Chapter 2
Data Fusion in WSN

Abstract WSN is intended to be deployed in environments where sensors can be
exposed to circumstances that might interfere with measurements provided.
Such circumstances include strong variations of pressure, temperature, radiation,
and electromagnetic noise. Thus, measurements may be imprecise in such scenarios.
Data fusion is used to overcome sensor failures, technological limitations, and
spatial and temporal coverage problems. Data fusion is generally defined as the
use of techniques that combine data from multiple sources and gather this informa-
tion in order to achieve inferences, which will be more efficient and potentially more
accurate than if they were achieved by means of a single source. The term efficient,
in this case, can mean more reliable delivery of accurate information, more com-
plete, and more dependable. The data fusion can be implemented in both centralized
and distributed systems. In a centralized system, all raw sensor data would be sent to
one node, and the data fusion would all occur at the same location. In a distributed
system, the different fusion modules would be implemented on distributed
components. Data fusion occurs at each node using its own data and data from the
neighbors. This chapter briefly discusses the data fusion and a comprehensive survey
of the existing data fusion techniques, methods and algorithms.

2.1 Introduction

A Wireless Sensor Network (WSN) may be designed with different objectives.
It may be designed to gather and process data from the environment in order to have
a better understanding of the behavior of the monitored area. It may also be
designed to watch an environment for the occurrence of a set of possible events,
thus the proper action may be taken whenever needed. A fundamental issue in WSN
is the way to process the collected data. In this situation, data fusion arises as a
discipline that is concerned with how data collected by sensors can be processed to
increase the significance of such a mass of data [1]. Thus, data fusion can be defined
as the combination of multiple sources to obtain improved data i.e., cheaper, greater
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quality, or greater relevance. Data fusion is commonly used in detection and
classification tasks in different application domains, such as military applications
and robotics [2]. Within the WSN domain, simple aggregation techniques i.e.,
maximum, minimum, and average have been used to reduce the overall data traffic
to save energy [3, 4]. Additionally, data fusion techniques have been applied to
WSNs to improve location estimates of sensor nodes, detect routing failures, and
collect link statistics for routing protocols [5].

WSN is intended to be deployed in environments where sensors can be
exposed to circumstances that might interfere with measurements provided.
Such circumstances include strong variations of pressure and temperature, radiation
and electromagnetic noise. Thus, measurements may be imprecise in such
scenarios. Even when environmental conditions are ideal, sensors may not give
perfect measurements. Basically, a sensor is a measurement device, and vagueness
is usually associated with its observation. Such imprecision represents the
imperfections of the technology and methods used to measure a physical incident.
Failures are not an exception in WSN. For example, consider a WSN that monitors
a jungle to detect an event, such as fire or the presence of an animal. Sensor nodes
can be destroyed by fire, animals, or even human beings; they might present
manufacturing problems; and they might stop working due to a lack of energy.
Each node that becomes inoperable might compromise the overall perception and/
or the communication capability of the network. Here, perception ability is equiva-
lent to the exposure concept. Both spatial and temporal coverage also pose
limitations to WSN. The sensing capability of a node is restricted to a limited
area. For example, a thermometer in a room reports the temperature near the device
but it might not represent fairly the overall temperature inside the room. Spatial
coverage in WSN has been explored in different scenarios, such as node scheduling,
target tracking, and sensor placement. Temporal coverage can be understood as the
ability to fulfill the network purpose during its lifetime. For example, in a WSN
for event detection, temporal coverage aims at assuring that no relevant event will
be missed because there was no sensor perceiving the region at the specific time
the event occurred. Thus, temporal coverage depends on the sensor’s sampling
rate, node’s duty cycle, and communication delays. To overcome sensor failures,
technological limitations, and spatial and temporal coverage problems, three
properties must be ensured:

1. Cooperation.
2. Redundancy
3. Complementarily

Usually, the area of interest can only be completely covered by the use of several
sensor nodes, each cooperating with a partial view of the scene; and data fusion can be
used to create the complete view from the pieces provided by each node. Redundancy
makes the WSN less vulnerable to failure of a single node, and overlapping
measurements can be fused to obtain more precise data. Complementarily can be
achieved by using sensors that observe different properties of the environment; data
fusion can be used to combine complementary data so the resultant data allows
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inferences that might be not possible to be obtained from the individual measurements,
e.g., angle and distance of an imminent threat can be fused to obtain its position. Due to
redundancy and cooperation properties, WSN is often composed of a large number of
sensor nodes posing a new scalability challenge caused by possible collisions and
transmissions of redundant data. Regarding the energy restrictions, communication
should be reduced to increase the lifetime of the sensor nodes. Hence, data fusion is
also important to reduce the overall communication load in the network by avoiding
the transmission of redundant messages. In addition, any task in the network that
handles signals or needs to make inferences can potentially use data fusion.
Data fusion should be considered a critical step in designing a wireless sensor network.
The reason is that data fusion can be used to extend the network lifetime and is
commonly used to fulfill the application objectives, such as event detection, target
tracking, and decision making. Hence, careless data fusion may result in waste of
resources and misleading assessments. Therefore, we must be aware of possible
limitations of data fusion to avoid blundering situations. Because of the resource
rationalization needs of WSN, data processing is commonly implemented as
in-network algorithms. Hence, data fusion should be performed in a distributed
fashion to extend the network lifetime. Even so, we must be aware of the limitations
of distributed implementations of data fusion. Thus, regarding the communication
load, a centralized fusion system may outperform a distributed one. The reason is that
centralized fusion has a global knowledge in the sense that all measured data is
available, whereas distributed fusion is incremental and localized since it fuses
measurements provided by a set of neighbor nodes and the result might be further
fused by intermediate nodes until a sink node is reached. Such a drawback of
decentralized fusion might often be present in WSN wherein, due to resource
limitations, distributed and localized algorithms are preferable to centralized ones.

Data fusion has established itself as an independent research area over the last
decades, but a general formal theoretical framework to describe data fusion systems
is still missing. One reason for this is the huge number of disparate research areas
that utilize and illustrate some form of data fusion in their context of theory.
For example, the concept of data or feature fusion, which forms together with
classifier and decision fusion the three main divisions of fusion levels, initially
occurred in multi-sensor processing. By now several other research fields found its
application useful. Besides the more classical data fusion approaches in statistics,
control, robotics, computer vision, geosciences and remote sensing, artificial intel-
ligence, and digital image/signal processing, the data retrieval community discov-
ered some years ago its power in combining multiple data sources.

2.2 Information Fusion, Sensor Fusion, and Data Fusion

Several different terms have been used to illustrate the aspects regarding the
fusion subject, e.g. information fusion, sensor fusion, and data fusion. The
expressions related to systems, applications, methods, architectures, and theories



20 2 Data Fusion in WSN

about the fusion of data from multiple sources are not unified yet. Different terms
have been adopted, usually associated with particular aspects that characterize the
fusion i.e., sensor fusion is commonly used to specify that sensors provide the data
being fused. Despite the theoretical issues about the difference between informa-
tion and data, the terms information fusion and data fusion are usually accepted as
overall terms. Many definitions of data fusion have been provided along the years,
most of them were found in military and remote sensing fields. The data fusion
work group of the Joint Directors of Laboratories (JDL) organized an effort to
define a dictionary with some terms of reference for data fusion [6]. They define
data fusion as a multilevel process dealing with the automatic detection, estima-
tion, association, correlation, and combination of data and data from several
sources. The JDL data fusion model deals with quality improvement. Hall defines
data fusion as a combination of data from multiple sensors to accomplish
improved accuracy and more specific inferences that could be achieved by the
use of a single sensor alone [7]. All the previous definitions are focused on means,
methods and sensors. Wald in [8] changes the attention of fuse data to the used
framework. He defines data fusion as a formal framework in which is expressed
means and tools for the alliance of data originating from different sources. He
considers data taken from the same source at different instants as separate sources.
For WSN, data can be fused with at least two objectives: accuracy improvement
and energy saving.

