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1. Introduction and summary. In this paper we consider the following situation: 
An experimenter has to perform a total of N trials on two Bernoulli-type experi­
ments E 1 and E2 with success probabilities oc and p respectively, where both 
oc and P are unknown to him. The trials are to be carried out sequentially and 
independently, except that for each trial the experimenter may choose between E1 

and E2 , using the information obtained in all previous trials. The decisions on 
the part of the experimenter to use E1 or E2 in the successive trials may be 
randomized, i.e. for any trial he may use a chance mechanism in order to choose 
E 1 or E2 with probabilities lJ and 1-/J respectively, where lJ may depend on the 
decisions taken and the results obtained in the previous trials. A strategy A. will 
be a set of such /J's, completely describing the experimenters behavior in every 
conceivable situation. 

We assume the experimenter wants to maximize the number of successes. More 
precisely, we assume that he incurs a loss 

(1.1) L(oc,p,s) = Nmax(oc,p)-s 

if he scores a total of s successes. If he uses a strategy 11, his expected loss is then 
given by the risk function 

(1.2) R(oc,p, A.)= N max(oc, P)-E(S I oc, p,A.), 

where S denotes the random number of successes obtained. Thus the risk of a 
strategy A. equals the expected amount by which the number of successes the 
experimenter will obtain using A. falls short of the number of successes he would 
score if he were clairvoyant and would use the more favorable experiment through­
out theN trials. It is easy to see that R(oc, p, 11) also equals loc- PI times the expected 
number of trials in which the less favorable experiment is performed under 11. 

We say that state (m, k; n, I) is reached during the series of trials if in the first 
m+n trials E1 is performed m times, yielding k successes, and E2 is performed n 
times, yielding I successes. Clearly, under a strategy A., the probability that this 
will happen is of the form 

(1.3) 1ta,p,t.,(m, k; n, I)= p4.(m, k; n, l)rxk(1-oc)m-kp 1(1- p.)"- 1 , 

where pt.,(m, k; n, I) depends on the state (m, k; n, I) and the strategy A., but not 
on rx and p. It is easy to show (e.g. by induction on N) that the class of all strategies 
is convex in the sense that there exists, for every pair of strategies 11 1 and 112 and 
for every A.e [0, 1], a strategy A. such that 

(1.4) pt.,(m, k; n, I)= A.p4.,(m, k; n, 1)+(1-A.)p4.2(m, k; n, I) 
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for every state (m, k; n, 1). Moreover, this strategy ll can always be taken to be 
such, that according to it the experimenter should base all his decisions exclusively 
on the numbers of successes and failures observed with E 1 and E2 , irrespective of 
the order in which these data became available. Denoting the class of all such 
strategies by fl) and remarking that R(IX, p, ll) can be expressed in terms of the 
nrr..P ,A(m, k; n, I), we may conclude that fl) is an essentially complete class of 
strategies. We denote the probabilities ~ constituting any strategy in fl) by 
~(m, k; n, I): the probability with which the experimenter, having completed the 
first m+n trials and thereby having reached state (m, k; n, I), chooses E1 for the 
next trial. 

We note that if PA(m, k; n, I)= 0 for a state (m, k; n, 1), then ~(m, k; n, I) does 
not play any role in the description of ll and may be assigned an arbitrary value 
without affecting the strategy. We shall say that any strategy ll' such that 
PA·(m, k; n, I)= pim, k; n, I) for all states (m, k; n, I) constitutes a version of ll. 

Since we are considering a symmetric problem in the sense that it remains 
invariant when IX and Pare interchanged, it seems reasonable to consider strategies 
with a similar symmetry. Thus we are led to define the class fi' of all symmetric 
strategies: ll E fi' iff ll E fl) and ~(m, k; n, I) = 1-~(n, I; m, k) for all states 
(m, k; n, I) with p A.Cm, k; n, I) #: 0. Clearly, for ll E fi', 

(1.5) ~(m, k; m, k) = t if PA(m, k; m, k) 6; 0, and 

(1.6) pim, k; n, I)= pin, I; m, k) for all states (m, k; n, 1). 

It follows that, for lle2 and all (IX, p), 

(1.7) R(IX, p, ll) = R(p, IX, ll). 

