Chapter 2
Data Exploration

2.1 Data Visualization and Summary Statistics

After clearly defining the scientific question we try to answer, selecting a set of
representative members from the population of interest and collecting data (either
through observational studies or randomized experiments), we usually begin our
analysis with data exploration. This chapter focuses on data exploration for one
variable at a time. (Data exploration techniques aimed at identifying possible rela-
tionship between two or more variables are discussed in the next chapter.) Our ob-
jective is to develop a high-level understanding of the data, learn about the possible
values for each characteristic, and find out how a characteristic varies among indi-
viduals in our sample. In short, we want to learn about the distribution of variables.
Recall that for a variable, the distribution shows the possible values, the chance of
observing those values, and how often we expect to see them in a random sample
from the population.

The data exploration methods allow us to reduce the amount of information so
that we can focus on the key aspects of the data. We do this by using data visualiza-
tion techniques and summary statistics. The visualization techniques and summary
statistics we use for a variable depend on its type. Therefore, before we continue
with data exploration methods, we briefly discuss different variable types. (More
discussion is provided in Chap. 4.)

2.2 Variable Types

Let us revisit the Pima. tr data discussed in the previous chapter (Fig. 2.1). For
each individual, there are eight measurements for eight different variables. In this
book, variables will be represented by capital letters, such as X, ¥, Z. Each obser-
vation in our sample has an index i, where i = 1,2, ..., n, and n is the total sample
size. Here, the term observation refers to an observed value of a variable, and the
term sample refers to the collection of these observations. We denote by x; the ith
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Fig. 2.1 Viewing the 3361 % Pima.tr

Pima.tr datain npreg glu bp skin bmi ped age type

R-Commander

1 5 86 68 28 30.2 0.364 24 No =
2 7 195 70 33 25.1 0.163 55 Yes
3 5 77 82 41 35.8 0.156 35 o
4 0 165 76 43 47.9 0.259 26 No
5 0 107 60 25 26.4 0.133 23 No
6 5 97 76 27 35.6 0.378 52 Yes
7 3 83 58 31 34.3 0.336 25 No
8 1 193 50 16 25.9 0.655 24 No
9 3 142 80 15 32.4 0.200 63 No
2 128 78 37 43.3 1.224 31 Yes
0 137 40 35 43.1 2.288 33 Yes
9 154 78 30 30.9 0.164 45 No
1 189 60 23 30.1 0.398 59 Yes
12 92 62 7 27.6 0.926 44 Yes
1 86 66 52 41.3 0.917 29 No
4 99 76 15 23.2 0.223 21 No
1 109 60 8 25.4 0.947 21 No
11 143 94 33 36.6 0.254 51 Yes |,

observed value of variable X. For example, if the variable age is denoted by X, then
x5 = 23 means that the 5th individual in our sample is 23 years old. (Try checking
this by viewing the Pima . tr data set.)

Based on the values a variable can take, we can classify it into one of two groups:
numerical variables or categorical variables. In Pima. tr, variables npreg, age,
and bmi in the Pima . tr data set are numerical variables since they take numerical
values, and the numbers they take have their usual meaning. For example, we say
that the second individual in our sample is older than the first individual since x; =
55 is bigger than x; = 24. We can also subtract their ages to find their age difference:
55 — 24 = 31. For numerical variables, we can talk about the distance between two
values.

If the values of a numerical variable are counts (e.g., number of pregnancies,
number of physician visits), we refer to the variable as a count variable to dis-
tinguish it from other types of numerical variables. Often, the statistical methods
we choose for count variables are different from the method we choose for other
numerical variables.

The type variable in Pima. tr is categorical since the set of values it can
take consists of a finite number of categories; here, Yes (for diseased) and No (for
nondiseased). In other words, a categorical variable assigns one of the possible cat-
egories to each individual in our sample.

It is common to use numerical codings for categorical variables. Let us denote the
type variable Y. We can use Y = 1 for nondiabetic individuals (i.e., type=No),
and Y = 2 for diabetic women (i.e., type=Yes). Note, however, that these numbers
merely represent different categories (disease status) and do not have their usual
meaning. For example, we cannot talk about the distance between two values of
the type variable or say that the value of this variable for diabetic women is two
times more than that of nondiabetic women. Indeed, the assignment of numbers to
different categories in this case is quite arbitrary. For the type variable, we could
have decided to represent diabetics by ¥ = 1 and nondiabetics by ¥ = 2.
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Categorical variables are either nominal or ordinal, depending on the extent
of information the numerical coding provides. For nominal variables, the numbers
are simply labels, which are chosen arbitrarily. Therefore, they do not provide any
information. The type variable in Pima . tr is nominal. For ordinal variables, al-
though the numbers do not have their usual meaning, they preserve a rank ordering.
Therefore, they provide information about the ordering of categories. For example,
we would use an ordinal variable to denote the severity of a disease as ¥ =1 for
low, Y = 2 for medium, and ¥ = 3 for high. Although these numerical values do not
suggest that medium is two times more severe than low, we can say that medium is
more severe than low.

Now let us consider another data set called birthwt, which is also available
from the MASS package. This data set includes the birth weight (in grams) of 189
newborn babies along with some characteristics (e.g., age, smoking status) of their
mothers. The data were collected at Baystate Medical Center, Springfield, MA, dur-
ing 1986. To load this data set, click Data — Data in packages — Read
data set from an attached package. Select MASS under Package
and birthwt under Data set.

View the data set by clicking the View data set button (Fig. 2.2). The data
set includes the following variables:

e low: indicator of birth weight less than 2.5 kg (0 = normal birth weight, 1 = low
birth weight).

age: mother’s age in years.

1lwt: mother’s weight in pounds at last menstrual period.

race: mother’s race (1 = white, 2 = African-American, 3 = other).
smoke: smoking status during pregnancy (0 = not smoking, 1 = smoking).
pt1l: number of previous premature labors.

ht: history of hypertension (0 = no, 1 = yes).

ui: presence of uterine irritability (O =no, 1 = yes).

ftv: number of physician visits during the first trimester.

bwt: birth weight in grams.
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Variables age, 1wt, ptl, £tv, and bwt are numerical variables. Among these
variables, pt1 and ftwv are count variables. The variables 1ow, race, smoke,
ht, and ui are all categorical. Note that all categorical variables are coded with
numerical values. In these situations, R and R-Commander cannot automatically
recognize them as categorical variables. In fact, they are considered as numeri-
cal variables by default. Therefore, we need to convert them to categorical vari-
ables. To do this, make sure birthwt is the active data set, then click on Data
— Manage variables in active data set — Convert numeric
variables to factors. (InR, categorical variables are usually stored as fac-
tors.) Under Variables, select low, race, smoke, ht, and ui. Under Factor
Levels, check the Use numbers option (unless you would like to provide spe-
cific names for each category). Click OK and accept the overwrite option when
prompted. The data set is now ready for exploration and analysis.

2.3 Exploring Categorical Variables

In this section, we discuss visualizing and summarizing categorical data. Consider
the type variable in Pima . tr data set. A simple way for summarizing the data is
to create a table that shows the number of times each category has been observed.

The number of times a specific category is observed is called frequency. We
denote the frequency for category c by n..

Table 2.1 shows that in this sample, the number of women not affected by dia-
betes (type=No) is n; = 132, and the number of diabetic (type=Yes) women is
ny = 68. Here, 1 represents “No”, and 2 represents “Yes” for the type variable. To
obtain the frequencies for this variable, click Statistics — Summaries —
Frequency distributions and select type asthe Variable. The results
are displayed in the Output window (Fig. 2.3).

