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1 Introduction

Let E be an elliptic curve over Q. By [BCDT01], we may view E as an abelian
variety quotient over Q of the modular Jacobian Jo(/N), where N is the conductor
of E. We assume that the kernel of the map Jo(N) — E is connected, i.e., that £
is an optimal quotient of Jo(N) (this can always be done by replacing E by an
isogenous curve if needed). The modular degree m is the degree of the composite
map Xo(N) — Jo(N) — E, where we map Xo(N) to Jo(N) by sending P €
Xo(N) to [P] — [00] € Jo(N).

Let fr =Y anq" € S2(I'o(N),C) be the newform attached to E. The con-
gruence number vy of E is the largest integer such that there is an element g =
> buq" € S2(To(N)) with integer Fourier coefficients b, that is orthogonal to fx
with respect to the Petersson inner product, and congruent to fr modulo r; (i.e.,
a, = b, (mod ry) for all n).

Section 2 is about relations between r; and m ;. For example, m | rz. In [FM99,
Q. 4.4], Frey and Miiller asked whether r; = m;. We give examples in which
re # myg, and show that in these examples, there is a maximal ideal m of the
Hecke algebra T, such that Jo (/N )[m] has dimension more than two over T/m (this
is the failure of multiplicity one alluded to above). We then conjecture that for any
prime p, ord,(rz/mg) < %ord], (N), and prove this conjecture when ord,(N) < 1.

In Section 3, we consider analogs of the modular degree and the congruence
number for certain modular abelian varieties that are not necessarily elliptic curves;
these include optimal quotients of Jy(N) and J; (N ) of any dimension associated to
newforms. Section 3 may be read independently of Section 2. In Sections 4 and 5 we
prove the main theorem of this paper (Theorem 3.6), and also give some examples
of failure of what we call multiplicity one for differentials (see Definition 5.13).
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grateful to the Max-Planck-Institut fiir Mathematik for its hospitality during a visit when he partly
worked on this paper.

2 Elliptic curves

In Section 2.1, we discuss relationships between the modular degree and the
congruence number of an elliptic curve. In Section 2.2 we recall the notion of
multiplicity one and give new examples in which it fails.
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2.1 Modular degree and congruence number

Let N be a positive integer and let Xo(N) be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of order N.
The Hecke algebra T of level N is the subring of the ring of endomorphisms of
Jo(N) = Jac(Xo(N)) generated by the Hecke operators 7, for all n > 1. Let f
be a newform of weight 2 for I'y(V) with integer Fourier coefficients, and let / s be
kernel of the homomorphism T — Z[...,a,(f),...] that sends T, to a,. Then the
quotient £ = Jo(N)/1I;Jo(N) is an elliptic curve over Q. We call E the optimal
quotient associated to f. Composing the embedding Xo(N) — Jo(N) that sends
oo to 0 with the quotient map Jo(N) — E, we obtain a surjective morphism of
curves ¢z : Xo(N) — E. Recall that the modular degree m; of E is the degree
of pr.

Let S2(Z) denote the group of cuspforms of weight 2 on ['y(N) with integral
Fourier coefficients, and if G is a subgroup of S»(Z), let G+ denote the subgroup
of S7(Z) consisting of cuspforms that are orthogonal to f with respect to the
Petersson inner product. The congruence number of E (really, that of f) is the
positive integer r; defined by either of the following equivalent conditions:

() rp is the largest integer r such that there exists g € (Zf)* with f =
gmodr.

(i1) rg is the order of the quotient group %

We say that a prime is a congruence prime for E if it divides the congruence
number r;. Congruence primes have been studied by Doi, Hida, Ribet, Mazur and
others (see, e.g., [Rib83, §1]), and played an important role in Wiles’s work [Wil95]
on Fermat’s last theorem. Frey and Mai-Murty have observed that an appropriate
asymptotic bound on the modular degree is equivalent to the abc-conjecture
(see [Fre97, p.544] and [Mur99, p.180]). Thus, results that relate congruence primes
and the modular degree may be of great interest.

Theorem 2.1. Let E be an elliptic curve over Q of conductor N, with modular
degree my and congruence number ry. Then my | rp and if ord,(N) < 1, then
ord,(ry) = ord,(mp).

Thus any prime that divides the modular degree of an elliptic curve E is a
congruence prime for E, and if p is a congruence prime for E such that p?
does not divide the conductor of E, then p divides the modular degree of E. The
divisibility my | ry was first discussed in [Zag85, Th. 3], where it is attributed to the
second author (Ribet); however in [Zag85] the divisibility was mistakenly written
in the opposite direction. For some other expositions of the proof that m; | rg,
see [AU96, Lem 3.2] and [CKO04]. We generalize this divisibility and prove it
in Theorem 3.6(a). The second part of Theorem 2.1, i.e., that if ord,(N) < 1,
then ord, (rz) = ord,(m;), follows from the more general Theorem 3.6(b) below.
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Table 1 Differing Modular

Curve m; rp Curve mg rg  Curve mg rg

gzﬁzzrand Congruence 54B1 2 6 99A1 4 12 128A1 4 32
64A1 2 4 108A1 6 18 128B1 8§ 32
72A1 4 8 112A1 8 16 128C1 4 32
S80A1 4 8 112BI 4 8 128D1 8 32
88A1 8 16 112C1 8 16 135A1 12 36
9Bl 6 12 120A1 8 16 144A1 4 8
96A1 4 8 124A1 6 12 144BI 8 16
96B1 4 8 126A1 8 24

Note that [AU96, Prop. 3.3-3.4] implies the weaker statement that if p 4 N, then
ord,(ry) = ord,(mg), since [AU96, Prop. 3.3] implies

ord,(rg) —ord,(m;) = ord,(#C) — ord,(c;) — ord, (#D),

and by [AU96, Prop. 3.4], ord, (#C) = 0. Here c; is the Manin constant of £, which
is an integer (e.g., see [ARS06]), and C and D are certain groups.

Frey and Miiller [FM99, Ques. 4.4] asked whether r; = m in general. After
implementing an algorithm to compute r; in Magma [BCP97], we quickly found
that the answer is no. The counterexamples at conductor N <144 are given in
Table 1, where the curve is given using the notation of [Cre97].

For example, the elliptic curve 54B1, given by the equation y> + xy + y =
x3—x¥+x—1,hasr; = 6 and m; = 2. To see explicitly that 3 | r;, observe that
the newform corresponding to E is f = g+¢*>+g*—3¢°—q’ +--- and the newform
corresponding to X¢(27)is g = ¢ —2q* —q” +---, 50 g(q) + g(¢*) appears to be
congruent to f modulo 3. To prove this congruence, we checked it for 18 Fourier
coefficients, where the sufficiency of precision to degree 18 was determined using
[Stu87].

It is unclear whether there is a bound on the possible primes p that occur. For
example, for the curve 242B1 of conductor N = 2 - 112 we have

my=2%#£r, =211

We propose the following replacement for Question 4.4 of [FM99]:

Conjecture 2.2. Let E be an optimal elliptic curve of conductor N and p be any
prime. Then
e 1
d, | — ) < zord,(N).

ord, (mE) < 2or »(N)
We verified Conjecture 2.2 using Sage [S*T09] for every optimal elliptic curve
quotient of Jo(N), with N < 557.

If p > 5, then ord,(N) < 2, so a special case of the conjecture is

ord, (r—E) <1 forany p > 5.

mg
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2.2  Multiplicity one and its failure

We say that a maximal ideal m of T satisfies multiplicity one if Jo(N)[m] is of
dimension two over T/m. The reason one calls this “multiplicitly one” is that if
the canonical two-dimensional representation p,, over T/m attached to m (e.g.,
see [Rib90, Prop. 5.1]) is irreducible, then Jo(N )[m] is a direct sum of copies of py,
[Rib90, Thm. 5.2], and a maximal ideal m of T satisfies multiplicity one precisely
if the multiplicity of py, in this decomposition is one. Even if py, is reducible, the
definition of multiplicity one given above is relevant (e.g., see [Maz77, Cor. 16.3]).
The notion of multiplicity one, originally found in Mazur [Maz77], has played an
important role in several places (e.g., in Wiles’s proof of Fermat’s last theorem: see
Thm. 2.1 in [Wil95]).

In [MRO91, §13], the authors find examples of failure of multiplicity one in which
if p is the residue characteristic of m, then p3 | N, and py, is modular of level N/ p2.
Kilford [Kil02] found examples of failure of multiplicity one where N is prime and
the residue characteristic of m is 2. See also [Wie07] and [KWO08] for examples of
failure of multiplicity one in the '} (N) context. We now give examples of failure of
multiplicity one where the square of the residue characteristic of m divides the level
(the residue characteristic is often odd).

Proposition 2.3. Suppose E is an optimal elliptic curve over Q of conductor N
and p is a prime such that p | rg but p  mg. Then there is a maximal ideal m of T
with residue characteristic p such that dimy;m Jo(N)[m] > 2, i.e., multiplicity one
fails for m.

