
Chapter 2
Evaluating Debugging Algorithms
from a Qualitative Perspective∗

Alexander Finder and Görschwin Fey

Abstract A bottleneck during hardware design is the localization and the
correction of faults – so-called debugging. Several approaches for automation of
debugging have been proposed. This paper describes a methodology for evaluation
and comparison of automated debugging algorithms. A fault model for faults
occurring in SystemC descriptions at design time or during implementation is an
essential part of this methodology. Each type of fault is characterized by mutations
on the program dependence graph. The presented methodology is applied to evaluate
the capability of a simulation based debugging procedure. Both qualitative and
quantitative assessments are made to evaluate the fault model.

2.1 Introduction

During design of Very Large Scale Integrated (VLSI) circuits often functional
mismatches between a given specification and the final implementation occur.
When an implemented design produces erroneous output due to the presence of
one or more faults, debugging begins. First sophisticated automatic approaches for
debugging exist [4, 9, 11, 13] and several further diagnosis techniques have been
developed, e.g. [6, 14].

So far the work on comparing these approaches and on understanding which
types of design bugs can be efficiently handled by a certain approach is very
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limited. For instance, in [3, 10] different debugging approaches were compared.
In [10] a procedure based on explanation is compared to a model-based diagnosis
technique. The comparison is mainly done on the basis of a case study. In [3] a
simulation-based diagnosis technique and a diagnosis technique based on Boolean
Satisfiability (SAT) are compared. There the quality of the two techniques is
quantitatively assessed and compared by measuring the distance between gate level
fault candidates and actual faults. No generalization to the source level, e.g. in
a Hardware Description Language (HDL) has been done. Also the work in [11]
quantitatively assesses a debugging algorithm by measuring the distance between
actual fault sites and candidate fault sites determined by the algorithm. By this,
all of these approaches and the conclusions drawn are restricted to the respective
benchmarks considered. Generalizing the results is difficult.

One way towards generalizing the result is the use of fault models to assess
the performance of an algorithm for certain types of design bugs. No appropriate
fault model has been introduced so far. Previous fault models have been devel-
oped for other purposes. Fault models known from testing integrated circuits for
production faults are efficient in modeling physical failures, like e.g. the stuck-at
fault model [7]. They are not applicable when considering design bugs. A fault
model on the netlist level has been proposed in [1] to capture faults introduced
after synthesizing HDL descriptions. Additionally, high-level fault models have
been introduced. For example, in [5] a fault model is described for determining
bit coverage information. The fault model for SystemC presented in [2] describes
transient and permanent faults. These previous fault models cannot be used for
describing bugs at the HDL level.

In this paper a methodology is presented to evaluate debugging algorithms from
a qualitative perspective. As a basis we use an extensible fault model that describes
different types of bugs in SystemC descriptions. Some parts of the model are
inspired by previous work from Abadir, Ferguson, and Kirkland [1]. We lift this
fault model originally defined for gate level netlists to higher level descriptions.
Based on this fault model, debugging algorithms can be assessed to understand their
capabilities with respect to different types of bugs.

In a first case study we show that some types of bugs can be handled using a
simulation based algorithm while other types of bugs cannot be handled. By this,
our methodology qualitatively classifies the debugging algorithm. Knowing such
restrictions is important from two points of view: (1) the results returned by the
debugging algorithm may be misleading for those bugs that cannot be handled, (2) a
comparison to other debugging algorithms becomes possible. We will also discuss
why using a quantitative approach like in [3, 11] is difficult and requires further
research before a generalization of the results is possible.

The contributions of the presented work are

• a methodology for evaluating debugging algorithms,
• a fault model on the HDL level to classify design bugs, and
• a discussion and evaluation of a quantitative approach to assess debugging

algorithms.
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This paper is structured as follows. In Sect. 2.2 a short introduction to source
code analysis and simulation-based debugging is given. The general idea underlying
this paper is described in more detail in Sect. 2.3. Furthermore, this section also
discusses the problems of quantitative approaches when evaluating debugging
algorithms. Section 2.4 explains the proposed fault model for bugs in SystemC
designs offering a possibility for evaluation and comparison of debugging methods.
In Sect. 2.5 the applicability and accuracy of the debugging procedure for SystemC
designs is evaluated using the formerly described fault model. In Sect. 2.6 we give a
conclusion.

2.2 Preliminaries

In this section some essentials of source code analysis are briefly reviewed. In
particular, terminology used in this paper, program dependency graphs (PDGs), and
simulation-based debugging are considered.