The sum of the frequencies for all categories is equal to the total sample size,

E ne=n,
¢

Table 2.1 Frequency table

for the type variable in the Type Frequency
Pima. tr data set

No 132

Yes 68

Total 200
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Fig. 2.3 Using

R-Commander to obtain and Output Window Samit)
view the frequency table for =
type from the Pima. tr > .Table # counts for type
data set
Ho Yes
132 68

where ) . means the sum over all categories. For the type variable, we have

chzm + 1y = 132 4 68 = 200.
C

2.3.1 Relative Frequency and Percentage

Follow the above steps to create the frequency table for the race variable in the
birthwt data set. For this variable, the frequencies are ny = 96, ny = 26, and
n3 = 67 for “White”, “African-American”, and “Other” categories, respectively. The
sum of these frequencies is equal to the sample size n = 189.

Now suppose that we want to ensure that the racial make up of our sample is
similar to that of the whole US population. To do this, we use relative frequencies
or percentages as summary statistics.

The relative frequency is the sample proportion for each possible category.
It is obtained by dividing the frequencies n. by the total number of observa-
tions 7:

ne

pe=—. @.1)
n

Relative frequencies are sometimes presented as percentages after multiplying
proportions p. by 100.

The relative frequencies and percentages for the race variable in birthwt are

p1 =96/189 =0.508 = 50.8%,
p2=26/189=0.138 = 13.8%,
p3 =67/189 =0.354 = 35.4%.

Therefore, 50.8% (almost half) of the women in the sample were white, 13.8% were
African-American, and the remaining 35.4% were from other races. We can now
compare these relative frequencies with their corresponding proportions in the US
population.
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Output Window Submit]
1 2 3
96 26 67

> 100*.Table/sum(.Table) # percentages for race

1 2 3
150.79365 13.75661 35.44974 -

Fig. 2.4 Using R-Commander to obtain and view the frequencies and percentages of the race
variable in the birthwt data set

In R-Commander, make sure birthwt is the active data set, then click
Statistics — Summaries — Frequency distributions, and select
race as the Variable. The frequencies and percentages are given in the Output
window, as shown in Fig. 2.4. Note that R-Commander automatically multiplies the
proportions by 100 to obtain the percentages.

For race, the category “1” (i.e., white women) has the highest frequency. In this
case, we say that the mode of the variable race is “1”.

For a categorical variable, the mode of is the most common value, i.e., the
value with the highest frequency.

For the type variable, if we use 1 for “No” (i.e., nondiabetic) and 2 for “Yes” (i.e.,
diabetic), the mode of the variable is 1.
Since the relative frequencies are proportions of the sample size, their sum is 1,

ch':l,
c

where p, is the relative frequency of category c. For the race variable, we have

> pe=0.508+0.138 +0.354 = 1.
c

Similarly, the sum of the percentages for different categories is 100%. Table 2.2
shows the frequencies and relative frequencies of the three categories for race.

2.3.2 Bar Graph

For categorical variables, bar graphs are one of the simplest ways for visualizing
the data. Using a bar graph, we can visualize the possible values (categories) a cat-
egorical variable can take, as well as the number of times each category has been
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Table 2.2 Frequency table

for the race variable in the Race Frequency Relative frequency
birthwt data set
White 96 0.508
African-American 26 0.138
Other 67 0.354
Total 189 1
Fig. 2.5 Using Frequency Bar Graph of Disease Status
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o
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observed in our sample. The bar graph for variable type (Fig. 2.5) shows that the
possible values are “No” (nondiseased) and “Yes” (diseased). The height of each
bar in this graph shows the frequency of the corresponding category. Therefore, the
bar heights (frequencies) add up to the total sample size (in this case, n = 200).

In R-Commander, make sure Pima . tr is the active data set. (If you have loaded
Pima. tr, butitis not currently the active data set, click on the name of the active
data set and select Pima . tr from the list of available data sets.) Then, create a
bar graph for type by clicking Graphs — Bar graph and then selecting type
as the Variable. (Notice how bar graphs can only be created for categorical vari-
ables.) On the resulting plot shown in Fig. 2.5, the horizontal axis represents the pos-
sible values of the variable, and the height of each bar represents the number of ob-
servations in that category. Indeed, a quick glance at the graph reveals that the num-
ber of nondiabetic women in our sample is almost two times more than the number
of diabetic women. You can save this graph by clicking Graphs — Save graph
to file and choosing either as bitmap or as PDF/Postscrip/EPS for
the file format.
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Fig. 2.6 Bar graph for Frequency Bar Graph of Race
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Fig. 2.7 Pie charts for the type race
type variable from

Pima.tr and the race No 1
variable from birthwt,
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“African-American”, and

“other”, respectively

Yes 3

Follow the above steps to create the bar graph for the variable race in
birthwt. The resulting graph is shown in Fig. 2.6.

2.3.3 Pie Chart

We can use a pie chart to visualize the relative frequencies of different cate-
gories for a categorical variable. In a pie chart, the area of a circle is divided into
sectors, each representing one of the possible categories of the variable. The area of
each sector c is proportional to its frequency. To create pie charts in R-Commander,
click Graphs — Pie chart. Figure 2.7 shows the pie charts for the type vari-
able from Pima . tr and the race variable from birthwt.
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Fig. 2.8 Three separate q
samples for variable X.
Observations in Sample 1 are
gathered around 2, whereas
observations in Sample 2 and
Sample 3 are gathered
around 4. Observations in
Sample 3 are more dispersed
compared to those in

Sample 1 and Sample 2

Sample 3

Sample 2

Sample 1

2.4 Exploring Numerical Variables

In this section, we discuss visualization and summarization of numerical data. As a
running example, we consider a numerical variable, X, for which we have collected
three sets (samples) of observations denoted as Sample 1, Sample 2, and Sample 3.
(You can assume that each set of observations are collected from a distinct group in
the population.) Figure 2.8 shows the dot plots for these three sets of observations.
Here, each point represents one observation in the corresponding sample.

As before, we use data visualization techniques and summary statistics to learn
about the distribution of variables. For numerical variables, we are especially inter-
ested in two key aspects of the distribution: its location and its spread. The location
of a distribution refers to the central tendency of values, that is, the point around
which most values are gathered. The spread of a distribution refers to the disper-
sion of possible values, that is, how scattered the values are around the location.
In Fig. 2.8, we can see that the observed values in Sample 1 are gathered around
X = 2; whereas, the observations in Sample 2 and Sample 3 are gathered around
X = 4. Therefore, Sample 2 and Sample 4 have roughly the same location. On the
other hand, Sample 1 and Sample 2 have roughly the same spread, which is smaller
than the spread in Sample 3. The individual observations in Sample 3 tend to be
further away from the location compared to those in Sample 1 and Sample 2. This
might not be very clear from dot plots, where we show all the observed values.
In what follows, we present more effective visualization techniques and summary
statistics that reduce the amount of information in order to make it easier to learn
about the distribution of numerical variables.



26 2 Data Exploration

Sample 3
o —
T
g 0
8— ©
9 <
I o
 —
e ) T T T 1
0 1 2 3 4 5 6 7
X
Sample 2
g
5
5 2
o
Q 5
-
S r T T T T T 1
0 1 2 3 4 5 6 7
X
Sample 1
> &
[$]
g [e0] —
3 ©
O <
L o«
i ) T T T T 1
0 1 2 3 4 5 6 7

X

Fig. 2.9 Histograms for the three samples shown in Fig. 2.8

2.4.1 Histograms

Histograms are commonly used to visualize numerical variables. A histogram is
similar to a bar graph after the values of the variable are grouped (binned) into a
finite number of intervals (bins). For each interval, the bar height corresponds to the
frequency (count) of observation in that interval. That is, we treat each interval as a
category. Similar to bar graphs, the heights sum to sample size n. Figure 2.9 shows
the histograms for Sample 1, Sample 2, and Sample 3. For Sample 1, observations
are grouped into six intervals. Most observed values are around 2. Sample 2 and
Sample 3 have roughly the same locations. However, the histogram for Sample 3 is
more spread out compared to that of Sample 2.

