then, the constraints that v;; (1 <t < Tg) should be visited exactly once on a path
& for any i (1 <i < n)can be written by

Y(Z)=1, 1<i<n. (2.18)
Accordingly, define a set of all the feasible paths by
2={27(ZL)=1,1<i<n}. (2.19)

Then, our problem on the network, which is referred to as (N), can be described
simply by

(N): mgj)nL(@) s.t. € 2. (2.20)
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2.3 Lagrangian Relaxation

As already mentioned in the preceding section, the LP relaxation of (P”) obtained by
removing the integrity constraints (2.12) yields a tight lower bound. However, it is
not easy to solve when the number of jobs n becomes large because (P”) has O(nTg)
decision variables. To avoid this difficulty, the Lagrangian relaxation technique is
employed instead. There are two types of relaxations for (P*), that is, the relaxations
of (2.10) and (2.11), respectively. One of the advantages of the former relaxation
is that (P’) can be decomposed into trivial n subproblems corresponding to the n
jobs. Therefore, it is sometimes referred to as Lagrangian decomposition. There is
an early attempt by Fisher [9] to apply this relaxation for lower bound computation
in a branch-and-bound algorithm. On the other hand, the primary advantage of the
latter relaxation is that it gives an easy way to obtain a tighter lower bound than that
by the LP relaxation. It is also referred to as state-space relaxation, which originates
in the study by Christofides et al. [4] for routing problems. It was first applied to
single-machine scheduling by Abdul-Razaq and Potts [1] and following their study,
Ibaraki and Nakamura [15] proposed an exact algorithm based on the SSDP method
[14]. Our exact algorithm also utilizes this type of relaxation. It also appears in the
context of the column generation approach [32], or branch-and-bound algorithms
[19,26] for single-machine scheduling problems.

In the following subsections, the Lagrangian relaxation of (2.11) in (P*) will be
explained for its counterpart (N) in the network representation. Then, three types of
constraints will be introduced and imposed on it to improve the lower bound.

2.3.1 Lagrangian Relaxation of the Number of Job Occurrences

To begin with, the violation of the constraints on the number of job occurrences
(2.11) in (P’) are penalized by Lagrangian multipliers y; (1 <i < n). It corresponds
to the relaxation of the constraints (2.18) in (N), and its objective function L(4?)
becomes

L(Z)+ Y, w(l=7(2))

1<i<n
= 2 fi(t) + Z Hi— Z Wi l{vit |vie € 2}
Vii€P 1<i<n 1<i<n
1<i<n
= 2 (fi(t) — i) + 2 Wi
Vi €L 1<i<n
1<i<n
=Lr(Z; W)+ Y, W, (2.21)

1<i<n
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where Lg (Z7; 1) is defined by

Lr(25 u)= Y, (filt) — ). (2.22)
VitGe@
1<i<n

Equations (2.21) and (2.22) imply that the relaxation for a fixed set of multipliers
is equivalent to the problem to find a shortest unconstrained path from v, to
Vnt1,7+1 on G where the length of an arc (vj,—p,,vii) € A is given not by f;(r) but
by fi(t) — i (we assume that ty = 11 = 0). This relaxation is denoted by (LRy),
that is,

(LRo) : minLg(Z; )+ Y, M (2.23)
z 1<i<n
Clearly,
inLg (2, ;< min L 2.24
min Lg (2; u)+1§énu < min () (2.24)

holds and (LR) gives a lower bound of the original problem (N).

The relaxation (LRy) is easy to solve in O(nTg) time by dynamic programming
[1]. If we denote the partial path from v, to vy by p(vui1,0,Vir), the forward
dynamic programming recursion is expressed by

minLg (2 1) = ho(Te + 15 1), (2.25)
ho(t; ) = min Lg (Pp (vt 1,0,vie)s 1)
= min (ho(t = pis ) + fi(t) — ). (2.26)

We can also formulate the backward dynamic programming recursion in a similar
manner.

To improve the lower bound more, the following three types of constraints are
imposed on this relaxation. The first and the third were proposed in [4] and were
appliedin [1,15]. The second constraints were proposed in [26,28], and were applied
in our previous algorithm [28] together with the other two.

2.3.2 Constraints on Successive Jobs

The first constraints are to forbid job duplication in successive jobs of a solution.
In the network representation, these are interpreted as constraints on successively
visited nodes on a path. More specifically, they are described as follows.

