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Abstract The modular degree and congruence number are two fundamental
invariants of an elliptic curve over the rational field. Frey and Müller have asked
whether these invariants coincide. We find that the question has a negative answer,
and show that in the counterexamples, multiplicity one (defined below) does not
hold. At the same time, we prove a theorem about the relation between the two
invariants: the modular degree divides the congruence number, and the ratio is
divisible only by primes whose squares divide the conductor of the elliptic curve.
We discuss the ratio even in the case where the square of a prime does divide
the conductor, and we study analogues of the two invariants for modular abelian
varieties of arbitrary dimension.
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1 Introduction

Let E be an elliptic curve over Q. By [BCDT01], we may view E as an abelian
variety quotient over Q of the modular Jacobian J0.N /, where N is the conductor
of E . We assume that the kernel of the map J0.N / ! E is connected, i.e., that E
is an optimal quotient of J0.N / (this can always be done by replacing E by an
isogenous curve if needed). The modular degree mE is the degree of the composite
map X0.N / ! J0.N / ! E , where we map X0.N / to J0.N / by sending P 2
X0.N / to ŒP � � Œ1� 2 J0.N /.

Let fE D P
anq

n 2 S2.�0.N /;C/ be the newform attached to E . The con-
gruence number rE of E is the largest integer such that there is an element g DP
bnq

n 2 S2.�0.N // with integer Fourier coefficients bn that is orthogonal to fE
with respect to the Petersson inner product, and congruent to fE modulo rE (i.e.,
an � bn .mod rE/ for all n).

Section 2 is about relations between rE andmE . For example,mE j rE . In [FM99,
Q. 4.4], Frey and Müller asked whether rE D mE . We give examples in which
rE ¤ mE , and show that in these examples, there is a maximal ideal m of the
Hecke algebra T, such that J0.N /Œm� has dimension more than two over T=m (this
is the failure of multiplicity one alluded to above). We then conjecture that for any
prime p, ordp.rE=mE/ � 1

2
ordp.N /, and prove this conjecture when ordp.N / � 1.

In Section 3, we consider analogs of the modular degree and the congruence
number for certain modular abelian varieties that are not necessarily elliptic curves;
these include optimal quotients of J0.N / and J1.N / of any dimension associated to
newforms. Section 3 may be read independently of Section 2. In Sections 4 and 5 we
prove the main theorem of this paper (Theorem 3.6), and also give some examples
of failure of what we call multiplicity one for differentials (see Definition 5.13).

Acknowledgments The authors are grateful to M. Baker, F. Calegari, B. Conrad, J. Cremona,
G. Frey, H. W. Lenstra, Jr. and B. Noohi for discussions and advice regarding this paper. We
would especially like to thank B. Conrad for the material in the appendix and for his suggestions
concerning a number of technical facts that are inputs to our arguments. The first author is also
grateful to the Max-Planck-Institut für Mathematik for its hospitality during a visit when he partly
worked on this paper.

2 Elliptic curves

In Section 2.1, we discuss relationships between the modular degree and the
congruence number of an elliptic curve. In Section 2.2 we recall the notion of
multiplicity one and give new examples in which it fails.
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2.1 Modular degree and congruence number

Let N be a positive integer and let X0.N / be the modular curve over Q that
classifies isomorphism classes of elliptic curves with a cyclic subgroup of order N .
The Hecke algebra T of level N is the subring of the ring of endomorphisms of
J0.N / D Jac.X0.N // generated by the Hecke operators Tn for all n � 1. Let f
be a newform of weight 2 for �0.N / with integer Fourier coefficients, and let If be
kernel of the homomorphism T ! ZŒ: : : ; an.f /; : : :� that sends Tn to an. Then the
quotient E D J0.N /=If J0.N / is an elliptic curve over Q. We call E the optimal
quotient associated to f . Composing the embedding X0.N / ,! J0.N / that sends
1 to 0 with the quotient map J0.N / ! E , we obtain a surjective morphism of
curves �E W X0.N / ! E . Recall that the modular degree mE of E is the degree
of �E .

Let S2.Z/ denote the group of cuspforms of weight 2 on �0.N / with integral
Fourier coefficients, and if G is a subgroup of S2.Z/, let G? denote the subgroup
of S2.Z/ consisting of cuspforms that are orthogonal to f with respect to the
Petersson inner product. The congruence number of E (really, that of f ) is the
positive integer rE defined by either of the following equivalent conditions:

(i) rE is the largest integer r such that there exists g 2 .Zf /? with f �
g mod r .

(ii) rE is the order of the quotient group S2.Z/
ZfC.Zf /? .

We say that a prime is a congruence prime for E if it divides the congruence
number rE. Congruence primes have been studied by Doi, Hida, Ribet, Mazur and
others (see, e.g., [Rib83, �1]), and played an important role in Wiles’s work [Wil95]
on Fermat’s last theorem. Frey and Mai-Murty have observed that an appropriate
asymptotic bound on the modular degree is equivalent to the abc-conjecture
(see [Fre97, p.544] and [Mur99, p.180]). Thus, results that relate congruence primes
and the modular degree may be of great interest.

Theorem 2.1. Let E be an elliptic curve over Q of conductor N , with modular
degree mE and congruence number rE . Then mE j rE and if ordp.N / � 1, then
ordp.rE/ D ordp.mE/.

Thus any prime that divides the modular degree of an elliptic curve E is a
congruence prime for E , and if p is a congruence prime for E such that p2

does not divide the conductor of E , then p divides the modular degree of E . The
divisibilitymE j rE was first discussed in [Zag85, Th. 3], where it is attributed to the
second author (Ribet); however in [Zag85] the divisibility was mistakenly written
in the opposite direction. For some other expositions of the proof that mE j rE ,
see [AU96, Lem 3.2] and [CK04]. We generalize this divisibility and prove it
in Theorem 3.6(a). The second part of Theorem 2.1, i.e., that if ordp.N / � 1,
then ordp.rE/ D ordp.mE/, follows from the more general Theorem 3.6(b) below.
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Table 1 Differing Modular
Degree and Congruence
Number

Curve mE rE Curve mE rE Curve mE rE

54B1 2 6 99A1 4 12 128A1 4 32
64A1 2 4 108A1 6 18 128B1 8 32
72A1 4 8 112A1 8 16 128C1 4 32
80A1 4 8 112B1 4 8 128D1 8 32
88A1 8 16 112C1 8 16 135A1 12 36
92B1 6 12 120A1 8 16 144A1 4 8
96A1 4 8 124A1 6 12 144B1 8 16
96B1 4 8 126A1 8 24

Note that [AU96, Prop. 3.3–3.4] implies the weaker statement that if p − N , then
ordp.rE/ D ordp.mE/, since [AU96, Prop. 3.3] implies

ordp.rE/ � ordp.mE/ D ordp.#C/� ordp.cE/ � ordp.#D/;

and by [AU96, Prop. 3.4], ordp.#C/ D 0. Here cE is the Manin constant ofE , which
is an integer (e.g., see [ARS06]), and C and D are certain groups.

Frey and Müller [FM99, Ques. 4.4] asked whether rE D mE in general. After
implementing an algorithm to compute rE in Magma [BCP97], we quickly found
that the answer is no. The counterexamples at conductor N � 144 are given in
Table 1, where the curve is given using the notation of [Cre97].

For example, the elliptic curve 54B1, given by the equation y2 C xy C y D
x3 � x2 C x � 1, has rE D 6 andmE D 2. To see explicitly that 3 j rE , observe that
the newform corresponding toE is f D qCq2Cq4�3q5�q7C� � � and the newform
corresponding to X0.27/ is g D q � 2q4 � q7 C � � � , so g.q/C g.q2/ appears to be
congruent to f modulo 3. To prove this congruence, we checked it for 18 Fourier
coefficients, where the sufficiency of precision to degree 18 was determined using
[Stu87].

It is unclear whether there is a bound on the possible primes p that occur. For
example, for the curve 242B1 of conductorN D 2 � 112 we have

mE D 24 ¤ rE D 24 � 11:

We propose the following replacement for Question 4.4 of [FM99]:

Conjecture 2.2. Let E be an optimal elliptic curve of conductor N and p be any
prime. Then

ordp

�
rE

mE

�

� 1

2
ordp.N /:

We verified Conjecture 2.2 using Sage [SC09] for every optimal elliptic curve
quotient of J0.N /, with N � 557.

If p � 5, then ordp.N / � 2, so a special case of the conjecture is

ordp

�
rE

mE

�

� 1 for any p � 5:
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2.2 Multiplicity one and its failure

We say that a maximal ideal m of T satisfies multiplicity one if J0.N /Œm� is of
dimension two over T=m. The reason one calls this “multiplicitly one” is that if
the canonical two-dimensional representation �m over T=m attached to m (e.g.,
see [Rib90, Prop. 5.1]) is irreducible, then J0.N /Œm� is a direct sum of copies of �m
[Rib90, Thm. 5.2], and a maximal ideal m of T satisfies multiplicity one precisely
if the multiplicity of �m in this decomposition is one. Even if �m is reducible, the
definition of multiplicity one given above is relevant (e.g., see [Maz77, Cor. 16.3]).
The notion of multiplicity one, originally found in Mazur [Maz77], has played an
important role in several places (e.g., in Wiles’s proof of Fermat’s last theorem: see
Thm. 2.1 in [Wil95]).

In [MR91, �13], the authors find examples of failure of multiplicity one in which
if p is the residue characteristic of m, then p3 j N , and �m is modular of levelN=p2.
Kilford [Kil02] found examples of failure of multiplicity one whereN is prime and
the residue characteristic of m is 2. See also [Wie07] and [KW08] for examples of
failure of multiplicity one in the �1.N / context. We now give examples of failure of
multiplicity one where the square of the residue characteristic of m divides the level
(the residue characteristic is often odd).

Proposition 2.3. Suppose E is an optimal elliptic curve over Q of conductor N
and p is a prime such that p j rE but p − mE . Then there is a maximal ideal m of T
with residue characteristic p such that dimT=m J0.N /Œm� > 2, i.e., multiplicity one
fails for m.