Among the contributions to the two-armed bandit problem the work of W. Vogel 
deserves special mention. Considering the same set-up we do, he discussed a certain 
subclass of the class fi' in [4], and obtained asymptotic bounds for the minimax 
risk for N ~ oo in [5]. Since we shall not be concerned with asymptotics in this 
paper, we state the following result without a formal proof: The lower bound for 
the asymptotic minimax risk for N-+ oo obtained by Vogel in [5] may be raised 
by a factor 2±. This is proved by applying the same method that was used in [5] 
to the optimal symmetric strategy for IX+ P = 1 that was discussed in [4]. Combining 
this lower bound with the upper bound given in [5] we find that the asymptotic 
minimax risk must be between 0.265 N~ and 0.376 Nt. 

In Section 2 we study the Bayes strategies in fl). By means of a certain recurrence 
relation we arrive at a complete characterization of these strategies, thus generaliz­
ing D. Feldman's well-known result in [3] for the case where the experimenter 
knows the values of IX and p except for their order. In addition we obtain 
expressions for the Bayes risk of any prior distribution. Using these results we 
proceed to derive in Section 3 certain monotonicity properties of ~(m, k; n, I) for 
any admissible strategy ll in ff). Though these relations may seem intuitively 
evident, one does well to remember that the two-armed bandit problem has been 
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shown to defy intuition in many aspects ( cf. [2]). In Section 4 we prove the existence 
of an admissible symmetric minimax-risk strategy having the monotonicity 
properties just mentioned. This fact to some degree facilitates the search for 
minimax-risk strategies, but even so, the algebra involved becomes progressively 
more complicated with increasing N and seems to remain prohibitive already for 
N as small as 5. 

2. Bayes strategies. For 11e!?2 we consider the expected number of successes 
E(S I oc, {J, 11) as a function of the b(m, k; n, /). Clearly, the dependence on each 
b(m,k;n, I) is linear. We denote the coefficient of b(m,k;n, I) in E(Sioc,{J,11) 
(and hence also in -R(oc, {J, 11)) by PA(m, k; n, l)c:r,tJ,im, k; n, /).If all b(m, k; n, I) 
are strictly between 0 and 1, then all PA(m, k; n, I) are positive and as a result all 
ca,/J,A(m, k; n, I) are uniquely determined. Otherwise the ca,tJ,im, k; n, I) are 
defined by continuity. 

THEOREM 1. For any strategy 11 in !?2 the functions ca,tJ,im, k; n, I) satisfy the 
following relations 

(2.1) c,.,11,im, k; 11, I) = (oc-{J)ock(1- oc)m-kp1 (1-{J)"-' 

ifm+n = N-1, 

(2.2) ca,/J,A(m, k; n, I)= c5(m+ 1, k+ 1; n, l)ca,fl,im + 1, k+ 1; n, I) 

ifm+n ;;a N-2. 

+b(m+ 1, k; n, l)ca,tJ,im+ 1, k; n, I) 

+ [1-b(m, k; n + 1, I+ 1)]ca,tJ,im, k; n + 1, I+ 1) 

+ [1-b(m, k; n + 1, l)]ca,/J,Il.(m, k; n+ 1, I) 

PRooF. By continuity it is obviously sufficient to consider the case where all 
b(m, k; n, /) as well as oc and fJ are strictly between 0 and 1. This ensures that 
expression (1.3) is positive for all states (m, k; n, /). Hence the conditional 
expectation ea,tJ,im, k; n, I) of the total number of successes Sunder oc, fJ and 11 
given that the state (m, k; n, I) is reached, exists. It is clearly a linear function of 
b(m, k; n, I) and may thus be written in the form 

(2.3) e~~.,p,im, k; n, /) = aa,tJ,im, k; n, /)c5(m, k; n, /) + ba,/J,im, k; n, 1). 