For any i (1 <i < n), nodes corresponding to job i, that is, v (1 <7 < Tg) should
not be visited more than once in any A + 1 > 0 successive nodes on a path.
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Therefore, these constraints forbid v;; ,, — vi; when A =1 and Vii—pi—p; =
Vii—p; — Vi When A =2, and so on. A subset of paths satisfying these constraints
is denoted by 2, (2 C--- C 2, C 2)), and the relaxation with the constraints is
denoted by

(LRy) : minLg(2; )+ N oui st 2e2. (2.27)

1<i<n

Clearly, (LR, ) gives a better (or at least not worse) lower bound as A increases.
However, the time complexity also increases because it is given by 0(n7L Tg) [1,19].

It might not be intuitive that the time complexity of (LR;) is O(nTg) because that
of (LRy) is also O(nTg), but the following recursion confirms this fact:

min Lr(2; ) =y (T +1; u), (2.28)
PeD
vi(ts ) = minh (vies ), (2.29)
my(t; W) = arg miin hy(vies 1), (2.30)
vir €V
a(s p) = min hy(vi; W), (2.31)
i#mlia; W)

Iy (v 1) = it —pis )+ fi(t) =i ifi=0ori#m(t—p;; W),
Vi 21(t — pis W)+ fi(t) — 1;  otherwise,
(2.32)

yi(0; u) =0, z(0; ) =-+eo, m(0; u)=n+1. (2.33)

Roughly speaking, the shortest path y; (7; 1) and the second shortest path z; (¢; i)
among those from v, o to v; are stored in the above recursion. When the path is
expanded (h;(vi; W)), the shortest path is used if no successive job duplication
occurs and otherwise the second shortest is used. It can be shown in a similar way
that the time complexity of (LR; ) for A > 2 is O(n*Tg).

In our algorithm, only (LR;) and (LR,) are considered. The relaxation (LR;)
becomes more tractable if we introduce a subnetwork Gs = (V,Ag), where Ag is
defined by

AS :A\{(vi,tfp,wvi[) |vi,[7pi7vi[ S VOu 1 S l S n}7 (234)

and the length of an arc (vj,_p,,vi) € As is given by fi(f) — u;. Indeed, (LR;) is
equivalent to the unconstrained shortest path problem on Gs. On the other hand,
(LR») is equivalent to the constrained shortest path problem even on Gg, under the
constraints on three successive nodes.
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2.3.3 Constraints on Adjacent Pairs of Jobs

The second constraints derive from the dominance theorem of dynamic program-
ming [20] for adjacent pairs of jobs. For example, consider that two jobs i and j
(0 <i,j <n,i+# j) are successively processed and completed at 7. The total com-
pletion cost of the two jobs is f;(r — p;) + f;(t) when they are sequenced as i — j,
and fj(r — p;) + fi(t) when j — i. It follows that i — j never occurs at ¢ in an op-
timal solution if fi(r — p;) + f;(t) > fj(t — pi) + fi(t) because interchanging these
jobs decreases the objective value without affecting the other jobs. On the other
hand, j — i never occurs at 7 if f;(r — p;) + fj(t) < fj(t — pi) + fi(t). Therefore, the
processing order of jobs i and j at any ¢ can be restricted by checking the total cost
of the two. This also holds even if f;(r — p;) + f;(t) = fj(t — pi) + fi(t), and either
(but not arbitrary) processing order can be forbidden without loss of optimality [28].
To summarize, the processing order of adjacent pairs of jobs can be restricted and it
is imposed on the relaxation as constraints. Please note that the processing order of
an ordinary job and the idle job can also be restricted.

In the network representation, these adjacency constraints eliminate from G,
those arcs corresponding to the forbidden processing orders. Thus, we define a sub-
network 65 = (V,A\S) of Gs, where

As = As\{(vj+—ps»vir) | j — i is forbidden at £}. (2.35)

The relaxations (LR;) and (LR;) with the adjacency constraints are equivalent to
the unconstrained and constrained shortest path problems on 65, respectively. Since
the time complexities of (LR;) and (LR») with the adjacency constraints are both
O(nZTE) [26, 28], only (LR») with the adjacency constraints, which is, denoted by
(Ijl\iz), is used as in our previous algorithm. Let QAQ denote a subset of 2, composed
of paths on 65 that satisfy the constraints on three successive nodes.