Multisensor integration is another expression used in computer vision and
industrial automation. Luo [9] defines multisensor integration as a synergistic use
of data provided by multiple sensory devices to help in the accomplishment of a
task by a system. However, multisensor fusion deals with the combination of
different sources of sensory data into one representational format during any
stage in the integration process. Multisensor integration is a broader term than
multisensor fusion. It makes clear how the fused data is used by the whole system to
interact with the environment. However, it might suggest that only sensory data is
used in the fusion and integration processes.

The term data aggregation term has become popular in the wireless sensor
network community as a synonym for information fusion [10]. Data aggregation
comprises the collection of raw data from pervasive data sources, the flexible,
programmable composition of the raw data into less voluminous refined data, and
the timely delivery of the refined data to data consumers. Aggregation is the
ability to summarize data i.e., the amount of data is reduced. However, for
applications that require original and accurate measurements, such summariza-
tion may represent an accuracy loss [11]. Although many applications might be
interested only in summarized data, we cannot always state whether or not the
summarized data is more precise than the original data set. Because of that, the
use of data aggregation as a general term should be avoided because it also refers
to one example of data fusion, which is summarization. Figure 2.1 shows the
relationship among the concepts of multisensor/sensor fusion, multisensor inte-
gration, data aggregation, information fusion, and data fusion. Here, we under-
stand that both terms, information fusion and data fusion, can be used with the
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Fig. 2.1 The relationship
among the fusion terms:
multisensor/sensor fusion,
multisensor integration, data
aggregation, information
fusion and data fusion

Multisensor Integration

Sensor Fus?dh

Data Aggregation

same meaning. Multisensor/sensor fusion is the subset that operates with sensory
sources. Data aggregation defines another subset of information fusion that means
to reduce the data volume, which can manipulate any type of information/data,
including sensory data. Thus, multisensor integration is a slightly different term in
the sense that it applies information fusion to make inferences using sensory
devices and associated information to interact with the environment. Thus,
multisensor/sensor fusion is fully contained in the intersection of multisensor
integration and information/data fusion.

2.3 Data Fusion Classification

Data fusion can be classified based on several features. Relationships among the
input data can be used to divide data fusion into:

1. Cooperative data
2. Redundant data
3. Complementary data.

The abstraction level of the manipulated data during the fusion process can be
used to distinguish among fusion processes as:

. Measurement
. Signal

. Feature

. Decision

RIS N R

Another general classification considers the abstraction level, and it makes
explicit the abstraction level of the input and output of a fusion process.
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Fig. 2.2 Types of data fusion based on the relationship among the sources

2.3.1 Classification Based on Relationship Among the Sources

Data fusion can be classified, according to the relationship among the sources [9].
Thus, data fusion can be:

1.

Complementary: Data provided by the sources represents different portions of a
broader scene; data fusion can be applied to obtain a piece of data that is more
complete. In Fig. 2.2, sources S1 and S2 provide different pieces of data (a and b)
that can be fused to achieve a complete data (a + b) composed of non-redundant
pieces a and b that refer to different parts of the environment. In general,
complementary fusion searches for completeness by compounding new data
from different pieces. Hoover [12] applies complementary fusion by using
several cameras to observe different parts of the environment; then the video
streams are fused into an occupancy map that is used to guide a mobile robot.
An example of complementary fusion consists in fusing data from sensor nodes,
e.g., a sample from the sensor field, into a feature map that describes the whole
sensor field [13].

. Redundant: If two or more independent sources provide the same piece of data,

these pieces can be fused to increase the associated confidence. Sources S2 and
S3 in Fig. 2.2 provide the same data (b). S2 and S3 are fused to obtain more
accurate data (b). Redundant fusion might be used to increase the reliability,
accuracy, and confidence of the data. In WSN, redundant fusion can provide
high quality data and prevent sensor nodes from transmitting redundant data.