It follows that 

(2.4) c,.,p,im, k; n, I)= aa,tJ,im, k; n, I) ock(l-oc)m-k p1(1- {J)"- 1• 

Dropping the subscripts oc, fJ and 11, we obtain, from the definition of e(m, k; n, /), 

(2.5) e(m, k; n, /) = c5(m, k; n, l)[oce(m + 1, k + 1; n, I)+ (1-oc) e(m + 1. k; n, /)] 

+ [1-c5(m, k; n, l)][{Je(m, k; n + 1, I+ 1) 

+(I- fJ) e(m, k; n + 1, 1)], 
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and consequently 

a(m, k; n, I)= O!e{m+ 1, k+ 1; n,/)+{1-0!)e{m + 1, k; n, I) 
(2.6) 

-Pe(m, k; n+ 1, I+ 1)-(1-p)e(m, k; n+ 1, I), 

(2.7) b(m, k; n, I)= pe(m, k;n + 1, I+ 1)+(1-P)e(m, k; n + 1, 1). 

If m + n = N -1, then (2.6) becomes a(m, k; n, I) = 0!- p, and hence (2.1) follows 
from (2.4). On the other hand, rewriting (2.6) by means of (2.3) leads to 

a(m, k; n, I)= O!D(m+ 1, k+ 1; n, l)a(m+ 1, k+ 1; n, I) 

+(1-0!)<5(m + 1, k; n, l)a(m + 1, k; n, I) 

+P[1-D(m, k; n+ 1, I+ 1)]a(m, k; n+ 1, I+ 1) 

+(1- p)[1-<5(m, k; n+ 1, l)]a(m, k; n + 1, /) 

+ [O!b(m+ 1, k+ 1; n, 1)+(1-0!)b(m + 1, k; n, I) 

-Pb(m,k;n+1,1+1) 

-(1-p)b(m,k; n+ 1, 1)- pa(m, k; n+ 1, I+ 1) 

-(1- fJ)a(m, k; n + 1, /)], 

where for m + n = N- 2 the last expression between square brackets vanishes as 
one easily verifies using (2.6) and (2.7). This result, combined with (2.4), gives (2.2). 

Let Jl be a prior distribution on the closed unit square. For a strategy ll.e~, 

(2.8) p(Jl, ll.) = J R(O!, p, ll.) dJl(O!, p) 

denotes the average risk of ll. against Jl· If we define 

(2.9) Y11 ,t.(m, k; n, I)= J ca,p,t.(m, k; n, I) dJl(O!, fJ), then 

-p11(m, k; n, I)Yp.,im, k; n, I) is the coefficient of <5(m, k; n, I) in p(Jl, ll.). It follows 
that any strategy ll. that has <5(m, k; n, I)= 1 whenever 'Yp.,t.(m, k; n, I)> 0 and 
<5(m, k; n, I) = 0 whenever y p.,11(m, k; n, I) < 0, minimizes p(Jl, ll.) for fixed Jl and 
is therefore a Bayes strategy against Jl· This may be seen by successively finding the 
optimal <5(m, k; n, I) for m+n = N-1, N-2, · · ·, 0, and noting that for m+n = v 
these optimal values do not depend on the values of <5(m, k; n, I) for m+n < v. 
Conversely, every Bayes strategy against Jl has a version with <5(m, k; n, I)= I 
(or 0) whenever "/p.,im, k; n, I)> 0 (or < 0). 

THEOREM 2. Let Jl be a prior distribution on the closed unit square and let 
Yim, k; n, I) be defined by 

(2.10) Yim,k;n,l) = J(O!-p)ri'{l-O!)m-kpr(l-P)"-1 dJl(O!,fJ) 

ifm+n=N-1, 

Yim, k; n, I)= y11 +(m+ 1, k+ 1; n, l)+y11 +(m+ 1, k; n, I) 
(2.11) 

-y11 -(m, k; n+ 1, I+ 1)-y11 -(m,k; n+ 1, I) 
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for m+n ~ N-2, where x+ and x- denote max(O, x) andmax(O, -x) respectively. 
Then !!.. e !» is a Bayes strategy against J.l if and only if it has a version with 
b(m, k; n, I)= 1 whenever yp(m, k; n, I)> 0 and b(m, k; n, I)= 0 whenever 
yp(m, k; n, I)< 0. 