As an example, we use the variable bmi in the Pima. tr data set and create
its histogram. In R-Commander, click Graphs — Histogram and select bmi
for the Variable. (Now we can only select from the numerical variables in our
data set.) The resulting histogram is shown in Fig. 2.10. The x-axis represents bmi,
where its observed values are divided into seven equal bins of width w = 5. The
height of each bar shows the frequency (count) in the corresponding interval. In-
deed, a quick glance of the plot suggests that the age interval (30, 35] has the highest
frequency. The notation (30, 35] is the interval greater than 30 and less than or equal
to 35. By default, each interval includes the right-hand point (here, 35) but not the
left-hand point (here, 30). For the bmi variable, Fig. 2.11 shows that most obser-
vations are gathered around 32.5, and the observed values spread roughly from 15
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Fig. 2.10 The frequency Frequency Histogram of BMI
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Fig. 2.11 The density Density Histogram of BMI
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to 50. (Later, we use summary statistics to describe these features of data more pre-
cisely.) As before, you can save this graph by clicking Graphs — Save graph
to file and choosing either as bitmap or as PDF/Postscrip/EPS for
the file format.

In the above example, the bar height for each interval, c, is equal to its fre-
quency, n.. Alternatively, the bar height for each interval could be set to its relative
frequency p. = n./n, or the percentage p. x 100, of observations that fall into that
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interval. For histograms, however, it is more common to use the density instead of
the relative frequency or percentage.

The density is the relative frequency for a unit interval. It is obtained by di-
viding the relative frequency by the interval width:
p
fo==. (2.2)
We
Here, p. = n./n is the relative frequency with n. as the frequency of interval
c and n as the total sample size. The width of interval c is denoted w,.

Let us try calculating the density of the interval (30, 35], which is the fourth
interval. There are n4 = 67 observations in this interval. Therefore, the relative fre-
quency is pg = 67/200 = 0.335. The interval width is w4 = 5. The density for the
this interval is therefore

fu=0.335/5 = 0.067.

To create the density histogram for bmi in R-Commander, click Graphs —
Histogram, select bmi as the Variable, and choose Densities for the
Axis Scaling. The resulting histogram (Fig. 2.11) is similar to that of Fig. 2.10.
However, the height of each bar in this histogram shows the density of the corre-
sponding interval (as opposed to its frequency).

For each interval c, the area of the corresponding bar in the density histogram is
calculated as follows (hight x width):

ac = fc X We
Pc
= — X W¢
We

= Pec-

Therefore, the area of each bar (rectangle) is the relative frequency for the corre-
sponding interval. Since the sum of relative frequencies is 1, the total area of bars in
a density histogram is 1.

Number of Bins ~ We typically use the same width, denoted as w, for all bins. When
creating a histogram, it is important to choose an appropriate value for w. This is
equivalent to choosing an appropriate number of bins. In R-Commander, by default,
the number of bins is selected automatically using Sturges’ formula [32].

You can set the number of bins manually. In R-Commander, click Graphs —
Histogram, select bmi for the Variable, and set Number of bins to 3.
Compare the resulting histogram to Fig. 2.10.
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Shapes of Histograms  Besides the location and spread of a distribution, the shape
of a histogram also shows us how the observed values spread around the location.
Consider the histograms shown in Fig. 2.12. We say that this histogram is sym-
metric around its location (here, zero) since the densities are the same for any two
intervals that are equally distant from the center. In reality, we rarely see perfectly
symmetric histograms such as the one shown in Fig. 2.12. However, we usually con-
sider a histogram as symmetric if the densities are almost the same for intervals that
are equally distant from the location. For example, we can consider the histogram
of bmi in Fig. 2.11 as symmetric.

In many situations, we find that a histogram is stretched to the left or right. We
call such histograms skewed. More specifically, we call them left-skewed if they
are stretched to the left, or right-skewed if they are stretched to the right. For in-
stance, the histogram of Y in Fig. 2.13 is left-skewed. The majority of observations
are around 102, but the decrease in densities is slower on the left of the location than
on the right. This gives the histogram a long left (lower) tail. On the other hand, the
histogram of variable Z in Fig 2.13 is right-skewed. The histogram is stretched
to the right and has a long right (upper) tail. In the birthwt data set, the his-
togram of 1wt (mother’s weight in pounds at last menstrual period) is right-skewed
(Fig. 2.14).

The above histograms, whether symmetric or skewed, have one thing in common:
they all have one peak (or mode). The overall pattern (disregarding minor details)
for these histograms can be described as rising to a single peak and then declining.
We call such histograms (and their corresponding distributions) unimodal. Some-
times histograms have multiple modes. For example, the histogram of variable W
in Fig. 2.15 is said to be bimodal, since it has two peaks. (Here, a smooth curve has
been superimposed to show the overall pattern.)
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Fig. 2.13 Left panel: Histogram of variable Y whose histogram is left-skewed. Right panel: His-
togram of variable Z whose histogram is right-skewed
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The bimodal histogram appears to be a combination of two unimodal histograms.
Indeed, in many situations bimodal histograms (and multimodal histograms in gen-
eral) indicate that the underlying population is not homogeneous and may include
two (or more in case of multimodal histograms) subpopulations. For example, the
variable W in Fig. 2.15 represents blood pressure, and the sample might have been
obtained from a population comprised of two groups: a healthy group, whose blood
pressure is normal (around 120), and a hypertensive group, who suffer from high
blood pressure (around 150).

As another example, suppose that we want to study the protein consumption of
European countries [9]. Download the Protein data set from http://lib.stat.cmu.
edu/DASL/Datafiles/Protein.html. In R-Commander, import the Protein data set


http://lib.stat.cmu.edu/DASL/Datafiles/Protein.html
http://lib.stat.cmu.edu/DASL/Datafiles/Protein.html
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and view it. This data set was collected in 1973 and includes the consumption mea-
surements of nine food groups: RedMeat, WhiteMeat, eggs,Milk, Fish, Ce-
reals, Starch (starchy foods), nuts (pulses, nuts, and oil-seeds), and Fr . Veg
(fruits and vegetables). Use the steps described above to plot the density histogram
of WhiteMeat. Figure 2.16 shows that the resulting histogram is bimodal. It seems
that European countries are divided into two subgroups with respect to the amount
of protein consumption from white meat.
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2.4.2 Mean and Median

Histograms are useful for visualizing numerical data and identifying their location
and spread. However, we typically use summary statistics for more precise specifica-
tion of the central tendency and dispersion of observed values. A common summary
statistic for location is the sample mean.

The sample mean is simply the average of the observed values. For observed
values x1, ..., x,, we denote the sample mean as x and calculate it by

so Ziti 2.3)
n

where x; is the ith observed value of X, and #n is the sample size.

For Sample 1, Sample 2, and Sample 3, the means are 2.1, 3.9, and 4.1, respec-
tively. The means are shown as short vertical lines in Fig. 2.17.

The sample mean for bmi in Pima. tr is 32.3. In Fig. 2.18, the mean is shown
by a solid line. In this case, the mean 32.3 appropriately represents the location
(center) of the distribution and the central tendency of the observed values.

While sample mean is a very useful summary statistic for location, it is sensitive
to very large or very small values, which might be outliers (unusual values). For
instance, suppose that we have measured the resting heart rate (in beats per minute)
for five people. The five measurements are {74, 80, 79, 85, 81}. We can calculate
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In this case, the sample mean is 79.8, which seems to be a good representative of
the data.

Now suppose that the heart rate for the first individual is recorded as 47 instead
of 74. Compared to other four people, this is a much smaller number, which is either
due to a data recording mistake, or the first person is in fact a well-trained athlete
with low resting heart rate. In this case, the sample mean is heavily affected by this
observation, which is regarded as an outlier, and it is drastically reduced to 74.4:

47+ 80479 + 85 + 81
X = [47,80,79,85,81},  i= - T +5+ T8 .

Now, the sample mean does not capture the central tendency of the observed data
since four out of five measurements are much larger than x = 74.4.