The proposition follows from the more general Proposition 5.9 below. It follows
from the proposition above that any example in Table 1 where simultaneously
a prime divides rE but does not divide mE provides an example of failure of
multiplicity one. In such examples, the associated representation �m may or may
not be irreducible. For example, for the elliptic curve 54B1 and p D 3, we have
ord3.rE/ D 1 but ord3.mE/ D 0, so there is a maximal ideal m with residue
characteristic 3 such that multiplicity one fails for m. The curve 54B1 has rational
3-torsion, so �m is reducible. On the other hand, for the elliptic curve 99A1, we have
ord3.rE/ D 1 but ord3.mE/ D 0, so again there is a maximal ideal m with residue
characteristic 3 such that multiplicity one fails for m. Moreover, J0.99/ is isogenous
to a product of elliptic curves, none of which admit a rational 3-isogeny. Hence �m
is irreducible.

The notion of multiplicity one at a maximal ideal m is closely related to
Gorensteinness of the completion of T at m (e.g., see [Til97]). Kilford [Kil02]
found examples of failure of Gorensteinness (and multiplicity one) at the prime 2
for certain prime levels. In the examples as above where multiplicity one fails for
some maximal ideal, it would be interesting to do computations (e.g., as in [Kil02])
to see if the completion of the Hecke algebra at the maximal ideal is Gorenstein
or not.
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3 Modular abelian varieties of arbitrary dimension

For N � 4, let � be either �0.N / or �1.N /. Let X be the modular curve over Q
associated to � , and let J be the Jacobian ofX . LetA andB be abelian subvarieties
of J such that AC B D J , A \ B is finite, and every endomorphism of J over Q
preserves A and B . In this section, we generalize the notions of the congruence
number and the modular degree to subvarieties A as above, and state a theorem
relating the two numbers, which we prove in Sections 4 and 5.

We first give a general example of A and B as above. Up to isogeny, J is the
product of factors J e.f /f where f runs over the set of newforms of level dividingN ,
taken up to Galois conjugation, and e.f / is the number of divisors of N=N.f /,
where N.f / is the level of f . Here Jf is the standard abelian subvariety of J

attached to f by Shimura [Shi94, Thm. 7.14]. Let A0 be the sum of J e.f /f for
some set of f ’s (taken up to Galois conjugation), and let B 0 be the sum of all the
other J e.f /f ’s. Clearly A0 C B 0 D J . The Jf ’s are simple (over Q), hence A0 \ B 0
is finite. In view of the following lemma, A0 and B 0 provide an example of A and B
respectively as above. Note that by End.J / we mean the ring of endomorphisms
of J defined over Q.

Lemma 3.1. End.J / preserves A0 and B 0.

Proof. Suppose End.J / does not preserve A0 (the case of B 0 is symmetric). Then
since the Jf ’s are simple, that means that some abelian subvariety Jg of A0 is
isogenous to some abelian subvariety Jh of B 0, where g ¤ h. Pick a prime `.
If f is a newform, then let �f denote the canonical absolutely irreducible `-adic
representation attached to f . Now Q`˝V`.Jf /ß is a direct sum of copies of ��.f / as
� ranges over all embeddings into Q of the field generated by the Fourier coefficients
of f . Thus the above implies that there are distinct newforms g0 and h0 (of some
level dividing N ) such that �g0 Š �h0 . Now each �f satisfies tr.�f .Frobp// D
ap.f / for all p − N`. Thus for all p − N`, we have ap.g0/ D ap.h

0/. By the
multiplicity one theory (e.g., see [Li75, Cor. 3, pg. 300]), this means that g0 D h0, a
contradiction. ut

We now give a more specific example, which will include the case of elliptic
curves. Recall that T denotes the Hecke algebra. If f D P

an.f /q
n 2 S2.�/ is a

newform and If D ker.T ! ZŒ: : : ; an.f /; : : :�/, thenAf D J=If J is the newform
quotient associated to f . It is an abelian variety over Q of dimension equal to the
degree of the field Q.: : : ; an.f /; : : :/. Let �2 denote the quotient map J ! A.
If C is an abelian variety, then we denote its dual abelian variety by C_. There is
a canonical principal polarization � W J Š J_. Dualizing �2, we obtain a closed
immersion �_

2 W A_
f ! J_, which when composed with ��1 W J_ Š J gives us an

injection �1 W A_
f ,! J . One slight complication is that the isomorphism � does not

respect the action of T, because if T is a Hecke operator on J , then on J_ it acts as
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WNT WN , whereWN is the Atkin–Lehner involution (see e.g., [DI95, Rem. 10.2.2]).
However, on the new quotient J new, the action of the Hecke operators commutes
with that of WN , so since the quotient map J ! Af factors through J new, the
Hecke action on A_

f induced by the embedding A_
f ! J_ and the action on A_

f

induced by the injection �1 W A_
f ! J are the same. Hence A_

f is isomorphic to
�1.A

_
f / as a T-module, and �1.A_

f / D Jf (this follows from the characterization
of Jf in [Shi94, Thm. 7.14]). For simplicity, we will often denote �1.A_

f / D Jf by

just A_
f . Let � be the composite map A_

f

�1�! J
�2�! Af ; then � is a polarization

(induced by dual of the polarization of J ). Thus A_
f C If J D J and A_

f \ If J is
finite. Hence, in view of Lemma 3.1, A_

f and If J provide an example of A and B
as in the beginning of this section.

The exponent of a finite groupG is the smallest positive integer n such that every
element of G has order dividing n (i.e., such that for all x 2 G; nx D 0).

Definition 3.2. The modular exponent QnA of A is the exponent of A \ B and the
modular number nA of A is its order.

Note that the definition is symmetric with respect to A and B . In fact, the
definition depends on both A and B , unlike what the notation may suggest—we
have suppressed the dependence on B for ease of notation, with the understanding
that there is a natural choice of B (e.g., this is the case in the examples we gave
above). If f is a newform, then by the modular exponent/number of Af , we mean
that of A D A_

f , with B D If J . In this situation, since � is a polarization, nAf is
a perfect square (e.g., see [AS05, Lemma 3.14]). When Af is an elliptic curve, �
is multiplication by the modular degree mE . Hence A \ B D ker.�/ is .Z=mEZ/2,
and so for elliptic curves, the modular exponent is equal to the modular degree and
the modular number is the square of the modular degree.

If R is a subring of C, let S2.R/ D S2.�IR/ denote the subgroup of S2.�I C/
consisting of cups forms whose Fourier expansions at the cusp 1 have coefficients
in R. There is a T-equivariant bilinear pairing T � S2.Z/ ! Z given by .t; g/ 7!
a1.t.g//, which is perfect by [AU96, Lemma 2.1] (see also [Rib83, Theorem 2.2]).
The action of T on H1.J;Z/ is a faithful representation that embeds T into
Mat2d .Z/ Š Z.2d/

2
. But Z is Noetherian, so T is finitely generated over Z, and

hence so is S2.Z/. Let TA be the image of T in End.A/, and let TB be the image
of T in End.B/ (since T � End.J /, T preserves A and B). Since AC B D J , the
natural map T ! TA ˚ TB is injective, and moreover, its cokernel is finite (since
A\ B is finite).

Let SA D Hom.TA;Z/ and SB D Hom.TB;Z/ be subgroups of S2.Z/ obtained
via the pairing above. Let Ext1 D Ext1Z denote the first Ext functor in the category
of Z-modules.

Lemma 3.3. There is a canonical isomorphism of T-modules

Ext1..TA ˚ TB/=T;Z/ Š S2.Z/=.SA C SB/:
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The groups S2.Z/=.SA C SB/ and .TA ˚ TB/=T are isomorphic.

Proof. Apply the Hom.�;Z/ functor to the short exact sequence

0 ! T ! TA ˚ TB ! .TA ˚ TB/=T ! 0

to obtain a three-term exact sequence

0 ! Hom.TA ˚ TB;Z/ ! Hom.T;Z/ ! Ext1..TA ˚ TB/=T;Z/ ! 0: (1)

The perfect T-equivariant bilinear pairing T � S2.Z/ ! Z given by .t; g/ 7!
a1.t.g// transforms (1) into an exact sequence

0 ! SA ˚ SB ! S2.Z/ ! Ext1..TA ˚ TB/=T;Z/ ! 0

of T-modules, which proves the first claim in the lemma. Finally note that if G is
any finite abelian group, then Ext1.G;Z/ 	 G as groups, which gives the second
result of the lemma. ut
Definition 3.4. The exponent of either of the isomorphic groups S2.Z/=
.SA C SB/ and .TA ˚ TB/=T is the congruence exponent QrA of A and the order
of the groups is the congruence number rA.

Note that this definition is also symmetric with respect to A and B , and again,
the definition depends on both A and B , unlike what the notation may suggest —
we have suppressed the dependence onB with the implicit understanding that B has
been chosen (givenA). If f is a newform, then by the congruence exponent/number
of Af , we mean that of A D A_

f , with B D If J . In this situation, TA D
T=If and SA D S2.Z/ŒIf �. Recall that a subgroup H of an abelian group G
is said to be saturated (in G) if G=H is torsion-free. Now Hom.TB;Z/ is the
unique saturated Hecke-stable complement of S2.Z/ŒIf � in S2.Z/, hence must equal
S2.Z/ŒIf �?, where we recall that S2.Z/ŒIf �? denotes the orthogonal complement of
S2.Z/ŒIf � in S2.Z/with respect to the Petersson inner product. Thus the congruence
exponent QrAf is the exponent of the group

S2.Z/
S2.Z/ŒIf �C S2.Z/ŒIf �?

; (2)

and the congruence number rAf is its order. In particular, our definition of rAf
generalizes the definition in Section 2.1 when Af is an elliptic curve.

