
Chapter 2
Reading and Transforming Data Format

2.1 Reading and Transforming Data

2.1.1 Data Layout

R, like Splus and S, represents an entire conceptual system for thinking about data.
You may need to learn some new ways of thinking. One way that is new for users of
Systat, SAS, and (probably) SPSS concerns two different ways of laying out a data
set. In the Systat way, each subject is a row (which may be continued on the next
row if too long, but still conceptually a row) and each variable is a column. You can
do this in R too, and most of the time it is sufficient.

But some the features of R will not work with this kind of representation, in
particular, repeated-measures analysis of variance or hierarchical linear modeling.
So you need a second way of representing data, which is that each row represents
a single datum, e.g., one subject’s answer to one question. The row also contains
an identifier for all the relevant classifications, such as the question number, the
subscale that the question is part of, and the subject. Thus, “subject” becomes a
category with no special status, technically a factor (and remember to make sure it
is a factor, lest you find yourself studying the effect of the subject’s number).

The former is referred to as the wide layout and the latter the long layout to be
consistent with the terms used by the reshapde() function.

2.1.2 A Simple Questionnaire Example

Let us start with an example of the old-fashioned way. In the file ctest3.data,
each subject is a row, and there are 134 columns. The first four are age, sex, student
status, and time to complete the study. The rest are the responses to four questions

Y. Li and J. Baron, Behavioral Research Data Analysis with R, Use R,
DOI 10.1007/978-1-4614-1238-0 2, © Springer Science+Business Media, LLC 2012

19

20 2 Reading and Transforming Data Format

about each of 32 cases. Each group of four is preceded by the trial order, but this is
ignored for now.

> c0 <- read.table(file = "ctest3.data")

The file can be downloaded from the data file has no labels, so we can read it
with read.table. You can also try read.csv or read.delim. The file
parameter can be ignored. If the data file is found online then the file parameter
can be the complete URL address to that file.

> age1 <- c0[,1]
> sex1 <- c0[,2]
> student1 <- c0[,3]
> time1 <- c0[,4]
> nsub1 <- nrow(c0)

We can refer to elements of c0 by c0[row,column]. For example, c0[1,2]
is the sex of the first subject. We can leave one part blank and get all of it, e.g.,
c0[,2] is a vector (column of numbers) representing the sex of all the subjects.
The last line defines nsub1 as the number of subjects.

> c1 <- as.matrix(c0[,4+1:128])

Now c1 is the main part of the data, the matrix of responses. The expression 1:128
is a vector, which expands to 1 2 3 . . . 128. By adding 4, it becomes 5 6 7 . . . 132.

2.1.2.1 Extracting Subsets of Data

> rsp1 <- c1[,4*c(1:32)-2]
> rsp2 <- c1[,4*c(1:32)-1]

The above two lines illustrate the extraction of sub-matrices representing answers
to two of the four questions making up each item. The matrix rsp1 has 32 columns,
corresponding to columns 2 6 10 ... 126 of the original 128-column matrix c1. The
matrix rsp2 corresponds to 3 7 11 ... 127.

Another way to do this is to use an array. We could say a1 <- array(c1,
c(ns, 4, 32)). Then a1[,1,] is the equivalent of rsp1, and a1[20,1,]
is rsp1 for subject 20. To see how arrays print out, try the following:

> m1 <- matrix(1:60,5,)
> a1 <- array(m1,c(5,2,6))
> m1
> a1

You will see that the rows of each table are the first index and the columns are the
second index. Arrays seem difficult at first, but they are very useful for this sort of
analysis.

2.1 Reading and Transforming Data 21

2.1.2.2 Finding Means (or Other Things) of Sets of Variables

> r1mean <- apply(rsp1,1,mean)
> r2mean <- apply(rsp2,1,mean)

The above lines illustrate the use of apply for getting means of subscales. In
particular, abrmean is the mean of the subscale consisting of the answers to the
second question in each group. The apply function works on the data in its first
argument, then applies the function in its third argument, which, in this case, is
mean. (It can be max or min or any defined function.) The second argument is
1 for rows, 2 for columns (and so on, for arrays). We want the function applied
to rows.

> r4mean <- apply(c1[,4*c(1:32)], 1, mean)

The expression here represents the matrix for the last item in each group of
four. The first argument can be any matrix or data frame. (The output for a data
frame will be labeled with row or column names.) For example, suppose you have
a list of variables such as q1, q2, q3, etc. Each is a vector, whose length is
the number of subjects. The average of the first three variables for each subject
is apply(cbind(q1,q2,q3),1,mean). (This is the equivalent of the Systat
expression avg(q1, q2, q3). A little more verbose, to be sure, but much more
flexible.)

You can use apply to tabulate the values of each column of a matrix m1:
apply(m1, 2, table). Or, to find column means, apply(m1, 2, mean).