The sample median is an alternative measure of location, which is less sen-
sitive to outliers. For observed values x1, ..., x,;, the median is denoted X and
is calculated by first sorting the observed values (i.e., ordering them from the
lowest to the highest value) and selecting the middle one. If the sample size n
is odd, the median is the number at the middle of the sorted observations. If
the sample size is even, the median is the average of the two middle numbers.
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The sample medians for the above two scenarios are

x ={74,79, 80, 81, 85}, % =80:;
x = {47,79, 80, 81, 85}, 5=

In this example, the median remains equal to 80, which properly captures the central
tendency of the observed values. In general, the median is not heavily influenced by
outliers. We say that the median is more robust against outliers.

When there are no outliers and the histogram is almost symmetric, such as the
histogram of bmi in Fig. 2.18, both the mean (solid line) and the median (dashed
line) are close to each other, and both reasonably represent the location of data.
However, when there are outliers, or when the histogram is skewed, such as the
histogram of 1wt in Fig. 2.19, the mean (solid line) moves toward the outliers or
the direction of skewness in the histogram more than the median.

Occasionally, we might find situations in which neither the mean nor the median
is a good representative of the central tendency. For example, Fig. 2.20 shows that
the mean (solid line) and the median (dashed line) for the WhiteMeat variable
do not capture the central tendency of the data. Most observed values in this case
are clustered away from the mean and median. This is usually true for bimodal
distributions.

2.4.3 Variance and Standard Deviation

While summary statistics such as mean and median provide insights into the central
tendency of values for a variable, they are rarely enough to fully describe a distribu-
tion. We need other summary statistics that capture the dispersion of the distribution.
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For example, consider Sample 2 and Sample 3 in Fig. 2.17. The two samples have
similar locations, but Sample 3 is more dispersed than Sample 2. The deviations
(differences) of observations from the center (e.g., mean) tend to be larger in Sam-
ple 3 compared to Sample 2.

As a further example, consider the following measurements of blood pressure (in
mmHg) for two patients:

Patient A:  x = {95, 98, 96, 95, 96}, x=96, x=096.
Patient B:  y = {85, 106, 88, 105,96}, y =96, y=96.

While the mean and median for both patients are 96, the readings are more dispersed
for Patient B. Suppose that we choose 96 as the representative value of systolic
blood pressure for both patients. For Patient A, there is a good chance that the next
reading of blood pressure would be close to 96, for example, in the [95, 97] range.
For Patient B, the chance of seeing a blood pressure value close to 96 (e.g., in the
[95, 97] range) would be relatively smaller. For a better description of a variable, we
need summary statistics that measure the dispersion (i.e., variability) of its observed
values.

Two common summary statistics for measuring dispersion are the sample vari-
ance and sample standard deviation. These two summary statistics are based on
the deviation of observed values from the mean as the center of the distribution.
For each observation, the deviation from the mean is calculated as x; — x. It is easy
to show that the sum of these deviations over all observed values is always zero.
(Note that x = n Y x;.) Therefore, we cannot simply use the sum of the deviations
as a measure of dispersion. However, the sum would not be zero in general if we
ignore the sings of these deviations (i.e., focus on the distances from the mean). For
this, we can either take the absolute value of deviations, |x; — x|, or square them,



36 2 Data Exploration

(x; — %)2. Either way, the sign of deviations becomes irrelevant. Taking the squares
of the deviations is a more popular choice. We can then use the average of these
squared deviations over all observations as a measure of dispersion:

Z?:l(xi —x)*

n

(2.4)

Instead of dividing by n, it is more common to divide by n — 1. (This increases the
above dispersion measurement by a small amount.) The result is called the sample
variance.

The sample variance is a common measure of dispersion based on the squared
deviations. The variance, denoted s2, is calculated as
n =\2
) Zizl (x;i — X)

§° = = =1 (2.5)

If we take the square root of the variance,

i1 (i — %)

e 2.6)

the result is called the sample standard deviation:

Table 2.3 shows the steps for calculating the sample variance and sample stan-
dard deviation of blood pressure readings for Patient A and Patient B in the above
example. In comparison, the standard deviation for Patient A is much smaller than
the standard deviation for Patient B. Thus, we can conclude that the observed blood
pressure values are less dispersed for Patient A compared to Patient B.

Table 2.3 Calculating the

sample variance and sample Patient A Patient B
standard deviation for Xi X;i— X (x; — )E)2 Vi yi—y (yvi — )7)2
Patient A and Patient B in the
blood pressure example 95 —1 1 85 —11 121
98 4 106 10 100
96 0 88 -8 65
95 -1 1 105 9 81
96 0 0 96 0 0
> 0 6 ) 0 366
s2=6/4=15 §2=366/4=91.5

s=+15=122 s =+91.5=9.56
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2.4.4 Quantiles

Informally, the sample median could be interpreted as the point that divides the
ordered values of the variable into two equal parts. More precisely, the median is
the point that is greater than or equal to at least half of the values and smaller than
or equal to at least half of the values. Therefore the median is called the 0.5 quantile,
which, as we discussed above, provides a measure of location. Similarly, the 0.25
quantile is the point that is greater than or equal to at least 25% of the values and
smaller than or equal to at least 75% of the values. In general, the g quantile is the
point that is greater than or equal to at least 100g % of the values and smaller than or
equal to at least 100(1 — gq)% of the values. Sometimes, we refer to the ¢ quantile
as the 100gth percentile. For example, the 0.25 quantile is the 25th percentile, and
the median is the 50th percentile.

We can divide the ordered values of a variable into four equal parts using 0.25,
0.5, and 0.75 quantiles. The corresponding points are denoted Qi, Q»>, and Q3,
respectively. Note that Q5 is the 0.5 quantile and is therefore the same as the median.
Q1 is the point that divides the lower half of the data (i.e., below the median) into
two equal parts. Q3 is the point that divides the upper half of the data into two
equal parts. We refer to these three points as quartiles, of which Q; is called the
first quartile or the lower quartile, Q> (i.e., median) is called the second quartile,
and Q3 is called the third quartile or upper quartile. The interval from Q1 (0.25
quantile) to Q3 (0.75 quantile) covers the middle 50% of the ordered data.

The minimum (min), which is the smallest value of the variable in our sample, is
in fact the O quantile. On the other hand, the maximum (max), which is the largest
value of the variable in our sample, is the 1 quantile. The minimum and maximum
along with quartiles (Q1, Q2, and Q3) are known as five-number summary. These
are usually presented in the increasing order: min, first quartile, median, third quar-
tile, max. This way, the five-number summary provides 0, 0.25, 0.50, 0.75, and 1
quantiles.

We can use R-Commander to obtain the five-number summary along with mean
and standard deviation. Make sure birthwt is the active data set. Click Statis-
tics — Summaries — Numerical summaries (Fig. 2.21). Now select
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Qutput Window Submit]

> numSummary (birthwt[, "bwt"],

+ quantiles=c({0,.25,.5,.75,1)}))
mean sd 0% 25% 50% 75% 100% n

2944.587 729.2143 709 2414 2977 3487 4990 189

=1
statistics=c¢("mean", "sd", "quantiles"), ‘
'y

)

[

Fig. 2.22 Summary statistics for bwt from the birthwt data set. Here, sd denotes standard
deviation

bwt. (You can select multiple variables by holding down the “control” key.) Make
sure Mean, Standard Deviation, and Quantiles are checked. The default
for quantiles are the five-number summary. The resulting summary statistics are
shown in Fig. 2.22.

The five-number summary can be used to derive two measures of disper-
sion: the range and the interquartile range. The range is the difference be-
tween the maximum observed value and the minimum observed value. The
interquartile range (IQR) is the difference between the third quartile (Q3) and
the first quartile (Q1). Compared to the range, the IQR is less sensitive to
outliers, which usually fall below Q; or above Q3.