2.3.4 Constraints on State-Space Modifiers

The last constraints are described in terms of state-space modifiers: Each ordinary
jobi (1 <i<n)is given a value g; > 0 called state-space modifier and the constraint
that the total modifier in a solution should be ¥, ;< g; is imposed on (I:\Rz). In our
algorithm, the modifiers are chosen so that ¢; = 1 for some i and g; = 0 for j # i
(1 < j < n).Inthis case, the constraint simply requires that job i should be processed
exactly once and hence is equivalent to %;(Z?) = 1, that is, the constraint (2.18) for
job i. It follows that all the constraints (2.18) are once relaxed, but one of them is
recovered to improve the lower bound.

Let us consider that not the constraint (2.18) for a single job i but those for a
subset of jobs .# are recovered to (ﬁz). Hereafter, (Ijﬁg) with the constraints

Vi(P)=1, VieH (2.36)
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is denoted by (I:\R;n), where m = |.#|. Clearly, an optimal solution of (I:\R;n) is also
optimal for the original problem (N) when m = n.

The network representation of (Ijﬁ;n) is a little complicated. Let us define an
m-dimensional vector " of state-space modifiers for job i by q" = (gi1, ..., qim)-
where

(2.37)

o 1, if the jth element of .Z is i,
4= 0, otherwise.

Let us also define m-dimensional vectors qi and q)', | by qif =), ; = (0,...,0).

Next, a weighted directed graph Gl = (V’",X’S”) is introduced. The node set V" is
defined by

= UV U (2.38)
Ve ={W|vi Vo, " <b < lm}, (2.39)

where 0,,, and 1,, denote m-dimensional vectors whose elements are all zero and all
one, respectively. The arc set AZ' is defined by

~ b—q™ —~

Agn = {(vj’[:];iuvg) | (vj,tfpiuvit) 6A57 (Lm +q;n S b S 1m}7 (240)

and the length of an arc (v l])t q;) D) is given by fi(t) — 1. Then, (Ijﬁ;n) is equivalent
O

to the shortest path problem from v, | , to vn Y71 On Gs under the constraints on

three successive nodes. The set of paths from v0 L on G’" that satisfy

n+l, n1T+1
the constraints on three successive nodes is denoted by Q’” (LRZ) is solvable by
dynamic programming in O(n*2"Tg) time.

0tov

2.4 Network Reduction

Our exact algorithm utilizes (]:\Rz) and (I:\ern) as sublimations of (LR;j). More
specifically, it first solves (LR;), next (I_/,\Rz) and then (I:\ern) with jobs added to
A (with m increased). As already explained in the preceding section, all these are
solvable by dynamic programming. In the SSDP method, unnecessary dynamic pro-
gramming states are eliminated in the course of the algorithm. The efficiency of this
state elimination determines the efficiency of the SSDP method and hence is very
important because it enables us to reduce both computational efforts and memory
usage.

The state elimination is interpreted as the removal of unnecessary nodes and arcs
from Gs, Gs and G in the network representation. This section will give two types
of network reductlons utilized in our algorithm.
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2.4.1 Network Reduction by Upper Bound

The first network reduction [15] utilizes an upper bound and is applied to all the
relaxations (LR;), (I:\Rz) and (I:\R;n). Here, only the reduction for (LR;) will be
described because it does not differ much from those for (Ijﬁz) and (Ijﬁ;n).

Let us denote by & (v;; i) the shortest path length from Vnt1,0 1o v on Gs (see
(2.32)). Let us also denote by H; (v;; i) the shortest path length from v;; to Vi1, T+1
on Gs. Clearly,

hy(vies ) +Hi(vie; 1) = g,néiagl Lr(Z; 1) (2.41)

Vit ey

holds. In other words, the lefthand side of (2.41) gives the shortest path length from
Vut1,0 10 Vup1, 741 on Gs under the additional constraint that v; should be passed
through. Therefore, it can be said from (2.21) that if an upper bound UB of (N)
satisfies

UB < hy(vies 1) +Hi(vie: 1)+ Y, M, (2.42)

1<i<n

any optimal path for (N) never passes through v;. Hence, v; can be eliminated
from Gg.

hy(vi; W) appears in the forward recursion of dynamic programming, while
Hj(vis; 1) in the backward recursion. Therefore, this reduction can be performed
by applying dynamic programming in both the directions.