There are many other ways to make tables. Some of the relevant functions are
table, tapply, sapply, ave, and by. Here is an illustration of the use of by.
Suppose you have a matrix m1 like this:

1 2 3 4
4 4 5 5
5 6 4 5

The columns represent the combination of two variables, y1 is 0 0 1 1, for the
four columns, respectively, and y2 is 0 1 0 1. To get the means of the columns
for the two values of y1, say by(t(m1), y1, mean). You get 3.67 and 4.33
(labeled appropriately by values of y1). You need to use t(m1) because by works
by rows. If you say by(t(m1), data.frame(y1,y2), mean), you get a
cross tabulation of the means by both factors. (This is, of course, the means of the
four columns of the original matrix.)

Of course, you can also use by to classify rows; in the usual examples, this would
be groups of subjects rather than classifications of variables.

2.1.2.3 One Row Per Observation

The next subsection shows how to transform the data from the wide layout (one row
per subject) to the long layout (one row per observation). We will use the matrix

22 2 Reading and Transforming Data Format

rsp1, which has 32 columns and one row per subject. Here are the data from five
subjects:

1 1 2 2 1 2 3 5 2 3 2 4 2 5 7 7 6 6 7 5 7 8 7 9 8 8 9 9 8 9 9 9
1 2 3 2 1 3 2 3 2 3 2 3 2 3 2 4 1 2 4 5 4 5 5 6 5 6 6 7 6 7 7 8
1 1 2 3 1 2 3 4 2 3 3 4 2 4 3 4 4 4 5 5 5 6 6 7 6 7 7 8 7 7 8 8
1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9
1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9

We will create a matrix with one row per observation. The first column will con-
tain the observations, one variable at a time, and the remaining columns will contain
numbers representing the subject and the level of the observation on each variable
of interest. There are two such variables here, r2 and r1. The variable r2 has four
levels, 1 2 3 4, and it cycles through the 32 columns as 1 2 3 4 1 2 3 4
... The variable r1 has the values (for successive columns) 1 1 1 1 2 2 2 2
3 3 3 3 4 4 4 4 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4. These lev-
els are ordered. They are not just arbitrary labels. (For that, we would need the
factor function.)

> r2 <- rep(1:4,8)
> r1 <- rep(rep(1:4,rep(4,4)),2)

The above two lines create vectors representing the levels of each variable for
each subject. The rep command for r2 says to repeat the sequence 1 2 3 4,
eight times. The rep command for r1 says take the sequence 1 2 3 4, then
repeat the first element four times, the second element four times, etc. It does this
by using a vector as its second argument. That vector is rep(4,4), which means
repeat the number 4, four times. So rep(4,4) is equivalent to c(4 4 4 4). The
last argument, 2, in the command for r1 means that the whole sequence is repeated
twice. Notice that r1 and r2 are the codes for one row of the matrix rsp1.

> nsub1 <- nrow(rsp1)
> subj1 <- as.factor(rep(1:nsub1,32))

nsub1 is just the number of subjects (5 in the example), the number of rows in the
matrix rsp1. The vector subj1 is what we will need to assign a subject number
to each observation. It consists of the sequence 1 2 3 4 5, repeated 32 times. It
corresponds to the columns of rsp1.

> abr1 <- data.frame(ab1 = as.vector(rsp1),
+ sub1 = subj1, dcost1 = rep(r1,rep(nsub1,32)),
+ abcost1 = rep(r2,rep(nsub1,32)))

The data.frame function puts together several vectors into a data frame,
which has rows and columns like a matrix.1 Each vector becomes a column. The
as.vector function reads down by columns, that is, the first column, then the

1The cbind function does the same thing but makes a matrix instead of a data frame.

2.1 Reading and Transforming Data 23

second, and so on. So ab is now a vector in which the first nsub1 elements are
the same as the first column of rsp1, that is, 1 1 1 1 1. The first 15 elements
of ab are: 1 1 1 1 1 1 2 1 2 1 2 3 2 2 1. Notice how we can define
names within the arguments to the data.frame function. Of course, sub1 now
represents the subject number of each observation. The first ten elements of sub1
are 1 2 3 4 5 1 2 3 4 5. The variable abcost1 now refers to the value of
r2. Notice that each of the 32 elements of r2 is repeated nsub1 times. Thus, the
first 15 values of abcost1 are 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3. Here
are the first ten rows of abr1:

ab1 sub1 dcost1 abcost1
1 1 1 1 1
2 1 2 1 1
3 1 3 1 1
4 1 4 1 1
5 1 5 1 1
6 1 1 1 2
7 2 2 1 2
8 1 3 1 2
9 2 4 1 2
10 1 5 1 2

The following line makes a table of the means of abr1, according to the values
of dcost1 (rows) and abcost1 (columns).

> ctab1 <- tapply(abr1[,1],list(abr1[,3],abr1[,4]),
mean)

It uses the function tapply, which is like the apply function except that the
output is a table. The first argument is the vector of data to be used. The second
argument is a list supplying the classification in the table. This list has two columns
corresponding to the columns of abr representing the classification. The third
argument is the function to be applied to each grouping, which in this case is the
mean. Here is the resulting table:

1 2 3 4
1 2.6 3.0 3.7 3.8
2 3.5 4.4 4.4 5.4
3 4.5 5.2 5.1 5.9
4 5.1 6.1 6.2 6.8

The following line provides a plot corresponding to the table.