Using the results in Fig. 2.22, the range for bwt is 4990 — 709 = 4281 grams,
while the IQR is 3487 — 2414 = 1073 grams. For this variable, 50% of the birth
weight values fall within the [2414, 3487] interval. The birth weight for 25% of
babies is above 3487 grams, and for 25% of babies is below 2414 grams.

2.4.5 Boxplots

To visualize the five-number summary, the range and the IQR, we often use a box-
plot (a.k.a. box and whisker plot). Figure 2.23 shows the boxplot for bwt along
with the plot of actual observed values. The thick line at the middle of the “box”
shows the median X = 2977. The left side of the box shows the lower quartile
Q1 = 2414. Likewise, the right side of the box is the upper quartile Q3 = 3487.
Therefore, the box stretches from the lower quartile to the upper quartile and rep-
resents the middle 50% of the values of the ordered data. The length of the box is
therefore the IQR, which in this case is equal to 1073. 25% of the observations are
to the left of this box, and 25% are to the right of it.

The dashed lines extending from the box are known as the whiskers. The whisker
on the right of the box extends to the largest observed value or Q3 + 1.5 x IQR,
whichever it reaches first. The whisker on the left extends to the lowest value or
01 — 1.5 x IQR, whichever it reaches first. Data points beyond the whiskers (i.e.,
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either less than Q1 — 1.5 x IQR or greater than Q3 + 1.5 x IQR) are shown as
circles and considered as possible outliers. For bwt, the right whisker extends to
the maximum value 4990 since it reaches to this value before 3487 4+ 1.5 x 1073 =
5096.5. The left whisker extends to 2414 — 1.5 x 1073 = 804.5 since it reaches this
point before it reaches the minimum value 709. There is one observation to the left
of this whisker, which is shown as a circle. This is, in fact, the minimum observed
value, 709, which in this case is considered as a potential outlier.

Very often, boxplots are drawn vertically. This is the default option in
R-Commander. To create a boxplot for bwt in R-Commander, make sure birthwt
is the active dataset, click Graphs — Boxplot, and select bwt. The resulting
boxplot is shown in Fig. 2.24. This is the same as the boxplot shown in Fig. 2.23
after 90° rotation.
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Now, consider the boxplot of 1wt (Fig. 2.25), whose is distribution is right-
skewed. The sample median (X = 121) is closer to the bottom (Q = 110) than to the
top (Q3 = 140) of the box. This is an indication of skewed distribution. Moreover,
the upper whisker extends substantially further than the lower whisker. There are
several possible outliers, whose observed values fall beyond the whisker on the top
of the box.

2.5 Data Preprocessing

Many of the data sets we have been using as examples have been collected in sci-
entific studies. Typically, such data are not ready for immediate analysis. The most
common issues are missing values and outliers. For example, the original data on
women of Pima Indian Heritage (collected by US National Institute of Diabetes
and Digestive and Kidney Diseases) included many observations with missing val-
ues. The data set we have been using so far (Pima.tr) was obtained after re-
moving these observations. We refer to data in their original form (i.e., collected
by researchers) as the raw data. Before using the original data for analysis, we
should thoroughly check them for missing values and possible outliers. Data explo-
ration techniques we discussed in this chapter can help us to identify data issues that
need to be addressed before further analysis. Collectively, we refer to the process of
preparing the raw data for analysis as data preprocessing. Here, we discuss some
simple preprocessing steps.

2.5.1 Missing Data

For our first example, we look at the Pima.tr2 data set, which includes
the Pima.tr data set plus many other observations with missing values. The
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Fig. 2.26 Viewing the VOO . Pima.tr2
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Pima.tr2 is available in the MASS package. Follow the steps described in the
previous chapter to load the MASS package and select Pima . tr2 (which is located
right after Pima . tr in the list) as the active data set. Figure 2.26 shows a part of
this data set. Here, missing values are denoted NA (Not Available).

In general, it is up to the researcher to decide whether to remove the observa-
tions with missing values or impute (guess) the missing values in order to keep the
observations. If we choose to remove all observations with missing values (this is
how the Pima. tr data set was created based on Pima.tr2), we can do so by
clicking Data — Active data set — Remove cases with missing
data. Under Name for new data set enter Pima.complete. This cre-
ates a data set, which does not include any observation with missing values. (Notice
that Pima . complete becomes the active data set.) Indeed, this data set is exactly
the same as Pima . tr, which we have been using so far.

While simply removing observations with missing values is an easy approach for
handling missing data, it is quite wasteful and inefficient. On the other hand, missing
data imputation techniques, i.e., using statistical methods to fill-in missing values,
tend to be complex. However, if done properly, they can improve our analysis. For an
overview of statistical methods for analyzing data with missing values, refer to [18].

Sometimes we can temporarily ignore missing values if the variable whose val-
ues are missing is not the focus of our analysis at the moment. In the above example,
if we are focusing on the bp (blood pressure) variable, we do not need to remove
observations 201, 202, 203, 205, .... Of course, we still need to either remove or
impute the observation 204 and any other observation whose blood pressure read-
ing is missing. To remove individual observations, click Data — Active data
set — Remove row(s) from active data and enter the row numbers
(the leftmost number in the data set) for observations you want to remove.

2.5.2 Outliers

Dealing with missing values is not the only challenge of working with raw data.
Sometimes, an observed value of a variable is suspicious since it does not follow the
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overall patterns presented by the rest of the data. We refer to such observations as
outliers. Suppose, for example, that almost all BMI values in our sample are between
20 and 40. Observing a BMI value of 50 would be suspicious. Further investigation
might reveal that in fact this is the correct value of BMI for an individual in our
sample. In this case, this outlier is a legitimate value. However, a BMI value of 500
or —50 is clearly an erroneous observation, which is possibly due to a data entry
mistake.

We could identify outliers using data exploration techniques. As an example, we
use the AsthmaLOS data collected by [12] to study the length of stay in hospital
for asthmatic children in the USA. Download the data set from the book website
(http://extras.springer.com) and import it to R-Commander. The variables in this
data sets are:

los: length of stay in hospital (in days).

hospital.id: hospital ID.

insurer: the insurer, which is either O or 1.

age: the age of the patient.

gender: the gender of the patient; 1 for female, and O for male.

race: the race of the patient; 1 for white, 2 for Hispanic, 3 for African-American,

4 for Asian/Pacific Islander, 5 for others.

e bed. size: the number of beds in the hospital; 1 means 1 to 99, 2 means 100 to
249, 3 means 250 to 400, 4 means 401 to 650.

e owner . type: the hospital owner; 1 for public, 2 for private.

e complication: if there were any treatment complication; 0 means there were

no complications, 1 means there were some complications.

Before working with this data set, follow the steps discussed in Sect. 2.2 to
convert the variables hospital.id, insurer, gender, race, owner
type, and complication to factors (categorical). Next, obtain the frequency ta-
bles for gender. The resulting tables are shown in Fig. 2.27. Notice that while the
gender variable can take only two values, 1 for female and O for male, the data
include two observations whose values for gender is “4”. These values are entered
by mistake and should be either removed (as described above) or corrected if pos-
sible. If we know the correct values for these observations (e.g., by examining the
medical records), we can edit the data and keep the observations. To edit a data set,
click Edit data set button in front of its name on the menu bar. This opens the
R Data Editor window, where you can find the erroneous values and correct them.
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Now consider the variable 1os (length of stay) in the AsthmaLOS data set. Fig-
ure 2.28 shows the boxplot for this variable. As we can see, there are two children
whose length of stay is extremely large (50 and 58). These values are not consistent
with the rest of data. (All other values are less than 10.) However, if we find that
they are legitimate and correctly recorded values, we should keep them in our data
since they provide important information on the distribution of the variable (e.g.,
how extreme could be). Of course, such observations can drastically affect our re-
sults. For analyzing such data, we could use statistical methods that are more robust
against outliers (e.g., median, IQR).