The proposition follows from the more general Proposition 5.9 below. It follows
from the proposition above that any example in Table 1 where simultaneously
a prime divides r; but does not divide m; provides an example of failure of
multiplicity one. In such examples, the associated representation p, may or may
not be irreducible. For example, for the elliptic curve 54B1 and p = 3, we have
ord;(rz) = 1 but ord;(mz) = 0, so there is a maximal ideal m with residue
characteristic 3 such that multiplicity one fails for m. The curve 54B1 has rational
3-torsion, so py, is reducible. On the other hand, for the elliptic curve 99A1, we have
ords(rz) = 1 but ords(m;) = 0, so again there is a maximal ideal m with residue
characteristic 3 such that multiplicity one fails for m. Moreover, Jy(99) is isogenous
to a product of elliptic curves, none of which admit a rational 3-isogeny. Hence pp,
is irreducible.

The notion of multiplicity one at a maximal ideal m is closely related to
Gorensteinness of the completion of T at m (e.g., see [Til97]). Kilford [Kil02]
found examples of failure of Gorensteinness (and multiplicity one) at the prime 2
for certain prime levels. In the examples as above where multiplicity one fails for
some maximal ideal, it would be interesting to do computations (e.g., as in [Kil02])
to see if the completion of the Hecke algebra at the maximal ideal is Gorenstein
or not.
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3 Modular abelian varieties of arbitrary dimension

For N > 4, let I' be either I'y(N) or '} (N). Let X be the modular curve over Q
associated to I', and let J be the Jacobian of X. Let A and B be abelian subvarieties
of J suchthat A + B = J, A N B is finite, and every endomorphism of J over Q
preserves A and B. In this section, we generalize the notions of the congruence
number and the modular degree to subvarieties A as above, and state a theorem
relating the two numbers, which we prove in Sections 4 and 5.

We first give a general example of A and B as above. Up to isogeny, J is the
product of factors J /) where [ runs over the set of newforms of level dividing N,
taken up to Galois con]ugatlon and e( f) is the number of divisors of N/N(f),
where N(f) is the level of f. Here J is the standard abelian subvariety of J
attached to f by Shimura [Shi94, Thm. 7.14]. Let A’ be the sum of J{' for
some set of f’s (taken up to Galois conjugation), and let B’ be the sum of all the
other J;(f)’s. Clearly A’ + B’ = J. The J;’s are simple (over Q), hence A’ N B’
is finite. In view of the following lemma, A" and B’ provide an example of 4 and B

respectively as above. Note that by End(J) we mean the ring of endomorphisms
of J defined over Q.

Lemma 3.1. End(J) preserves A’ and B’.

Proof. Suppose End(J) does not preserve A’ (the case of B’ is symmetric). Then
since the J;’s are simple, that means that some abelian subvariety J, of A’ is
isogenous to some abelian subvariety J;, of B’, where ¢ # h. Pick a prime £.
If f is a newform, then let ps denote the canonical absolutely irreducible £-adic
representation attached to f. Now Q, ® V¢ (J )" is a direct sum of copies of py( /) as
o ranges over all embeddings into Q of the field generated by the Fourier coefficients
of f. Thus the above implies that there are distinct newforms g’ and 4’ (of some
level dividing N) such that pgr = ppr. Now each p, satisfies tr(ps(Frob,)) =
ap(f) forall p + N Thus forall p  N{, we have a,(g’) = a,(h’). By the
multiplicity one theory (e.g., see [Li75, Cor. 3, pg. 300]), this means that g’ = /', a
contradiction. O

We now give a more specific example, which will include the case of elliptic
curves. Recall that T denotes the Hecke algebra. If /' = Y a,(f)q" € Sa(T") is a
newformand Iy = ker(T — Z[...,a,(f),...]),then Ay = J/IJ isthe newform
quotient associated to f. It is an abelian variety over Q of dimension equal to the
degree of the field Q(...,a,(f),...). Let ¢ denote the quotient map J — A.
If C is an abelian variety, then we denote its dual abelian variety by CV. There is
a canonical principal polarization 6 : J =~ JV. Dualizing ¢,, we obtain a closed
immersion ¢, : AV — JV, which when composed with 87! : JV = J gives us an
injection ¢ : A ;> J . One slight complication is that the isomorphism 6 does not
respect the actlon of T, because if T is a Hecke operator on J, then on JV it acts as
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Wx T Wy, where Wy is the Atkin—Lehner involution (see e.g., [DI95, Rem. 10.2.2]).
However, on the new quotient J"%, the action of the Hecke operators commutes
with that of Wy, so since the quotient map J — A factors through J"¥, the
Hecke action on A induced by the embedding A} — JV and the action on A¥
induced by the injection ¢; : A} — J are the same. Hence A} is isomorphic to
¢1(A}) as a T-module, and ¢1(A}) = Jy (this follows from the characterization
of J¢ in [Shi94, Thm. 7.14]). For simplicity, we will often denote ¢, (A}) = Jrby

just A}. Let ¢ be the composite map A} ﬂ> J ﬁ) A y; then ¢ is a polarization
(induced by dual of the polarization of J). Thus A} + I;J = J and A} NI/ J is
finite. Hence, in view of Lemma 3.1, A} and I7J ‘provide an example of A and B
as in the beginning of this section.

The exponent of a finite group G is the smallest positive integer n such that every
element of G has order dividing 7 (i.e., such that for all x € G,nx = 0).

Definition 3.2. The modular exponent 71, of A is the exponent of A N B and the
modular number n, of A is its order.

Note that the definition is symmetric with respect to A and B. In fact, the
definition depends on both A and B, unlike what the notation may suggest—we
have suppressed the dependence on B for ease of notation, with the understanding
that there is a natural choice of B (e.g., this is the case in the examples we gave
above). If f is a newform, then by the modular exponent/number of 4 s, we mean
that of A = AV, with B = I;J. In this situation, since ¢ is a polarization, Ny, is
a perfect square (e.g., see [AS05, Lemma 3.14]). When A is an elliptic curve, ¢
is multiplication by the modular degree m . Hence A N B = ker(¢) is (Z/mZ)?,
and so for elliptic curves, the modular exponent is equal to the modular degree and
the modular number is the square of the modular degree.

If R is a subring of C, let S2(R) = S»(I"; R) denote the subgroup of S,(I"; C)
consisting of cups forms whose Fourier expansions at the cusp oo have coefficients
in R. There is a T-equivariant bilinear pairing T x S(Z) — Z given by (¢, g) —
ai(t(g)), which is perfect by [AU96, Lemma 2.1] (see also [Rib83, Theorem 2.2]).
The action of T on H;(J,Z) is a faithful representation that embeds T into
Maty,(Z) = Z4” But Z is Noetherian, so T is finitely generated over Z, and
hence so is S»(Z). Let T4 be the image of T in End(A), and let Tp be the image
of T in End(B) (since T C End(J), T preserves A and B). Since A + B = J, the
natural map T — T4 @ Tjp is injective, and moreover, its cokernel is finite (since
A N B is finite).

Let S4 = Hom(Ty4,Z) and Sy = Hom(Tp, Z) be subgroups of S»(Z) obtained
via the pairing above. Let Ext! = ExtlZ denote the first Ext functor in the category
of Z-modules.

Lemma 3.3. There is a canonical isomorphism of T-modules

Ext' (T4 & Tp)/T.Z) = Sy(Z)/(S4 + Sp).
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The groups S>(Z)/(S4 + Sg) and (T4 ® Tp)/T are isomorphic.

Proof. Apply the Hom(—, Z) functor to the short exact sequence
0->T—>Ts®Tp > (T4dTp)/T—0
to obtain a three-term exact sequence
0 — Hom(T, & Tp,Z) — Hom(T,Z) — Ext' (T, ® T3)/T.Z) — 0. (1)

The perfect T-equivariant bilinear pairing T x S,(Z) — Z given by (¢, g) +—
ay(t(g)) transforms (1) into an exact sequence

0—>S,®Sp— S2(Z) - Ext'(T4 ®Tp)/T,Z) - 0

of T-modules, which proves the first claim in the lemma. Finally note that if G is
any finite abelian group, then Ext'(G,Z) ~ G as groups, which gives the second
result of the lemma. O

Definition 3.4. The exponent of either of the isomorphic groups S»(Z)/
(S4 + Sp) and (T4 & Tp)/T is the congruence exponent 7, of A and the order
of the groups is the congruence number 7.

Note that this definition is also symmetric with respect to A and B, and again,
the definition depends on both A and B, unlike what the notation may suggest —
we have suppressed the dependence on B with the implicit understanding that B has
been chosen (given A). If f is a newform, then by the congruence exponent/number
of Ay, we mean that of 4 = A\]ﬁ, with B = I,J. In this situation, T, =
T/I; and S4 = S>(Z)[I/]. Recall that a subgroup H of an abelian group G
is said to be saturated (in G) if G/H is torsion-free. Now Hom(Tp,Z) is the
unique saturated Hecke-stable complement of S>(Z)[/ /] in S»(Z), hence must equal
S2(Z)[1 f]J', where we recall that S»(Z)[/ f]J' denotes the orthogonal complement of
S2(Z)[1 y] in S»(Z) with respect to the Petersson inner product. Thus the congruence
exponent 7, is the exponent of the group

S>(Z)
2D f] + S D[]+

2

and the congruence number r, ; is its order. In particular, our definition of r, ;
generalizes the definition in Section 2.1 when A ; is an elliptic curve.