> matplot(ctab1, type = "l")

Type l means lines. Each line plots the four points in a column of the table. If
you want it to go by rows, use t(ctab1) instead of ctab1. The function t()
transposes rows and columns.

24 2 Reading and Transforming Data Format

Finally, the following line does a regression of the response on the two classifiers,
actually an analysis of variance.

> summary(aov(ab1 ˜ dcost1 + abcost1 +
+ Error(sub1/(dcost1 + abcost1)), data = abr))

The function aov, like lm, fits a linear model, because dcost1 and abcost1
are numerical variables, not factors (although sub1 is a factor). The model is
defined by its first argument (to the left of the comma), where ˜ separates the
dependent variable from the predictors. The second element defines the data frame
to be used. The summary function prints a summary of the regression. (The lm
and aov objects themselves contains other things, such as residuals, many of which
are not automatically printed.) We explain the Error term later in Sect. 5.1, but the
point of it is to make sure that we test against random variation due to subjects, that
is, test “across subjects.” Here is some of the output, which shows significant effects
of both predictors:

Error: sub1
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 4 52.975 13.244

Error: sub1:dcost1
Df Sum Sq Mean Sq F value Pr(>F)

dcost1 1 164.711 164.711 233.63 0.0001069 ***
Residuals 4 2.820 0.705

Error: sub1:abcost1
Df Sum Sq Mean Sq F value Pr(>F)

abcost1 1 46.561 46.561 41.9 0.002935 **
Residuals 4 4.445 1.111

Error: Within
Df Sum Sq Mean Sq F value Pr(>F)

Residuals 145 665.93 4.59

Note that, in many examples in this section, we used rep() to generate
repeated values. We can also use the gl() function for this. For example, instead
of subj1 <- as.factor(rep(1:nsub1,32)), we could say subj1 <-
gl(nsub1,1,nsub1*32). The first argument specifies the number of levels,
which in this case is the number of subjects. The second argument specifies the
number of immediate repetitions of each level (within each cycle, when there are
cycles – not the total number of repetitions), and the third argument specifies the
total length, which is here the number of subjects times the number of items. If we
wanted a code for each item, we could say gl(32,nsub1,nsub1*32). But here

2.1 Reading and Transforming Data 25

we do not need the last argument because there is only one cycle. Each item number
is immediately repeated nsub1 times. Thus, we could say gl(32,nsub1). The
gl() function is useful because it avoids having to say as.factor, which is
often forgotten.

2.1.3 Other Ways to Read in Data

First example. Here is another example of creating a matrix with one row per
observation.

> symp1 <- read.table("symp1.data",header=T)
> sy1 <- as.matrix(symp1[,c(1:17)])

The first 17 columns of symp1 are of interest. The file symp1.data contains
the names of the variables in its first line. The header=T (an abbreviation for
header=TRUE) makes sure that the names are used; otherwise the variables will
be names V1, V2, etc.

> gr1 <- factor(symp1$group1)

The variable group1, which is in the original data, is a factor that is unordered.
The next four lines create the new matrix, defining identifiers for subjects and

items in a questionnaire.

> syv1 <- as.vector(sy1)
> subj1 <- factor(rep(1:nrow(sy1),ncol(sy1)))
> item <- factor(rep(1:ncol(sy1),rep(nrow(sy1),
+ ncol(sy1))))
> grp <- rep(gr1,ncol(sy1))
> cgrp <- ((grp==2) | (grp==3))+0

The variable cgrp is a code for being in grp 2 or 3. The reason for adding 0 is
to make the logical vector of T and F into a numeric vector of 1 and 0.

The following three lines create a table from the new matrix, plot the results, and
report the results of an analysis of variance.

> sytab <- tapply(syv,list(item,grp),mean)
> matplot(sytab,type="l")
> svlm <- aov(syv ˜ item + grp + item*grp)

Second example. In the next example, the data file has labels. We want to refer to
the labels as if they were variables we had defined, so we use the attach function.

> t9 <- read.table("tax9.data",header=T)
> attach(t9)

26 2 Reading and Transforming Data Format

Third example. In the next example, the data file has no labels, so we can read it
with scan. The scan function just reads in the numbers and makes them into a
vector, that is, a single column of numbers.

> abh1 <- matrix(scan("abh1.data"),,224,byrow=T))

We then apply the matrix command to make it into a matrix. (There are many
other ways to do this.) We know that the matrix should have 224 columns, the
number of variables, so we should specify the number of columns. If you say
help(matrix) you will see that the matrix command requires several arguments,
separated by commas. The first is the vector that is to be made into a matrix, which
in this case is scan("abh1.data"). We could have given this vector a name,
and then used its name, but there is no point. The second and third arguments are
the number of rows and the number of columns. We can leave the number of rows
blank. (That way, if we add or delete subjects, we do not need to change anything.)
The number of columns is 224. By default, the matrix command fills the matrix by
columns, so we need to say byrow=TRUE or byrow=T to get it to fill by rows,
which is what we want. (Otherwise, we could just leave that field blank.)