2.5.3 Data Transformation

Occasionally, we rely on data transformation techniques (i.e., applying a function
to the variable) to reduce the influence of extreme values in our analysis. Two of
the most commonly used transformation functions for this purpose are logarithm
and square root. The logarithm function, log(x), is usually used to transform right-
skewed variables with positive values. The square root function is usually used for
right-skewed count variables. We use these transformations to reduce the skewness,
i.e., to make it more symmetric, and reduce the influence of extreme values.

Consider the 1wt variable in the birthwt data set. As shown in the left panel
of Fig. 2.29, the variable is right-skewed. To use log-transformation, click Data —
Manage variables in active data set — Compute new vari-
able.Under New variable name,enter log.lwt, and under Expression
to compute,enter log (1lwt) . (If we want to use the square root transformation,
we use sgrt instead of 1o0g.) This creates a new variable 1og. 1wt whose values
are the natural logarithm of 1wt. Next, create the density histogram for this newly
created variable. As shown in the right panel of Fig. 2.29, the resulting variable is
less skewed compared to the original variable.
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Fig.2.29 Left panel: Histogram of variable 1wt in the birthwt data set. Right panel: Histogram
of variable 1og (1lwt), log-transformation of 1wt

The transformation techniques discussed so far are used commonly in statistical
analysis. You can of course use the above approach to transform a variable in many
other ways. For example, suppose that you want to apply the square transformation
to a variable X. (This is also a common transformation in regression analysis.) To
do this, you can follow the above steps and simply enter X~ 2 under Expression
to compute. (Here, symbol “~” is used for exponentiation.)

2.5.4 Creating New Variable Based on Two or More Existing
Variables

In the previous chapter, we discussed creating new variables based on existing ones
as a common data preprocessing step. Here, we show how we can create a new
variable based on two or more existing variables. Consider the bodyfat data set,
which includes weight and height. Using these two variables, we can calculate BMI
for each person in the sample using the equation

weight x 703
BMI= 2" """~
(height)?

where weight is in pounds, and height is in inches.

To create BMI, click Data — Manage variables in active data
set — Compute new variable. Under New variable name, enter
BMI, and under Expression to compute, we enter (Fig. 2.30)

(weight « 703)/(height”~2)

This will create a new variable called BMI. You can now investigate the linear re-
lationship between this variable and percent body fat by calculating their sample
correlation coefficient. Pearson’s correlation coefficient between siri and BMT is
0.72, which indicates a strong positive linear relationship as expected.
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Table 2.4 Standard weight

status based on BMI BMI Weight Status
according to CDC
Below 18.5 Underweight
18.5-24.9 Normal
25.0-29.9 Overweight
30.0 and Above Obese

2.5.5 Creating Categories for Numerical Variables

Another common preprocessing technique is to create categorical variables based
on numerical variables. This could help us to see the patterns more clearly and
identify relationships more easily. Recall that histograms are created by dividing
the range of a numerical variable into intervals. Instead of using arbitrary intervals,
we might prefer to group the values in a meaningful way. This way, we can create
a categorical variable based on a numerical variable. For example, according to
the Centers for Disease Control and Prevention (CDC), the standard weight status
categories associated with BMI ranges for adults are as in Table 2.4.

In R-Commander, let us divide subjects based on their bmi (from the Pima. tr)
into four groups: Underweight, Normal, Overweight, and Obese. Click Data —
Manage variables in active data set — Recode variables.
Select bmi as the Variable to recode and enter “weight.status” as the New
variable name (Fig.2.31). Then in the Enter recode directives box,

type
0:18.5 = "Underweight"
18.5:24.9 = "Normal"
25.0:29.9 = "Overweight"
30.0:100 = "Obese"

Now view the Pima . tr data set. The newly created variable weight . status
is added to the data set. This variable is categorical. More specifically, it is an or-
dinal variable. To specify the order of categories in R-Commander, click Data
— Manage variables in active data set — Reorder factor
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levels. Then select weight .status. R-Commander will open a window to
reorder levels of the categorical variable. Change the order according to Fig. 2.32.
(Note that the default order is alphabetical.) Now you can create the barplot
for weight.status (Fig. 2.33). The graph of the weight.status variable
clearly indicates that the “Obese” category has the highest frequency.

2.6 Advanced

In this section, we discuss some data exploration and data transformation techniques
that are slightly more advanced. We also discuss some commonly used R functions
for data exploration.

2.6.1 Coefficient of Variation

Suppose that we want to compare the dispersion of bwt to that of 1wt using their
standard deviations. Use R-Commander to obtain the means and standard deviations
for bwt and 1wt in the birthwt data set. Based on the results shown in Fig. 2.34,
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lwt 129.8148 30,57938 189
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Current variables (double-click to expression)
a
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bwt
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ht [factor] wi
New variable name Expression to compute
bwiIb bwt /453.6

OK Cancel Help

it seems that bwt is more dispersed than 1wt since it has higher standard deviation
compared to 1wt. However, the two variables are not comparable; they have differ-
ent units. Let us change the unit of bwt from grams to pounds. For this, we need
to divide its values by 453.6. In R-Commander, click Data — Manage vari-
ables in active data set — Compute new variable. This opens
a window (Fig. 2.35), where we create new variable for birth weight in pounds.
Under new variable name, enter bwt . 1b. Under Expression to com-
pute, enter bwt /453 . 6. The newly created variable bwt . 1b, whose values are
birth weight in pound, will be added to the birthwt data set. (View the data set to
make sure that this is done correctly.)



48 2 Data Exploration

Fig. 2.36 Creating a new Output Window (Submit]
variable bwt . 1b (birth
weight in pounds) and
obtaining its summary AR
statistics

Now, use R-Commander to find the mean and standard deviation of bwt and
bwt . 1b. The results are shown in Fig. 2.36. After changing the measurement unit
from grams to pounds, the standard deviation changes from 729.2 to 1.6. Now, this
is much smaller than the standard deviation of 1wt, which is 30.6 (see Fig. 2.34).
This is of course expected since the values of 1wt are much larger than the values
of bwt . 1b. As a result, 1wt has much larger sample mean and larger deviations
around the mean compared to bwt . 1b.

The above results illustrate how difference in measurement units and large differ-
ences in sample means make it difficult to compare variables based on their standard
deviations. In many situations, we can avoid these issues by using another measure
of variation called the coefficient of variation instead of standard deviation.

To quantify dispersion independently from units, we use the coefficient of
variation, which is the standard deviation divided by the sample mean (as-
suming that the mean is a positive number):

V= .7)

=1 ©

The coefficient of variation for bwt (birth weight in grams) is 729.2/
2944.6 = 0.25 and for bwt . 1b (birth weight in pounds) is 1.6/6.5 = 0.25. There-
fore, the coefficient of variation is the same, even though bwt has a larger stan-
dard deviation compared to bwt . 1b. Comparing this coefficient of variation to
30.6/129.8 = 0.24, which is the coefficient of variation for 1wt, suggests that the
two variables have roughly the same dispersion in terms of CV. In general, the
coefficient of variation is used to compare variables in terms of their dispersion
when the means are substantially different (possibly as the result of having different
measurement units).

2.6.2 Scaling and Shifting Variables

To see why the coefficient of variation (CV = s/x) is independent of measurement
units in the above example, we need to learn about how the mean and standard
deviation change when we change the scale of a variable. For example, we changed
the scaled of bwt by multiplying it by the constant 1/453.6 (i.e., dividing it by
453.6).
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In general, when we multiply the observed values of a variable by a constant a, its
mean, standard deviation, and variance are multiplied by a, |a|, and az, respectively.
That is, if y = ax, then

y =ax,

sy = lalsx,
2_ 2.2
sy =a’sy,

where x, sy, and sf are the sample mean, standard deviation, and variance of the
original observations x, and y, sy, and s§ are the sample mean, standard deviation,
and variance of scaled observations y.