PRooF. According to the remarks preceding the theorem, !!.. is Bayes against J.l 
iff it has a version for which b(m, k; n, I)= 1 (or 0) ify",A(m, k; n, I)> 0 (or< 0). 
Integrating (2.1) and (2.2) with respect to J.l and substituting the values of the 
b(m, k; n, I) we find that for this version of!!.., "/p,A(m, k; n, I) equals yp(m, k; n, I) 
as defined by (2.10) and (2.11) for all states. 

We note that D. Feldman's characterization of the Bayes strategies in!» against 
a prior distribution J.l, which puts mass ~ and 1- ~ at points ((1;0 , Po) and (p0 , (1;0) 

respectively ( cf. [3]), may be formulated as follows: !!.. in !» is Bayes against J.l iff it 
has a version for which b(m, k; n, I)= 1 whenever Yfp(m, k; n, I)> 0 and 
b(m, k; n, I)= 0 whenever Yfp{m, k; n, I) <0 where 

Yfp{m, k; n, I)= ~(J;ok(1-(J;o)m-kpo 1(1- Po)n-l -(1- ~)(Xo 1(1-(Xo)n-l Pok(l- Po)m-k 

for all states (m, k; n, /). It follows that sgnYfp(m, k; n, I)= sgnyp(m, k; n, I) for 
all states (m, k; n, /) and all J.l of the type considered by Feldman. This fact may 
also be verified by a direct, though somewhat tedious argument. 

To conclude this section we consider the Bayes risk p(J.l) of an arbitrary prior 
distribution J.l· This is defined as the average risk p(J.l, !!..) of any Bayes strategy !!.. 
against J.l, or equivalently, p(J.l) = inf11 e ~ p(J.l, !!..). 

THEOREM 3. For any prior distribution J.l, 

fi(X-PI N-lN-m-1 m n (m;n)(~)G) . 
P(J.l)=N -2-djl((J;,p)-m~O n~O k~Ol~O 2m+n+1 lyp(m,k,n,l)l 

= N J((X-p)+ dJ.l((l;,p)- "f.~,;{'f.~ =o(~)y" +(0,0; n, /) 

= N J((X-p)- dJ.t((l;,p)- "f.~:~"f.za=o(~)y" -(m,k;O,O). 

PROOF. Let !!.. e !» be Bayes against IL· Without loss of generality we may restrict 
attention to a version of !!.. which has the property described in Theorem 2. For 
any such version and any state (m, k; n, I) with m+n ~ N -1 we have 

"/p,A(m,k;n,l) = yp(m,k;n,l), 

(b(m, k; n, 1)-!)yp(m, k; n, I)= t!yp(m, k; n, 1)1, 

b(m, k; n, l)yp(m, k; n, I)= y" +(m, k; n, /), 

-(1-b(m, k; n, l))yp(m, k; n, I)= y" -(m, k; n, /). 

Consequently for any state (m, k; n, I) with m+n ~ N-1 we obtain the following 
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equalities, using (2.5) and the fact that Yp.,A(m, k; n, I) and hence y""(m, k; n, I) 
equals the coefficient of o(m, k; n; I) in the first member: 

J rl(l -rx)m-kp1(I- p)n-l ea,p,im, k; n, I) dp.(rx, {J) 

= tiY""(m, k; n, /)I 

+t J rxk+ 1(1-rx)m-kp1(I-p)n-l ea,p,im+ I, k+ I; n, l)dp.(rx,p) 

+t J rxk(I -rx)m-k+ 1{31(1-Pt- 1 ea,p,im +I, k; n, l)dp.(rx, {J) 

+t J rxk(I-rx)m-kpl + 1(1-{J)n-l ea,p,im, k; n +I, I+ I) dp.(rx, P) 

+t J rxk(I -rx)m-kp1 (I-Pt- 1 + 1 ea,p,im, k; n +I, l)dp..(rx,{J) 

(2.12) = y/(m, k; n, I) 

+ J rxk(I-rx)m-kpl + 1(1-Pt- 1 ea,p,A(m, k; n +I, I+ I) dp.(rx, {J) 

+ J rxk(l-rx)m-kp1(1- p)n-1 + 1 ea,p,im, k; n +I, l)dp.(rx,{J) 

= y"" -(m, k; n, I) 

+ J rxk+ 1(I-rx)'"-k{J1(I-{J)n-l ea,p,A(m+ I, k+ I; n, l)dp.(rx,{J) 

+ J ~(I -rx)m-k+ 1{31(1- /lt- 1 ea,p,im +I, k; n, I) dp.(rx, p). 