We can refer to elements of abh1 by abh1[row,column]. For example,
abh1[1,2] is the sex of the first subject. We can leave one part blank and get
all of it, e.g., abh1[,2] is a vector (column of numbers) representing the sex of
all the subjects.

2.1.4 Other Ways to Transform Variables

2.1.4.1 Contrasts

Suppose you have a matrix t1 with four columns. Each row is a subject. You
want to contrast the mean of columns 1 and 3 with the mean of columns 2 and 4.
A t-test would be fine. (Otherwise, this is the equivalent of the cmatrix command
in Systat.) Here are three ways to do it. The first way calculates the mean of the
columns 1 and 3 and subtracts the mean of columns 2 and 4. The result is a vector.
When we apply t.test() to a vector, it tests whether the mean of the values is
different from 0.

> t1 <- matrix(rnorm(40), ncol = 4)
> t.test(apply(t1[c(1,3),], 2, mean) -
+ apply(t1[c(2, 4),], 2, mean))

The second way multiplies the matrix by a vector representing the contrast
weights, 1, -1, 1, -1. Ordinary multiplication of a matrix by a vector mul-
tiplies the rows, but we want the columns, so we must apply t() to transform the
matrix, and then transform it back.

> t.test(t(t(t1)*c(1,-1,1,-1)))

2.1 Reading and Transforming Data 27

or

> contr1 <- c(1,-1,1,-1)
> t.test(t(t(t1)*contr1))

The third way is the most elegant. It uses matrix multiplication to accomplish the
same thing.

> contr1 <- c(1,-1,1,-1)
> t.test(t1 %*% contr1)

2.1.4.2 Averaging Items in a Within-Subject Design

Suppose we have a matrix t2, with 32 columns. Each row is a subject. The 32
columns represent a 8x4 design. The first eight columns represent eight different
levels of the first variable, at the first level of the second variable. The next eight
columns are the second level of the second variable, etc. Suppose we want a
matrix in which the columns represent the eight different levels of the first variable,
averaged across the second variable.

First method: loop

One way to do it – inelegantly but effectively – is with a loop. First, we set up the
resulting matrix. (We cannot put anything in it this way if it doesn’t exist yet.)

> m2 <- t2[,c(1:8)]*0

The idea here is just to make sure that the matrix has the right number of rows,
and all 0’s. Now here is the loop:

> for (i in 1:8) m2[,i] <- apply(t2[,i+c(8*0:3)],1,
mean)

Here, the index i is stepped through the columns of m2, filling each one with the
mean of four columns of t2. For example, the first column of m2 is the mean of
columns 1, 9, 17, and 25 of t2. This is because the vector c(8*0:3) is 0, 8, 16,
24. The apply function uses 1 as its second argument, which means to apply the
function mean across rows.

Second method: matrix multiplication

Now here is a more elegant way, but one that requires an auxiliary matrix, which
may use memory if that is a problem. This time we want the means according to the
second variable, which has four levels, so we want a matrix with four columns. We
will multiply the matrix t2 by an auxiliary matrix c0.

28 2 Reading and Transforming Data Format

The matrix c0 has 32 rows and four columns. The first column is 1,1,1,1,1,1,1,1
followed by 24 0’s. This is the result of rep(c(1,0,0,0),rep(8,4)), which
repeats each of the elements of 1,0,0,0 eight times (since rep(8,4) means
8,8,8,8). The second column is 8 0’s, 8 1’s, and 16 0’s.

> c0 <- cbind(rep(c(1,0,0,0), rep(8,4)), rep(c(0,1,0,0),
+ rep(8,4)), rep(c(0,0,1,0), rep(8,4)),
+ rep(c(0,0,0,1), rep(8,4)))
> c2 <- t2 %*% c0

The last line above uses matrix multiplication to create the matrix c2, which
has four columns and one row per subject. Note that the order here is important;
switching t2 and c0 will not work.

2.1.4.3 Selecting Cases or Variables

There are several other ways for defining new matrices or data frames as subsets of
other matrices or data frames.

One very useful function is which(), which yields the indices for which its
argument is true. For example, the output of which(3:10 > 4) is the vector 3
4 5 6 7 8, because the vector 3:10 has a length of 8, and the first two places in
it do not meet the criterion that their value is greater than 4. With which(), you can
use a vector to select rows or columns from a matrix (or data frame). For example,
suppose you have nine variables in a matrix m9 and you want to select three sub-
matrices, one consisting of variables 1, 4, 7, another with 2, 5, 8, and another with
3, 6, 9. Define mvec so that it is the vector 1 2 3 1 2 3 1 2 3.

> m9 <- matrix(rnorm(90), ncol = 9)
> mvec9 <- rep(1:3,3)
> m9a <- m9[,which(mvec9 == 1)]
> m9b <- m9[,which(mvec9 == 2)]
> m9c <- m9[,which(mvec9 == 3)]

You can use the same method to select subjects by any criterion, putting the
which() expression before the comma rather than after it, so that it indicates rows.