2.2.1 Faults, Bugs, and Errors

Throughout this paper we consider a bug to be contained in some design description.
An error is the observation of the effect of a bug that contradicts the specification.
The input stimuli leading to an error are called a counterexample (wrt. the specifica-
tion). A fault is part of a fault model and, by this, a generalized description of a bug.
Note, that the errors caused by a certain bug may be of various types. For example,
having a wrong operator – an addition instead of a subtraction – in a computation
is a typical bug. One potential error caused by this bug is an erroneous outcome of
a computation. An alternative error due to the same bug in some other context may
be a deadlock of concurrent processes because some resource is never released.

2.2.2 Computation of CFG and PDG

A Control Flow Graph (CFG) is a directed graph where the nodes represent the
statements and the edges depict the control flow. The annotation at each node
describes the variables defined, written or read.

Out of the CFG the Data Dependency Graph (DDG) can be computed. The DDG
is a directed graph where the nodes indicate the statements of the program and the
edges represent the dependencies between variable usages by different statements.

Further the Control Dependency Graph (CDG) can be computed out of the
CFG. This is a directed graph where the nodes are statements and the edges depict
dependencies between the statements.
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Fig. 2.1 Program

Fig. 2.2 Program dependency graph

The PDG is obtained by merging the DDG and the CDG. A PDG is a directed
graph G = (V,E) in which a node v ∈V is a statement or a predicate expression and
the edges e∈ E incident to a node represent both, the data values the operation of the
node depends on and the control condition the execution of the operation depends
on. In Fig. 2.1 an example program is depicted and the corresponding PDG is shown
in Fig. 2.2. Solid lines reflect control edges and dashed lines data flow.

2.2.3 Simulation-Based Debugging

Simulation-based debugging is intended to investigate the effect of statements on
a variable or the influence of a variable on other statements. Simulation-based
procedures are used in different areas of application, e.g. debugging, testing,
compiling. In this work the simulation-based algorithm is used as a case study for
the proposed methodology for assessing debugging algorithms.

The objective of the procedure is to reduce the debugging effort by focussing
the attention of the user on a subset of program statements called traces which
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Fig. 2.3 Principle of the algorithm

are expected to contain faulty code [3]. The principle of the algorithm is shown
in Fig. 2.3. For a given SystemC specification counterexamples are simulated to
generate traces. The intersection of these traces includes and localizes the faulty
statement. However, this is assured only if the design contains only a single bug.

2.3 General Idea and Discussion

The debugging process is comprised of collecting information from the failed
simulation trace or counterexample and analyzing the design until the error source
is identified. In the meanwhile several debugging algorithms and strategies exist but
comparing the algorithms is difficult. Typically, even the types of bugs that can be
detected by a certain algorithm are not clearly known. Thus, interpreting the output
of the algorithm is hard and may even be misleading.

The idea of this paper is to use a qualitative methodology for evaluating debug-
ging algorithms based on a fault model. This fault model induces a classification of
design bugs into different types. A classification of design bugs supports to identify
an existing fault type and to restrict the number of fault candidates. Using the fault
model, the applicability of debugging algorithms for certain bugs can be evaluated.

Figure 2.4 outlines the relation between the faults and the design. A fault
described by the fault model is a generalized description of actual bugs in a design.
Each type of fault in our fault model characterizes a set of mutations of the PDG. If a
faulty PDG is mutated such that the fault is rectified, the resulting PDG corresponds
to a correction of the bug in the design.
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Fig. 2.4 Relation between
fault and design

2.3.1 Qualitative Assessment

The fault model can be used to inject different types of faults in a system description.
After that debugging algorithms can be assessed by the types of faults they
detect and the fault candidates they return. Note that different bugs as well as
corresponding programs may be functionally equivalent.

Example 2.1. Consider an operation a+b where b is faulty and the result is
assigned to a variable temp further used in a condition. In this case we have a data
operation fault. If the operation a+b is directly inserted in the condition without
using temp we have a control operation fault.

This implies that a fault A may be transformed to a fault B without changing the
functionality of the underlying design. Particular debugging algorithms may only
be able to help in one of these cases. The use of a fault model helps to identify such
restrictions of a debugging algorithm.

2.3.2 Limits of Quantitative Assessments

Extending the proposed qualitative assessment of debugging algorithms by a
quantitative aspect is possible. For example, the works in [11] and [3] use distance
measures between the actual fault sites and the candidate fault sites returned by
the algorithms. In [11] Renieres and Reiss describe a methodology to quantitatively
assess the quality of the debugging algorithm based on the PDG. In order to measure
the success of a debugging algorithm the method assigns a score to the report of a
fault localization, depending on the size of the report and the distance to the actual
fault. Here, proximity to the fault is defined based on the PDG. In [3] the authors
measure the nearest distance of a gate level fault candidate in a circuit to an actual
fault, i.e. the number of gates on a shortest path to an error.