Remark 3.5. If R is a subring of C, then S2.Z/ ˝Z R D S2.R/ (see, e.g., the
discussion in [DI95, �12]). Thus the analog of the group displayed in (2) with Z
replaced by an algebraic integer ring (or even Z) gives a torsion module whose
annihilator ideal meets Z in the ideal generated by the congruence exponent.
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The following generalizes Theorem 2.1:

Theorem 3.6. Let A and B be as in the first paragraph of Section 3. Then:

(a) QnA j QrA.
(b) Let � D �0.N /. If p − N , then ordp.QrA/ D ordp. QnA/. If f 2 S2.�0.N /;C/ is

a newform, then ordp.QrAf / D ordp. QnAf / whenever p2 − N .

We give the proof of part (a) of this theorem in Section 4 and of part (b) in
Section 5. The two sections may be read independently of each other.

Remark 3.7. Let f 2 S2.�;C/ be a newform. When Af is an elliptic curve,
Theorem 3.6 implies that the modular degree divides the congruence number (since
for an elliptic curve, the modular degree and modular exponent are the same), and
that nAf j r2Af (since for an elliptic curve, the modular number is the square of
the modular exponent). In general, for a higher dimensional newform quotient, the
divisibility nAf j r2Af need not hold. For example, there is a newform of degree 24
in S2.�0.431// such that

nAf D .211 � 6947/2 − r2Af D .210 � 6947/2:

Note that 431 is prime and mod 2 multiplicity one fails for J0.431/ (see [Kil02]).

4 Proof of Theorem 3.6(a)

Since End.J / preserves A and B , we have a map End.J / ! End.A/ ˚ End.B/;
moreover, since A C B D J , this map is injective. We have the following
commutative diagram with exact rows:

0 �� T ��

��

TA ˚ TB ��

��

TA ˚ TB
T

��

�� 0

0 �� End.J / �� End.A/˚ End.B/ �� End.A/˚ End.B/

End.J /
�� 0:

(3)
The first two vertical maps are clearly injections, and the rightmost vertical map is
defined naturally so that the diagram is commutative. Let

e D .1; 0/ 2 TA ˚ TB;

and let e1 and e2 denote the images of e in the groups .TA ˚ TB/=T and .End.A/˚
End.B//=End.J /, respectively. Since A \ B is finite (in addition to the fact that
ACB D J ), the two quotient groups on the right side of (3) are finite, so e1 and e2
have finite order.
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Lemma 4.1. The element e2 2 .End.A/ ˚ End.B//=End.J / defined above has
order QnA.

Proof. By the denominator of any ' 2 End.J /˝ Q, we mean the smallest positive
integer n such that n' 2 End.J /. Let 	A; 	B 2 End.J / ˝ Q be projection onto A
and B , respectively. Let n be the order of e2, so n is the denominator of 	A, which
equals the denominator of 	B (since 	A C 	B D 1J , so that 	B D 1J � 	A). We
want to show that n is equal to QnA, the exponent of A \ B .

Let iA and iB be the embeddings of A and B into J , respectively. We view n	A
and n	B as morphisms J ! A and J ! B , respectively. Let ' D .n	A; n	B/ 2
Hom.J; A �B/; then ' ı .iA C iB/ D Œn�A�B : We have an exact sequence

0 ! A\ B
x 7!.x;�x/������! A � B iACiB����! J ! 0:

Let 
 be the image of A\ B . Then by exactness,

Œn�
 D .' ı .iA C iB//.
/ D ' ı ..iA C iB/.
// D '.f0g/ D f0g;

so n is a multiple of the exponent QnA of A \ B .
To show the opposite divisibility, consider the commutative diagram

0 �� A \ B
x 7!.x;�x/

��

ŒQnA�

��

A � B

.ŒQnA�;0/

��

�� J ��

 

��

0

0 �� A \ B
x 7!.x;�x/

�� A � B �� J �� 0;

where the middle vertical map is .a; b/ 7! . QnAa; 0/ and the map  exists because
Œ QnA�.A\ B/ D 0. But  D QnA	A in End.J /˝ Q. This shows that QnA	A 2 End.J /,
i.e., that QnA is a multiple of the denominator n of 	A. ut
Lemma 4.2. The element e1 2 .TA ˚ TB/=T has order QrA.

Proof. We want to show that the order r of e1 equals the exponent of M D .TA ˚
TB/=T. Since e1 is an element ofM , the exponent ofM is divisible by r . To obtain
the reverse divisibility, consider any element x of M . Let .a; b/ 2 TA ˚ TB be
such that its image in M is x. By definition of e1 and r , we have .r; 0/ 2 T, and
since 1 D .1; 1/ 2 T, we also have .0; r/ 2 T. Thus .Tr; 0/ and .0;Tr/ are both
subsets of T (i.e., are in the image of T under the map T ! TA ˚ TB ), so r.a; b/ D
.ra; rb/ D .ra; 0/C .0; rb/ 2 T. This implies that the order of x divides r . Since
this is true for every x 2 M , we conclude that the exponent of M divides r . ut
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Proof of Theorem 3.6(a). Since e2 is the image of e1 under the rightmost vertical
homomorphism in (3), the order of e2 divides that of e1. Now apply Lemmas 4.1
and 4.2. ut
5 Proof of Theorem 3.6(b)

Let T0 be the saturation of T D ZŒ: : : ; Tn; : : :� in End.J /, i.e.,

T0 D End.J / \ .T ˝ Q/:

The quotient T0=T is a finitely generated abelian group because both T and End.J /
are finitely generated over Z. Since T0=T is also a torsion group, it is finite.

In Section 5.1, we introduce two ideals R and S of the Hecke algebra that are
generalizations of the notions of the congruence exponent and the modular exponent
respectively. We will see that R � S and show that there is a natural injection
S=R ,! T0=T. In Section 5.2, we will prove that T and T0 agree locally at a maximal
ideal of T under the condition that we call “multiplicity one for differentials”;
we also give examples where this condition does not hold. Theorem 3.6(b) itself
is proved at the end of Section 5.1, by applying the results of Section 5.1 and a
proposition that is proved in Section 5.2 to show that R D S locally at a prime p
such that p 6 jN (when A is the dual of newform quotient, the condition that p 6 jN
can be replaced by p2 6 jN ).

5.1 The congruence and intersection ideals

In this section, we work in slightly more generality, and take A and B to be as in
the first paragraph of Section 3 (so � can be �1.N /, and A need not be the dual of
a newform quotient). Let 	A W T ! TA and 	B W T ! TB be the natural projection
maps.

Definition 5.1. With the setup as above, we define the congruence ideal as R D
	A.ker.	B// � TA, and the intersection ideal as S D AnnTA.A\ B/.

Lemma 5.2. We have R � S .

Proof. By definition, R consists of restrictions to A of Hecke operators that vanish
on B , while S consists of restrictions to A of Hecke operators that vanish on A\B .
The lemma follows since the image in TA of an operator that vanishes on B also
vanishes on A \ B . ut
Remark 5.3. By Lemma 5.2, we have a surjection TA=R ! TA=S . Note that 	A
induces an isomorphism

T
ker.	A/C ker.	B/

'�! TA
R
;
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and we have an isomorphism

T
ker.	A/C ker.	B/

'�! TA ˚ TB
T

obtained by sending t 2 T to .	A.t/; 0/ 2 TA ˚ TB . Hence by Definition 3.4,
the exponent of TA=R is QrA and its order is rA. Also, QnA is the exponent of A \ B ,
and one expects that it is also the exponent of TA=S (certainly multiplication by QnA
annihilates TA=S ), which would give another proof that QnA j QrA. Instead of pursuing
this question, we record the following result, which will be needed later.

Proposition 5.4. If p is a prime such that the localizations of R and S at p
coincide, then ordp.QrA/ � ordp. QnA/.
Proof. Under the hypothesis, the surjection TA=R ! TA=S is an isomorphism
locally at p. The lemma follows from the observations above that QrA is the exponent
of TA=R and that QnA annihilates TA=S . ut
Lemma 5.5. There is a natural inclusion S=R ,! T0=T of T-modules.

Proof. We have

T˝Q Š .TA˝Q/˚ .TB ˝Q/ � .End.A/˝Q/˚ .End.B/˝Q/ Š End.J /˝Q;

which we use to view T and TA as sitting inside End.J / ˝ Q. Also, the groups
End.J / and T0 sit naturally in End.J /˝ Q. By definition, R D TA \ T. Since an
endomorphism of A � B factors through A � B ! J if and only if it kills A \ B

embedded in A � B via x 7! .x;�x/, we have that S D TA \ End.J / and this
equals TA \ T0 (since a suitable multiple of any element of TA lands in T, when
both are viewed as subgroups of T˝Q � End.J /˝Q). Hence we haveR D S \T
with intersection taken inside T0 � End.J /˝ Q. Thus

S=R D S=.S \ T/ Š .S C T/=T ,! T0=T: ut
If m is a maximal ideal of T, then we say that two Hecke modules, with one

contained in the other, agree locally at m if their localizations at m are the same.
Let IA denote the kernel of the map T ! TA. As an immediate consequence of
Lemma 5.5, we have:

Proposition 5.6. If m is a maximal ideal of T containing IA that is not in
SuppT.T

0=T/, then the corresponding maximal ideal m=IA of TA is not in the
support of S=R, i.e.: if T and T0 agree locally at m, thenR and S also agree locally
at m=IA.

Remark 5.7. The ring

T00 D End.J / \ .TA � TB/ D T0 \ .TA � TB/
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is often of interest, where the intersection is taken in End.J /˝ Q. We proved above
that there is a natural inclusion S=R ,! T0=T. This inclusion yields an isomorphism

S=R
��! T00=T, as is clear from the “if and only if” statement in the proof of

Lemma 5.5. The ideals R and S are equal if the rings T and T00 coincide. Even
when T0 is bigger than T, its subring T00 may be not far from T.

The following lemma and proposition will not be used in the proof of Theorem
3.6(b), but they are of interest from the point of view of multiplicity one.

Lemma 5.8. Let p be a prime and let m be a maximal ideal of T with residue
characteristic p. Suppose m satisfies the multiplicity one condition (i.e., J Œm� is of
dimension two over T=m). Then the completions of T and T0 at m are isomorphic.