. Cooperative: Independent sources are cooperative when the data provided by

them is fused into new data that represents the reality. Sources S4 and S5 in
Fig. 2.2, provide different data, ¢ and c*, that are fused into (c), which better
describes the scene compared to ¢ and c¢* individually. A traditional example of
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cooperative fusion is the computation of a target location based on angle and
distance data. Cooperative fusion should be carefully applied since the resultant
data is subject to the inaccuracies and imperfections of all participating sources.

2.3.2 Classification Based on Levels of Abstraction

Luo in [14] applied four levels of abstraction to classify data fusion:

1.

2.

Signal level fusion: It deals with single sensors and can be used in real-time
applications or as an intermediate step for further fusions.

Pixel level fusion: It operates on images and can be used to improve image-
processing tasks.

. Feature level fusion: Deals with features or attributes extracted from signals or

images, such as speed and shape.

. Symbol level fusion: Data is a symbol that represents a decision, and it is also

referred to a decision level.

In general, the feature and symbol fusions are used in object recognition

applications. This classification presents some disadvantages and is not suitable
for all data fusion applications. First, both images and signals are considered raw
data and are usually provided by sensors, so they should be included in the same
class. Second, raw data may not be only from sensors, because data fusion systems
might also fuse data provided by databases or human interaction. Third, it proposes
that a fusion process cannot deal with all levels at the same time.

According to the level of abstraction of the manipulated data, data fusion can be

classified into four categories:

L.

Low-level fusion: Raw data are provided as inputs and combined into new data
that are more accurate than the individual inputs. Polastre in [15] gave an
example of low-level fusion by applying a moving average filter to estimate
ambient noise and determine whether or not the communication channel is clear.

. Medium-level fusion: Features and attributes of an entity are fused to obtain a

feature map that may be used for other tasks. It is also known as feature/attribute
level fusion.

. High-level fusion: It is known as symbol or decision level fusion. It takes

decisions or symbolic representations as input and combines them to obtain a
more confident and/or a global decision. An example of high-level fusion is the
Bayesian approach for binary event detection proposed by Krishnamachari in
[16] that detects and corrects measurement faults.

. Multilevel fusion: Fusion process encompasses data of different abstraction

levels and both input and output of fusion can be of any level. For example, a
measurement is fused with a feature to provide a decision.
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2.3.3 Classification Based on Input and Output

Dasarathy introduced another classification that considers the abstraction level.
Data fusion processes are categorized based on the level of abstraction of
the input and output data [17]. He identifies five categories:

1. Data in — data out (DAI-DAO): In this class, data fusion deals with raw data and
the result is also raw data, possibly more accurate or reliable.

2. Data in — feature out (DAI-FEO): Data fusion uses raw data from sources to
extract features or attributes that describe an entity. Entity here means any
object, situation, or world abstraction.

3. Feature in — feature out (FEI-FEO): It works on a set of features to improve/
refine a feature, or extract new ones.

4. Feature in — decision out (FEI-DEQO): Data fusion takes a set of features of an
entity generating a symbolic representation or a decision.

5. Decision in — decision out (DEI-DEO): Decisions can be fused in order to obtain
new decisions or give emphasis on previous ones.

In comparison to the classification presented before, this classification
can be seen as an extension of the earlier one with a finer granularity where
DAI-DAO corresponds to Low Level Fusion, FEI-FEO to Medium Level Fusion,
DEI-DEO to High Level Fusion, DAI-FEO and FEI-DEO are included in Multi-
level Fusion.

2.4 Data Fusion: Techniques, Methods, and Algorithms

Techniques, methods, and algorithms used to fuse data can be classified based on
several criteria, such as the data abstraction level, parameters, mathematical foun-
dation, purpose, and type of data. Data fusion can be performed with different
objectives such as inference, estimation, feature maps, aggregation, abstract
sensors, classification, and compression.