Remark 3.5. If R is a subring of C, then S»(Z) ®z R = S»(R) (see, e.g., the
discussion in [DI95, §12]). Thus the analog of the group displayed in (2) with Z
replaced by an algebraic integer ring (or even Z) gives a torsion module whose
annihilator ideal meets Z in the ideal generated by the congruence exponent.
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The following generalizes Theorem 2.1:

Theorem 3.6. Let A and B be as in the first paragraph of Section 3. Then:

(a) iy |7y
(b) LetI' =T'o(N). If p t N, then ord,(7,) = ord,(7i,). If f € S2(I'o(N),C) is
a newform, then ord,(7,,) = ord, (71, ) whenever P>t N.

We give the proof of part (a) of this theorem in Section 4 and of part (b) in
Section 5. The two sections may be read independently of each other.

Remark 3.7. Let f € S,(I',C) be a newform. When A is an elliptic curve,
Theorem 3.6 implies that the modular degree divides the congruence number (since
for an elliptic curve, the modular degree and modular exponent are the same), and
that n,, | ”/21, (since for an elliptic curve, the modular number is the square of
the modular exponent). In general, for a higher dimensional newform quotient, the
divisibility n, , | ri , need not hold. For example, there is a newform of degree 24

in S»(I'y(431)) such that
nay, = Q"-6947)° t ri = (2'°-6947)%

Note that 431 is prime and mod 2 multiplicity one fails for Jy(431) (see [Kil02]).

4 Proof of Theorem 3.6(a)

Since End(J) preserves A and B, we have a map End(J) — End(A4) & End(B);
moreover, since A + B = J, this map is injective. We have the following
commutative diagram with exact rows:

Ti®T
0 T T, & Ts 19T 0
T
v
End(4) @ End(B
0 —> End(J) —> End(A4) @ End(B) nd(4) © End(8) 0.
End(J)
3)

The first two vertical maps are clearly injections, and the rightmost vertical map is
defined naturally so that the diagram is commutative. Let

e = (170) ETA®TBs

and let ¢; and e; denote the images of e in the groups (T4 @ Tp)/T and (End(A4) &
End(B))/End(J), respectively. Since A N B is finite (in addition to the fact that
A+ B = J), the two quotient groups on the right side of (3) are finite, so e; and e,
have finite order.
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Lemma 4.1. The element e; € (End(A) & End(B))/End(J) defined above has
order 1 4.

Proof. By the denominator of any ¢ € End(J) ® Q, we mean the smallest positive
integer n such that n¢ € End(J). Let 7,, 75 € End(J) ® Q be projection onto A
and B, respectively. Let n be the order of e;, so n is the denominator of 7, which
equals the denominator of m (since m, + mz = 1y, sothat my = 1; — m,). We
want to show that » is equal to 71 4, the exponent of A N B.

Let i and ip be the embeddings of A and B into J, respectively. We view ni,
and nm, as morphisms J — A and J — B, respectively. Let ¢ = (nm,,nm;) €
Hom(J, A x B); then ¢ o (i4 4+ ip) = [n]axp. We have an exact sequence

x> (x,—x) ig+ip

0>ANB — AxB——J —0.
Let A be the image of A N B. Then by exactness,
[M]A = (¢ o (ia+i)(A) =¢o((ia+ip)(A)) = ¢({0}) = {0},

so n is a multiple of the exponent 71, of A N B.
To show the opposite divisibility, consider the commutative diagram

x> (x,—x)
0 —— ANB — AxB J 0
i) (l410) v
X (x,—x) V

where the middle vertical map is (a, b) — (71,4a,0) and the map ¥ exists because
[714](AN B) =0.Buty =, m, in End(J) ® Q. This shows that 7i,7t, € End(J),
i.e., that 71, is a multiple of the denominator n of . O

Lemma 4.2. The element e; € (T4 ® Tp)/T has order 7.

Proof. We want to show that the order r of e; equals the exponentof M = (T4 &
Tp)/T. Since e; is an element of M, the exponent of M is divisible by r. To obtain
the reverse divisibility, consider any element x of M. Let (a,b) € T4 & Tp be
such that its image in M is x. By definition of e¢; and r, we have (r,0) € T, and
since 1 = (1,1) € T, we also have (0,r) € T. Thus (Tr,0) and (0, Tr) are both
subsets of T (i.e., are in the image of T under themap T — T4 ® Tp),sor(a,b) =
(ra,rb) = (ra,0) + (0,rb) € T. This implies that the order of x divides r. Since
this is true for every x € M, we conclude that the exponent of M divides r. O
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Proof of Theorem 3.6(a). Since e; is the image of e; under the rightmost vertical
homomorphism in (3), the order of e, divides that of e;. Now apply Lemmas 4.1
and 4.2. O

5 Proof of Theorem 3.6(b)

Let T be the saturation of T = Z[..., Ty, ...] in End(J), i.e.,
T =End(J) N (T ® Q).

The quotient T'/T is a finitely generated abelian group because both T and End(J)
are finitely generated over Z. Since T’/ T is also a torsion group, it is finite.

In Section 5.1, we introduce two ideals R and S of the Hecke algebra that are
generalizations of the notions of the congruence exponent and the modular exponent
respectively. We will see that R C S and show that there is a natural injection
S/R < T'/T.In Section 5.2, we will prove that T and T’ agree locally at a maximal
ideal of T under the condition that we call “multiplicity one for differentials”;
we also give examples where this condition does not hold. Theorem 3.6(b) itself
is proved at the end of Section 5.1, by applying the results of Section 5.1 and a
proposition that is proved in Section 5.2 to show that R = § locally at a prime p
such that p fN (when A is the dual of newform quotient, the condition that p [N
can be replaced by p? fN).

5.1 The congruence and intersection ideals

In this section, we work in slightly more generality, and take A and B to be as in
the first paragraph of Section 3 (so I" can be I'; (N), and A need not be the dual of
a newform quotient). Let w4 : T — T4 and 7 : T — T3 be the natural projection
maps.

Definition 5.1. With the setup as above, we define the congruence ideal as R =
wy(ker(mp)) C Ty, and the intersection ideal as S = Annt, (A N B).

Lemma 5.2. We have R C S.

Proof. By definition, R consists of restrictions to A of Hecke operators that vanish
on B, while S consists of restrictions to A of Hecke operators that vanishon A N B.
The lemma follows since the image in T4 of an operator that vanishes on B also
vanisheson A N B. O

Remark 5.3. By Lemma 5.2, we have a surjection T4/R — T,/S. Note that 74
induces an isomorphism

T ~ Ty
H — s
ker(m4) + ker(mp) R
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and we have an isomorphism

T ~ T4 Tp
—
ker(my) + ker(mp) T

obtained by sending ¢ € T to (w4(¢),0) € T4 & Tp. Hence by Definition 3.4,
the exponent of T4/ R is 7, and its order is r,. Also, 7i, is the exponent of A N B,
and one expects that it is also the exponent of T4 /S (certainly multiplication by 71,
annihilates T 4/S), which would give another proof that 71, | 7. Instead of pursuing
this question, we record the following result, which will be needed later.

Proposition 5.4. If p is a prime such that the localizations of R and S at p
coincide, then ord, (7,) < ord,(ii,).

Proof. Under the hypothesis, the surjection T4/R — T,4/S is an isomorphism
locally at p. The lemma follows from the observations above that 7, is the exponent
of T4/R and that 71, annihilates T4/.S. O

Lemma 5.5. There is a natural inclusion S /R < T’ /T of T-modules.

Proof. We have
T®Q = (T4®Q) & (Tsr®Q) C (End(4) ®Q) & (End(B) ® Q) = End(J) ® Q,

which we use to view T and T4 as sitting inside End(J) ® Q. Also, the groups
End(J) and T’ sit naturally in End(J) ® Q. By definition, R = T, N T. Since an
endomorphism of A x B factors through A x B — J if and only if it kills A N B
embedded in A x B via x +— (x,—x), we have that S = T4 N End(J) and this
equals T4 N T’ (since a suitable multiple of any element of T, lands in T, when
both are viewed as subgroups of T® Q C End(J/) ® Q). Hence we have R = SNT
with intersection taken inside T" C End(J) ® Q. Thus

S/R=S/(SNT)=(S+T)/T— T/T. 0

If m is a maximal ideal of T, then we say that two Hecke modules, with one
contained in the other, agree locally at m if their localizations at m are the same.
Let 74 denote the kernel of the map T — T,4. As an immediate consequence of
Lemma 5.5, we have:

Proposition 5.6. If m is a maximal ideal of T containing 14 that is not in
Supp(T'/T), then the corresponding maximal ideal m/I4 of T4 is not in the
support of S/R, i.e.: if T and T" agree locally at wm, then R and S also agree locally
at m/ 14.

Remark 5.7. The ring

T = End(J) N (T4 x Tg) = T' N (T4 x Tg)
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is often of interest, where the intersection is taken in End(J) ® Q. We proved above
that there is a natural inclusion S /R < T’/T. This inclusion yields an isomorphism

S/R 5o /T, as is clear from the “if and only if” statement in the proof of
Lemma 5.5. The ideals R and S are equal if the rings T and T” coincide. Even
when T’ is bigger than T, its subring T” may be not far from T.