In both cases, the quantitative analysis directly depends on the benchmarks con-
sidered. The same debugging algorithm may yield very different results for the same
type of bug if the benchmark changes. For example, consider one data-dominated
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design performing a computation like a filter operation and a second control-
dominated design containing many conditional branches. In the data-dominated
design changing an operator almost always influences the output. In the control-
dominated design, the output only becomes erroneous under certain conditions on
the control path. The cause of the error (the bug) can be pinpointed much better
in the control-dominated design. We will also show this in the evaluation of our
methodology in Sect. 2.5.

2.4 Fault Model

In this section all types of faults are described and categorized that are covered by
the proposed fault model. In general, faults are caused by specification changes,
bugs in automated tools, and the human factor [8]. In the presented model local
code transformations are considered as programming faults whereas global code
transformations are considered to be design faults. As mentioned before the various
types of faults do not need to be disjoint but may overlap, e.g. operator faults and
predicate faults. Syntactical bugs are not classified within the proposed fault model
because this kind of bugs is assumed to be discovered by a compiler, like e.g. a
missing declaration or a forbidden use of a certain data type. This means that only
semantic and conceptual faults are taken into account.

The proposed fault model is not claimed to be complete but maintains a list of
typical faults. The applicability of this fault model has been investigated on SystemC
descriptions. However, the fault model can be extended to encompass additional
types of bugs, not covered so far, if needed. In the context of this work a fault
corresponds to certain modifications of the PDG.

Figure 2.5 gives a hierarchical overview of the fault model described in the
following sections. On the top level programming faults and design faults are
distinguished. These are refined then to more concrete mutations of the PDG.

Fig. 2.5 Hierarchical view on the fault model
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Fig. 2.6 Correcting an assignment

2.4.1 Programming Faults

Programming faults in SystemC specifications are assumed to be introduced during
the coding phase. In the following subsections possible programming faults are
described. The effect of a single fault on the PDG for the design is usually small.
This is exemplarily shown for some types of faults. In all following examples we
refer to the program given in Fig. 2.1.

2.4.1.1 Assignment Fault

Suppose that a wrong value is assigned to a variable. This could be done by
assigning a wrong constant or a wrong variable. As a result calculations in data
dependent nodes are carried out with incorrect values which may lead to erroneous
output data. If a wrong constant has been assigned only one node of the PDG
for the SystemC description has to be changed to fix the bug. In the other case
if a wrong variable is assigned also the corresponding data edges have to be
reconnected.

In Fig. 2.6 it is assumed that the programmer has inadvertently assigned the value
0 to sum but should assign 10. The effect of the correction on the PDG is indicated
by bold lines.

2.4.1.2 Operation Fault

A fault is considered as an operation fault if either an incorrect data operation or an
incorrect control operation is carried out. Each type of operation fault can be further
partitioned in an operand fault and an operator fault (see Fig. 2.7). Depending on
which type of operation fault is present, the correction of the fault has a different
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Fig. 2.7 Operation fault

effect on the PDG. If an operator fault exists, the correction corresponds to the
modification of a single node in the PDG. If the operands are wrong, also data edges
have to be reconnected.

Data Operation

A data operation fault within a statement occurs if a data operator is replaced by
another operator or if incorrect operand values are used within the operation. All
operators defined in SystemC (+, −, *, /, %, &, —, etc.) are considered as data
operators. Bugs corresponding to this fault are, e.g. using multiplication instead of
division. Operands could be either variables or constants.

Control Operation

Suppose that a programmer inadvertently writes an incorrect control condition. This
could be done by using incorrect operators or operands in the expression specifying
the condition. There are several types of control operation faults possibly affecting
the execution of a design. Writing a faulty predicate in a simple if-statement either
leads to not executing the then-branch while it should be taken, or executing it,
while it should not be taken. Additionally, control operation faults can be injected
in loop-statements or in function calls. A faulty loop-statement leads to unspecified
executions of the loop. A fault in a function call implies erroneous data.

2.4.1.3 Incorrect Data/Port Type

Suppose that the programmer declared a variable with a wrong data type. For
example, the variable is of type unsigned integer instead of integer or
integer instead of double and so on. This would create erroneous results in
computations.