In the above example, the mean and standard deviation of bwt (denoted x) were
X =2944.6 and s, = 729.2, respectively (Fig. 2.22). To convert the measurement
unit to pounds, we multiplied bwt by a = 1/453.6 to create a new variable bwt . 1b
(denoted y). The mean and standard deviation of bwt . 1b are therefore as follows:

5 X 2944.6 = 6.5,
453.6

sy =lalsy = ﬁ x 729.2 =1.6,
which are the same values as what we obtained by using R-Commander (Fig. 2.36).
When the measurement units are changed by multiplying the observed values by
a positive constant (e.g., multiplying by 1/453.6 in the above example to convert
grams to pounds), the coefficient of variation is not affected since both mean and
standard deviation will be multiplied by that number. If y = ax (where a is a positive
constant), then

y ax X

What happens if instead of scaling the observed value, we shift them by a con-
stant b (which can be negative): y = x + b? For example, suppose after researchers
collected the birthwt data set, they realized that the weighting scale they used to
measure birth weight was not calibrated properly, and they need to add 20 grams
to the weight of each child, i.e., y = x + 20. Therefore, all the observed values for
bwt will be shifted upwards by 20 points. Intuitively, this shifts the sample mean
by 20 points. However, since the difference between observed values and the mean
do not change, the standard deviation and variance remain unchanged. In general, if
we shift the observed values by b, i.e., y = x + b, then
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If we multiply the observed values by the constant a and then add the constant b to
the result, i.e., y = ax + b, then

y=ax-+b,
sy = lalsx,
2_ 22
sy = acsy.

Therefore, when changing measurement units involved adding a constant (e.g.,
adding 273.15 to convert Celsius to Kelvin), the coefficient of variation will change.
If y =ax + b (assuming a > 0 and b # 0), then

Sy asy K

Sx
y ak+b’ X’

Cv, =

2.6.3 Variable Standardization

Variable standardization is a common linear transformation, where we subtract
the sample mean x from the observed values and divide the result by the sample
standard deviation s, in order to shift the mean to zero and make the standard devi-
ation 1:

Xi — X

Vi =
s
Using such transformation is especially common in regression analysis (Chap. 11)
and clustering (Sect. 12.1). Following the rules we discussed above, subtracting
X from the observations shifts the sample mean to zero. This, however, does not
change the standard deviation. Dividing by s, on the other hand, changes the sample
standard deviation to 1. The mean is also divided by s. However, since the sam-
ple mean has become zero after subtracting X, it remains zero. Therefore, variable
standardization creates a new variable with mean 0 and standard deviation 1.
Suppose that we want to standardize 1wt using R-Commander. For this, we can
follow the steps for computing a new variable (Sect. 2.6.1), enter std. 1wt under
New variable name,and (Iwt—129.8)/30.6 under Expression to com-
pute. This creates the standardized version of 1wt called std.lwt. Now, find
the mean and standard deviation of std. lwt. Alternatively, we can standardize a
variable by clicking Data — Manage variables in active data set
— Standardize variables. Select 1wt under Variables. This will cre-
ate a new variable called Z.1wt, which will be added to the data set. View the
birthwt data set and find the mean and standard deviation of the newly created
variable Z . lwt.
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2.6.4 Data Exploration with R Programming

Writing your own R commands (as opposed to using R-Commander) gives you more
control over the output and a deeper understanding of the material. In Appendix B,
we provide a brief introduction to R programming. Here, we review the functions
that are commonly used for data exploration. We start by loading the Pima . tr data
set, which is available from the MASS package.

> library (MASS)
> data (Pima.tr)

The 1ibrary () command loads the MASS package, and the data () command
loads the Pima . tr data set. Note that the package should be loaded first before we
can access its data sets.

Type Pima. tr to view the entire data set. If the data set is large, it is better to
use the head () function, which shows only the first part (few rows) of the data
set.

> head(Pima.tr)

npreg glu bp skin bmi ped age type

1 5 86 68 28 30.2 0.364 24 No
2 7 195 70 33 25.1 0.163 55 Yes
3 5 77 82 41 35.8 0.156 35 No
4 0 165 76 43 47.9 0.259 26 No
5 0 107 60 25 26.4 0.133 23 No
6 5 97 76 27 35.6 0.378 52 Yes

When you obtain a data set from a package, you can use the help () function to
view the description on the data available in the package.

> help(Pima.tr)

Bar Graphs and Frequencies A common summary statistic for categorical vari-
ables is its frequencies, n.. Use the table () function to obtain the frequencies for
the categorical variable type from the Pima . tr data set.

> type.freq <- table(Pima.trStype)
> type. freq

No Yes
132 68
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Note that the $ symbol is being used to access the type variable in the Pima.tr
data set.

Now, use the type . freq table to create the bar graph. Bar graphs show us how
observations categorical variables are distributed in the sample.

> barplot (type.freq, xlab = "Type", ylab = "Frequency",
+ main = "Frequency Bar Graph of Type")

The first parameter to the barplot () function is the frequency table. The options
xlab and ylab label the x and y axes, respectively. Likewise, the main option
puts a title on the plot.

Often it is more informative to report the relative frequencies. The relative
frequency is the percentage or proportion in each category and is calculated by
pc = ne/n as in Eq. 2.1. Therefore, we need the frequencies n. (stored in the
type. freq table) and the total sample size n. Since the sum of the frequencies is
the total sample size, ), n. = n, we can use the sum () function to add the entries
in the frequency table:

> n <- sum(type. freq)
> n

[1] 200

Now create a table of relative frequencies by dividing the frequency table by the
sample size:

> type.rel.freq <- type.freq/n
Use the round () function to limit the output to 2 decimal places:
> round(type.rel.freq, 2)

No Yes
0.66 0.34

We can also multiply the relative frequencies by 100 to get the percentages:
> round(type.rel.freq, 2) * 100

No Yes
66 34

Finally, you can create a relative frequency barplot with
> barplot (type.rel.freq, xlab = "Type",

+ ylab = "Relative Frequency",
+ main = "Relative Frequency Bar Graph of Type")
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If the levels of a categorical variable in the data set is coded as numbers, we need
to convert the type of variable to factor using the factor () function, so that R
recognizes it as categorical. You can use the function is.factor () to examine
whether a variable is a factor. For example, the smoke variable (smoking status)
in birthwt is coded as 0 for mothers who did not smoke during their pregnancy
and 1 for mothers who smoked during their pregnancy. R automatically considers
this variable as numerical. To convert the variable to categorical, use the following
code:

> data (birthwt)
> is.factor (birthwtSsmoke)

[1] FALSE

> birthwtSsmoke <- factor (birthwtSsmoke)
> 1s.factor (birthwtSsmoke)

[1] TRUE
> table(birthwtSsmoke)

0 1
115 74

Histograms  Histograms are commonly used to visualize numerical variables. To
create a frequency histogram for age, use the hist () function with the freq
option set to “TRUE” (which is the default):

> hist(Pima.trSage, freq = TRUE,
+ xlab = "Age", ylab "Frequency",
+ col = "grey", malin = "Frequency Histogram of Age")

Then create a density histogram of age by setting the freq option to “FALSE”:

> hist(Pima.trSage, freq = FALSE,
+ xlab = "Age", ylab = "Density",
+ col = "grey", malin = "Density Histogram of Age")

Summary Statistics  We can obtain the mean and median of numerical data with
the mean () and median () functions. Find these statistics for numerical variables
in Pima.tr:

> mean (Pima. trSnpreg)
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[1] 3.57

> median (Pima.trShmi)

[1] 32.8

The quantile () function with the probs option returns the specified quantiles:
> quantile(Pima.trSbmi, probs = c¢(0.1, 0.25, 0.5, 0.9))

10% 25% 50% 90%
24.200 27.575 32.800 39.400

Here, the desired quantiles are specified as a vector using the combine c () function.
The five-number summary along with the mean can simply be obtained with the
summary () function:

> summary (Pima. trSbmi)

Min. 1lst Qu. Median Mean 3rd Qu. Max.
18.20 27.58 32.80 32.31 36.50 47.90

We can present the five-number summary visually with a boxplot:
> boxplot (PIma.trSbmi, ylab = "BMI")

While the default is to create vertical boxplots, we can also create horizontal box-
plots by specifying the horizontal option to true:

> boxplot (Pima.trSbmi, ylab = "BMI", horizontal = TRUE)
Find the interquartile range (IQR) with the IQR () function:

> IQR(Pima.trShmi)

[1] 8.925

The smallest and largest observations can be obtained with the range () function
(the functions min () and max () could also be applied):

> minMax <- range (Pima.trShmi)
> minMax

[1] 18.2 47.9
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Here, we created a vector object minMax with the minimum as the first element
and the maximum as the second element. Obtain the range by subtracting the first
element from the second:

> minMax[2] - minMax/[1]
[1]1 29.7

The variance and standard deviation are also easily calculated with var () and
sd():

> var (Pima.trShmi)
[1] 37.5795
> sd(Pima.trShmi)

[1] 6.130212

Creating Categories for Numerical Variables The hist () function automati-
cally divides the range of possible values into several intervals. Instead, as discussed
above, we can create more meaningful intervals, which will be treated as categories.
To create a categorical variable weight .status based on the bmi variable in
Pima.tr, we can go through each observation one by one and assign each ob-
servation to one of the four categories: “Underweight”, “Normal”, “Overweight”,
and “Obese”. To do this, we can use loops and conditional statements, which are
discussed in Appendix B.

First, we start by creating an empty vector of size 200 within the Pima . tr data
frame:

> Pima.trSweight.status <- rep(NA, 200)

Next, we set the values of weight.status for all observations by using if-
else () statements within a for () loop:

> for (i in 1:200) {

+ if (Pima.trShmi[i] < 18.5) {

+ Pima.trSweight.status[i] <- "Underweight"
+ }

+ else if (Pima.trSbmi[i] >= 18.5 &

+ Pima.trSbmi[i] < 24.9) {

+ Pima.trSweight.status[i] <- "Normal"

+ }

+ else if (Pima.trSbmi[i] >= 24.9 &

+ Pima.trShbmi[i] < 29.9) {
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+ Pima.trSweight.status[i] <- "Overweight"
+ }

+ else {

+ Pima.trSweight.status[i] <- "Obese"

+ }

+ }

Here, the loop counter goes from 1 to 200. Use the head () function to view the
result:

> head(Pima.tr)

npreg glu bp skin bmi ped age type weight.status

1 5 86 68 28 30.2 0.364 24 No Obese
2 7 195 70 33 25.1 0.163 55 Yes Overweight
3 5 77 82 41 35.8 0.156 35 No Obese
4 0 165 76 43 47.9 0.259 26 No Obese
5 0 107 60 25 26.4 0.133 23 No Overweight
6 5 97 76 27 35.6 0.378 52 Yes Obese

Before we use the newly created variable weight . status in statistical analysis,
we should convert its type to factor.

> Pima.trSweight.status <- factor (Pima.trSweight.status)

While the above code makes weight . status a factor variable, it does not take
into account the ordering of levels. The levels are ordered alphabetically and can be
examined using the 1levels () function:

> levels(Pima.trSweight.status)

[1] "Normal" "Obese"
[3] "Overweight" "Underweight"

We can provide the right ordering when we use the factor () function to convert
the variable:

> Pima.trSweight.status <- factor (Pima.trSweight.status,
+ levels = c/("Underweight", "Normal",

+ "Overweight", "Obese"))

> levels(Pima.trSweight.status)

[1] "Underweight" "Normal"
[3] "Overweight" "Obese"
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Handling Missing Data in R To find missing values of a variable, we can use the
is.na () function, which returns “TRUE” when the value is missing and “FALSE”
otherwise. Consider the Pima . tr2 data set from the MASS library (the Pima. tr
data set is obtained from Pima . tr2 by removing observations with missing val-
ues):

> data (Pima.tr2)
> is.na(Pima.tr2Sbp)

To obtain the indices of observations whose values are missing, we can use the
which () function along with the is.na () function. In general, which () can
be used to find the indices of “TRUE” values for a logical vector:

> which(is.na(Pima.tr2S8bp))

The complete.cases () function returns a logical vector indicating which
cases (observations) in the data set are complete, i.e., have no missing values:

> complete.cases (Pima.tr2)
To remove cases with missing values, we can use the na .omit () function:
> Pima.complete <- na.omit (Pima.tr2)

Here, the newly created Pima.complete data set includes only the complete
cases from Pima. tr2.

2.7 Exercises

1. Download the calcium data set from the Data and Story Library: http://lib.stat.
cmu.edu/DASL/Datafiles/Calcium.html. The data were collected to investigate
whether increasing calcium intake reduces blood pressure. 21 people partici-
pated in this experiment, where ten of them took a calcium supplement for 12
weeks, while the remaining 11 received a placebo. The blood pressure of each
subject was measured before and after the 12-week period. Plot the histogram
of the variables Begin and End. Compare the two histograms in terms of their
central tendency and the form of their histogram.

2. Download the “Survival.txt” data set from the book website (http://extras.
springer.com). This data set appeared in Haberman (1976) and was obtained
from the UCI Machine Learning Repository. The dataset contains cases from a
study that was conducted between 1958 and 1970 at the University of Chicago’s
Billings Hospital on the survival of patients who had undergone surgery for
breast cancer. The variables are:


http://lib.stat.cmu.edu/DASL/Datafiles/Calcium.html
http://lib.stat.cmu.edu/DASL/Datafiles/Calcium.html
http://extras.springer.com
http://extras.springer.com
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Table 2.5 Height (in inches)
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and weight (in pounds) for Observation Height Weight
five newborn babies
1 18 7.8
2 21 9.1
3 17 8.2
4 16 6.4
5 19 8.8
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e Age: Age of patient at time of operation.
e Nodes: Number of positive axillary nodes detected.
e Status: Survival status.

Plot the boxplot for Age and the bar graph for Status. Plot the histograms
for Nodes and +/Nodes. Which one is more skewed?

Show that the total area of rectangles in a density histogram is 1.

We have measured the height (in inches) and weight (in pounds) for five new-
born babies. Manually calculate the mean and standard deviation of height and
weight; show all the steps (Table 2.5).

. Based on the boxplot in Fig. 2.37, write down the five-number data summary,

range and IQR of variable X.

Download the “BodyTemperature.txt” from the book website (http://extras.
springer.com), and find the five-number data summary for all numerical vari-
ables. For numerical variables, provide the histograms and boxplots. Comment
on the central tendency and the form of the histograms. Are there any outliers
in the data?

. For the previous question, find the coefficient of variation for Age and Tem-

perature variable. Show that the coefficient of variation remains the same
if we change the units of Age to months (i.e., multiplying by 12). Change the
body temperature scale to Celsius and recalculate the coefficient of variation.
Comment on your findings.

. The coefficient of variation for variable X is 2. If the sample mean of this vari-

able is 3, what is the sample variance?


http://extras.springer.com
http://extras.springer.com
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9. Download the “Asthmal.OS.txt” data from the book website (http://extras.
springer.com). Read the description of variables provided in Sect. 2.5. Using R-
Commander, identify data entry errors for race and owner. type. Remove
the corresponding observations (i.e., rows) from the data set. Plot the histogram
age and comment on its shape. For this variable, find the mean, variance, range,
and IQR.

10. Upload the Animals data from the MASS package. This data set includes aver-
age brain and body weights for 28 species of land animals. Plot the histograms
of the two numerical variables. Next, use the log transformation for both vari-
ables and plot the histograms again. Comment on the shapes of these new his-
tograms.


http://extras.springer.com
http://extras.springer.com
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