The following lemma and proposition will not be used in the proof of Theorem
3.6(b), but they are of interest from the point of view of multiplicity one.

Lemma 5.8. Let p be a prime and let m be a maximal ideal of T with residue
characteristic p. Suppose m satisfies the multiplicity one condition (i.e., J[m] is of
dimension two over T/m). Then the completions of T and T" at m are isomorphic.

Proof. As in [Maz77, p.92], consider the Tate module Tay(J), which is the
Pontryagin dual of the m-divisible group associated to J(Q). Since J[m] is of
dimension two over T/m, it follows that Ta,, (/) is free of rank 2 over T,,, where
the subscript denotes completion (see, e.g., [Til97, p. 332-333]). If r is an element
of T}, then r operates Tp,-linearly on Tay, (J), and thus may be viewed as a 2 x 2
matrix with entries in Ty,. Further, some non-zero integer multiple of r operates
on Ta, (J) as an element of Ty, i.e., as a scalar. Thus  must be a scalar to start
with, i.e., actually lies in Ty,. Hence Tin = T, as claimed. O

Proposition 5.9. Let p be a prime such that all maximal ideals m of T with residue
characteristic p that contain 14 satisfy multiplicity one. Then ord,(7,) = ord, (i ).

Proof. This follows from Lemma 5.8, Lemma 5.5, Proposition 5.4, and Theorem
3.6(a). O

Proposition 5.10. Let I' = T((N). Let p be a prime such that p> + N, and let
m be a maximal ideal of T with residue characteristic p. If p|N, then assume that
Iy € m for some newform f. Then T and T’ agree locally at m.

Since the proof of this proposition is rather technical, we have postponed
it to Section 5.2. Admitting this proposition, we may now finish the proof of
Theorem 3.6(b).

Proof of Theorem 3.6(b). Recall that A and B are abelian subvarieties of J =
Jo(N) suchthat A + B = J, AN B is finite, and every endomorphism of J over Q
preserves A and B.

We first want to show that if a prime p does not divide N, then ord,(7y) =
ord, (714). In view of Theorem 3.6(a) and Proposition 5.4, it suffices to check that R
and S coincide locally at p. By Proposition 5.6, it suffices to check that T and T’ are
locally equal at all maximal ideals that divide p. If p N, then this follows from
Proposition 5.10, which proves part of Theorem 3.6(b).

It remains to show that if f € S(I'o(N),C) is a newform and p || N, then
ord,(r,,) = ord,(7,,). Note that the Hecke algebra T acts on S/R through its
quotient T ay = T/ AnnTA\jﬁ since the action of T on R and on S factors through

this quotien‘t. Thus, in view of Theorem 3.6(a) and Proposition 5.4, it suffices to
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check that R and S coincide locally at maximal ideals of T that divide p and contain
AnnrAY = Iy (the equality follows since /; is saturated). But this follows from
Proposition 5.6 and Proposition 5.10. O

5.2  Multiplicity one for differentials

This section is devoted to the proof of Proposition 5.10 as well as a discussion of
the notion of multiplicity one for differentials (Definition 5.13). In this section, we
take I' = T'o(N).

Let p be a prime such that p> 4 N. Let My(N) denote the compactified coarse
moduli scheme associated to I'g(N) (as in [DR73, § IV.3]) over Z ,, and let X((N )z ,
denote its minimal regular resolution obtained by suitable blow-up of the points
Jj = 0, 1728 in characteristic dividing N, when they are supersingular (cf. [Maz77,
p.63]). Let Qx,wv) /z, denote the relative dualizing sheaf of Xo(N )Z,, over Z, (it
is the sheaf of regular differentials as in [MR91, §7]). We denote by Xo(N)r, the
special fiber of Xo(N)z, at the prime p and by Q2 x,v)/r, the relative dualizing
sheaf of Xo(N)g, over F.

The usual Hecke operators and the Atkin—Lehner involutions (corresponding
to primes dividing N) of Jo(N) over Q extend uniquely to act on the base
change to Z, of the Néron model of Jo(N), which we denote by Jz,. The natural
morphism Picg(()( vz, — Jz, identifies Picgfo( ~)/z, With the identity component
of Jz, (see, e.g., [BLRI0, §9.4-9.5]). Passing to tangent spaces along the identity
section over Z,, we obtain an isomorphism HI(XO(N)ZP, OXo(N)zp) = Tan(Jz,).
Using Grothendieck duality, one gets an isomorphism Cot(Jz,)=H O(Xo(N )z,
Qxo(N) /zp), where Cot(JZP) is the cotangent space at the identity section (cf.
[Maz78, p. 140]). Now the Hecke operators and the Atkin—Lehner involutions act on
Cot(JZp), and hence via the last isomorphism above, we get an action of the
Hecke operators and the Atkin—Lehner involutions on H°(Xo(N )z, 2 Xo(N)/Z,)-
Following the proof of Prop. 3.3 on p. 68 of [Maz77], specialization induces an
isomorphism

H(Xo(N)E,. Qxovy/¥,) = H(Xo(N)z,. Qxov)/z,) @z, F)p.
In this way, we get an action of the Hecke operators and the Atkin—Lehner

involutions on HO(XO(N)FP, Qx,(n)/F,) as well.
The following lemma is implicit in [Maz77, p. 95].

Lemma 5.11 (Mazur). Let m be a maximal ideal of T of residue characteristic p
(recall that p* + N ). Suppose

dimT/m HO(Xo(N)Fp, QXO(N)/FP)[m] <1.

Then T and T agree locally at m.
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Proof. Let M denote the group HI(XO(N)ZP, Ox,(n)), where Oy, is the
structure sheaf of Xo(N). As explained in [Maz77, p. 95], we have an action of
EndyJo(N) on M, and the action of T on M via the inclusion T C EndgJo(N)
is faithful, so likewise for the action by T'. Hence we have an injection ¢ : T' —
EndtrM . Suppose m is a maximal ideal of T that satisfies the hypotheses of the
lemma. To prove that Ty, = T}, it suffices to prove the following claim: O

Claim: The map ¢ |t is surjective locally at m.

Proof. It suffices to show that M is generated by a single element over T
locally at m, and in turn, by Nakayama’s lemma, it suffices to check that the
dimension of the T/m-vector space M/mM is at most one. Now M/mM is
dual to HO(XO(N)FP,QXO(N)/FP)[m]. Since we are assuming that dimT/mH0
(Xo(N)F,, 2x,n)F,)[m] < 1, we have dimr/m(M/mM) < 1, which proves the
claim.

Remark 5.12. Note that Lemma 5.8 may provide an alternate route to the conclu-
sion of the previous lemma (sometimes one can prove multiplicity one for a maximal
ideal without relying on multiplicity one for differentials, e.g., see [Dia97]). Observe
that in the proofs of Lemmas 5.11 and 5.8, all we needed was (locally) a non-zero
free T-module (of finite rank, say) that is attached functorially to J. In Lemma 5.11,
the module we used was H' (Xo(N )Z,,, Ox,(n)); locally, it is free because its
reduction modulo m is of the same dimension as its generic rank (namely 1). In
Lemma 5.8, we used the m-adic Tate module, whose reduction mod m is of the
same dimension as its generic rank (namely 2).

Definition 5.13. If m is a maximal ideal of the Hecke algebra T of residue
characteristic p, we say that m satisfies multiplicity one for differentials if

dimm (H*(Xo(N)F,. Qxo(nv/F,)[m]) = 1.

The above condition, which first appeared in [Maz77], plays an important role
in several places, including Wiles’s proof of Fermat’s last theorem (see [Wil95,
Lemma 2.2]). It has been used to prove multiplicity one for m (as in Section 2.2)
and Gorensteinness of the completion of T at m (under certain hypotheses; see,
e.g., [Til97]).

5.2.1 Failure of multiplicity one for differentials

In this section, we digress to discuss examples of failure of multiplicity one for
differentials. The reader interested in the proof of Proposition 5.10 may jump to
Section 5.2.2 below.

By Lemma 5.11, if p? 4 N and if the multiplicity one condition for differentials
holds at m, then T and T’ agree locally at m. It is thus of interest to compute the
quotient group T'/T for various N. We compute this index in Sage [ST09]. and
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Table 2 Nonzero Quotients T//T for N < 325
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44
46
54
56
60
62
64
68
72
76
78
80
84
88
92
94
96
99
104
108
110
112
116
118
120
124
125
126
128
132
135
136
140
142
144
147
148
150
152
153
156
158

(&)
G
G
(&)
G
G
(&)
(&)
G
G

C; @ Cs
C,dCy® Cy

G
G ®C,
c;

160
162
164
166
168
169
171
172
174
175
176
180
184
186
188
189
190
192
196
198
200
204
206
207
208
210
212
214
216
220
224
225
228
230
232
234
236
238
240
242
243
244

C3DC,®Cy

C; @ C; d Cg
C, & C?
C3DC,dCy

()

CGOC; ®Cpy
CG®Cy
CSDCD Gy
Cs

c;

(&

Cl @ C?