Observing that by definition E(S I rx, p, A)= ea,p,iO, 0; 0, 0) and ea,p,A(m, k; n, I)= 
k +I for any state (m, k; n, I) with m + n = N, we arrive at the three desired ex­
pressions by repeated application of the corresponding versions of (2.I2). 

3. Admissible strategies. For the type of problem considered in this paper every 
admissible strategy is also a Bayes strategy. In the sequel we shall, however, need 
a slightly stronger result. We shall say that a prior distribution is nonmarginal if, 
for some e > 0, it assigns probability I to the set 

(3.I) Qe = {(rx,fJ)IIrx-Pirx(I-rx){J(1-{J) ~ e,O < rx < 1, 0 < P < 1}. 

THEOREM 4. Every admissible strategy A E ~ is Bayes against a nonmarginal prior 
distribution. 

PROOF. Let A be any strategy which is not Bayes against any nonmarginal prior. 
It is sufficient to show that A is not admissible. 

For any sufficiently small e1 > 0, consider the restricted problem where the 
parameter space is reduced to the set A1 = Qe, as defined by (3.1). Since A1 is 
compact, the assertion that every admissible strategy is Bayes remains true for the 
restricted problem. By our assumption A is not Bayes, and therefore not admissible 
in the new problem. It follows that there exists a strategy A1 that is Bayes against a 
prior distribution p.1 on A 1 and for which R(rx, p, A1) ;;a R(rx, p, A) for all (rx, {J)eA1• 

By a standard procedure we may select a sequence e1 \;. 0 and corresponding p.1 and 
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!ii such that the strategies !ii converge to a strategy !10 in the sense that bi(m, k; n, I) 
converges to b0(m, k; n, I) for every state (m, k; n, 1). Obviously 

R(a, /3, !10) ~ R(a, /3, !1) for all a, f3 e [0, 1] 

since the inequality must hold on every Ai and both functions are continuous. 
Since !ii converges to !10 there exists a positive integer j for which !11 has the 

following properties: 

(a) For all states with 1J0(m, k; n, I)= 0, bim, k; n, I)::/:: 1; 
(b) For all states with 1J0(m, k; n, I)= 1, 1J1(m, k; n, I)::/:: 0; 
(c) For all states with 0 < 1J0(m, k; n, I)< 1, 0 < bim, k; n, I)< 1. 

This implies that 1J0(m, k; n, I) = 1J im, k; n, I) for every state with 1J im, k; n, I)= 0 
or 1. Recalling that !11 is Bayes against Jli and noting that this property can 
not be destroyed by changing only those bim, k; n, I) that are strictly between 0 
and 1, we find that !10 is Bayes against the prior distribution Jl 1 on A 1. As !1 is not 
Bayes against 111 by our assumption, the inequality R(r:t., /3, !10) ~ R(a, f3, !1) on the 
closed unit square must be strict for at least one point (r:t., f3) and the inadmis­
sibility of !1 follows. 

We are now in a position to prove a theorem that provides some insight in the 
structure of admissible strategies. 

THEOREM 5. If 11 is a nonmarginal prior distribution and m + n ~ N- 2, then 

(3.2) yp(m,k; n+ 1, I+ 1) < y,.(m+ 1, k+ 1; n, I) 

(3.3) y,.(m + 1, k; n, I)< /'p(m, k; n + 1, I) 

PROOF. For m+n = N-2, (2.10) yields 

yp(m+ 1,k+1; n, 1)-yp(m,k; n+ 1, I +1) 

= J<a- f3) 2ti'(1-a)m-kpl (1- /3)"- 1 dJl (a, /3), 

which is strictly positive since Jl is nonmarginal. In the same way one shows that 
(3.3) is satisfied for m+n = N-2. 