Proof. As in [Maz77, p.92], consider the Tate module Tam.J /, which is the
Pontryagin dual of the m-divisible group associated to J.Q/. Since J Œm� is of
dimension two over T=m, it follows that Tam.J / is free of rank 2 over Tm, where
the subscript denotes completion (see, e.g., [Til97, p. 332-333]). If r is an element
of T0

m, then r operates Tm-linearly on Tam.J /, and thus may be viewed as a 2 � 2
matrix with entries in Tm. Further, some non-zero integer multiple of r operates
on Tam.J / as an element of Tm, i.e., as a scalar. Thus r must be a scalar to start
with, i.e., actually lies in Tm. Hence T0

m D Tm as claimed. ut
Proposition 5.9. Let p be a prime such that all maximal ideals m of T with residue
characteristic p that contain IA satisfy multiplicity one. Then ordp.QrA/ D ordp. QnA/.
Proof. This follows from Lemma 5.8, Lemma 5.5, Proposition 5.4, and Theorem
3.6(a). ut
Proposition 5.10. Let � D �0.N /. Let p be a prime such that p2 − N , and let
m be a maximal ideal of T with residue characteristic p. If pjN , then assume that
If 
 m for some newform f . Then T and T0 agree locally at m.

Since the proof of this proposition is rather technical, we have postponed
it to Section 5.2. Admitting this proposition, we may now finish the proof of
Theorem 3.6(b).

Proof of Theorem 3.6(b). Recall that A and B are abelian subvarieties of J D
J0.N / such that ACB D J , A\B is finite, and every endomorphism of J over Q
preserves A and B .

We first want to show that if a prime p does not divide N , then ordp.QrA/ D
ordp. QnA/. In view of Theorem 3.6(a) and Proposition 5.4, it suffices to check that R
and S coincide locally at p. By Proposition 5.6, it suffices to check that T and T0 are
locally equal at all maximal ideals that divide p. If p − N , then this follows from
Proposition 5.10, which proves part of Theorem 3.6(b).

It remains to show that if f 2 S2.�0.N /;C/ is a newform and p k N , then
ordp.QrAf / D ordp. QnAf /. Note that the Hecke algebra T acts on S=R through its
quotient TA_

f
D T=AnnTA

_
f since the action of T on R and on S factors through

this quotient. Thus, in view of Theorem 3.6(a) and Proposition 5.4, it suffices to
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check thatR and S coincide locally at maximal ideals of T that divide p and contain
AnnTA

_
f D If (the equality follows since If is saturated). But this follows from

Proposition 5.6 and Proposition 5.10. ut

5.2 Multiplicity one for differentials

This section is devoted to the proof of Proposition 5.10 as well as a discussion of
the notion of multiplicity one for differentials (Definition 5.13). In this section, we
take � D �0.N /.

Let p be a prime such that p2 − N . Let M0.N/ denote the compactified coarse
moduli scheme associated to �0.N / (as in [DR73, � IV.3]) over Zp , and letX0.N /Zp
denote its minimal regular resolution obtained by suitable blow-up of the points
j D 0; 1728 in characteristic dividing N , when they are supersingular (cf. [Maz77,
p.63]). Let �X0.N/=Zp denote the relative dualizing sheaf of X0.N /Zp over Zp (it
is the sheaf of regular differentials as in [MR91, �7]). We denote by X0.N /Fp the
special fiber of X0.N /Zp at the prime p and by �X0.N/=Fp the relative dualizing
sheaf of X0.N /Fp over Fp .

The usual Hecke operators and the Atkin–Lehner involutions (corresponding
to primes dividing N ) of J0.N / over Q extend uniquely to act on the base
change to Zp of the Néron model of J0.N /, which we denote by JZp . The natural
morphism Pic0X0.N /=Zp ! JZp identifies Pic0X0.N /=Zp with the identity component
of JZp (see, e.g., [BLR90, �9.4–9.5]). Passing to tangent spaces along the identity
section over Zp , we obtain an isomorphism H1.X0.N /Zp ;OX0.N/Zp

/ Š Tan.JZp /.

Using Grothendieck duality, one gets an isomorphism Cot.JZp /ŠH0.X0.N /Zp ;

�X0.N/=Zp /, where Cot.JZp / is the cotangent space at the identity section (cf.
[Maz78, p. 140]). Now the Hecke operators and the Atkin–Lehner involutions act on
Cot.JZp /, and hence via the last isomorphism above, we get an action of the
Hecke operators and the Atkin–Lehner involutions on H0.X0.N /Zp ;�X0.N/=Zp /.
Following the proof of Prop. 3.3 on p. 68 of [Maz77], specialization induces an
isomorphism

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /Zp ;�X0.N/=Zp /˝Zp Fp:

In this way, we get an action of the Hecke operators and the Atkin–Lehner
involutions on H0.X0.N /Fp ;�X0.N/=Fp / as well.

The following lemma is implicit in [Maz77, p. 95].

Lemma 5.11 (Mazur). Let m be a maximal ideal of T of residue characteristic p
(recall that p2 − N ). Suppose

dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1:

Then T and T0 agree locally at m.
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Proof. Let M denote the group H1.X0.N /Zp ;OX0.N//, where OX0.N/ is the
structure sheaf of X0.N /. As explained in [Maz77, p. 95], we have an action of
EndQJ0.N / on M , and the action of T on M via the inclusion T � EndQJ0.N /

is faithful, so likewise for the action by T0. Hence we have an injection � W T0 ,!
EndTM . Suppose m is a maximal ideal of T that satisfies the hypotheses of the
lemma. To prove that Tm D T0

m it suffices to prove the following claim: ut
Claim: The map �jT is surjective locally at m.

Proof. It suffices to show that M is generated by a single element over T
locally at m, and in turn, by Nakayama’s lemma, it suffices to check that the
dimension of the T=m -vector space M=mM is at most one. Now M=mM is
dual to H0.X0.N /Fp ;�X0.N/=Fp/Œm�. Since we are assuming that dimT=mH

0

.X0.N /Fp ;�X0.N/=Fp /Œm� � 1, we have dimT=m.M=mM/ � 1, which proves the
claim.

Remark 5.12. Note that Lemma 5.8 may provide an alternate route to the conclu-
sion of the previous lemma (sometimes one can prove multiplicity one for a maximal
ideal without relying on multiplicity one for differentials, e.g., see [Dia97]). Observe
that in the proofs of Lemmas 5.11 and 5.8, all we needed was (locally) a non-zero
free T-module (of finite rank, say) that is attached functorially to J . In Lemma 5.11,
the module we used was H1.X0.N /Zp ;OX0.N//; locally, it is free because its
reduction modulo m is of the same dimension as its generic rank (namely 1). In
Lemma 5.8, we used the m-adic Tate module, whose reduction mod m is of the
same dimension as its generic rank (namely 2).

Definition 5.13. If m is a maximal ideal of the Hecke algebra T of residue
characteristic p, we say that m satisfies multiplicity one for differentials if

dimT=m.H0.X0.N /Fp ;�X0.N/=Fp/Œm�/ D 1:

The above condition, which first appeared in [Maz77], plays an important role
in several places, including Wiles’s proof of Fermat’s last theorem (see [Wil95,
Lemma 2.2]). It has been used to prove multiplicity one for m (as in Section 2.2)
and Gorensteinness of the completion of T at m (under certain hypotheses; see,
e.g., [Til97]).

5.2.1 Failure of multiplicity one for differentials

In this section, we digress to discuss examples of failure of multiplicity one for
differentials. The reader interested in the proof of Proposition 5.10 may jump to
Section 5.2.2 below.

By Lemma 5.11, if p2 − N and if the multiplicity one condition for differentials
holds at m, then T and T0 agree locally at m. It is thus of interest to compute the
quotient group T0=T for various N . We compute this index in Sage [SC09]. and
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Table 2 Nonzero Quotients T0=T for N � 325