C}

C25 ® Cy

c

ClC} G

245
248
250
252
254
256
260
261
262
264
268
270
272
275
276
278
279
280
282
284
286
288
289
290
292
294
296
297
300
302
304
306
308
310
312
315
316
318
320
322
324
325

C7

Cl®Cyi®Cy

Cs

C;C®Chy

c;
CEOCIDCZDCig

Cl®CDCr®Coy
CZ
17
G
G
¢t
CEDC}
C3d Cy
C; & Cj
G
4 4
C2 @ C4 ® C8

CSDC}®C3 @ Cig
C;

C]®CeDCg

s

obtain Table 2, where the first column contains N for N < 325 and the second
column contains the quotient group T’/T, where C, denotes a cyclic group of

order n.
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In each case in which a prime p divides [T’ : T] but p> } N, Lemma 5.11
implies that there is some maximal ideal m of T of residue characteristic p for
which multiplicity one for differentials does not hold. For example, when N = 46,
we find that [T” : T] = 2, and 2% } N; thus there is a maximal ideal m of T of
residue characteristic 2 for which multiplicity one for differentials does not hold.

In Table 2, we observe that whenever p divides [T’ : T], then p = 2 or p*> | N.
This raises the question: is it true that if p is odd and p? 4 N, then multiplicity
one for differentials holds for maximal ideals m of T of residue characteristic p?
Lemma 5.20 below gives an affirmative answer in one direction (the other direction
is usually easy), but under the hypothesis that if p | N then U, acts as a non-zero
scalar on HO(XO(N)FP, Qxyvyr,)[m].

5.2.2  Proof of Proposition 5.10
The main point is to prove that the hypothesis
dimy/m H(Xo(N)F, . Qxov)/F,)[m] < 1

of Lemma 5.11 holds for suitable maximal ideals m. This is achieved in Lemma 5.20
below, whose proof requires an Eichler—Shimura type relation for U, (Lemma 5.15
below). We obtain this relation by modifying the argument in [Wil80, §5], which is
in the ' (V) context, to the ['y(N) situation. Let L denote the maximal unramified
extension of Q, and let O denote the ring of integers of L. For the sake of
completeness, we state below a lemma that is well known (e.g., it is used implicitly
in [Wil80, p. 18]); the proof was indicated to us by F. Calegari.

Lemma 5.14. Let E be an elliptic curve over O with good ordinary reduction.
Then the subgroup schemes of E of order p are p copies of Z/ pZ and one copy

of K

Proof. Let G = E[p], and consider its connected-étale sequence
0—>G’—>G— G —0.

Now G is in the kernel of the reduction map, and we know that the reduction
of E[p] has non-trivial order. Hence G® is non-trivial. By Cartier duality, G° is
also non-trivial. Hence G® is a Z/ pZ and by duality, G’ is a p - Thus one of the
subgroup schemes of E of order p is a copy of p,. Let H be any other subgroup
scheme of E of order p. Then H has to be trivial, since otherwise H = HY is
a non-trivial subgroup scheme of G° = p. »» hence is equal to G’ =p »» Which
has already been accounted for. Thus H is étale, and hence is a copy of Z/ pZ.
The lemma follows, since there are p + 1 subgroup schemes of order p in E[p],
hence in E. O

We assume that p||N until just after the proof of Lemma 5.18. Let M = N/ p.
We will use the superscript 4 to denote the subscheme of My(N) obtained by
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removing the supersingular points in characteristic p. Following [DR73, V1.6.9]
and [DR73, § V.2], the F,-valued points of My(N )" are in one-to-one correspon-
dence with isomorphism classes of triples consisting of

(a) a generalized elliptic curve E over Fp» whose smooth locus we denote E5™,
(b) a subgroup of E*"[p] isomorphic to ., or to Z/ pZ, and
(c) asubgroupZ/MZ of ES™[M],

such that the subgroup generated by the subgroups in (b) and (c) above meets
every irreducible component of every geometric fiber of E over Fp- Also, My(N )F,,
has two irreducible components, which may be described according as whether the
subgroup in (b) is isomorphic to ., or to Z/ pZ. As mentioned earlier, Xo(N )Fp is
obtained from My (N )Fp by suitable blowups and consists of two copies of Xo(M )Fp

identified at supersingular points, along with some copies of P! (see the description
of XO(N)F,, on p. 175-177 of [Maz77] for details). One of the copies of XO(M)F,,
corresponds to the irreducible component of My(N )Fp where the subgroup in (b)
is isomorphic to Z/ pZ; we denote this copy by Cy. The other copy of Xo(M )F,,
corresponds to the irreducible component of My(N )Fp where the subgroup in (b) is
isomorphic to p ,, and contains the cusp co; we denote this copy by Cy. We denote
the copies (if any) of P! by C,, ..., C,, where r is one less than the total number of
irreducible components of Xo(N )F,,-

The usual endomorphisms U, and W), of Jo(N) over Q can be extended by base
change to L, and extend uniquely to act on the Néron model of Jo(N) over Oy.
Since the formation of Néron models is compatible with completions and unramified
base change, this action is compatible with the already-defined action on the Néron
model of Jo(N) over Z,. The identity component of the special fiber of the Néron

model of Jo(N) over Oy is Pic())(o(N) F, whose maximal abelian variety quotient
P

) [ Picg/F (cf. [DR73, 1.3.7] and [BLR90, §9.2, Example 8]). Thus we get an
i/Xp
. -0 r 0
action of U, and W, on Pic Xo(N)/F, and on [[;_,Pic Ci/F," Let Frob, denote the
Frobenius morphism on Cy 5, .

Lemma 5.15. The endomorphisms U, and W, of [];—,P

Frob, + (p — )W, on PicOCO 5,

) . _
ice, ¥, satisfy U, =

Proof. The proof is a modification of the proof of Theorem 5.3 in [Wil80], along
with some details borrowed from the proof of Theorem 5.16 in B. Conrad’s appendix
to [RSO1].

It suffices to check the desired identity on a Zariski dense subset of
Picoco/ip (F,) = J(Co)(F,), where J(Cy) is the Jacobian of Cy. If g is the genus
of Cy, then fixing a base point, we get a surjection C§ — J(Cp). Hence if U is
any dense open subset of Cy(F ), then U* hits a Zariski dense subset of J(Co)(F ).
Taking U to be the ordinary locus of CO(F,,), it thus suffices to prove the desired
identity on divisors of the form (Q) — (Q’), where the elliptic curves corresponding
to 0, Q' € Co(F)) are ordinary.
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Let My(N) denote the algebraic stack over Oy, associated to ['o(N) by [DR73,
1v.3.3, IV.4.2], whose associated coarse moduli scheme is MO(N ) (over Op). Let
w1 Mo(N) — My(N) denote the associated natural map. If k = F, or an algebraic
closure of L, then 7 is an isomorphism on k-valued points, and so we will often
identify points on M (N)(k) with points on Mo(N)(k). Let Q be an ordinary
point on Co(F,). Then Q is given by a triple (E, C, D), where E is an ordinary
elliptic curve over F o C is a subgroup isomorphic to Z/ pZ, and D is a subgroup
isomorphic to Z/MZ. We can choose a Weierstrass model £ < P2 o, lifting E;
then E is canonically an elliptic curve by [KM85, Chap. 2]. By Lemma 5.14 and its
proof, there is a subgroup C of E isomorphic to Z/ pZ that lifts C. Also, as argued
in [RSO1, p. 219], there is a subgroup D of E isomorphic to Z/MZ that lifts D.
Then (E, C, D) gives a point on My(N)(Op) (cf. [DR73, V.1.6]), whose image
in My(N)(Opr) corresponds to a point P in Xo(N)(Op) (since E has ordinary
reduction). We will use a bar to denote specialization. Thus we have Q = P.
Similarly, given another point Q' € CO(FP), we will denote the corresponding
associated quantities by a prime superscript (thus P’ in Xo(N)(OL) denotes a
lift of Q’, etc.). As mentioned in the previous paragraph, it suffices to prove the
relation claimed in the lemma for elements of the form (Q) — (Q’) in Pic(é0 7, (F »)-

Viewing P and P’ as relative effective Cartier divisors of degree one, we see
that U,((Q) — (Q")) is the image of U,((P) — (P’)) under specialization, i.e.,

Up((Q) = (2") = U, ((P) = (P").

We next compute U, ((P) — (P’)). Now Pic’ Xo(N)/0, is the identity component
of Jo(N)o, ., and we have Jo(N)o, (O1) = Jo(N)(L) € Jo(N)(L), where L is an
algebraic closure of L. Denoting base change to L by a subscript L, we have

= Y (Ep/Ag.(Cp+ Ap)/ AL (Dr + Ap)/Ap)
AT
— Y (EL/A (Cp+ A /AL (DY + A /AL, ()

4
AT

where A7 runs through the subgroups of E7 of order p except C7 (and similarly
for A/Z)‘ Enlarging L by a finite extension if needed (which does not change the
residue field Fp) we may assume that there are p + 1 subgroups of order p in E; .
Their scheme-theoretic closures in E over Oy, are the subgroups schemes mentioned
in Lemma 5.14. If A is a subgroup scheme of E of order p, then we denote

the quotient map £ — E/A by a4. Consider the Cartier divisors corresponding
to U,((P) — (P’)) and to

(7(E/bpr e, ()., (D)) + Y 7(E/B. cl(@s(C)), ap(D)))
B

(7B /) 00 (€1, (D) + 3 7 (E'/ B ey (C)), g (D))

B’
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where B runs through the subgroups of E isomorphic to Z/ pZ except for C, and
cl(ap(C)) denotes the Zariski closure of «p(C) in E/B (and similarly with prime
superscripts). These two divisors coincide since they induce the same L-point by (4).