2.4.2 Network Reduction by Dominance of Successive Jobs

To reduce the size of CA;’S” for (Ijﬁ;n) more, dominance of np (np > 3) successive jobs
is utilized to eliminate unnecessary arcs [28]. Let us define a set of paths 2" by

Q" ={P|P Dy V(P)=1(1<i<n)}. (2.43)

More specifically, 2™ is a set of paths on ég" that correspond to the paths belonging
to 2 on G or, equivalently, feasible solutions of (N). Let us also define a path &g,
corresponding to an optimal solution of (N) by

Doy = arg e@néinr@lmL(f@). (2.44)
If, for every &2 € 2™ that passes through the arc (v?;f;i,vg), there exists a domi-

nating path £’ € 2™ such that
L(Z?") < L(2), (2.45)
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Dot
np nodes visited just before v}; (including v!}) in & are considered in forward dy-
namic programming. That is, (np! — 1) paths are checked for one & as a candidate
for a dominating path &', where the visiting order of the np nodes is interchanged.

never passes through the arc and hence it can be eliminated. To check this, only

. . . . .. . b—q" .
Similarly, in backward dynamic programming np nodes visited just after v i [:]},, (in-
9 1
. b—q}" . .. b—q" p
cludingv;, = ) are considered to eliminate (v;, ", ,vjy).

For example, suppose that part of 6% (# = {3}) is given by Fig.2.1, where
p1 =1, py =3 and p3 = 2. Let us check whether the arc (v} ,;,v},,) can be elimi-
nated in forward dynamic programming by setting np = 3. In this case, the following
three types of paths passing through the arc (vé21 , v§‘24) should be considered:

0 1 1
L@A = (...,V0’19,V3721,V2’24,...), (246)
c@B = (...7V(1)7197V§721,V%’24,...), (247)
Pe= (- ¥219:V301, V2000 ) (248)

Fig. 2.1: An example of network reduction by dominance of three successive jobs
(np =3)

Since nodes corresponding to job 2 appear twice in &, only Z and &g belong to
2™". Here, we are to check whether there exist dominating paths for these two types
of paths. First, &, is considered and the following five candidates are generated by
interchanging the visiting order of v8’ 195 ‘%21 and v§‘24:

Pha = (019 V322, V3205 -)s (2.49)
Py = ( --a"é,zo"’(l),zlv"%,zm ) (2.50)
Pz =(... =V§,207V§,237V(1>,24= ) (2.51)
Pha= (301,022, V3205 -)s (2.52)
Pas = ( -'=V(2),217V§,237V(1),24= ) (2.53)
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Then, we search for k (1 < k <5) satisfying L(Z?},) < L(Z4). This is not diffi-
cult because L(P5) — L(Z},) depends only on the interchanged three nodes (eg.
L(Za) —L(2)3) = f3(21) + f2(24) — £3(20) — f2(23)). In addition, we need not
consider k = 1,2 because L(Z7},) > L(Za) and L(Z},) > L(Z4) hold from the
constraints on adjacent pairs of jobs in Sect. 2.3.3.

Here, assume that L(Z)5) < L(Z4) holds. Then, &g is checked next and if
there also exists a dominating path, the arc (v} ,,,v} ,,) can be eliminated.

This reduction becomes more effective as np becomes larger, but both the num-
ber of paths passing through the target arc (cf. (2.46)—(2.48)) and the number of
permutations of nodes that should be checked (cf. (2.49)—(2.53)) increase exponen-
tially. Therefore, np is chosen as np = 4 in our algorithm.

2.5 Algorithm Overview

To summarize, our exact algorithm is composed of the following three stages that
correspond to (LRy), (Ijl\iz) and (Ijﬁ;n), respectively. If the gap between lower and
upper bounds becomes zero in Stages 1 and 2, the algorithm is terminated” and the
solution yielding the current upper bound UB is outputted as an optimal solution.

Stage 1  An initial upper bound UB is computed by the algorithm in Sect. 2.6.3.
Lagrangian multipliers u are adjusted by applying the subgradient algo-
rithm to the following Lagrangian dual corresponding to (LR ):

in Lg(2; i) 2.54
max <¢@ng_gl R(Z: W)+ Y, u) (2.54)

H 1<i<n

Then, the network reduction in Sect. 2.4.1 is performed.