Next we suppose that the theorem is valid for m+n = v, where 0 < v ~ N-2, 
and we assume m+n = v-1. By (2.11) we have then 

yp(m+ 1, k+ 1; n, 1)-yp(m, k; n+ 1, I+ 1) 

= [yll +(m+2, k+2; n, 1)-yll +(m+ 1, k+ 1; n+ 1, I+ 1)] 

+ [yll +(m+2, k+ 1; n, 1)-yll +(m+1, k; n+ 1, I+ 1)] 

+[yll -(m, k; n+2, I +2)-yll -(m+ 1, k+ 1; n+ 1, I+ 1)] 

+ [Y.u -(m, k; n+2, I+ 1)-y~' -(m+ 1, k+ l, n+ 1, I)]~ 0 

since by hypothesis each of these four expressions is nonnegative. Equality can 
occur only if all four expressions vanish. However, the first and the third one can 
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vanish only if yim+ 1, k+ 1; n+ 1, I+ 1) < 0 and ~ 0 respectively, and hence 
inequality e3.2) is strict. 

Similarly e3.3) follows from 

y,Jm, k; n + 1, 1)-yp(m + 1, k; n, I) 

= [y"' +em+ 1, k+ 1; n+ 1, 1)-y"' +em +2, k+ 1; n, I)] 

+[y"' +em+ 1, k; n+ 1, 1)-y"' +em +2, k;n, I)] 

+[y"' -em+ 1, k; n+ 1, I+ 1)-y"' -em, k; n+2, I+ 1)] 

+[y/J -em+ 1, k; n+ 1, 1)-y/J -em, k; n+2, /)] ~ 0 

and the fact that the first expression in square brackets can vanish only if 

y"'em+2, k+ 1; n, I)< 0 and the third one only if yim+ 1, k; n+ 1, I+ 1) ~ 0, 

which would imply yim+2, k+ 1; n, I)> 0. 

CoROLLARY 1. Every admissible strategy !l. e ~ has a version for which 

(3.4) 

e3.5) 

c5em, k; n + 1, I+ 1) ~ c5em + 1, k+ 1; n, I) 

c5em + 1, k; n, I)~ c5em, k; n + 1, /) 

for all m + n ~ N- 2, where in each of these inequalities at least one member equals 

0 or 1. 

PRooF. By Theorem 4, !l. is Bayes against a nonmarginal prior J.l, and as a result 

the theorem is proved by applying Theorem 5 and Theorem 2. 

CoROLLARY 2. Every admissible strategy !l. e ~ has a version for which 

e3.6) c>em, k; n, 1)[1-<>em + 1, k+ 1; n, /)][1-bem + 1, k; n, /)] = 0 

e3.7) [1-bem, k; n, I)] c5em, k; n+ 1, I+ 1)c5(m, k; n + 1, /) = 0 

for all m+n ~ N-2. 

PRooF. As before, we let J.l denote the nonmarginal prior of Theorem 4 and 

consider the version of !l. having c5em, k; n, I)= 1 (or 0) whenever y"'(m, k; n, I)> 0 

(or < 0). If (3.6) were false for this version, then yim, k; n, I);?; 0, y/m+ 1, 

k+ 1; n, I)~ 0 and y/m+ 1, k; n, I)~ 0. The second of these inequalities 

implies y im, k; n + 1, I + 1) < 0 by Theorem 5, and hence (2.11) shows that 

Yim, k; n, I) < 0, which contradicts the first inequality. 
Similarly, if (3.7) were false, then y"'(m, k; n, I)~ 0, Yim, k; n+ 1, I+ 1) ~ 0 

and Yim, k; n+ 1, I)~ 0. The second inequality implies Yim+ 1, k+ 1; n, I)> 0 

by Theorem 5, and hence y im, k; n, I) > 0 by (2.11 ), which contradicts the first 

inequality. 
Intuitively one might expect some further monotonicity relations, like e.g. (i): 

b(m, k; n, I)~ b(m+ 1, k+ 1; n, /) and (ii): b(m, k; n, I)~ b(m, k+ 1; n, I), for 

any reasonable strategy in ~. However, (i) is nothing but another version of Bradt, 

Johnson and Karlin's principle of staying on a winner ecf. [2]), which they showed 
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not to be generally true for all Bayes strategies in~. In fact, (i) and (ii) do not even 
hold for all admissible strategies in~ as one can see from the example given in [2]: 
The Bayes strategies in ~ for the case N = 2 against the prior distribution J.l, which 
puts mass .8 in (.1, 0) and mass .2 in (.9, 1), are precisely those strategies in~ for 
which <5(0, 0; 0, 0) = 1, <5(1, 1; 0, 0) = 0, and <5(1, 0; 0, 0) = 1. Thus there is an 
essentially unique and hence admissible Bayes strategy against J.l, which violates 
(i) and (ii). 