Passing to special fibers, and noting that the special fiber of the Néron model
of E/A s given by E /A, we find that

U,((0) (1) = U, ((P) — (P)
= ((B/15,.8,(©).3,, (D) + Y (E/B.cl@s(©)).@ (D)) ()
B

(7w} 80, @), 5, (D) + Y (BB ey ©). 35 (D). 6)
B/

where B again runs through the subgroups of E isomorphic to Z/ pZ except for C
(and a similar statment holds with prime superscripts).

Let F, denote the relative Frobenius map £ — E over F,. Now p p isin
the kernel of F,, and since the quotient map &, , has the same degree as F),

E” such that F = ¢oay, Also¢
and ay, (D) > = D Thus the first

there is an isomorphism ¢ : E/j, » S E

induces an isomorphism ¢, Uy, ) 5> C c”

term in (5) is identified with (E £ ,C c” D ) which is the image under Frob,

of P = (E,C, D). Similarly, the first term in (6) is Frob (P’).

As for the sum over B in (5), note that in each term, we are quotienting by a
group B which is isomorphic to Z/pZ, and hence cl(ap(C)) is of p ,-type. In a
manner similar to the computation of the action of U, we find that

W,((E.C.D) - (.. D7)
= (E/C, f[p]/C (D +C)/C) (7N
— (E’/C", E'[p]/C".(D' + C")/C"). (®)

Considering that P = (E, C, D), with C isomorphic to Z/ pZ, we see that E[p]/C
is isomorphic to p ,. Also, if B is as in the sum in (5), then BisaZ/ pZ,but there is
only one copy of Z/ pZ in E, since E has good ordinary reduction; hence B = C.
Thus each of the terms in the sum over B in (5) is the term in (7). A similar statment
holds with prime superscripts (viz., each of the terms in the sum over B’ in (6) is
the term in (8)).

The lemma now follows from the previous two paragraphs. O

Since we are assuming that p||N, the curve Xo(N )F,, has ordinary double
point singularities and so the differentials in H 0(XO(N )Fp Q Xo(N) /F ) may be

possible poles are at points on []'_, C; lying over an 1ntersect10n point of two
components in Xo(N )Fp and where the sum of the residues at the points lying
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over an intersection point is zero; such differentials are called regular differentials
(see [Con00, §5.2] for the justification that the relative dualizing sheaf under
Grothendieck duality is indeed the sheaf of regular differentials). By a holomorphic
differentialin H°(Xo(N )Fp’ Qxo) /Fp)» we mean a regular differential all of whose
corresponding w; have no poles at all (i.e., for all i, ; € H (o Qc,- /Fp) ). The
subspace of holomorphic differentials may be identified with [];_, H°(C;, Qe /Fp)
(which we will often do implicitly), and we let i; denote the corresponding injection
[Tizo H(Ci. Q¢ j5,) = H(Xo(N)g, . Qy,v)/F,)-

In a manner similar to the description in the third paragraph of Section 5.2,
Grothendieck duality gives an isomorphism

© : H(Xo(N)o, . Qxyn)/0,) = Cot(Pick, (vy/0,)- )

where Cot denotes the cotangent space at the identity section. Since we have an
action of U, and W), on Pic())(o( ny/0, (by viewing it as the identity component of the
Néron model of Jo(N) over Oy ), we may use ® to get an action of these operators
on H*(Xo(N)o,, Qyx,(n)/0.)- As before, Prop. 3.3 on p. 68 of [Maz77] implies
that base change to Fp gives an isomorphism

H(Xo(N)g, . 2y 7,) = H' (Xo(N)o,, Qxyivy/0,) ®0, Fp. (10)

From this, we get an action of U, and W, on HO(XO(N)Fp, Qxyn)/F,)-

Corollary 5.16. The endomorphisms U, and W), ofHO(Xo(N)fp, QX()(N)/FP) pre-
serve the subspace []i_o H*(Ci,Qq,,), and satisfy U, = =£Frob, +
(p—1)W, on H(Cy, QC()/FP)’ where Frob; denotes pullback by Frob, and where
we have a possible sign ambiguity = (which will not affect us later).

Proof. The proof is based on the following diagram; we describe below some of the
maps in it that have not been defined yet.

H(Xo(N)o, . Qxyn)/0,) — Cot(Pick, v)/0,)

6
HO(XO(N)va QX()(N)/F[,) - COt(PIC())(O(N)/fp)

’

[1/—, Cot(Pic?. - ).

[Ti=o HO(C:. QCi/Fp) Ci/F,
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Firstly, Cot always denotes the cotangent space at the identity section. The
map 7| is obtained by base change to 1_71,. By (10), 7y is surjective. The map m, is
obtained by observing that Pic:())(0 N)/F, is the identity component of the special fiber
of the Néron model of Jyo(N) over Oy, and hence maps to the identity component of
the Néron model of Jo(N) over Oy, which is Pic® Xo(N)/0, - The map 0 is obtained
using Grothendieck duality. The compatibility of Grothendieck duality under base
change (see [Con00]) implies that the top square in the diagram above commutes.

Now we have already defined actions of U, and W, on Pic())(o(N) o, and

on Pic())(o( N)/F (just before Lemma 5.15). Thus we get actions of U, and W,
P
0

on Cot(Pic())(o( ~y/0,) and on Cot(Pic Xo(N)/F,
we see that m, is compatible with the actions on its domain and codomain. Recall
that we used the isomorphism O to induce actions of U, and W, on H °(Xo(N)o, .
Qx,(N)/0,) and then used formula (10) to get actions on HO(XO(N)FP, Qx,n)/F,)-
Thus ® and 7 are also compatible with the actions of U, and W), on their domain
and codomain. Let o € HO(XO(N)FP, Qyx,vyF,)s and let Q € H(Xo(N)o,,
Qyx,n)0,) be such that 71(2) = w. Then O(U,(w)) = 0(m(Uy(Q))) =
wOU,Q) = mUO(R) = Upm(@OQ) = Upy#(m(Q) =
U,(6(w)). Thus we see that the isomorphism 6 is compatible with the action of U,
(and similarly for W),) on its domain and codomain.

Now we turn to the bottom square in the diagram above. As mentioned earlier, the
injection i arises because []:_, P is the maximal abelian variety quotient of

). From the definitions of these actions

ic?

Ci/F,
the identity component Pic())(o (N)/F, of the special fiber of the Néron model of Jo (V)
over @;,. The map 6’ is the isomorphism coming from Serre duality.

Next, by [Con00, §5.2], the Grothendieck duality isomorphism 6 is the same
as the isomorphism coming from the duality theory of Rosenlicht (as in [Ser88,
Chap. 1V]), perhaps up to multiplication by —1. Assume for the moment that
there is no sign ambiguity, so that 0 is indeed the isomorphism coming from the
duality theory of Rosenlicht. One can check that the Serre duality isomorphism 6’
is induced by the Rosenlicht duality isomorphism 6 via the inclusions i; and i, by
looking at the proof of the two dualities in [Ser88, Chaps. II and IV]. Note that
in [Ser88], the curve X over the field k (notation as in loc. cit.) is assumed to be
irreducible. This hypothesis is needed in loc. cit. (for our purposes) only to show
that H'(X, k(X)) = 0 (p. 12, loc. cit.); the latter condition holds so long as X is
reduced (see top of p. 165 in [AK70], as well as the bottom of p. 138 and top of
p. 132 therein), which is true in our case (taking X = XO(N)E andk = F)) .
We remark that our contention that the Serre duality isomorphism 6’ is induced by
the Rosenlicht duality isomorphism 6 via the inclusions i; and i, also follows from
Section 6 (an appendix provided to us by Brian Conrad), by taking C = Xy(N )Fp
and C’ to be any of the C; in Section 6. In any case, we conclude that the bottom
square in the diagram above commutes as well, perhaps up to multiplication by —1.

Now the action of U, and W, on [] _, Picgl_ v, Was defined by identifying

it as the maximal abelian variety quotient of Pic®

Xo(N)/F," Thus we see that i, is
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compatible with the action of U, and W, on its domain and codomain. Considering
that moreover the isomorphism 6 is compatible with the action of U, (and W) and
the bottom square in the diagram above commutes, perhaps up to multiplication
by —1, we see that U, and W, preserve [['_, H°(C;, Q¢,/r,)- Now since 0 is
compatible with the action of U, and W), on its domain and codomain, so is &’.
Thus we may use the isomorphism 6’ to translate the identity in Lemma 5.15
from the right to the left of 6’ to get the desired identity in the corollary, where
the =+ ambiguity in front of Frob,* is really due to the sign ambiguity about the
compatibility of the action of U, and W, on the two sides of the isomorphism 6’. O

Remark 5.17. We defined the action of the Hecke operators and the Atkin—Lehner
involution in characteristic p from their definition in characteristic 0 in a somewhat
indirect manner via the Néron mapping property, Grothendieck duality, etc (cf.
beginning of Section 5.2). This has made our proofs rather complicated, since we
have to show several compatibilities (as in the previous Corollary 5.16 and the
upcoming Lemma 5.18). After this article was written, B. Conrad pointed out to us
that one can define the action of the Hecke operators on suitable Artin stacks over Z
for Iy (N )-structures (see [Con07]) in such a way that the definition agrees with the
usual definition of the Hecke operators over Q. This naturallly defines the action of
the Hecke operators on objects related to X (V) such as differentials, Picard groups,
etc., in characteristic p and these definitions are automatically “compatible” with the
corresponding definitions in characteristic zero. This alternative method would have
been a less complicated way to proceed.