2.1.4.4 Recoding and Replacing Data

Suppose you have m1 a matrix of data in which 99 represents missing data, and you
want to replace each 99 with NA. Simply say m1[m1==99] <- NA. Note that this
will work only if m1 is a matrix (or vector), not a data frame (which could result
from a read.table() command). You might need to use the as.matrix()
function first.

Sometimes you want to recode a variable, e.g., a column in a matrix. If q1[,3]
is a 7-point scale and you want to reverse it, you can say

> q1[,3] <- 8 - q1[,3]

2.1 Reading and Transforming Data 29

In general, suppose you want to recode the numbers 1,2,3,4,5 so that they come
out as 1,5,3,2,4, respectively. You have a matrix m1, containing just the numbers 1
through 5. You can say

> c1 <- c(1,5,3,2,4)
> apply(m1,1:2,function(x) c1[x])

In this case c1[x] is just the value at the position indicated by x.
Suppose that, instead of 1 through 5, you have A through E, so that you cannot

use numerical positions. You want to convert A,B,C,D,E to 1,5,3,2,4, respectively.
You can use two vectors:

> c1 <- c(1,5,3,2,4)
> n1 <- c("A","B","C","D","E")
> apply(m1,1:2,function(x) c1[which(n1)==x])

Or, alternatively, you can give names to c1 instead of using a second vector:

> c1 <- c(1,5,3,2,4)
> names(c1) <- c("A","B","C","D","E")
> apply(m1,1:2,function(x) c1[x])

The same general idea will work for arrays, vectors, etc., instead of matrices.
Here are some other examples, which may be useful in simple cases, or as

illustrations of various tricks.
In this example, q2[,c(2,4)] are two columns that must be recoded by

switching 1 and 2 but leaving responses of 3 or more intact. To do this, say

> q2[,c(2,4)] <- (q2[,c(2,4)] < 3) * (3 - q2[,c(2,4)]) +
+ (q2[,c(2,4)] >= 3) * q2[,c(2,4)]

Here the expression q2[,c(2,4)] < 3 is a two-column matrix full of TRUE
and FALSE. By putting it in parentheses, you can multiply it by numbers, and TRUE
and FALSE are treated as 1 and 0, respectively. Thus, (q2[,c(2,4)] < 3) *
(3 - q2[,c(2,4)]) switches 1 and 2, for all entries less than 3. The expression
(q2[,c(2,4)] >= 3) * q2[,c(2,4)] replaces all the other values, those
greater than or equal to 3, with themselves.

Here is an example that will switch 1 and 3, 2 and 4, but leave 5 unchanged, for
columns 7 and 9

> q3[,c(7,9)] <- (q3[,c(7,9)]==1)*3 +
+ (q3[,c(7,9)]==2)*4 + (q3[,c(7,9)]==3)*1 +
+ (q3[,c(7,9)]==4)*2 + (q3[,c(7,9)]==5)*5

Notice that this works because everything on the right of <- is computed on the
values in q3 before any of these values are replaced.

30 2 Reading and Transforming Data Format

2.1.4.5 Replacing Characters with Numbers

Sometimes you have questionnaire data in which the responses are represented as
(for example) “y” and “n” (for yes and no). Suppose you want to convert these to
numbers so that you can average them. The following command does this for a
matrix q1, whose entries are y, n, or some other character for “unsure.” It converts
y to 1 and n to �1; leaving 0 for the “unsure” category.

> q1 <- (q1[,]=="y") - (q1[,]=="n")

In essence, this works by creating two new matrices and then subtracting one
from the other, element by element.

A related issue is how to work with date and time variables. A timestamp
value like “2009-02-01 15:22:35” is typically shown as a character string in a
spreadsheet program. Character variables of date and time can be converted into
DateTimeClasses.

> x <- c("2008-02-28 15:22:35", "2008-03-01 15:30:35")
> fmt <- "%Y-%m-%d %H:%M:%S"
> y <- strptime(x, format = fmt)
> y[2] - y[1]
Time difference of 2.0056 days

Note the time difference of approximately 2 days because there are 29 days
in February 2008. The strptime() function filters the character variable x
by a specific timestamp format. A “mm/dd/yyyy” date would need a format of
"%m/%d/%Y", and a “mm/dd/yy” date would need "%m/%d/%y".

Timestamp variables are often imported from the text output of a spreadsheet
program. Text variables imported through read.csv() and read.table() are
automatically converted into factors when the imported data are turned into a data
frame. strptime() does not accept factors. One workaround is to deactivate the
automatic conversion by setting read.csv(..., as.is = TRUE).

2.1.5 Using R to Compute Course Grades

Here is an example that might be useful and instructive. Suppose you have a set
of grades including a midterm with two parts m1 and m2, a final with two parts,
and two assignments. You told the students that you would standardize the midterm
scores, the final scores, and each of the assignment scores, then compute a weighted
sum to determine the grade. Here, with comments, is an R file that does this. The
critical line is the one that standardizes and computes a weighted sum, all in one
command.