For admissible strategies, which are also symmetric, Corollary 1 takes the 
following more explicit form. 

COROLLARY 3. Every admissible strategy !1 e !l' has a version for which 

(3.8) b(m,k;n,l) = 1, b(n,l;m,k)=O 

whenever m + n ~ N- 1, k ~ 1, m- k ~ n -I and (m, k; n, I) =F (n, I; m, k). 

PRooF. For the version of !1 that satisfies Corollary 1 we find by repeated 
application of (3.4) and (3.5) b(m, k; n, I)~ b(m-k+l, I; n+k-1, k) ~ b(n, I; 
m, k) where at least one of the extreme members must be 0 or 1. Since their sum 
equals 1 if Pt.(m, k; n, I) =F 0, (3.8) will hold in this case. If ptJm, k; n, I)= 0, then 
by (1.6) we also have ptJn, I; m, k) = 0 and choosing b(m, k; n, I)= 1 and 
b(n, I; m, k) = 0 merely leads to another version of !1. 

We conclude this section by remarking that Corollaries 1, 2 and 3 obviously 
continue to hold if, instead of admissibility, we require that !1 be Bayes against a 
nonmarginal prior. 

4. Symmetric minimax-risk strategies. 

THEOREM 6. There is a minimax-risk strategy which is admissible and belongs to !l'. 

PRooF. The class ~. with the topology induced by the notion of convergence 

introduced in the proof of Theorem 4, is compact. The existence of a minimax-risk 
strategy in ~ is a well-known consequence of this. Moreover, the class~* of all 
minimax-risk strategies in ~ is easily seen to be closed. Thus, if v denotes Lebesgue 
measure on the unit square, there is a strategy !11 e~* such that p(v, !11) = 
min4 e~•p(v, !1). This follows from the continuity of p(v, ·).Let l12 e!» be defined 
by b2(m, k; n, I)= 1-b1(n, I; m, k) for all states (m, k; n, 1). Thenp4 /m, k; n, I)= 
p41(n, I; m, k) for all states, and hence R(!'l., p, !12) = R(P, !'1., !11) for all (!'I., P), so 
that !12 e!»*. By convexity we now may construct a strategy ll.e!» satisfying (1.4) 
with A.= t. It follows that R(!'l., p, !1) = tR(!'I., p, l11)+!R(!'I., p, !12) for all (!'1., P), 
and hence !1 e !» *. Finally we define !1 * e !l' by 

b*(m, k; n, I)= tb(m, k; n, l)+t[l-o(n, I; m, k)] 

for all states. The construction of !1 implies thatp4.(m, k; n, I)= p4(m, k; n, I) for 
all states, and hence !1 * e !» * n!l'. 

In order to show that !1 * is also admissible, we first remark that any strategy 
outside !» * has at some point ( !'1., P) strictly larger risk than !1 *, because !1 * has 
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minimax-risk. On the other hand, going through the steps leading to the con­
struction of Ll * once more, one easily verifies that p(v, Ll 1) = p(v, Ll2) = p(v, Ll) = 
p(v,d*), so that p(v,Ll*)~p(v,Ll') for any d'e~*. But because of the 
continuity of R( ·, ·, Ll), this implies that also within ~· there is no strategy 
improving on Ll *, and thus the proof is complete. 

The above proof really consists of two separate arguments mixed together. The 
first one is quite standard (cf. e.g. Theorem 8.6.4. in [1] and shows the existence of 
a symmetric minimax-risk strategy. The second argument, yielding admissibility, 
exploits an idea of Wald ([6] page 102). By the same argument, replacing ~* by 
the class of all Bayes strategies against any given prior distribution J.t, one can prove 
the existence of an admissible Bayes strategy against fi· 

Theorem 6 together with Corollaries 1, 2 and 3 yields 

COROLLARY 4. There is an admissible symmetric minimax-risk strategy which 
obeys (3.4) through (3.8). 