2.4.1 |Inference

Inference method is applied in decision fusion. The decision is taken based on
the knowledge of the perceived situation. At this point, inference refers to
the transition from one likely true proposition to another, which its truth is
believed to result from the previous one. Classical inference methods are based
on the Bayesian inference and the Dempster-Shafer belief about accumulation
theory.
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1. Bayesian inference: Data fusion based on Bayesian Inference provides a
formalism to merge evidence according to rules of probability theory.
The uncertainty is represented in terms of conditional probabilities describing
the belief, and it can assume values in the [0, 1] interval, where O is the
absolute disbelief and 1 is the absolute belief. Within the WSN domain,
Bayesian inference has been used to solve the localization problem. Sichitiu
in [18] uses the Bayesian inference to process data from a mobile beacon
and determine the most likely geographical location of each node, as an
alternative of finding a unique point for each node location.

2. Dempster-Shafer inference: The Dempster-Shafer inference is based on the
Dempster-Shafer belief accumulation, which is a mathematical theory
introduced by Dempster [19] and Shafer [20] that generalizes the Bayesian
theory. It deals with beliefs or mass functions just as Bayes’ rule does with
probabilities. The Dempster-Shafer theory introduced a formalism that can be
used for incomplete knowledge representation and evidence combination.
Pinto discussed in-network implementations of the Dempster-Shafer
and the Bayesian inference in such a way that event detection and data routing
are combined into a single algorithm [21]. By using a WSN composed of
Unmanned Aerial Vehicle (UAV) as sensor nodes, Yu uses the Dempster-
Shafer inference to build dynamic operational pictures of battlefields for
situation evaluation. However, the particular challenges of in-network fusion
in such a mobile network are not evaluated [22].

3. Fuzzy logic: Fuzzy logic generalizes probability and, therefore, is able to deal
with approximate reasoning to draw conclusions from imprecise premises.
Each quantitative input is fuzzyfied by a membership function. The fuzzy
rules of an inference system generate fuzzy outputs which, in turn, are
defuzzyfied by a set of output rules. This structure has been successfully
used in real world situations that defy exact modeling, from rice cookers to
complex control systems. Gupta uses fuzzy reasoning for deciding the best
cluster-heads in a WSN [23].

4. Neural networks: Neural Networks represent an alternative to Bayesian
and Dempster-Shafer theories, being used by classification and recognition
tasks in the data fusion domain. A key feature of neural networks is the
capability of learning from examples of input/output pairs in a supervised
fashion. For that reason, neural networks can be used in learning systems
while fuzzy logic is used to control its learning rate. Neural networks have
been applied to data fusion mainly for automatic target recognition using
multiple complementary sensors.

5. Semantic data fusion: In semantic data fusion, raw sensor data is processed so
that nodes exchange only the resulting semantic interpretations. The semantic
abstraction allows a WSN to optimize its resource utilization when storing,
collecting, and processing data. Semantic data fusion usually comprises two
phases: pattern matching and knowledge-base construction. Friedlander [24]
introduced the concept of semantic data fusion, which was applied for target
classification.
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2.4.2 Estimation

Estimation method was inherited from control theory and used the laws of
probability to compute a process state vector from a measurement vector or a
sequence of measurement vectors. We present, in this section, the estimation
methods known as: Least Squares, Maximum Likelihood (ML), Moving Average
filter, Kalman filter, and Particle filter.

1. Least squares: Least Squares method is a mathematical optimization technique
that searches for a function that best fits a set of input measurements. This is
accomplished by minimizing the sum of the square error between points
generated by the function and the input measurements. The Least Squares
method is suitable when the parameter to be estimated is considered fixed.
Least Square method does not assume any prior probability.

2. Maximum likelihood: Estimation methods based on Likelihood are suitable
when the state being estimated is not the outcome of a random variable. Xiao
proposes a distributed and localized Maximum Likelihood that is robust to the
unreliable communication links of WSN. In this method, every node computes a
local unbiased estimate that converges towards the global Maximum Likelihood
solution [25]. Xiao further extended this method to support asynchronous and
timely delivered measurements, i.e., measurements taken at different time steps
that happen asynchronously in the network. Other distributed implementations
of ML for WSN include the Decentralized Expectation Maximization (DEM)
algorithm and the local Maximum Likelihood estimator that relax the require-
ment of sharing all the data [26].