> g1 <- read.csv("grades.csv",header=F)
> a1 <- as.vector(g1[,4])

2.2 Reshape and Merge Data Frames 31

> m1 <- as.vector(g1[,5])
> m2 <- as.vector(g1[,6])
> a2 <- as.vector(g1[,7])
> f1 <- as.vector(g1[,8])
> f2 <- as.vector(g1[,9])
> a1[a1=="NA"] <- 0 # missing assignment 1 gets a 0
> m <- 2*m1+m2 # compute midterm score from the parts
> f <- f1+f2
> gdf <- data.frame(a1,a2,m,f)
> gr <- apply(t(scale(gdf))*c(.10,.10,.30,.50),2,sum)
The last line standardizes the scores and computes
their weighted sum.
The weights are .10, .10, .30, and .50 for
a1, a2, m, and f

> gcut <- c(-2,-1.7,-1.4,-1.1,-.80,-.62,-.35,-.08,.16,
+ .40,.72,1.1,2)
The last line defines cutoffs for letter grades.

> glabels <- c("f","d","d+","c-","c","c+","b-","b",
+ "b+","a-","a","a+")
> gletter <- cut(gr,gcut,glabels) # letter grades
> grd <- cbind(g1[,1:2],round(gr,digits=4),gletter)
gl[,1:2] are students’ names

> grd[order(gr),] # sorts & prints matrix in rank order
> round(table(gletter)/.83,1) # prints, with rounding
the .83 is because there are 83 students

> gcum <- as.vector(round(cumsum(table(gletter)/.83),1))
> names(gcum) <- glabels
> gcum # cumulative sum of students w/ different grades

2.2 Reshape and Merge Data Frames

The reshape() function reshapes a data frame between the wide and long
layouts.

> data1 <- c(
+ 49,47,46,47,48,47,41,46,43,47,46,45,
+ 48,46,47,45,49,44,44,45,42,45,45,40,
+ 49,46,47,45,49,45,41,43,44,46,45,40,
+ 45,43,44,45,48,46,40,45,40,45,47,40)
> data1 <- data.frame(subj = paste("s", 1:12, sep=""),
+ matrix(data1, ncol = 4))
> names(data1) <- c("subj","sq.red", "circ.red",
+ "sq.blue", "circ.blue")
> data1

32 2 Reading and Transforming Data Format

subj sq.red circ.red sq.blue circ.blue
1 s1 49 48 49 45
2 s2 47 46 46 43
3 s3 46 47 47 44
4 s4 47 45 45 45
5 s5 48 49 49 48
6 s6 47 44 45 46
7 s7 41 44 41 40
8 s8 46 45 43 45
9 s9 43 42 44 40
10 s10 47 45 46 45
11 s11 46 45 45 47
12 s12 45 40 40 40

The data come from a hypothetical study of reaction time in working with control
panels of different shape (square and circle) and color (red and blue). Each subject
works with all all types of controls and the reaction time is collected. Details of this
example are described in Sect. 5.1.

You can tell reshape to convert columns 2 through 5 into a single long variable
called rt, with 4 records per subj.

> data1.long <- reshape(data1, direction = "long",
+ idvar = "subj", varying= 2:5, v.names = "rt")

The command takes columns 2 through 5 (varying = 2:5) and collapses them
into a single variable called v.names = "rt" in the long format (direction
= "long"). The varying option can be variable names, e.g., varying =
c("sq.red", "circ.red", "sq.blue", "circ.blue"). The subj
ids are repeated in the long format. A new variable (named time by default)
is created to index the collapsed columns. The index values of 1, 2, 3, and 4
represent the second (sq.red) through the 5th columns (circ.blue), respec-
tively. The default variable name time can be changed by specifying timevar
= "groups" if you want the new variable be named as groups. To con-
vert data1.long back into the wide format, type reshape(data1.long,
direction = "wide", ids = "subj"). We will see this data frame again
in Sect. 5.1 when we deal with repeated-measures ANOVA.

Another useful function is merge(), which joins data frames. Suppose you have
in a separate data frame the gender information of subjects 1 through 9. By default
the two data frames are matched by common variable(s), in this case one single
variable subj.

subj.char <- data.frame(subj = paste("s", 1:9,
sep = ""), sex = c("F","F","M","F","F","F","M",
"M","M"))

merge(x = data1.long, y = subj.char, all = TRUE)

2.3 Data Management with a SQL Database 33

subj time rt sex
1 s1 1 49 F
2 s1 2 48 F
3 s1 3 49 F
4 s1 4 45 F
5 s10 2 45 <NA>
6 s10 1 47 <NA>
7 s10 4 45 <NA>
8 s10 3 46 <NA>
...
15 s12 4 40 <NA>
16 s12 3 40 <NA>
...
47 s9 2 42 M
48 s9 1 43 M

Note that all = TRUE retains all subject ids from both data frames. The default
is all = FALSE, which would drop subjects 10 through 12. Set only all.x
= TRUE if you want to keep all subjects in data1.long but you are fine with
subjects in subj.char being dropped. The all.y option works the opposite
way. Note also that R sorts character strings by one character at a time, so that
subject id “s10” comes after id “s1.” We can force the subject ids to contain one “s”
and two digits by paste("s", sprintf("%02d", 1:12), sep = "")
when data1 and subj.char are created. (although subj.char only contains
subjects 1 through 9) You get “s01,” “s02,” ..., “s10,” and so on.