44 C2 160 C3
2 ˚ C4 ˚ C8 245 C2

7

46 C2 162 C4
3 248 C7

2 ˚ C4 ˚ C8
54 C3 164 C3

2 250 C8
5

56 C2 166 C2 252 C2
2 ˚ C3

6 ˚ C12
60 C2 168 C5

2 ˚ C4 254 C2
2

62 C2 169 C13 256 C3
2 ˚ C2

4 ˚ C2
8 ˚ C16

64 C2 171 C2
3 260 C6

2

68 C2 172 C3
2 261 C4

3

72 C2 174 C2 262 C2
2

76 C2 175 C5 264 C7
2 ˚ C3

4

78 C2 176 C2
2 ˚ C2

4 ˚ C8 268 C5
2

80 C4 180 C2 ˚ C2
6 270 C9

3 ˚ C2
6

84 C2 184 C5
2 ˚ C4 ˚ C8 272 C3

2 ˚ C4
4 ˚ C8

88 C2 ˚ C4 186 C2
2 275 C4

5

92 C2
2 ˚ C4 188 C4

2 ˚ C2
4 276 C7

2 ˚ C2
4

94 C2
2 189 C5

3 278 C2
96 C3

2 190 C3
2 279 C4

3

99 C2
3 192 C3

2 ˚ C3
4 ˚ C8 280 C7

2 ˚ C3
4

104 C2
2 196 C14 282 C2

2

108 C2
3 ˚ C6 198 C4

3 284 C6
2 ˚ C3

4

110 C2 200 C3
2 ˚ C10 286 C4

2

112 C2 ˚ C4 204 C5
2 288 C7

2 ˚ C3
4 ˚ C12 ˚ C24

116 C2
2 206 C2

2 289 C2
17

118 C2 207 C4
3 290 C2

120 C3
2 ˚ C4 208 C2

2 ˚ C3
4 292 C5

2

124 C2
2 ˚ C4 210 C2 294 C4

7

125 C2
5 212 C4

2 296 C6
2 ˚ C2

4

126 C3 ˚ C6 214 C2 297 C8
3 ˚ C9

128 C2 ˚ C4 ˚ C8 216 C3 ˚ C5
6 ˚ C12 300 C2

2 ˚ C3
10

132 C3
2 220 C5

2 ˚ C4 302 C3
2

135 C3
3 224 C5

2 ˚ C2
4 ˚ C8 304 C4

2 ˚ C4
4 ˚ C8

136 C2
2 ˚ C4 225 C5 306 C6

3

140 C3
2 228 C5

2 308 C7
2

142 C3
2 230 C2

2 310 C3
2

144 C3
2 ˚ C4 232 C4

2 ˚ C2
4 312 C11

2 ˚ C2
4 ˚ C8

147 C7 234 C2
3 ˚ C2

6 315 C6
3

148 C2
2 236 C5

2 ˚ C4 316 C6
2 ˚ C2

4

150 C5 238 C4
2 318 C4

2

152 C3
2 ˚ C4 240 C7

2 ˚ C3
4 ˚ C8 320 C6

2 ˚ C3
4 ˚ C3

8 ˚ C16
153 C3 242 C2

11 322 C2
2

156 C3
2 ˚ C4 243 C4

3 ˚ C2
9 324 C7

3 ˚ C3
6 ˚ C18

158 C2
2 244 C4

2 325 C3
5

obtain Table 2, where the first column contains N for N � 325 and the second
column contains the quotient group T0=T, where Cn denotes a cyclic group of
order n.
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In each case in which a prime p divides ŒT0 W T� but p2 − N , Lemma 5.11
implies that there is some maximal ideal m of T of residue characteristic p for
which multiplicity one for differentials does not hold. For example, when N D 46,
we find that ŒT0 W T� D 2, and 22 − N ; thus there is a maximal ideal m of T of
residue characteristic 2 for which multiplicity one for differentials does not hold.

In Table 2, we observe that whenever p divides ŒT0 W T�, then p D 2 or p2 j N .
This raises the question: is it true that if p is odd and p2 − N , then multiplicity
one for differentials holds for maximal ideals m of T of residue characteristic p?
Lemma 5.20 below gives an affirmative answer in one direction (the other direction
is usually easy), but under the hypothesis that if p j N then Up acts as a non-zero
scalar on H0.X0.N /Fp ;�X0.N/=Fp /Œm�.

5.2.2 Proof of Proposition 5.10

The main point is to prove that the hypothesis

dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1

of Lemma 5.11 holds for suitable maximal ideals m. This is achieved in Lemma 5.20
below, whose proof requires an Eichler–Shimura type relation for Up (Lemma 5.15
below). We obtain this relation by modifying the argument in [Wil80, �5], which is
in the �1.N / context, to the �0.N / situation. Let L denote the maximal unramified
extension of Qp and let OL denote the ring of integers of L. For the sake of
completeness, we state below a lemma that is well known (e.g., it is used implicitly
in [Wil80, p. 18]); the proof was indicated to us by F. Calegari.

Lemma 5.14. Let E be an elliptic curve over OL with good ordinary reduction.
Then the subgroup schemes of E of order p are p copies of Z=pZ and one copy
of �p .

Proof. Let G D EŒp�, and consider its connected-étale sequence

0 ! G0 ! G ! Get ! 0:

Now G0 is in the kernel of the reduction map, and we know that the reduction
of EŒp� has non-trivial order. Hence Get is non-trivial. By Cartier duality, G0 is
also non-trivial. Hence Get is a Z=pZ and by duality, G0 is a �p . Thus one of the
subgroup schemes of E of order p is a copy of �p. Let H be any other subgroup
scheme of E of order p. Then H0 has to be trivial, since otherwise H D H0 is
a non-trivial subgroup scheme of G0 D �p , hence is equal to G0 D �p, which
has already been accounted for. Thus H is étale, and hence is a copy of Z=pZ.
The lemma follows, since there are p C 1 subgroup schemes of order p in EŒp�,
hence in E . ut

We assume that pjjN until just after the proof of Lemma 5.18. Let M D N=p.
We will use the superscript h to denote the subscheme of M0.N/ obtained by



36 A. Agashe, K.A. Ribet, and W.A. Stein

removing the supersingular points in characteristic p. Following [DR73, VI.6.9]
and [DR73, � V.2], the Fp-valued points of M0.N/

h are in one-to-one correspon-
dence with isomorphism classes of triples consisting of

(a) a generalized elliptic curve E over Fp , whose smooth locus we denote Esm,
(b) a subgroup of EsmŒp� isomorphic to �p or to Z=pZ, and
(c) a subgroup Z=MZ of EsmŒM �,

such that the subgroup generated by the subgroups in .b/ and .c/ above meets
every irreducible component of every geometric fiber ofE over Fp. Also,M0.N/Fp
has two irreducible components, which may be described according as whether the
subgroup in (b) is isomorphic to �p or to Z=pZ. As mentioned earlier, X0.N /Fp is
obtained fromM0.N/Fp by suitable blowups and consists of two copies ofX0.M/Fp
identified at supersingular points, along with some copies of P1 (see the description
of X0.N /Fp on p. 175–177 of [Maz77] for details). One of the copies of X0.M/Fp
corresponds to the irreducible component of M0.N/Fp where the subgroup in (b)
is isomorphic to Z=pZ; we denote this copy by C0. The other copy of X0.M/Fp
corresponds to the irreducible component ofM0.N/Fp where the subgroup in (b) is
isomorphic to �p , and contains the cusp 1; we denote this copy by C1. We denote
the copies (if any) of P1 by C2; : : : ; Cr , where r is one less than the total number of
irreducible components of X0.N /Fp .

The usual endomorphismsUp andWp of J0.N / over Q can be extended by base
change to L, and extend uniquely to act on the Néron model of J0.N / over OL.
Since the formation of Néron models is compatible with completions and unramified
base change, this action is compatible with the already-defined action on the Néron
model of J0.N / over Zp . The identity component of the special fiber of the Néron
model of J0.N / over OL is Pic0

X0.N /=Fp
, whose maximal abelian variety quotient

is
Qr
iD0 Pic0

Ci =Fp
(cf. [DR73, I.3.7] and [BLR90, �9.2, Example 8]). Thus we get an

action of Up and Wp on Pic0
X0.N /=Fp

and on
Qr
iD0 Pic0

Ci =Fp
. Let Frobp denote the

Frobenius morphism on C0=Fp .

Lemma 5.15. The endomorphisms Up and Wp of
Qr
iD0 Pic0

Ci =Fp
satisfy Up D

Frobp C .p � 1/Wp on Pic0
C0=Fp

.

Proof. The proof is a modification of the proof of Theorem 5.3 in [Wil80], along
with some details borrowed from the proof of Theorem 5.16 in B. Conrad’s appendix
to [RS01].

It suffices to check the desired identity on a Zariski dense subset of
Pic0

C0=Fp .Fp/ D J.C0/.Fp/, where J.C0/ is the Jacobian of C0. If g is the genus

of C0, then fixing a base point, we get a surjection Cg
0 ! J.C0/. Hence if U is

any dense open subset of C0.Fp/, then Ug hits a Zariski dense subset of J.C0/.Fp/.
Taking U to be the ordinary locus of C0.Fp/, it thus suffices to prove the desired
identity on divisors of the form .Q/� .Q0/, where the elliptic curves corresponding
to Q;Q0 2 C0.Fp/ are ordinary.
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Let M0.N / denote the algebraic stack over OL associated to �0.N / by [DR73,
IV.3.3, IV.4.2], whose associated coarse moduli scheme is M0.N/ (over OL). Let
	 W M0.N / ! M0.N/ denote the associated natural map. If k D Fp or an algebraic
closure of L, then 	 is an isomorphism on k-valued points, and so we will often
identify points on M0.N/.k/ with points on M0.N /.k/. Let Q be an ordinary
point on C0.Fp/. Then Q is given by a triple .E; C ;D/, where E is an ordinary
elliptic curve over Fp , C is a subgroup isomorphic to Z=pZ, and D is a subgroup
isomorphic to Z=MZ. We can choose a Weierstrass model E ,! P2OL

lifting E;
thenE is canonically an elliptic curve by [KM85, Chap. 2]. By Lemma 5.14 and its
proof, there is a subgroup C of E isomorphic to Z=pZ that lifts C . Also, as argued
in [RS01, p. 219], there is a subgroup D of E isomorphic to Z=MZ that lifts D.
Then .E; C;D/ gives a point on M0.N /.OL/ (cf. [DR73, V.1.6]), whose image
in M0.N/.OL/ corresponds to a point P in X0.N /.OL/ (since E has ordinary
reduction). We will use a bar to denote specialization. Thus we have Q D P .
Similarly, given another point Q0 2 C0.Fp/, we will denote the corresponding
associated quantities by a prime superscript (thus P 0 in X0.N /.OL/ denotes a
lift of Q0, etc.). As mentioned in the previous paragraph, it suffices to prove the
relation claimed in the lemma for elements of the form .Q/� .Q0/ in Pic0

C0=Fp
.Fp/.

Viewing P and P 0 as relative effective Cartier divisors of degree one, we see
that Up..Q/ � .Q0// is the image of Up..P / � .P 0// under specialization, i.e.,
Up..Q/ � .Q0// D Up..P / � .P 0//.