A similar fault is declaring an incorrect port type (in, inout, out) to a port
of the system specification and binding the correct signal to the port. This would
coincidently lead to missing inputs and extra outputs or vice versa to extra inputs and
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Fig. 2.8 Design faults

missing outputs. Note, a fault of this type is a SystemC specific fault and is typically
not reproducible in other hardware description languages like Verilog, where the
compiler detects the mismatch.

The correction of these faults would have little effect on the corresponding PDG
because only the content of the nodes concerned has to be changed.

2.4.2 Design Faults

Design faults inside a given SystemC specification are expected to be introduced
during the conceptual design phase. Here, we distinguish between simple and
complex missing, extra, or misplaced code and signal binding faults. In Fig. 2.8
we show what may be simple and complex code parts. For instance, a single data
operation or assignment is considered as simple code while function calls and
control operations affecting more control and data dependencies within a PDG are
treated as complex code. Here, missing code, extra code, and misplaced code can be
further partitioned into the same simple and complex fault types. In the following
subsections possible design faults of SystemC designs are described and the effect
on the corresponding PDG is explained.

2.4.2.1 Missing Code

Similar to a missing gate or a missing inverter in gate level design [1], there could
be omitted code in SystemC descriptions. Here missing simple code and missing
complex code are distinguished.

Missing Simple Code

Suppose that the designer has inadvertently omitted an operation corresponding to
a simple missing data operation in the SystemC implementation. The correction of
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Fig. 2.9 Inserting additional code

this fault is more sophisticated than the correction of programming faults because it
implies adding a node to the PDG and accompanying control and data edges to or
from other nodes. Also already existing edges may have to be reconnected.

In Fig. 2.9 it is assumed that the designer omitted the statement i=n/2. The
insertion of this statement implies adding a new node and a new control edge as
well as adding and removing several data edges. All parts concerned are marked in
bold in the figure.

Missing Complex Code

Similar to the previous design fault, a designer could omit more complex code. For
instance, this may be a function call, an else-branch, or a missing control statement
in terms of an if-condition or a loop-condition, embracing a block of statements.
The correction of such a fault would have a large effect on the PDG. Conceivably
many nodes and edges have to be added to the existing PDG restructuring the graph.
Furthermore, many existing nodes and edges have to be reconnected.

2.4.2.2 Extra Code

Assume, that the designer has inserted extra simple or complex code complementary
to the missing code described in the previous section. This would lead to superfluous
computations or wrong control and data paths distorting the results.

The correction involves removing the extra code from the specification resulting
in removing nodes and edges from the PDG. Assume, that the designer inadvertently
added the extra statement sum=sum+i to the initial PDG in Fig. 2.2. In Fig. 2.10
the PDG is shown after removing the extra statement.
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Fig. 2.10 Removing extra code

2.4.2.3 Misplaced Code

Similarly to missing or extra code, suppose that code within a specification is
misplaced. This means that some statements, function calls, loops etc. will be
executed before others so that we may have a faulty data or control flow within
the PDG. A correction would imply reconnecting nodes in the PDG because of
correcting the data or control flow.

2.4.2.4 Signal Binding Faults

Data transfer between modules is reflected by signal bindings. Each port should be
bound to a certain signal. Signal binding faults may occur during the design phase.
In the PDG, a correction often can be done by reconnecting data edges.

Incorrect/Interchanged Signal Binding

Suppose that the designer has specified a wrong data transfer behavior between
modules leading to a wrong signal binding at a port or interchanged signals between
ports. This implies incorrect data at inputs or outputs of a certain module in the
system design. In the PDG we typically would have an incorrect data flow.

Missing Signal Binding

A missing signal binding means that on some arbitrary module a signal binding to a
port has been omitted. That means there exists an input reading no data or an output
writing no data although the data of the ports is needed in further computation steps.
Note, this fault is comparable to missing simple code because the statements of the
signal bindings have been omitted.
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2.5 Evaluation: Simulation-Based Debugging

To evaluate our methodology, the simulation-based debugging algorithm described
in Sect. 2.2 has been implemented. In our experiments, first the limitations of
quantitative analysis are evaluated. Then we show the results of the qualitative
assessment.

Faults in a design are localized by computing several traces which cause the
program to produce erroneous output during simulation. Each trace describes a
certain assignment of input variables.

Out of the SystemC library [12] a simple FIFO, a pipe, an RSA algorithm and
a simple bus implementation have been taken as benchmark. For each design all
applicable fault types of the fault model have been evaluated. The designs for the
simple FIFO and the RSA algorithm do not have any communication between
modules with signals. For this reason, signal binding faults could not be tested. Each
type of fault has been injected randomly on three different positions in a design and
for each faulty version of the design five traces leading to erroneous output have
been applied. Each trace has been initialized with a different assignment of input
variables. In general, increasing the number of traces leads to a decreasing size of
intersections.