Stage 2 Multipliers i are re-adjusted by applying the subgradient algorithm to the
Lagrangian dual corresponding to (I_/,\Rz). In the course of the algorithm,
an upper bound is computed by the method in Sect. 2.6 and UB is updated
if necessary. The network reduction in Sect.2.4.1 is applied every time
when the best lower bound or UB is updated.

Stage 3 Let the current best lower bound LB be LB = min ,_ A Lr(Z; u)+
Y1 <i<n Wi- Then, the subprocedure is repeated by increasing the tentative
upper bound UB™™, Tt is terminated if UB*™ = UB at the end of the
subprocedure. L
Subprocedure: Let LB*"® = LB and m = |.#| = 0. Starting from G3 = Gs,

the relaxation (I_/,l\{rzn) for u is solved with .# increased. When solving

(I:\ern), all the network reductions in Sect. 2.4 are performed. In the course
of the algorithm, an upper bound is computed by the method in Sect. 2.6,
and UB"™ and UB are updated if necessary.

2 To be more precise, the algorithm can be terminated when the gap becomes less than one because
the objective function is integral.
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In Stage 3 of the algorithm, a tentative upper bound UB™™ is introduced and
used for the network reduction in Sect.2.4.1 in place of the current upper bound
UB. Since the effectiveness of the network reduction in Sect. 2.4.1 depends highly
on the tightness of an upper bound, shortage of memory space for storing the net-
work structure may occur in Stage 3 unless a tight upper bound is obtained. To
reduce this dependence on the tightness, UB™™ is chosen as UB™" < UB, so that
the network reduction is performed by UB™™. If UB*™ is a valid upper bound, it
does not cause any problems and we need not repeat the subprocedure. If otherwise,
UB™™ is increased and the subprocedure is applied again. It can be easily verified
that UB™™ is proved to be a valid upper bound if UB*™ = UB holds at the end of
the subprocedure.

It is also important in Stage 3 which jobs should be added to .# . To suppress the
increase of memory usage as much as possible, the job whose corresponding nodes
appear less frequently in G¢ is chosen first from 4"\.# [28].

2.6 Upper Bound Computation

This section will describe the upper bound computation method in the algorithm of
Sect. 2.5. It is composed of two parts: A solution of a relaxation is first converted to
a feasible solution of the original problem by some heuristic algorithm, and then it is
improved by a neighborhood search. In the following, they will be explained one by
one. A tight lower bound is important also for the network reduction in Sect. 2.4.1.

2.6.1 Lagrangian Heuristic

The first part is an extension of the heuristic proposed in [15]. Since it exploits dy-
namic programming and thus is time-consuming, its greedy version is also applied.

Let us assume that some solution of a relaxation ((I:\Rz) or (I_/,\ern)) is given as
a sequence of jobs that possibly includes duplicated ordinary jobs. Our heuristic
converts it to a feasible solution of the original problem by the following two steps:

1. A partial job sequence is generated from the solution by removing the idle job
and duplicated jobs (only one job is kept in the sequence for every duplicated
ordinary jobs). The number of jobs in the partial sequence is denoted by n;.

2. The unscheduled ny(= n —ny) ordinary jobs are inserted optimally into the par-
tial sequence without changing the precedence relations of the n; jobs, where
idle times are taken into account. In other words, when finding optimal job po-
sitions, the objective value is evaluated after idle time is optimally inserted into
the sequence. An optimal sequence can be obtained by dynamic programming in
O(na(ny +1)2"7Tg) time.
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The dynamic programming in 2. is time- (and space-) consuming because its time
complexity is multiplied by Tg. Therefore, the method in [23] is adopted, which was
originally proposed to improve the efficiency of dynamic programming for optimal
idle time insertion. In this method, the objective function is assumed to be piece-
wise linear and it is evaluated only at the endpoints of linear segments. If the cost
function f;(¢) is piecewise linear with few segments, it is much helpful to reduce
computational efforts. Nevertheless, it is hard to apply this heuristic when the num-
ber of jobs to be inserted, n,, is large because the time complexity also depends on
it exponentially. Hence, a greedy version of the heuristic is applied when n; is large.
In this case, unscheduled n; jobs are inserted one by one according to the short-
est processing time (SPT) order into their optimal positions. That is, the following
procedure is used in place of 2.:

2’.The unscheduled n, ordinary jobs are inserted one by one according to the
SPT order into their optimal positions of the partial sequence. Here, the prece-
dence relations of the n; jobs are kept unchanged and idle time is taken into
account.