2.3 Data Management with a SQL Database

The last sections of this chapter deals with data management with a SQL database.
These advanced data management topics can be skipped without loss of continuity
or context.

Researchers working with Ecological Momentary Assessment (EMA) data
(Shiffman et al. 2008) may find this section especially useful. In this section we
cover how to work with PostgreSQL, an open-source database program that can be
freely downloaded and installed on computers running Unix/Linux, Mac OS, and
Windows. To fully appreciate how this works, you need to install a PostgreSQL
server program on your computer, run the SQL commands in Appendix A to
build a database, and run the R query commands below to retrieve data from the
PostgreSQL database program. It is a different method of data management. You
have the option to retrieve only a handful of variables you need to run an analysis.
You no longer need to use R to manage many variables in one large data frame,
most of which are anyways not needed in a specific analysis.

34 2 Reading and Transforming Data Format

Subjchar

id sex edu race

s001
s002
s003

s004

s005

F
F
M

M

F 2

4

1
2
3

B

B

W
A
W

Baseassess

bdi basedate

s001

id bsi

s005
s004
s003

s002

2009−07−12
2009−07−12
2009−07−09

2009−06−17

2009−06−2810

12

12
14
11 10

16
10

15

13

s001

...
s001
s001

EMA

s002
s002
...
s002

2009−06−29 09:20:25

2009−06−29 10:35:55

2009−06−29 09:35:35 1
1

1

2009−06−19 09:42:32

2009−06−19 08:05:15
2009−06−19 07:35:35

2009−07−14 11:07:03
2009−07−14 11:32:23

2009−07−14 12:42:19
2009−07−14 13:29:07

1
1

0

1
1

0
1

s005
s005
...

s005
s005

...

id tstamp smoke

Fig. 2.1 An example SQL database with three data tables

Figure 2.1 shows the design of a hypothetical database with three data tables.
Each table can be thought of as a spreadsheet. The subchar table contains
information on subject characteristics. The baseassess table contains baseline
assessments. These two tables are simple. The ema table contains repeated measures
of intensive EMA data. For example, subject 001 was asked whether or not she was
smoking on June 29, 2009 at 9:20 and she responded “yes” (coded 1). Another entry
is timestamped at 9:35, and another at 10:35. EMA is typically collected through
an electronic device such as a hand-held computer or a cellular phone to capture
behaviors as they happen in real time. An obvious advantage of EMA is that it
minimizes recall bias or noncompliance. A data analysis challenge is that the ema
table can be very long. Another complication is that different subjects can produce
different numbers of assessments. It would not make sense to format the data in a
wide layout.

Appendix A describes how to create this hypothetical database called test on a
PostgreSQL server program. The syntax in Appendix A should also work with other
database programs such as MySQL. Once created, the database test can be linked
to R by the library(RPostgreSQL) package.

> library(RPostgreSQL)
Loading required package: DBI
> conn <- dbConnect(PostgreSQL(), user = "usr1",

password = "**********", dbname = "test")

A connection is first established between R and the PostgreSQL server program. In
this example we use a user name and a password to provide data safety protection.

Next, a Standard Query Language (SQL) query is sent to the server through
conn to retrieve a result set.

2.4 SQL Database Considerations 35

> rs <- dbSendQuery(conn, "SELECT subjchar.id, sex,
+ edu, race, bsi, bdi, bdate, tstamp, smoke
+ FROM subjchar, baseassess, ema
+ WHERE subjchar.id = baseassess.id AND
+ subjchar.id = ema.id
+ ORDER BY subjchar.id, tstamp;")
> dat <- fetch(rs, n = -1)
> dbDisconnect(conn)

A result set rs is retrieved and fetch() actually gets all data in the result set into
dat. A great convenience is that any timestamp variable such as tstamp in this
example is automatically and seamlessly converted by the RPostgreSQL package
into DateTimeClasses in R. There is no need to do the often tedious manual
conversion. The tapply() command shows that the five consecutive assessments
for subject 001 are separated by approximately 15–25 minutes apart.

> tapply(dat.del$tstamp, list(dat.del$id),
+ function(x) {
+ x[2:length(x)] - x[1:(length(x)-1)] })
$s001
Time differences in mins
[1] 15.167 15.000 24.500 20.833
attr(,"tzone")
[1] ""
....
$s005
Time differences in mins
[1] 25.333 30.167 39.767 46.800 34.783
attr(,"tzone")
[1] ""

R can also work with an ACCESS database or any other ODBC-compliant
database programs. An example on how to set up and ODBC connection on a
standalone PC running Windows XP is provided in Appendix A.3.

2.4 SQL Database Considerations

Data management by a SQL-based database requires some preparations and basic
knowledge of SQL. Would it not be much easier just to save the data in spreadsheet
files, export each file into a comma-separated file (CSV) and use read.csv() and
merge() to combine them?