We next compute Up..P / � .P 0//. Now Pic0X0.N /=OL is the identity component
of J0.N /OL , and we have J0.N /OL.OL/ D J0.N /.L/ 
 J0.N /.L/, where L is an
algebraic closure of L. Denoting base change to L by a subscript L, we have

Up..EL; CL;DL/ � .E 0
L
; C 0

L
;D0

L
//

D
X

AL

.EL=AL; .CL C AL/=AL; .DL C AL/=AL/

�
X

A0

L

.E 0
L
=A0

L
; .C 0

L
C A0

L
/=A0

L
; .D0

L
C A0

L
/=A0

L
/; (4)

where AL runs through the subgroups of EL of order p except CL (and similarly
for A0

L
). Enlarging L by a finite extension if needed (which does not change the

residue field Fp) we may assume that there are p C 1 subgroups of order p in EL.
Their scheme-theoretic closures inE overOL are the subgroups schemes mentioned
in Lemma 5.14. If A is a subgroup scheme of E of order p, then we denote
the quotient map E ! E=A by ˛A. Consider the Cartier divisors corresponding
to Up..P / � .P 0// and to

�
	.E=�p; ˛�p

.C /; ˛�p
.D//C

X

B

	.E=B; cl.˛B.C //; ˛B.D//
�

�
�
	.E 0=�0

p; ˛�0

p
.C 0/; ˛�0

p
.D0//C

X

B0

	.E 0=B 0; cl.˛B0.C 0//; ˛B0.D0//
�
;
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where B runs through the subgroups of E isomorphic to Z=pZ except for C , and
cl.˛B.C // denotes the Zariski closure of ˛B.C / in E=B (and similarly with prime
superscripts). These two divisors coincide since they induce the sameL-point by (4).

Passing to special fibers, and noting that the special fiber of the Néron model
of E=A is given by E=A, we find that

Up..Q/� .Q0// D Up..P / � .P 0//

D
�
.E=�p; ˛�p

.C /; ˛�p
.D//C

X

B

.E=B; cl.˛B.C //; ˛B.D//
�

(5)

�
�
.E 0=�0

p; ˛�0

p
.C 0/; ˛�0

p
.D0//C

X

B0

.E 0=B 0; cl.˛B0.C 0//; ˛B0.D0//
�
; (6)

where B again runs through the subgroups of E isomorphic to Z=pZ except for C
(and a similar statment holds with prime superscripts).

Let Fp denote the relative Frobenius map E ! E
.p/

over Fp . Now �p is in
the kernel of Fp , and since the quotient map ˛�p

has the same degree as Fp ,

there is an isomorphism � W E=�p

Š! E
.p/

such that Fp D � ı ˛�p
. Also �

induces an isomorphism ˛�p
.C /

Š! C
.p/

and ˛�p
.D/

Š! D
.p/

. Thus the first

term in (5) is identified with .E
.p/
; C

.p/
;D

.p/
/, which is the image under Frobp

of P D .E; C ;D/. Similarly, the first term in (6) is Frobp.P 0/.
As for the sum over B in (5), note that in each term, we are quotienting by a

group B which is isomorphic to Z=pZ, and hence cl.˛B.C // is of �p-type. In a
manner similar to the computation of the action of Up, we find that

Wp..E;C ;D/ � .E 0; C 0;D0//

D .E=C ;EŒp�=C ; .D C C/=C/ (7)

� .E 0=C 0; E 0Œp�=C 0; .D0 C C 0/=C 0/: (8)

Considering thatP D .E; C ;D/, with C isomorphic to Z=pZ, we see thatEŒp�=C
is isomorphic to �p . Also, if B is as in the sum in (5), thenB is a Z=pZ, but there is

only one copy of Z=pZ in E, since E has good ordinary reduction; hence B D C .
Thus each of the terms in the sum overB in (5) is the term in (7). A similar statment
holds with prime superscripts (viz., each of the terms in the sum over B 0 in (6) is
the term in (8)).

The lemma now follows from the previous two paragraphs. ut
Since we are assuming that pjjN , the curve X0.N /Fp has ordinary double

point singularities, and so the differentials in H0.X0.N /Fp ;�X0.N/=Fp / may be
identified with meromorphic differentials .!i /iD0;:::;r on

Qr
iD0 Ci whose only

possible poles are at points on
Qr
iD0 Ci lying over an intersection point of two

components in X0.N /Fp and where the sum of the residues at the points lying
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over an intersection point is zero; such differentials are called regular differentials
(see [Con00, �5.2] for the justification that the relative dualizing sheaf under
Grothendieck duality is indeed the sheaf of regular differentials). By a holomorphic
differential inH0.X0.N /Fp ;�X0.N/=Fp /, we mean a regular differential all of whose

corresponding !i have no poles at all (i.e., for all i , !i 2 H0.Ci ;�Ci=Fp / ). The

subspace of holomorphic differentials may be identified with
Qr
iD0 H0.Ci ;�Ci=Fp /

(which we will often do implicitly), and we let i1 denote the corresponding injectionQr
iD0 H0.Ci ;�Ci =Fp / ,! H0.X0.N /Fp ;�X0.N/=Fp /.
In a manner similar to the description in the third paragraph of Section 5.2,

Grothendieck duality gives an isomorphism

‚ W H0.X0.N /OL;�X0.N/=OL/
Š! Cot.Pic0X0.N /=OL

/; (9)

where Cot denotes the cotangent space at the identity section. Since we have an
action of Up andWp on Pic0X0.N /=OL

(by viewing it as the identity component of the
Néron model of J0.N / over OL), we may use ‚ to get an action of these operators
on H0.X0.N /OL;�X0.N/=OL/. As before, Prop. 3.3 on p. 68 of [Maz77] implies
that base change to Fp gives an isomorphism

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /OL;�X0.N/=OL/˝OL Fp: (10)

From this, we get an action of Up andWp onH0.X0.N /Fp ;�X0.N/=Fp /.

Corollary 5.16. The endomorphisms Up and Wp of H0.X0.N /Fp ;�X0.N/=Fp / pre-

serve the subspace
Qr
iD0 H0.Ci ;�Ci=Fp /, and satisfy Up D ˙Frob�

p C
.p � 1/Wp on H0.C0;�C0=Fp /, where Frob�

p denotes pullback by Frobp and where
we have a possible sign ambiguity ˙ (which will not affect us later).

Proof. The proof is based on the following diagram; we describe below some of the
maps in it that have not been defined yet.

H0.X0.N /OL;�X0.N/=OL/
‚

��

	1

��

Cot.Pic0X0.N /=OL
/

	2

��

H0.X0.N /Fp ;�X0.N/=Fp /
�

�� Cot.Pic0
X0.N /=Fp

/

Qr
iD0 H0.Ci ;�Ci=Fp /

��

i1

��

� 0

�� Qr
iD0 Cot.Pic0

Ci =Fp
/:

��

i2

��
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Firstly, Cot always denotes the cotangent space at the identity section. The
map 	1 is obtained by base change to Fp . By (10), 	1 is surjective. The map 	2 is
obtained by observing that Pic0

X0.N /=Fp
is the identity component of the special fiber

of the Néron model of J0.N / over OL, and hence maps to the identity component of
the Néron model of J0.N / over OL, which is Pic0X0.N /=OL . The map � is obtained
using Grothendieck duality. The compatibility of Grothendieck duality under base
change (see [Con00]) implies that the top square in the diagram above commutes.

Now we have already defined actions of Up and Wp on Pic0X0.N /=OL
and

on Pic0
X0.N /=Fp

(just before Lemma 5.15). Thus we get actions of Up and Wp

on Cot.Pic0X0.N /=OL
/ and on Cot.Pic0

X0.N /=Fp
/. From the definitions of these actions

we see that 	2 is compatible with the actions on its domain and codomain. Recall
that we used the isomorphism‚ to induce actions of Up and Wp onH0.X0.N /OL;

�X0.N/=OL/ and then used formula (10) to get actions onH0.X0.N /Fp ;�X0.N/=Fp /.
Thus ‚ and 	1 are also compatible with the actions of Up and Wp on their domain
and codomain. Let ! 2 H0.X0.N /Fp ;�X0.N/=Fp /, and let � 2 H0.X0.N /OL;

�X0.N/=OL/ be such that 	1.�/ D !. Then �.Up.!// D �.	1.Up.�/// D
	2.‚.Up.�/// D 	2.Up.‚.�/// D Up.	2.‚.�/// D Up.�.	2.�/// D
Up.�.!//. Thus we see that the isomorphism � is compatible with the action of Up
(and similarly for Wp) on its domain and codomain.

Now we turn to the bottom square in the diagram above. As mentioned earlier, the
injection i2 arises because

Qr
iD0 Pic0

Ci =Fp
is the maximal abelian variety quotient of

the identity component Pic0
X0.N /=Fp

of the special fiber of the Néron model of J0.N /

over OL. The map � 0 is the isomorphism coming from Serre duality.
Next, by [Con00, �5.2], the Grothendieck duality isomorphism � is the same

as the isomorphism coming from the duality theory of Rosenlicht (as in [Ser88,
Chap. IV]), perhaps up to multiplication by �1. Assume for the moment that
there is no sign ambiguity, so that � is indeed the isomorphism coming from the
duality theory of Rosenlicht. One can check that the Serre duality isomorphism � 0
is induced by the Rosenlicht duality isomorphism � via the inclusions i1 and i2 by
looking at the proof of the two dualities in [Ser88, Chaps. II and IV]. Note that
in [Ser88], the curve X over the field k (notation as in loc. cit.) is assumed to be
irreducible. This hypothesis is needed in loc. cit. (for our purposes) only to show
that H1.X; k.X// D 0 (p. 12, loc. cit.); the latter condition holds so long as X is
reduced (see top of p. 165 in [AK70], as well as the bottom of p. 138 and top of
p. 132 therein), which is true in our case (taking X D X0.N /Fp and k D Fp) .
We remark that our contention that the Serre duality isomorphism � 0 is induced by
the Rosenlicht duality isomorphism � via the inclusions i1 and i2 also follows from
Section 6 (an appendix provided to us by Brian Conrad), by taking C D X0.N /Fp
and C 0 to be any of the Ci in Section 6. In any case, we conclude that the bottom
square in the diagram above commutes as well, perhaps up to multiplication by �1.