2.6.2 Improvement by Neighborhood Search

To improve a solution obtained by the heuristics, the dynasearch is applied. The
dynasearch is a powerful neighborhood search and was first proposed for the single-
machine scheduling problem without idle time [5]. Then, the enhanced dynasearch
was proposed in [12] to improve its search ability by enlarging the neighborhood.
Another extension [24] was for the problem with idle time and based on the results
in [23]. In our algorithm this extended dynasearch is employed.

2.6.3 Initial Upper Bound

To obtain an initial upper bound, the greedy version of the heuristic in Sect.2.6.1
is first employed, where all the jobs are assumed to be unscheduled (n; = 0 and
ny = n), and not only the SPT order but also the longest processing time (LPT),
earliest duedate (EDD) and latest duedate (LDD) orders are considered when jobs
are inserted. Then, the extended dynasearch is applied to the best of the four
solutions.

2.7 Numerical Experiments

Our algorithm is applied to two sets of benchmark instances: the instance set
with equal (zero) release dates (1||X(04E; + B;T;)) in [25,26], and that with dis-
tinct release dates (1|r;|Y.(ctE; + B;T;)) in [2]. These are referred to as the Sourd’s
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benchmark set and the Biilbiil’s benchmark set, respectively. The Sourd’s bench-
mark set is generated in the following way:

1. Processing times p; are generated from the uniform distribution U[10,100). Let
P=3"pi

2. Due dates d; are generated from U[dpin,dmax|, Where dpi, = max(p;, | P(T —

p/2)]), dmax = dmin+ [ PP].

Both tardiness weights o; and earliness weights f3; are generated from U1, 5].

For each combination of (n, T, p), 26 instances are generated.

5. n € {20,30,40,50}, 7 € {0.2,0.3,0.4,0.5,0.6,0.7,0.8}, and p € {0.2,0.3,
0.4,0.5,0.6,0.7,0.8}.

6. Forn € {60,90}, only five instances are generated for each combination of (n, T,
p), where 7 € {0.2,0.5,0.8} and p € {0.2,0.5,0.8}.

> w

On the other hand, the generation scheme of the Biilbiil’s benchmark set is as
follows:

1. Processing times p; are generated from U[1, pmax]. Let P =Y | pi.

2. Release dates are generated from U [0, P)].

3. Due dates d; are generated from U [dpmin,dmax], where dpin = max(0,[(1 — 17—
p/2)P]) and dpax = [(1 — T+ p/2)P].

4. Both earliness weights ¢o; and tardiness weights [3; are generated from U0, 100].

For each combination of (n, pmax, T, p), five instances are generated.

6. 7€ {0.2,0.4,0.5,0.6,0.8} and p € {0.4,0.7,1.0,1.3}. For n € {20,40,60,80},
Pmax € {10,30,50} and for n € {100,130,170,200}, pmax € {50,75,100}.

9]

Both the benchmark sets are available from the aforementioned web page.

The algorithm is coded in C (gcc) and we run it on a 3 GHz Intel® Core2 Duo
E6850 desktop computer with 4 GB RAM. The maximum memory size for storing
the network structure is restricted to 384 MB.

Benchmark results are summarized in Tables 2.1 and 2.2, where the number of
optimally solved instances in each stage, the average and maximum CPU times in
seconds are shown. We can verify that all the instances are optimally solved. The
most efficient algorithm for the problem so far except ours is the branch-and-bound
algorithm by Sourd [26]. He reported that he succeeded in solving all the 50 jobs
instances in the Sourd’s benchmark set within 1,000s, and all the 60 jobs instances
in the Biilbiil’s benchmark set within 500s on a 3.2 GHz Intel® Pentium4 desktop
computer. On the other hand, our algorithm only takes at most 3.5 and 3 s for these
instances, respectively. It is true that our CPU is about twice as fast as Sourd’s CPU,
but our algorithm is much faster even if this difference is taken into account.