The answer to this question depends on a few things. A database management
system has several advantages over a spreadsheet program. A database management
system also deals with different variable types more efficiently, especially variables

36 2 Reading and Transforming Data Format

marked by timestamps. There is limited gain in efficiency if you only have a
small dataset in a fixed format, with mostly numeric, binary, and categorical
variables. Managing complex data with spreadsheet programs can be frustrating.
For example, reading character string variables into R and converting them into
DateTimeClass format is tedious and error prone. Timestamps variables have
to be converted one by one from text strings by strptime(). Sometimes the
user of a spreadsheet program inadvertently changes the format of a date variable
so that some entries are entered as "mm/dd/yyyy" and others as "mm/dd/yy".
A "%d/%m/%Y" string in strptime() requires a "mm/dd/yyyy" format so
that it fails with entries in "mm/dd/yy". Furthermore, sometimes the person who
enters the data accidentally type a space in one of the cells in a blank column. The
resulting CSV file may contain many blank variables. It certainly takes time to set
up a SQL-based database, but the prevention of common problems in managing
data with a spreadsheet program may more than compensate for the upfront cost in
setting up a SQL-based database.

Exercises

2.1. Importing data from a website
In the first exercise of this chapter, we will try importing data directly from a
website. Online data repositories make it easy to share de-identified data. The
read.table() and read.csv() functions in R can directly import data from
a file on the internet. For example, the ctest3.data file in this chapter can be
directly accessed from http://idecide.mskcc.org/yl home/.

(a) Try the command below to read the ctest3.data file.

c0 <- read.table("http://idecide.mskcc.org/yl_home/
rbook/ctest3.data")

2.2. Importing data from an online data repository
Online data repository is common. Many authors now make their data available
online. One example is the online data repository for the book by Fitzmaurice
et al. (2004a). Its URL is http://www.biostat.harvard.edu/�fitzmaur/ala/ (last
accessed April 20, 2011).

(a) Click on the “Datasets” icon, and you will find a link called “Television School
and Family Smoking Prevention and Cessation Project.” That link points to a
raw data file called tvsfp.txt.

(b) Click on the link to the TVSFP dataset to view its contents.
(c) What is the complete URL that goes into the file option in your

read.csv() function?

Exercises 37

(d) The first 44 lines of text in that file are the authors’ notes. They will have to be
skipped by the skip option. How can this be done?

(e) Write the complete read.csv() command with the skip option set.
(f) Would you set the header option to TRUE or FALSE?
(g) Convert the retrieved data into a data.frame in R.
(h) Add variable names to the final data frame if necessary.

2.3. Read and merge two data files
Read two data files from http://idecide.mskcc.org/yl home/rbook/. The first is
subjchar.dat, the second is ema.dat. The first row of each file contains the
variable names.

(a) The ema.dat file should be imported with an as.is=T to keep the timestamp
variable as a character string.

(b) Try the commands below.

url <- paste("http://idecide.mskcc.org/yl_home/",
"rbook/ema.dat", sep="")

ema <- read.table(url, as.is=T, sep="\t",
header=TRUE)

t1 <- strptime(ema$tstamp,
format="%Y-%m-%d %H:%M:%S")

ema <- data.frame(id=ema$id, tstamp=t1,
smoke=ema$smoke)

(c) Explain why we need the strptime() function for ema$tstamp?
(d) Use merge() to combine the two data frames into one.

2.4. Change data layout through reshape()
In this exercise we practice how to use reshape() to convert the ema data in the
previous problem into a wide format.

(a) First, create a new variable called time that contains the chronological order
of each subject’s tstamp variable. Try the command below and explain what
it does.

ema$time <- unlist(tapply(ema$tstamp, list(ema$id),
function(x) { order(x) })).

(b) Next, build the reshape() command that converts ema into the
wide format. (hint: You will need timevar="time", idvar="id",
v.names="smoke", and an optional drop="tstamp").

(c) Note that the reshaped wide layout contains additional variable(s), particularly
the one associated with the reshaped smoke variable. Explain why extra
variable(s) were created automatically as part of reshape()?

(d) Explain what the drop="tstamp" option does?
(e) Explain why you do not need to set the varying option?

http://www.springer.com/978-1-4614-1237-3

	Chapter 2 Reading and Transforming Data Format

	2.1 Reading and Transforming Data
	2.1.1 Data Layout
	2.1.2 A Simple Questionnaire Example
	2.1.2.1 Extracting Subsets of Data
	2.1.2.2 Finding Means (or Other Things) of Sets of Variables
	2.1.2.3 One Row Per Observation

	2.1.3 Other Ways to Read in Data
	2.1.4 Other Ways to Transform Variables
	2.1.4.1 Contrasts
	2.1.4.2 Averaging Items in a Within-Subject Design
	2.1.4.3 Selecting Cases or Variables
	2.1.4.4 Recoding and Replacing Data
	2.1.4.5 Replacing Characters with Numbers

	2.1.5 Using R to Compute Course Grades

	2.2 Reshape and Merge Data Frames
	2.3 Data Management with a SQL Database
	2.4 SQL Database Considerations