3. Moving average filter: Moving average filter is broadly adopted in digital
signal processing (DSP) solutions as it is simple to understand and use.
Moreover, this filter is optimal for reducing random white noise while retaining
a sharp step response. This is the reason that makes the moving average the
major filter for processing encoded signals in the time domain. As the name
suggests, this filter computes the arithmetic mean of a number of input
measurements to produce each point of the output signal. Yang uses the
Moving Average filter on target locations to reduce errors of tracking
applications in WSNs [27].

4. Kalman filter: Kalman filter is a very popular fusion method. It was originally
proposed in 1960 by Kalman [28] and it has been extensively studied since then.
Kalman filter is used to fuse low-level redundant data. If a linear model can
describe the system and the error can be modeled as Gaussian noise, the Kalman
filter recursively retrieves statistically optimal estimates. On the other hand, to
deal with non-linear dynamics and non-linear measurement models other
methods should be adopted. In WSN, we can find schemes to approximate
distributed Kalman filter, in which the solution is computed based on reaching
an average consensus among sensor nodes [29].

5. Particle filter: The Particle filter is a recursive implementation of a statistical
signal processing known as sequential Monte Carlo methods. Although
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Kalman filter is a classical approach for state estimation, particle filters repre-
sent an alternative for applications with non-Gaussian noise, especially when
computational power is rather cheap and sampling rate is slow. The particles
are propagated over time, sequentially combining, sampling, and resampling
steps. At each time step, the resampling is used to discard some particles,
increasing the relevance of regions with high posterior probability. Target
tracking is currently the principal research problem wherein particle filters
have been used.

2.5 Data Fusion: Architectures and Models

Many architectures and models have been introduced to serve as guidelines to
design data fusion systems. These models evolved from data-based models to role-
based models. These models are useful for guiding the specification, proposal, and
usage of data fusion in WSN. Some of these models, such as the JDL and Frankel-
Bedworth, provide a systemic view of data fusion, whereas others, such as the
Intelligent Cycle and the Boyd Control Loop, provide a task view of data fusion.

2.5.1 Data-Based Models

Models proposed to design data fusion systems can be centered on the abstraction
of the data generated during fusion. This section introduces the models that
specify their stages based on the abstraction levels of data manipulated by the
fusion system [1].

1. JDL model: JDL is a well-known model in the fusion research area. It was
originally proposed by the U.S. Joint Directors of Laboratories (JDL) and the
U.S. Department of Defense (DoD). The model consists of five processing
levels, an associated database, and a data bus connecting all components as
shown in Fig. 2.3. Its components are described as follows:

» Sources: It is responsible for providing the input data and can be sensors,
a prior knowledge, databases, or human input.

e Database management system: It supports the maintenance of the data
used and provided by the data fusion system. This is a critical function,
as it supposedly handles a large and varied amount of data. In WSNs, this
function might be simplified to fit the sensors’ restrictions of resources.

¢ Human computer interaction (HCI): It is a mechanism that allows human
input, such as commands and queries, and the notification of fusion results
through alarms, displays, graphics, and sounds. Commonly, human interac-
tion with WSNss occurs through the query-based interfaces.
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Fig. 2.3 The JDL model

Level O (source preprocessing): It is also referred to as process alignment, this
level aims to reduce the processing load by allocating data to appropriate
processes and selecting appropriate sources.

Level 1 (object refinement): It converts the data into a consistent structure.
Source localization, and therefore, all tracking algorithms are in Level 1,
since they transform different types of data, such as images, angles, and
acoustic data, into a target location.

Level 2 (situation refinement): It attempts to provide a contextual description
of the relationship between objects and observed events. It uses a prior
knowledge and environmental data to identify a situation.

Level 3 (threat refinement): It estimates the current situation, projecting it in
the future to identify possible threats, vulnerabilities, and opportunities for
operations. This is a difficult task because it deals with computation
complexities and enemies intent assessment.