Table 2.1 shows the benchmarks used. In column LOC the lines of code of
the investigated designs are listed excluding the comments. The percentage of the
obtained intersected sets of fault candidates is calculated in relation to the size of the
design. Also the size of the minimal and the maximal trace are denoted in percent.
The percentage of control statements roughly indicates whether the design is control
flow or data flow dominated.

For the first two benchmark designs (simple fifo and pipe), on average
a fourth of the designs has to be analyzed for detecting the faulty statement. In
the third benchmark (rsa), the percentage of control statements increased and
coincidently the average size of the traces decreased compared to the size of the
design. However, the blocks that are surrounded by control statements are relatively
small while large sequences without any control operations exist. For this reason, the
reduction of the traces by intersection is not as significant as for the simple bus
benchmark. Although the simple bus is larger, the number of statements in the
intersections averages to 6.9%.

Table 2.1 Benchmark designs

Control
statements (%)

Intersected trace(%)

Design Description LOC Min Max ∅

simple fifo Simple FIFO 120 0.5 21.7 26.7 25.0
pipe Pipeline 220 1.3 24.5 25.5 25.0
rsa RSA cipher 480 6.5 19.8 24.0 21.3
simple bus Abstract bus model 1240 6.6 6.4 8.2 6.9
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Table 2.2 Average distance of fault candidates

Fault simple fifo pipe rsa simple bus

Assignment 51.8 27.4 128.7 95.5
Data operation 48.7 24.1 162.4 103.8
Control operation 43.2 21.5 145.9 96.7
Data/port type 53.0 26.5 151.7 109.8
Extra code 37.9 23.4 132.3 99.5
Misplaced code 46.8 23.6 173.5 98.4
Signal binding − 26.8 − 100.2

2.5.1 Limitations of Quantitative Analysis

Table 2.2 shows the average distance of the fault candidates to the faulty statement
in lines of code as explained in Sect. 2.3. Only traces have been considered where
the faulty statement is within a trace such that a measurement is possible. Therefore,
distance measurements to missing code are not considered.

The experimental results show that the distance strongly depends on the structure
of the investigated design and the place where a fault has been injected. For instance,
the fault candidates for the simple fifo benchmark often have a large distance
to the faulty statement because the design is mainly sequential where code is carried
out successively. The same observation holds for the rsa benchmark. In contrast,
the average distance of fault candidates for pipe is relatively small because the
pipeline is partitioned into several small functions. For the same reason the distance
of the fault candidates to a faulty statement is moderate compared to the size of
the SystemC description of the simple bus. The average distance of the fault
candidates is decreasing if a control operation fault is injected such that often
the following control-block is carried out. Thus, quantitative analysis significantly
varies with the benchmarks.

2.5.2 Qualitative Assessment

In Table 2.3 the applicability of the debugging procedure is evaluated. Column
detection denotes whether the algorithm is able to detect the specified fault or not.
In all cases all types of faults with a checkmark are detectable. This means that the
procedure creates a trace which contains the faulty statement causing an unexpected
behavior. Vice versa, the other types of faults are not detectable with regard to any
trace. Obvious is that the simulation-based algorithm has (expected) weaknesses
in localization of design faults. Missing code or missing signal bindings are not
detectable because there are no executed statements that are faulty, i.e. there are no
faulty statements in the trace.
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Table 2.3 Evaluation of simulation-based
debugging

Fault Detection

Assignment fault �
Data operation fault �
Control operation fault �
Data/port type fault �
Missing simple code x
Missing complex code x
Extra code �
Misplaced code �
Incorrect/interchanged signal binding �
Missing signal binding x

2.6 Conclusion

Debugging is a process of localization and correction of faults in designs. The
problem of evaluating debugging methods has been studied in this paper and a fault
model has been proposed that is suitable to analyze the applicability of debugging
algorithms. Each type of fault is linked to certain mutations of the PDG. The fault
model presented in this paper is extensible and generalizable to other high-level
description languages.

A debugging algorithm has been implemented and evaluated with respect to the
fault model. The results of the quantitative analysis strongly depend on the structure
of the investigated designs. The qualitative analysis has shown that the algorithm is
well applicable to detect programming faults while it has weaknesses in detecting
certain design faults.

In further work, additional algorithms will be evaluated and compared. Also
quantitative approaches that are less dependent on individual benchmarks will be
addressed by taking the structure of the source code into account.
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