By [Maz77, Prop. 11.3.3] we have an isomorphism
H(Xo(N)g,» Qxyw)/F,) = H(Xo(N)k,, Qxo/r,) Ok, Fp,

using which we may identify HO(XO(N)FP, Qxyn)F,) as a subspace of
HO(XO(N)E), Qx,(n)F,)- Just before Corollary 5.16, we defined an action of U,
(and W),) on HO(XO(N)E’, Qx,n)/F,)-

Lemma 5.18. The action of U, (respectively W,) on HO(XO(N)vaQXO(N)/Fp)
preserves the subspace HO(XO(N)FP, Qx,(n)/F,), and agrees with the action of U,

(respectively W) on this subspace that we defined earlier in the third paragraph of
Section 5.2.

Proof. We have the following diagram, obtained by the obvious base changes:

o

H(Xo(N)g,. y,ny/F,) = H (Xo(N)o,. xyvyj0,) > Cot(Picy, v)0,)-
A 4 o A

H(Xo(N)k,, Qxoyr,) < H(Xo(N)z,. Qxyvy/z,) = Cot(Pick, xy/z,)-
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where the map ©’ is the isomorphism coming from Grothendieck duality as
discussed in the third paragraph of Section 5.2. Now the action of U, and W,
on Cot(Picg(()(N)/OL) = Cot(Jo(N)p,) (where Jo(N)o, is the Néron model
of Jo(N) over O1) was obtained by base changing from Z,. Considering that
the formation of Néron models is compatible with completions and unramified
base change, we see that the rightmost vertical map above is compatible under the
action of U, and W,,. Also, the action of U, and W, on H*(Xo(N)o, , Qx,n)/0.)
(respectively on H°(Xo(N )F, £x,(n)/F,)) Was obtained via the isomorphism ©
(respectively ©”). Thus the rightmost two horizonal maps above are also compatible
under the action of U, and W, on their domain and codomain. Finally, the
compatibility of Grothendieck duality under base change (see [Con00]) implies that
the right square in the diagram above commutes. Arguing as in the third paragraph
of the proof of Corollary 5.16, one sees then that the middle vertical map above is
compatible under the action of U, and W,,.

Now the already-defined action of U, and W), on H(Xo(N)p ,» Sx(v)/F,) in the
third paragraph of Section 5.2 is obtained via the lower leftward pointing arrow in
the diagram above, and the action of U, and W, on H*(Xo(N )F,» x,(n)/F,) 18 0b-
tained via the upper leftward pointing arrow in the diagram above. Thus the leftmost
two horizontal arrows are compatible under the action of U, and W, on their domain
and codomain. Repeated applications of [Maz77, Prop. 11.3.3] show that the left
square also commutes. Using all this, we see that the action of U, (respectively W)
on HO(XO(N)FP, Qx,(n)/rF,) viewed as a subspace of HO(XO(N)FP, QXO(N)/FP)
agrees with the action of U, (respectively W) on H*(Xo(N)p »» S2x,(v)/¥,) defined
in the third paragraph of Section 5.2, and in particular that U, and W, preserve this
subspace. O

We now revert to the assumption that p is a prime such that p> 4 N (in
particular p may not necessarily divide N ). The Tate curve over F ,[[g]] gives rise to
a morphism from Spec F,[[¢]] to the smooth locus of Xo(N)g, — Spec F),. Since
the module of completed Kéhler differentials for F,[[g]] over F, is free of rank 1
on the basis dg, we obtain a map

g-exp : H(Xo(N)r,. Qxov¥,) = Fpllgll-

If p N, then by a holomorphic differential in HO(XO(N)FP, Qxy(Ny/F,)> We
mean any differential in HO(XO(N)FP, QXo(N)/Fp)-

Lemma 5.19. Recall that p is a prime such that p> + N, and w is a maximal
ideal of T with residue characteristic p. If p|N, then assume that U, acts as a
non-zero scalar on HO(XO(N)FP, Qxo(n)/F,)[m]. Then the map q-exp restricted to
homomorphic differentials in H*(Xo(N ), Qx,(n)/F,)[m] is injective.

Proof. The essential argument is quite standard, going back to Mazur, so we
only sketch the ideas. For some of the details, we refer the reader to the proof
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of Lemma 4.2 in [ARS06]. If p 4} N, the injectivity follows from the g-
expansion principle. So suppose that p || N, and let M = N/p. Recall that
Xo(N )F,, is obtained from My(N )F,, by suitable blowups at supersingular points
and consists of two copies of Xo(M )Fp identified at supersingular points, along with
some copies of P'. Suppose @ € H°(Xo(N)g,. Qx,v)k,)[m] is a holomorphic
differential that is in the kernel of g-exp. Then the g-expansion principle implies
that @ vanishes on the copy of Xo(M )Fp containing the cusp oo, i.e., on Cj.
By Corollary 5.16 and Lemma 5.18, we have U,(w|c,) = =Frob,*(w|¢,) +
(p—1DW,(wlc,). But pullback by Frob, is the trivial map and W, swaps Cy and C;,
so Uy(w|c,) = (p — 1)(w|c,) = 0. Now by hypothesis, U, acts as multiplication
by a non-zero scalar, hence w is trivial on Cy. Thus w is trivial on both copies
of Xo(M )F,,- One can show that then w is trivial on the copies of P! as well
(see the proof of Lemma 4.2 in [ARS06]). Thus w is trivial on Xo(N )Fp’ hence
on X()(N)Fp . |

Lemma 5.20. We continue our hypotheses that p is a prime such that p> N, m
is a maximal ideal of T with residue characteristic p, and if p|N, then U, acts as a
non-zero scalar on H(Xo(N)g,. 2x,v)/r,)[m]. Then

dim)m H'(Xo(N)F, . Q2xov)/F,)[m] < 1.

Proof. The idea behind the proof is the same as in the proof of Lemma 2.2 in [Wil80,
p. 485-487], which in turn builds on ideas from p. 94-95 of [Maz77]. However,
parts of our arguments are somewhat different, and may be considered alternatives
to some of the methods in the works cited in the previous sentence.

Ifwe HO(XO(N)FP, Qx,(ny/r,) and n > 1, then let a, () denote the coefficient
of ¢" in g-exp(w). We have a pairing HO(XO(N)FP, Qx,r,) X T — F, that takes
(w,T) to a;(Tw). This induces a map

¥ : HY(Xo(N)r,. Qxov)/¥,)[m] — Homg, (T/m, F ),
which is a homomorphism of T/m-vector spaces.

Claim 1: If o € ker(y), then g-exp(w) is trivial.
Proof. Following the proof of Prop. 3.3 on p. 68 of [Maz77], we have

HY(Xo(N)E,. Qxovy¥,) = H(Xo(N)z,. Qxov)/2,) @2z, F)p. (11)
and
H’(Xo(N)(C), Qxyv0)/c) = H(Xo(N)z,. Qxov)/z,) ®z, C. (12)

The definition of the action of the Hecke operators on HO(Xo(N )Z,,, Qxyv) /Z,,)
defined in the third paragraph of Section 5.2 shows that this action is compatible
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with the action of the Hecke operators on H(X(N)(C), Q x,(v)(c)/c) under (12).
Also, the action of the Hecke operators on HO(XO(N )F,,, Qx,v) /F,,) was defined
in the third paragraph of Section 5.2 via their action on H*(Xo(N)z,. 2x,v)/z,)
using (11), so these actions are clearly compatible under (11). Now

HY(Xo(N)(C). Qx,v)0)/c) = H(Jo(N)(C), yyvycy/c) = S2(To(N), C),

and thus a,(T,0) = a,(w) for ® € H(Xo(N)(C), Qx,v)c)/c). Hence, by (11),
(12), and the discussion above, we also have the formula a;(7T,w) = a,(w) for
w € H'(Xo(N)¥,. Qxon)/F,)-

Thus if w € ker(¥), then @, (w) = a;(T,w) = 0 foralln > 1, i.e., g-exp(w) is
trivial, as was to be shown. O

Claim 2: The T/m-dimension of the subspace of holomorphic differentials in
HO(XO(N)FP, Qxy(n)/r,)[m] is at most 1.

Proof. If w is a holomorphic differential in H’(Xo(N )F,» Lxovy/F,)[m] and ¥ (w)
= 0, then by Claim 1, g-exp(w) is trivial, and hence by Lemma 5.19, w is trivial.
This proves that ¥ is injective when restricted to the subspace of holomorphic
differentials. Now the group Homg,(T/m,F,) has the same size as T/m, which
completes the argument because ¥ embeds the subspace of holomorphic differen-
tials in HO(XO(N)F,,, Qxy(v)/r,)[m] into Homg, (T/m, F ), which has dimension 1
as a T/m-vector space. O

Claim 2 proves the lemma in the case when p } N. We now prove that
dimr HO(XO(N)FP, Qx,vy/rF,)[m] < 1 when p[|N, which will finish the proof
of the lemma. Following the proof of Lemma 2.2 in [Wil95], we break the argument
into two cases:

Case I: There is no non-zero holomorphic differential in
HY(Xo(N)k,» Qo) [m].