For N = 1 or 2, (1.5) and (3.8) uniquely determine a symmetric strategy. It 
follows from Corollary 4 and Corollary 3 that this strategy has minimax risk and 
is in fact the only admissible strategy in .P. For N ~ 3 the situation rapidly becomes 
more complicated. In order to find a symmetric minimax-risk strategy Ll0 satisfying 
(3.4) through (3.8) one first has to find a general expression for the risk function 
R(a., p, d) of an arbitrary symmetric strategy A satisfying (3.8). Then, with the aid 
of (3.4) through (3.7), one has to solve the remaining C5(m, k; n, I) directly using 
the minimax property. 

To accomplish the first step of computing R(a., p, d) for an arbitrary symmetric 
strategy, one may proceed recursively. This is especially useful if one wants to find 
R(a., p, A) for a number of values of N. If X"= 1- Y" = 1 or 0 according to whether 
£ 1 or E2 is carried out on the vth trial (v = 1, 2, · · ·, N), then R(a., p, A), being 
equal to Ia.- Pl . multiplied by the expected number of times the experimenter uses 
the less favorable experiment, is given by 

(4.1) R(a.,p,d) = tNia.-PI-t<a.-p) 2::=1 E(X"- r" 1 a.,p,A). 

Remembering the definition of n~~.,p,t.(m, k; n, /), we have 

(4.2) E(X"- Y" I a.,p, d)= ~)~~..11,t.(m, k; n, /)[2C5{m, k; n, /)-1], 

where the summation is extended over all states (m, k; n, /) with m+n = v-1, 
and where the n~~.,p,t.(m, k; n, /)can be computed recursively by means of 

(4.3) n~~.,p,t.(m, k; n, /) = a.C5(m -1, k-1; n, l)n~~.,p,t.(m -1, k-1; n, /) 

starting from 

(4.4) 

+(1-a.)<5(m-1, k; n, l)rc~~.,f/,A(m -1, k; n, I) 

+P[1-C5{m, k; n-1, /-1)] 1ta,p,t.(m, k; n-1, 1-1) 

+ (1- p)[1-C5(m, k; n-1, I)] n~~.,p,t.(m, k; n-1, I) 

n~~..11.t.CO, k; 0, I) = 1 

=0 

if k =I= 0; 

otherwise. 
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The work involved may be reduced somewhat by means of the relation 

(4.5) n«,P,tJ.(m, k; n, I)= n«,fi,,Jn, I; m, k), 

which is a consequence of (1.3) and (1.6). 
For N = 3, only b(2, 1; 0, 0) remains undetermined by the requirement that ~ 

be symmetric and must satisfy (3.8), and one finds 

R(a,p,~) = fla-Pj-t(a-P)2{1 +<5(2, 1 ;0,0)+ [1-b(2, 1 ;0, O)](a+ P)}. 

After a little algebra one sees that ~0 must have b(2, 1; 0, 0) = 1 and that R(a, p, ~0) 
attains its maximum M(~0) = 196 when ja- PI = i. 

For N = 4 only b(2, 1 ; 0, 0), b(3, 1 ; 0, 0) and ~(3, 2; 0, 0) are to be determined 
and 

R(a, p, ~) = 2ja-Pj-!(a-{J)2{(a2 + P2 +3a{3-a-fJ+3)-b(2, 1; O,O)ap 

-c5(3, 2; 0,0)[1 +C>(2, 1; 0, O)](a2 + P2 +IY.P -a- p) 

+c5(3, 1 ;0, O)c5(2, 1; O,O)(a2 + P2 +aP-2a-2P+ 1)}. 

Using (3.6), one finds after lengthy calculations that ~0 must have b(2, I ; 0, 0) = -!, 
b(3, 1 ; 0, 0) = t and b(3, 2; 0, 0) = I, so that the risk function of ~0 is given by 

R(a,{J,~0) = 2ja-Pj-H(cx-fJ)2 +-t(a-p)4 

and attains its maximum M(~0) = .617 when ja-PI = .654. For larger values of 
N the number of b(m, k; n, 1) that have to be determined increases rapidly, and 
consequently the algebra involved becomes distressingly complicated. 
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