Now the action of Up and Wp on
Qr
iD0 Pic0

Ci=Fp
was defined by identifying

it as the maximal abelian variety quotient of Pic0
X0.N /=Fp

. Thus we see that i2 is
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compatible with the action of Up andWp on its domain and codomain. Considering
that moreover the isomorphism � is compatible with the action of Up (andWp) and
the bottom square in the diagram above commutes, perhaps up to multiplication
by �1, we see that Up and Wp preserve

Qr
iD0 H0.Ci ;�Ci=Fp /. Now since � is

compatible with the action of Up and Wp on its domain and codomain, so is � 0.
Thus we may use the isomorphism � 0 to translate the identity in Lemma 5.15
from the right to the left of � 0 to get the desired identity in the corollary, where
the ˙ ambiguity in front of Frobp

� is really due to the sign ambiguity about the
compatibility of the action of Up andWp on the two sides of the isomorphism � 0. ut
Remark 5.17. We defined the action of the Hecke operators and the Atkin–Lehner
involution in characteristic p from their definition in characteristic 0 in a somewhat
indirect manner via the Néron mapping property, Grothendieck duality, etc (cf.
beginning of Section 5.2). This has made our proofs rather complicated, since we
have to show several compatibilities (as in the previous Corollary 5.16 and the
upcoming Lemma 5.18). After this article was written, B. Conrad pointed out to us
that one can define the action of the Hecke operators on suitable Artin stacks over Z
for �0.N /-structures (see [Con07]) in such a way that the definition agrees with the
usual definition of the Hecke operators over Q. This naturallly defines the action of
the Hecke operators on objects related toX0.N / such as differentials, Picard groups,
etc., in characteristicp and these definitions are automatically “compatible” with the
corresponding definitions in characteristic zero. This alternative method would have
been a less complicated way to proceed.

By [Maz77, Prop. II.3.3] we have an isomorphism

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /Fp ;�X0.N/=Fp/˝Fp Fp;

using which we may identify H0.X0.N /Fp ;�X0.N/=Fp / as a subspace of
H0.X0.N /Fp ;�X0.N/=Fp /. Just before Corollary 5.16, we defined an action of Up
(andWp) on H0.X0.N /Fp ;�X0.N/=Fp /.

Lemma 5.18. The action of Up (respectively Wp) on H0.X0.N /Fp ;�X0.N/=Fp /

preserves the subspace H0.X0.N /Fp ;�X0.N/=Fp /, and agrees with the action of Up
(respectively Wp) on this subspace that we defined earlier in the third paragraph of
Section 5.2.

Proof. We have the following diagram, obtained by the obvious base changes:

H0.X0.N /Fp ;�X0.N/=Fp / H0.X0.N /OL;�X0.N/=OL/
��

‚
�� Cot.Pic0X0.N /=OL

/

H0.X0.N /Fp ;�X0.N/=Fp/

��

H0.X0.N /Zp ;�X0.N/=Zp /

��

��
‚0

�� Cot.Pic0X0.N /=Zp /;

��
;
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where the map ‚0 is the isomorphism coming from Grothendieck duality as
discussed in the third paragraph of Section 5.2. Now the action of Up and Wp

on Cot.Pic0X0.N /=OL
/ D Cot.J0.N /OL/ (where J0.N /OL is the Néron model

of J0.N / over OL) was obtained by base changing from Zp . Considering that
the formation of Néron models is compatible with completions and unramified
base change, we see that the rightmost vertical map above is compatible under the
action of Up and Wp . Also, the action of Up and Wp on H0.X0.N /OL;�X0.N/=OL/

(respectively on H0.X0.N /Fp ;�X0.N/=Fp /) was obtained via the isomorphism ‚

(respectively‚0). Thus the rightmost two horizonal maps above are also compatible
under the action of Up and Wp on their domain and codomain. Finally, the
compatibility of Grothendieck duality under base change (see [Con00]) implies that
the right square in the diagram above commutes. Arguing as in the third paragraph
of the proof of Corollary 5.16, one sees then that the middle vertical map above is
compatible under the action of Up and Wp .

Now the already-defined action ofUp andWp on H0.X0.N /Fp ;�X0.N/=Fp / in the
third paragraph of Section 5.2 is obtained via the lower leftward pointing arrow in
the diagram above, and the action of Up andWp on H0.X0.N /Fp ;�X0.N/=Fp / is ob-
tained via the upper leftward pointing arrow in the diagram above. Thus the leftmost
two horizontal arrows are compatible under the action ofUp andWp on their domain
and codomain. Repeated applications of [Maz77, Prop. II.3.3] show that the left
square also commutes. Using all this, we see that the action of Up (respectivelyWp)
on H0.X0.N /Fp ;�X0.N/=Fp / viewed as a subspace of H0.X0.N /Fp ;�X0.N/=Fp /

agrees with the action of Up (respectivelyWp) on H0.X0.N /Fp ;�X0.N/=Fp/ defined
in the third paragraph of Section 5.2, and in particular that Up andWp preserve this
subspace. ut

We now revert to the assumption that p is a prime such that p2 − N (in
particular p may not necessarily divideN ). The Tate curve over FpŒŒq�� gives rise to
a morphism from Spec FpŒŒq�� to the smooth locus of X0.N /Fp ! Spec Fp . Since
the module of completed Kähler differentials for FpŒŒq�� over Fp is free of rank 1
on the basis dq, we obtain a map

q-exp W H0.X0.N /Fp ;�X0.N/=Fp / ! FpŒŒq��:

If p − N , then by a holomorphic differential in H0.X0.N /Fp ;�X0.N/=Fp/, we
mean any differential in H0.X0.N /Fp ;�X0.N/=Fp/.

Lemma 5.19. Recall that p is a prime such that p2 − N , and m is a maximal
ideal of T with residue characteristic p. If pjN , then assume that Up acts as a
non-zero scalar on H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then the map q-exp restricted to
homomorphic differentials in H0.X0.N /Fp ;�X0.N/=Fp /Œm� is injective.

Proof. The essential argument is quite standard, going back to Mazur, so we
only sketch the ideas. For some of the details, we refer the reader to the proof
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of Lemma 4.2 in [ARS06]. If p − N , the injectivity follows from the q-
expansion principle. So suppose that p k N , and let M D N=p. Recall that
X0.N /Fp is obtained from M0.N/Fp by suitable blowups at supersingular points
and consists of two copies ofX0.M/Fp identified at supersingular points, along with

some copies of P1. Suppose ! 2 H0.X0.N /Fp ;�X0.N/=Fp /Œm� is a holomorphic
differential that is in the kernel of q-exp. Then the q-expansion principle implies
that ! vanishes on the copy of X0.M/Fp containing the cusp 1, i.e., on C1.
By Corollary 5.16 and Lemma 5.18, we have Up.!jC0/ D ˙Frobp

�.!jC0/ C
.p�1/Wp.!jC0/. But pullback by Frobp is the trivial map andWp swapsC0 andC1,
so Up.!jC0/ D .p � 1/.!jC1/ D 0. Now by hypothesis, Up acts as multiplication
by a non-zero scalar, hence ! is trivial on C0. Thus ! is trivial on both copies
of X0.M/Fp . One can show that then ! is trivial on the copies of P1 as well
(see the proof of Lemma 4.2 in [ARS06]). Thus ! is trivial on X0.N /Fp , hence
on X0.N /Fp . ut
Lemma 5.20. We continue our hypotheses that p is a prime such that p2 − N , m
is a maximal ideal of T with residue characteristic p, and if pjN , then Up acts as a
non-zero scalar on H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then

dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1:

Proof. The idea behind the proof is the same as in the proof of Lemma 2.2 in [Wil80,
p. 485-487], which in turn builds on ideas from p. 94–95 of [Maz77]. However,
parts of our arguments are somewhat different, and may be considered alternatives
to some of the methods in the works cited in the previous sentence.

If ! 2 H0.X0.N /Fp ;�X0.N/=Fp/ and n � 1, then let an.!/ denote the coefficient
of qn in q-exp.!/. We have a pairing H0.X0.N /Fp ;�X0.N/=Fp/�T ! Fp that takes
.!; T / to a1.T!/. This induces a map

 W H0.X0.N /Fp ;�X0.N/=Fp/Œm� ! HomFp .T=m;Fp/;

which is a homomorphism of T=m-vector spaces.

Claim 1: If ! 2 ker. /, then q-exp.!/ is trivial.

Proof. Following the proof of Prop. 3.3 on p. 68 of [Maz77], we have

H0.X0.N /Fp ;�X0.N/=Fp / Š H0.X0.N /Zp ;�X0.N/=Zp /˝Zp Fp; (11)

and

H0.X0.N /.C/;�X0.N/.C/=C/ Š H0.X0.N /Zp ;�X0.N/=Zp /˝Zp C: (12)

The definition of the action of the Hecke operators on H0.X0.N /Zp ;�X0.N/=Zp /

defined in the third paragraph of Section 5.2 shows that this action is compatible
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with the action of the Hecke operators on H0.X0.N /.C/;�X0.N/.C/=C/ under (12).
Also, the action of the Hecke operators on H0.X0.N /Fp ;�X0.N/=Fp / was defined
in the third paragraph of Section 5.2 via their action on H0.X0.N /Zp ;�X0.N/=Zp /

using (11), so these actions are clearly compatible under (11). Now

H0.X0.N /.C/;�X0.N/.C/=C/ Š H0.J0.N /.C/;�J0.N/.C/=C/ Š S2.�0.N /;C/;

and thus a1.Tn!/ D an.!/ for ! 2 H0.X0.N /.C/;�X0.N/.C/=C/. Hence, by (11),
(12), and the discussion above, we also have the formula a1.Tn!/ D an.!/ for
! 2 H0.X0.N /Fp ;�X0.N/=Fp /.

Thus if ! 2 ker. /, then an.!/ D a1.Tn!/ D 0 for all n � 1, i.e., q-exp.!/ is
trivial, as was to be shown. ut
Claim 2: The T=m-dimension of the subspace of holomorphic differentials in
H0.X0.N /Fp ;�X0.N/=Fp/Œm� is at most 1.