Suppose w; and w, are two differentials in H*(X (N )g »» S2x0(v)/F,)[m]. Then we
can find a pair (u,A) € (T/m)?> with (u,A) # (0,0) such that uy(w;) —
AM(wy) = 0, ie., Y(uw; — Awp) = 0. Hence by Claim 1, g-exp(uw; —
Awy) = 0. Viewing puw; — Aw; as an element of HO(XO(N)FP, QX()(N)/FP)’ we
see that w; — Aw, vanishes on C; (recall that C; is the copy of Xo(N/ P)F,, that
contains the cusp co) by the “g-expansion principle” (see the proof of Lemma 4.2
in [ARSO06] for details). Now C,,...,C, (the copies of P') arise as chains that
link C; and Cj (recall that Cj is the copy of Xo(N/ P)Fp that does not contain the
cusp oo) and each of C,,...,C, has at most two points of intersection, with all
intersection points being ordinary double points (see the description of Xo(N )Fp on
p. 175-177 of [Maz77] for details). Taking into consideration the definition of
regular differentials and the residue theorem we see that ;tw; — Aw, is holomorphic
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on the curves among C,, ..., C, that intersect C; (for details, see the proof of
Lemma 4.2 in [ARS06] in a similar situation). Now a curve among C,,...,C,
that does not intersect C; intersects exactly one curve among C,, ..., C, that does
intersect C;. Hence by repeating the argument above, w; — Aw, is holomorphic
on each curve in Cs, ..., C, that does not intersect C; as well. Thus uw; — Aw; is
holomorphic on all of Xo(N )Fp except perhaps on Cy. But the only possible poles of
nw; — Aw, on Cy are over points of intersection with other components, and again,
considering the definition of regular differentials, we see that there are no such poles,
i.e., Lw; — Aw, is holomorphic on Cy as well. Thus pw; — Aw, is holomorphic
everywhere and is an element of H(Xo(N )F,» $2x,(v)/F,)[m]. Hence it is trivial by
the hypothesis of this case. Thus w; and w, are linearly dependent. Since w; and w,
were arbitrary, this shows that dimy/m H'(Xo(N)p »» S2xov)/F,)[m] < 1in this case.

Case II: There is a non-zero holomorphic differential
w € H'(Xo(N)g, . Qx,v)/F,)[m].

By Lemma 5.19, g-exp(w) is non-trivial, and so by Claim 1, y¥(w) # 0.
Let @ € HY(Xo(N)r,. 2xov)r,)[m]. Then there is a A € T/m such that
() — A(w) = 0, ie., ¥(w — Aw) = 0. As in the proof of Case I, we
conclude that o’ — Aw is holomorphic; in particular @’ is holomorphic. Thus
every differential in H(Xo(N )F,» S2x,(n)/¥,)[m] is holomorphic. Then by Claim 2,
dimy/m H(Xo(N)E, . Qxov)/r,)[m] < 1 in this case as well. ]

(Proof of Proposition 5.10). Recall that the hypotheses of Proposition 5.10 are
that p is a prime such that p> } N, m is a maximal ideal of T with residue
characteristic p such that if p|N, then /; € m for some newform f. We wish
to show that then T and T’ agree locally at m.

If p 4 N, then the result follows from Lemmas 5.11 and 5.20. If f is a
newform and p|N, then U, acts as £1 on f, and hence U, £ 1 € [. Thus if
pIN and Iy < m for some newform f, then U, acts as a non-zero scalar (£1)
on H(Xo(N)g 2> Sxovy/F,)[m] (note that the action of U, on regular differentials
was defined compatibly with the usual action of U, on complex differentials, i.e., on
cuspforms; cf. the proof of Claim 1 in the proof of Lemma 5.20). The proposition
follows again from Lemmas 5.11 and 5.20. O

6 Duality theory: an appendix by Brian Conrad

Let k be a field and let C be a proper reduced k-scheme with pure dimension 1.
Assume that C is generically smooth, and let C’ € C be a non-empty reduced
closed subscheme with pure dimension 1 (so C’ is also generically smooth). The
case of most interest to us is when C is a geometrically connected and semistable
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curve and C’ is a smooth geometrically irreducible component. The inclusion C’ —
C induces a natural map of k-groups Picc/x — Piccs/x, and on tangent spaces at
the identity this is the canonical pullback map

6 :HY(C,O¢) - H(C', O¢r)

(as we see by computing with dual numbers over k). Each of C and C’ satisfies
Serre’s condition (S;) by reducedness, so each is Cohen—-Macaulay. Thus, by Serre
duality we can identify the map of cotangent spaces with the map H(C’, w¢ Jk) =
H(C, wc /&) dual to 6. We wish to give a concrete description of this latter map. To
do this, we first review some basic definitions and identifications in duality theory.

In what follows we use Grothendieck’s approach to duality theory, which has the
merit of permitting more localization operations than in Serre’s approach. Since
C and C’ are Cohen-Macaulay with pure dimension 1, their relative dualizing
complexes over k are naturally identified with wc/«[1] and wc//k[1] respectively
[Con00, 3.5.1]. Since (by construction) the formation of the relative dualizing
complex is compatible with Zariski-localization on the source, we have canonical
isomorphisms wc,k |crsm > Qé,gm/k and wc/k|cm =~ Qésm/k that coincide on the
open locus U = C®™ N C’ that is dense in C’ (and supported in C"*™). If we let
j :C™ — C and j' : C"®™ — C’ denote the canonical dense open immersions
then, by [Con00, 5.2.1] the natural maps

wcrjk = j;(Qlcmn/k), wc/k — j*(Qlcmn/k)

are injective. By construction this is compatible with the natural isomorphism
wc/klu >~ ocryilu. Letting n 1 Spec(K) — C and 1/ : Spec(K’) — C’ denote
the canonical maps from the schemes of generic points, wc,; maps isomorphically
onto a coherent subsheaf of 1/, (2 k, / i) and likewise for wc/x in 7«(2 Y / ) these
image subsheaves are the so-called sheaves of regular differentials, and a classical
result of Rosenlicht describes these images explicitly using residues when k is
algebraically closed [Con00, 5.2.3]. We will not require Rosenlicht’s result for the
statement or proof of the theorem below.

Using Grothendieck’s theory of relative trace maps, the canonical closed im-
mersion ¢ : C’ — C over k induces a trace morphism Tr, : tx(wc//k) — Oc/k
whose formation commutes with Zariski-localization on C, so over the dense open
U = ('(C*™) C C’ it induces the natural isomorphism wcr/klu = ocjklu,
or equivalently it is the identity map on 2 b Ik Hence, Tr, is compatible with the
canonical inclusions wcr/x <> 7, (Q}(/k) and we/k <> M« (Q}(/k). In particular,
the map Tr, is compatible with the natural identification of meromorphic 1-forms on
C’ with meromorphic 1-forms on C (i.e., compatible with the injection Q}(, K=
Qi )-

Having summarized some inputs from duality theory, we can now state the result
we want to prove.
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Theorem 6.1. The pullback H'(C, Oc) — H'(C’, O¢/) is dual to the natural map
HY(C', weryk) = HA(C, t(wer i) — HY(C, wc)k).

Proof. Let Trc¢ : HY(C,wc/x) — k and Trer @ HY(C',wcrk) — k be the
canonical trace maps, so our problem is to prove that for s € H!'(C,Oc¢) and
E/ € HO(C/a wC//k) C Q}(//k?

Tre/ (' U sler) = Tre(Tr(§) U's)

in k. By the functoriality of Grothendieck’s trace map, Trc, = Trc o H'(Tr,) as
maps H'(C’, wc//x) — k. Thus, it suffices to show that the map H'(C’, wc/ /) —
H'(C, oc/x) induced by Tr, carries § U s|¢/ to Tr,(§) Us. We may view dualizing
sheaves as subsheaves wc/x < 7«($2 }(/k) and wer/k S 7 (R }(,/k) in terms of which
we have seen that the abstract trace map Tr, is induced by the natural inclusion
Q}(’/k < Q}(/k‘ 5

To do the computation we work with Cech theory. Let {U,} be an ordered finite
open affine cover of C and let U, = U, N C’, so {U,} is an open affine cover of
C’. The cohomology class s corresponds to a Cech 1-cocycle {s, m }n<m With s, €
Oc (U, N Up), so s’ corresponds to {s;, , } with s, = $,.m|v;nuy . Identifying &’
with an element of Q}{//k, £'Us|cr € H'(C’, wcr)i) corresponds to {s), &'}y < and
Tr,(¢) Us € H'(C, wc k) corresponds to {8, &’ }n<m, Where £ is viewed in Q}(/k
in the natural way. The product s, &’ at the generic points of U, N U, vanishes at
generic points not in C’, so the required equality is clear even at the level of Cech
1-cocycles. O
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