Level 4 (process refinement): It is responsible for monitoring the system
performance and allocating the sources according to the specified goals.
This function may be outside the domain of specific data fusion functions.

. Dasarathy model: The Dasarathy model [17] is a fine-grained data-centered

model in which the elements of data fusion are specified based on their inputs
and outputs. It is known also as Data-Feature-Decision (DFD) [17]. Figure 2.4
depicts the DFD model.

The primary input is raw data and the main output is a decision. The components
responsible for the several fusion stages are the elements DAI-DAO, DAI-FEO,
FEIFEO, FEI-DEO and DEI-DEO, described before. The DFD model is successful
in specifying the main types of fusion regarding their input and output data. For this
reason it is also used to classify data fusion. In contrast to the JDL model, the DFD
model does not provide a systemic view; instead it provides a fine-grained way to
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Fig. 2.4 The DFD model

specify fusion tasks by means of the expected input and output data. Therefore, the
DFD model is useful for specifying and designing fusion algorithms in WSNs with
different purposes such as ambient noise estimation.

2.5.2 Activity-Based Models

Some models are specified based on the activities that must be performed by the
data fusion system. The activities and their correct sequence of execution, in such
models, are explicitly specified.

1. Boyd control loop: The Boyd Control Loop is a cyclic model composed of four
stages. It is known also as the Observe, Orient, Decide, Act (OODA) Loop.
This model is a representation of the classic decision-support mechanism of
military data systems, and because such systems are strongly coupled with
fusion systems, the OODA loop has been used to design data fusion systems.
The stages of the OODA loop define the major activities related to the fusion
process as shown in Fig. 2.5, which are:

e Observe: Data gathering from the available sources. It corresponds to level
0 of the JDL model.

e Orient: Gathered data is fused to obtain an interpretation of the current
situation. It encompasses levels 1, 2, and 3 of the JDL model.

* Decide: Specify an action plan in response to the understanding of the
situation. It matches level 4 of JDL model.

e Act: The plan is executed. It is not dealt by the JDL model.

The OODA loop is a wide model that allows the specification and visualization
of the system tasks in an ample way. It allows the modeling of the main tasks of a
system. The OODA fails to provide a proper representation of specific tasks of a
data fusion system.
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Fig. 2.5 The OODA loop
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2. Intelligence cycle: The intelligence process is a four-stage cycle, which is called
Intelligence Cycle. Figure 2.6, shows the process of developing raw data into
finished intelligence used in decision-making and action. The activities of the
Intelligence Cycle are:

¢ Collection: Raw data is collected from the environment. It matches level O of
the JDL model.

» Collation: Collected data is compared, analyzed, and correlated. Irrelevant
and unreliable data is discarded. Includes level 1 of the JDL model.

e Evaluation: Collated data is fused and analyzed. It comprises levels 2 and 3 of
the JDL model.

» Dissemination: Fusion results are delivered to users who utilize the fused data
to produce decisions and actions in response to the detected situation.
It corresponds to level 4 of the JDL model.

The Intelligence Cycle does not make explicit the planning (Decide) and the
execution (Act) phases, which are most likely included in the Evaluation and
Dissemination phases. The OODA and Intelligence Cycle are general and can be
employed in any application domain. They do not fulfill the specific aspects of
the fusion domain demanding, thus, experience and expertise to model fine-
grained fusion tasks.
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3. Omnibus model: The Omnibus model organizes the stages of a data fusion

system in a cyclic sequence, just as the Intelligence Cycle and the OODA loop
do [30]. The Omnibus model should be applied during the design phase of a data
fusion system. Initially, it should be used to model the framework providing a
general perception of the system. Then, the model can be used to design the
subtasks, providing a fine-grained understanding of the system. Figure 2.7 shows
the Omnibus model. The Omnibus model was originally proposed to deal with
data collected by sensor devices. Some modifications can be suggested to make

it more broad and suitable for other data fusion systems such as:

» Sensing and signal processing can be replaced by data gathering and data

preprocessing, respectively.

» Sensor data fusion should be stated as raw data fusion.

e Instead of Sensor management we should adopt source management.