Proof. If ! is a holomorphic differential in H0.X0.N /Fp ;�X0.N/=Fp /Œm� and  .!/
D 0, then by Claim 1, q-exp.!/ is trivial, and hence by Lemma 5.19, ! is trivial.
This proves that  is injective when restricted to the subspace of holomorphic
differentials. Now the group HomFp .T=m;Fp/ has the same size as T=m, which
completes the argument because  embeds the subspace of holomorphic differen-
tials in H0.X0.N /Fp ;�X0.N/=Fp /Œm� into HomFp .T=m;Fp/, which has dimension 1
as a T=m-vector space. ut

Claim 2 proves the lemma in the case when p − N . We now prove that
dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1 when pjjN , which will finish the proof
of the lemma. Following the proof of Lemma 2.2 in [Wil95], we break the argument
into two cases:

Case I: There is no non-zero holomorphic differential in

H0.X0.N /Fp ;�X0.N/=Fp/Œm�:

Suppose !1 and !2 are two differentials in H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then we
can find a pair .�; 
/ 2 .T=m/2 with .�; 
/ ¤ .0; 0/ such that � .!1/ �

 .!2/ D 0, i.e.,  .�!1 � 
!2/ D 0. Hence by Claim 1, q-exp.�!1 �

!2/ D 0. Viewing �!1 � 
!2 as an element of H0.X0.N /Fp ;�X0.N/=Fp /, we
see that �!1 � 
!2 vanishes on C1 (recall that C1 is the copy of X0.N=p/Fp that
contains the cusp 1) by the “q-expansion principle” (see the proof of Lemma 4.2
in [ARS06] for details). Now C2; : : : ; Cr (the copies of P1) arise as chains that
link C1 and C0 (recall that C0 is the copy of X0.N=p/Fp that does not contain the
cusp 1) and each of C2; : : : ; Cr has at most two points of intersection, with all
intersection points being ordinary double points (see the description ofX0.N /Fp on
p. 175–177 of [Maz77] for details). Taking into consideration the definition of
regular differentials and the residue theorem we see that �!1 � 
!2 is holomorphic



The modular degree, congruence primes, and multiplicity one 45

on the curves among C2; : : : ; Cr that intersect C1 (for details, see the proof of
Lemma 4.2 in [ARS06] in a similar situation). Now a curve among C2; : : : ; Cr
that does not intersect C1 intersects exactly one curve among C2; : : : ; Cr that does
intersect C1. Hence by repeating the argument above, �!1 � 
!2 is holomorphic
on each curve in C2; : : : ; Cr that does not intersect C1 as well. Thus �!1 � 
!2 is
holomorphic on all ofX0.N /Fp except perhaps onC0. But the only possible poles of
�!1 � 
!2 on C0 are over points of intersection with other components, and again,
considering the definition of regular differentials, we see that there are no such poles,
i.e., �!1 � 
!2 is holomorphic on C0 as well. Thus �!1 � 
!2 is holomorphic
everywhere and is an element of H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Hence it is trivial by
the hypothesis of this case. Thus !1 and !2 are linearly dependent. Since !1 and !2
were arbitrary, this shows that dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1 in this case.

Case II: There is a non-zero holomorphic differential

! 2 H0.X0.N /Fp ;�X0.N/=Fp /Œm�:

By Lemma 5.19, q-exp.!/ is non-trivial, and so by Claim 1,  .!/ ¤ 0.
Let !0 2 H0.X0.N /Fp ;�X0.N/=Fp /Œm�. Then there is a 
 2 T=m such that
 .!0/ � 
 .!/ D 0, i.e.,  .!0 � 
!/ D 0. As in the proof of Case I, we
conclude that !0 � 
! is holomorphic; in particular !0 is holomorphic. Thus
every differential in H0.X0.N /Fp ;�X0.N/=Fp /Œm� is holomorphic. Then by Claim 2,
dimT=m H0.X0.N /Fp ;�X0.N/=Fp /Œm� � 1 in this case as well. ut

(Proof of Proposition 5.10). Recall that the hypotheses of Proposition 5.10 are
that p is a prime such that p2 − N , m is a maximal ideal of T with residue
characteristic p such that if pjN , then If 
 m for some newform f . We wish
to show that then T and T0 agree locally at m.

If p − N , then the result follows from Lemmas 5.11 and 5.20. If f is a
newform and pjN , then Up acts as ˙1 on f , and hence Up ˙ 1 2 If . Thus if
pjN and If 
 m for some newform f , then Up acts as a non-zero scalar (˙1)
onH0.X0.N /Fp ;�X0.N/=Fp /Œm� (note that the action of Up on regular differentials
was defined compatibly with the usual action of Up on complex differentials, i.e., on
cuspforms; cf. the proof of Claim 1 in the proof of Lemma 5.20). The proposition
follows again from Lemmas 5.11 and 5.20. ut

6 Duality theory: an appendix by Brian Conrad

Let k be a field and let C be a proper reduced k-scheme with pure dimension 1.
Assume that C is generically smooth, and let C 0 
 C be a non-empty reduced
closed subscheme with pure dimension 1 (so C 0 is also generically smooth). The
case of most interest to us is when C is a geometrically connected and semistable
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curve andC 0 is a smooth geometrically irreducible component. The inclusionC 0 !
C induces a natural map of k-groups PicC=k ! PicC 0=k , and on tangent spaces at
the identity this is the canonical pullback map

� W H1.C;OC / ! H1.C 0;OC 0/

(as we see by computing with dual numbers over k). Each of C and C 0 satisfies
Serre’s condition (S1) by reducedness, so each is Cohen–Macaulay. Thus, by Serre
duality we can identify the map of cotangent spaces with the map H0.C 0; !C 0=k/ !
H0.C; !C=k/ dual to � . We wish to give a concrete description of this latter map. To
do this, we first review some basic definitions and identifications in duality theory.

In what follows we use Grothendieck’s approach to duality theory, which has the
merit of permitting more localization operations than in Serre’s approach. Since
C and C 0 are Cohen–Macaulay with pure dimension 1, their relative dualizing
complexes over k are naturally identified with !C=kŒ1� and !C 0=kŒ1� respectively
[Con00, 3.5.1]. Since (by construction) the formation of the relative dualizing
complex is compatible with Zariski-localization on the source, we have canonical
isomorphisms !C 0=k jC 0sm ' �1

C 0sm=k
and !C=kjC sm ' �1

C sm=k that coincide on the

open locus U D C sm \ C 0 that is dense in C 0 (and supported in C 0sm). If we let
j W C sm ! C and j 0 W C 0sm ! C 0 denote the canonical dense open immersions
then, by [Con00, 5.2.1] the natural maps

!C 0=k ! j 0�.�1
C 0sm=k/; !C=k ! j�.�1

C sm=k/

are injective. By construction this is compatible with the natural isomorphism
!C=kjU ' !C 0=kjU . Letting � W Spec.K/ ! C and �0 W Spec.K 0/ ! C 0 denote
the canonical maps from the schemes of generic points, !C 0=k maps isomorphically
onto a coherent subsheaf of �0�.�1

K0=k/ and likewise for !C=k in ��.�1
K=k/; these

image subsheaves are the so-called sheaves of regular differentials, and a classical
result of Rosenlicht describes these images explicitly using residues when k is
algebraically closed [Con00, 5.2.3]. We will not require Rosenlicht’s result for the
statement or proof of the theorem below.

Using Grothendieck’s theory of relative trace maps, the canonical closed im-
mersion � W C 0 ! C over k induces a trace morphism Tr� W ��.!C 0=k/ ! !C=k
whose formation commutes with Zariski-localization on C , so over the dense open
U D ��1.C sm/ 
 C 0 it induces the natural isomorphism !C 0=kjU ' !C=kjU ,
or equivalently it is the identity map on �1

U=k . Hence, Tr� is compatible with the

canonical inclusions !C 0=k ,! �0�.�1
K0=k/ and !C=k ,! ��.�1

K=k/. In particular,
the map Tr� is compatible with the natural identification of meromorphic 1-forms on
C 0 with meromorphic 1-forms on C (i.e., compatible with the injection �1

K0=k ,!
�1
K=k).
Having summarized some inputs from duality theory, we can now state the result

we want to prove.
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Theorem 6.1. The pullback H1.C;OC / ! H1.C 0;OC 0/ is dual to the natural map

H0.C 0; !C 0=k/ D H0.C; ��.!C 0=k// ! H0.C; !C=k/:

Proof. Let TrC W H1.C; !C=k/ ! k and TrC 0 W H1.C 0; !C 0=k/ ! k be the
canonical trace maps, so our problem is to prove that for s 2 H1.C;OC / and
� 0 2 H0.C 0; !C 0=k/ 
 �1

K0=k ,

TrC 0.� 0 [ sjC 0/ D TrC .Tr�.� 0/[ s/

in k. By the functoriality of Grothendieck’s trace map, TrC 0 D TrC ı H1.Tr�/ as
maps H1.C 0; !C 0=k/ ! k. Thus, it suffices to show that the map H1.C 0; !C 0=k/ !
H1.C; !C=k/ induced by Tr� carries � 0 [ sjC 0 to Tr�.� 0/[ s. We may view dualizing
sheaves as subsheaves!C=k 
 ��.�1

K=k/ and!C 0=k 
 �0�.�1
K0=k/ in terms of which

we have seen that the abstract trace map Tr� is induced by the natural inclusion
�1
K0=k 
 �1

K=k .

To do the computation we work with Čech theory. Let fUng be an ordered finite
open affine cover of C and let U 0

n D Un \ C 0, so fU 0
ng is an open affine cover of

C 0. The cohomology class s corresponds to a Čech 1-cocycle fsn;mgn<m with sn;m 2
OC .Un \ Um/, so s0 corresponds to fs0

n;mg with s0
n;m D sn;mjU 0

n\U 0

m
. Identifying � 0

with an element of�1
K0=k , � 0[sjC 0 2 H1.C 0; !C 0=k/ corresponds to fs0

n;m�
0gn<m and

Tr�.� 0/ [ s 2 H1.C; !C=k/ corresponds to fsn;m� 0gn<m, where � 0 is viewed in �1
K=k

in the natural way. The product sn;m� 0 at the generic points of Un \ Um vanishes at
generic points not in C 0, so the required equality is clear even at the level of Čech
1-cocycles. ut
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