The detailed results are given in Tables 2.3 and 2.4. In these tables, average and
maximum CPU times in each stage are given separately. The average and maximum
gaps between lower and upper bounds are also shown in percent, where the gap is
calculated by 100(UB — LB)/UB. Please note that it is not easy to examine memory
usage of our algorithm because the number of jobs added to .# at one iteration of
the subprocedure in Stage 3 is changed adaptively. Therefore, it is not shown here. It
can be observed from the tables that the gap becomes small in Stage 2. This implies
that (I:\Rz) yields a tight lower bound.
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Table 2.1: Computational results for the Sourd’s benchmark set of 1||Y.(ctE; + BiT;)

Optimally solved instances CPU time (s)
n Instances

Stagel Stage2 Stage3 Total Ave.  Max.
20 1,274 133 952 189 1,274 0.05 0.16
30 1,274 22 902 350 1,274 022 0.55
40 1,274 13 757 504 1,274 0.58 1.77
50 1,274 2 631 641 1,274 1.33 3.44
60 45 0 22 23 45 2.61 6.09
90 45 0 10 35 45 13.22 30.25

Table 2.2: Computational results for the Biilbiil’s benchmark set of 1|r;| Y (o4E; +

BiTi)

Optimally solved instances CPU time (s)

n Instances
Stagel Stage2 Stage3 Total Ave. Max.
20 300 37 221 42 300 0.01  0.05
40 300 1 155 144 300 0.18  0.58
60 300 0 63 237 300 .02 3.05
80 300 0 35 265 300 3.16 11.63
100 300 0 6 294 300 17.83 44.92
130 300 0 2 298 300 51.62 140.26
170 300 0 0 300 300  155.27 379.97
200 300 0 0 300 300  303.27 771.52

Table 2.3: Detailed results for the Sourd’s benchmark set of 1||X(04E; + BiT;)

Stage 1 Stage 2 Stage 3
n Time (s) Gap (%) Solved Time (s)  Gap (%) Solved Time (s) Solved
Ave Max Ave Max ve Max Ave Max Ave Max
20 0.04 0.15 6.1762.88 133 0.01 0.08 0.61 17.01 952 0.01 0.04 189
30 0.15 0.34 6.45 54.38 22 0.07 042 0.4911.01 902 0.01 0.10 350
40 0.36 1.00 6.14 59.91 13 0.21 1.15 0.39 930 757 0.03 0.23 504
50 0.73 1.56 5.59 49.95 2 0.57 2.71 037 5.62 631 0.08 046 641
60 1.44 2.38 5.12 27.67 0 1.09 4.67 0.35 3.96 22 0.17 0.66 23
90 5.80 9.98 5.77 30.59 0 6.79 19.43 0.33 1.89 10 0.81 3.73 35
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Table 2.4: Detailed results for the Biilbiil’s benchmark set of 1|r;| >.(o4E; + B:T;)

Stage 1 Stage 2 Stage 3
n Time (s) Gap (%) Time (s) Gap (%) Time (s)
Ave Max Ave Max Solved Ave Max Ave Max Solved TAve Max Solved

20 0.01 0.04 3.02 48.09 37 0.00 0.03 0.23 8.29 221 0.00 0.01 42
40 0.09 0.28 3.58 32.19 1 0.08 045 0.17 1.79 155 0.01 0.07 144
60 036 0.93 3.82 14.77 0 061 211 0.18 1.71 63 0.06 043 237
80 090 235 341 13.77 0 207 946 0.17 093 35 022 1.06 265
100 456 9.79 3.35 20.70 0 12.09 3511 0.17 1.20 6 121 790 294
130 11.28 24.69 3.10 15.02 0 3481 11259 0.16 0.75 2 557 51.13 298
170 26.41 53.50 3.07 11.65 0 0 2885 174.55 300
200 43.48 91.59 2.96 11.95 0 0

100.01 277.55 0.16 0.59

185.44 427.72 0.15 0.48 74.35 405.55 300

2.8 Conclusion

This paper introduced our exact algorithm [29] for the single-machine total weighted
earliness—tardiness problem. Due to the tightness of lower and upper bounds, this
dynamic-programming-based exact algorithm is so efficient that it outperformed the
existing best algorithm and could optimally solve 200 jobs instances. In our most
recent paper [30] it is shown that a new algorithm after several improvements is
also effective for other types of single-machine problems such as 1|r;|Y,; w;C; and
1 |r,~| Zi W,'T,‘.

The algorithm is based on dynamic programming and hence reduction of mem-
ory usage is crucial for further improving the algorithm. Some additional constraints
(cuts) to obtain a better lower bound and/or new network reduction methods to re-
duce memory usage directly would be necessary for this purpose, which we should
consider in future research. Another direction of research will be to extend the algo-
rithm to a wider class of problems such as the problems with precedence constraints,
setup times and so on.
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