In this way, the Omnibus model will be suitable for data systems that deal with

any kind of sources, including sensors.

2.5.3 Role-Based Model

Role-based model represents a change of focus on how data fusion systems can be
modeled and designed. Data fusion systems are specified based on the fusion roles
and the relationships among them providing a more fine-grained model for the
fusion system. The two members of this generation are the Object-Oriented Model
and the Frankel-Bedworth architecture [31]. The role-based model provides a
systemic view of data fusion like the JDL model. However, it does not specify
fusion tasks or activities. Instead, it provides a set of roles and specifies the

relationships among them.
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Fig. 2.8 The object-oriented
model for data fusion Director
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Actor
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1. Object-oriented model: Kokar proposes an object-oriented model for data fusion
systems. Figure 2.8 is a simplification of the object-oriented model in which four
roles are identified as:

» Actor: It is responsible for the interaction with the world, collecting data and
acting on the environment.

e Perceiver: After data is gathered, the perceiver assesses such data providing a
contextualized analysis to the director.

» Director: The director builds an action plan specifying the system’s goals,
based on the analysis provided by the perceiver.

e Manager: It controls the actors to execute the plans formulated by the
director.

2. Frankel-Bedworth architecture: Frankel described an architecture for human
fusion composed of two self regulatory processes:

* Local: The local estimation process manages the execution of the current
activities based on goals and timetables provided by the global process.

e Global: The global process updates the goals and timetables according to the
feedback provided by the local process.

Figure 2.9 shows the Frankel-Bedworth architecture. The local and global
processes have different objectives and, consequently, different roles.
The local process tries to achieve the specified goals and maintain the specified
standards. The local process has the estimator role, which is similar to the
previous fusion models and includes the following tasks:

» Sense: Data is gathered by the data sources.

» Perceive: Stimuli retrieved by sensing are dealt according to its relevance
(focus), and the Controller is informed which stimuli are being used
(awareness).



2.5 Data Fusion: Architectures and Models 33

Estimator Controller
Stimuli o« focus
— Sense ———» Perceive . Orient
| Awareness ’y
Semantic ! ! o
= | IPriority
= | I
£ v . |
g 5 Desires
2 Direct _ Prefer
] | Alert A
Objectives | .o
| 'L.Dredlcrwn
Resoans S _ Pragmatics l
¢—— Effect > = » Expect
Expectations i

Fig. 2.9 The Frankel-Bedworth architecture

» Direct: Based on the comprehension of the perception (semantics), the
Estimator can provide a feedback (alert) to the Controller. The disparity
between current situation and desired situation is evaluated. Then, the
Estimator is fed forward with desires that specify new goals and timetables.

* Manage: Based on the objectives, the Controller is activated to define what is
practical (pragmatics) so the Estimator can provide an appropriate response.
Then, the Estimator provides a feedback to the Controller by reporting the
expectations about the provided decision (sensitivity).

« Effect selected decisions (responses) are applied and the control loop is
closed by sensing the changes in the environment.

Global control process manages the goals of the system during the execution of
the local process. The global process has the Controller role; it is responsible for
controlling and managing the Estimator role and includes the following tasks:

e Orient: The relevance of sensed stimuli is configured.

e Prefer: Priority is given to the aspects that are most relevant to the goal-
achieving behavior, detailing the local goals.

« Expect: Prediction is made and the intentional objective is filtered, determin-
ing what is practical to the estimator pragmatics.

The Frankel-Bedworth architecture introduces the notion of a global process
separated from the local process. The global control process rules the local
process by monitoring its performance and controlling its goals. Moreover, the
local process is supposed to perform and implement fusion methods and
algorithms to accomplish the system’s objectives. This architecture expands
the previous models that were concerned only with the local process aspects.
In WSN, the global control process will most likely be performed by human
beings who feed the network with operation guidelines, whereas the local
estimation process should be implemented within the computational system.
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Although these models provide a clear understanding of the fusion task, they do
not explicitly consider the particularities of the WSN.
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